The Journal of Systems & Software 187 (2022) 111231

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems & Software

SOFTWARE

-

Discovering boundary values of feature-based machine learning N
classifiers through exploratory datamorphic testing™ " e
Hong Zhu *, Ian Bayley

School of Engineering, Computing and Mathematics, Oxford Brookes University, Oxford 0X33 1HX, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 22 April 2021

Received in revised form 12 December 2021
Accepted 20 January 2022

Available online 31 January 2022

Keywords:

Artificial intelligence
Software testing
Automation of software test
Datamorphic testing
Exploratory testing

Test strategies

Testing has been widely recognised as difficult for Al applications. This paper proposes a set of
testing strategies for testing machine learning applications in the framework of the datamorphism
testing methodology. In these strategies, testing aims at exploring the data space of a classification or
clustering application to discover the boundaries between classes that the machine learning application
defines. This enables the tester to understand precisely the behaviour and function of the software
under test. In the paper, three variants of exploratory strategies are presented with the algorithms
implemented in the automated datamorphic testing tool Morphy. The correctness of these algorithms
are formally proved. Their capability and cost of discovering borders between classes are evaluated via
a set of controlled experiments with manually designed subjects and a set of case studies with real
machine learning models.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

It is widely recognised that the generation of test data for Al
applications is prohibitively expensive (Tian et al., 2018). Check-
ing the correctness of a test result is also notoriously difficult,
if not completely impossible (Segura et al., 2018; Zhou and Sun,
2019). Moreover, existing testing techniques for measuring test
coverage and the automation of testing activities and processes
are not directly applicable (Zhu et al., 2018). Testing Al applica-
tions is therefore a grave challenge for software engineering (Bai
et al., 2018). Developing novel approaches to test Al applications
is highly desirable (Gotlieb et al., 2019).

In Zhu et al. (2018, 2019b), we proposed a method called
datamorphic testing for testing Al applications and reported a
case study with Al applications. In Zhu et al. (2019a, 2020) we
developed this method further, defined the notion of test mor-
phisms and reported an automated testing tool called Morphy.
In Zhu et al. (2020), we defined formally a set of test strategies
that combine datamorphisms to cover various scenarios in Al
applications; Zhu et al. (2019a) reports case studies that show the
strategies significantly improve automated in testing Al applica-
tions.

™ Editor: Raffaela Mirandola.
X This paper is an extended and revised version of the conference paper by
Zhu and Bayley (2020).
* Corresponding author.
E-mail addresses: hzhu@brookes.ac.uk (H. Zhu), ibayley@brookes.ac.uk
(1. Bayley).

https://doi.org/10.1016/j.js5.2022.111231
0164-1212/© 2022 Elsevier Inc. All rights reserved.

In Zhu and Bayley (2020), we proposed another set of strate-
gies to test the classification and clustering variety of Al applica-
tions, as they are very common and arise from machine learning
and data analytics techniques; see, for example, Aggarwal (2015),
Mohri et al. (2012) and Shalev-Shwartz and Ben-David (2014).
These strategies are based on the idea of exploratory testing,
in which outputs from the previous tests is used to change the
focus of testing so that as much as possible of the application’s
functionality is explored (Whittaker, 2009). Whereas confirma-
tory testing verifies and validates the correctness of the software
under test with respect to a given specification, exploratory test-
ing treats it as an object unknown and conducts experiments
to discover its functions and features. The two approaches also
differ in their treatment of test cases. Confirmatory testing treats
test cases as being mutually independent whereas exploratory
testing uses the results of earlier test cases to guide the selection
of subsequent test cases. In particular, the strategies in Zhu and
Bayley (2020) aim at discovering the borders between classes of
a classifier. The main contributions of Zhu and Bayley (2020) are:

e The notion of Pareto front was introduced and formally
defined to represent borders between classes.

e Strategies to produce Pareto fronts from machine learn-
ing models were formally defined as datamorphic testing
algorithms.

e The algorithms were formally proved correct and imple-
mented in the Morphy tool.

e Their cost efficiency was demonstrated by conducting con-
trolled experiments with 10 manually coded classifiers as
subjects.

https://doi.org/10.1016/j.jss.2022.111231
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111231&domain=pdf
mailto:hzhu@brookes.ac.uk
mailto:ibayley@brookes.ac.uk
https://doi.org/10.1016/j.jss.2022.111231

H. Zhu and I. Bayley

This paper extends that work and has the following main
contributions:

e The notion of completeness is formally defined for a data-
morphic test system to be used for exploratory testing.

e A systematic method is proposed for constructing
exploratory test systems for any feature-based classifier,
which are among the most common types of machine learn-
ing applications; their completeness was also proven.

e We extend the evaluation in Zhu and Bayley (2020) by build-
ing 48 real machine learning models constructed from 3
real datasets using 8 different machine learning algorithms,
in addition to 10 manually coded classifiers already used
in Zhu and Bayley (2020). For each strategy, we measure
both its cost and its capability of discovering classifier bor-
ders. The evaluation found that cost-effectiveness is high for
both.

The paper is organised as follows. Section 2 defines the basic
concepts underlying the work: the basic notions and notations of
machine learning classifiers, the exploratory testing approach, the
datamorphic testing method and the automated testing tool Mor-
phy. Section 3 is a theoretical study of the exploratory test sys-
tems for various types of feature-based classifiers, which proves
that such test systems exist for all such types of feature-based
classifiers. Section 4 defines the exploration strategies and illus-
trates their uses with an example. Section 5 reports the controlled
experiments with the 10 manually coded classifiers and 48 ma-
chine learning models. Section 6 compares the proposed testing
method with related work. Section 7 concludes the paper with a
discussion of future work.

2. Preliminaries

In this section, we briefly review the notions and notations
underlying our proposed approach.

2.1. Classification applications

Clustering as a data mining and machine learning problem
is the partitioning of a given set of data points into groups
containing similar data points. The grouping is based on a no-
tion of similarity between data points, defined formally with a
distance function on the data space. Two pieces of data that are
similar to each other should be put into the same group, whilst
data that are dissimilar should be placed in different groups.
Whereas clustering is unsupervised learning, classification is su-
pervised learning. Given a number of examples of data points and
their classifications, the algorithm learns how to assign data to
groups (Aggarwal, 2015; Mohri et al., 2012; Shalev-Shwartz and
Ben-David, 2014).

In both clustering and classification, the result is a program
P that maps from the data space D into a number of non-empty
groups G such that D = Ugec(g) andVg,qe G(g #q=>gNqg=
). We say that P is a classification application. We will write P(x)
to denote the output of P on an input x € D, and call P(x) the
classification of x by P. We also assume that there is a function
I.:]l : Dx D — RT (Rt = {x € R | x > 0}) measuring the
distances between any two points x and y in the data space D,
with shorter distance denoting greater similarity, such that:

e Vx € D.(]|x, x|| = 0);

o Vx,y € D.(||x,yll = 0);

o Vx,y € D.(IIx, yll = lly, xI);

o Vx,y,z € D.(lx, yll + lly. zll = IIx, zl|).

The Journal of Systems & Software 187 (2022) 111231

For a classification program, it is crucial that data is assigned
to the correct classes. However, the borders between classes are
often unknown if the classification program is obtained through
machine learning and data mining. The goal of the exploratory
testing proposed in this paper is to find a set of data pairs that
represents the borders between classes. Thus, we introduce the
notion of a Pareto front for the classification as defined by the
program P under test.

Definition 1 (Pareto Front of Classification). Let P : D — G be a
classification program, |-, -|| : D x D — R* be a distance metric
defined on the input space D, and § > 0 be any given real number.
A set {(a;, b;) | a;,b; € D,i = 1,...,n} of data pairs is a Pareto
front of the classes of D according to P with respect to |-, -|| and
g,ifforalli=1,...,n,P(a;) # P(b;) and ||a;, bi|| <. O

A Pareto front can show accurately the borders between
classes within a tolerable error margin 4. In this way, it helps
testers to determine whether the classification is correct or not.

The structure of the data space D determines the type of the
classification system. We now define a few standard types that
are often seen in the literature.

Definition 2 (Feature-Based Classifier). Let P D — Gbea
classification program. We say that P is a feature-based classifier
if there is a natural number K > 1 such that D = Dy x --- Dy,
where for every i = 1, ..., K, D; is the set of values of a feature
fi. Moreover, a feature f; is discrete non-numerical if D; is a finite
non-empty set. A feature f; is discrete numerical, if D; is the set
of integer values or natural numbers. A feature f; is continuous
numerical, if D; is the set of real numbers, or a non-empty interval
of real numbers. O

As these are disjoint alternatives, a feature-based classifier
can further be classified disjointly according to the types of its
features.

Definition 3 (Types of Feature-Based Classifiers). Given a feature-
based classifier P : D; x ---Dx — G, where D; is the domain of
feature f;, we say that

e P is a discrete non-numerical feature-based classifier or simply
a discrete non-numerical classifier, if all features f; are discrete
non-numeric.

e P is a discrete numerical feature-based classifier or simply
a discrete numerical classifier, if all features f; are discrete
numeric.

e P is a continuous numerical feature-based classifier, or sim-
ply a continuous numerical classifier if all features f; are
continuous numeric.

e P is a hybrid feature-based classifier or simply hybrid clas-
sifier, if its data space contains more than one type of
features. O

Feature-based classifiers are the most common kind of data
analytic and machine learning applications. There are other more
complicated classifiers, such as time series classifiers, but in this
paper we will only study feature-based classifiers.

Example 1. Consider a classifier that classifies the points in a
two-dimensional continuous space [0, 2] x [—1, 1] into three
classes: red, black and blue as illustrated in Fig. 1. This example
is a continuous numerical classifier. In this example, data points
x and y are a Pareto front pair between black and red classes, if x
is red and y is black and they are very close to each other. Such
pairs can show accurately the borders between classes, and thus
help testers to determine whether the classification is correct or
not. O

H. Zhu and I. Bayley

o

Fig. 1. Data space of the running example. The readers are referred to the web
version of this article for a coloured version of this figure.

In the rest of this paper, we will use the above classifier as
a running example to explain the definitions of notions and to
illustrate the exploration strategies.

2.2. Exploratory testing

Although exploratory testing (ET) has been widely practised in
the industry for a long time, the first use of the term “exploratory
testing” was in a book by Kaner (1988). It takes a pragmatic
approach to software testing under normal business conditions
and is based on his experiences as a software testing engineer
and manager in the IT industry. Kaner wrote the book initially as a
training and survival guide for his staff, but it soon developed into
a bestselling textbook on software testing used by other prac-
titioners throughout the IT industry (Kaner, 1988; Kaner et al,,
1999).

Exploration plays an important role in Kaner’s approach to
software testing. It was soon recognised as an alternative and
complementary approach to existing techniques in the literature
that emphasise the systematic design and scripting of test cases
prior to testing. The notion of ET was further developed by Kaner
and other researchers with industry background such as Bach
(2002, 2003), Copeland (2004), Whittaker (2009), and Hendrick-
son (2013). etc. Today, ET is not only widely recognised and
practised in the industry, but also has become an active research
topic within software testing.

Bach (2003) defines ET as “simultaneous learning, test design,
and test execution”; according to Hendrickson (2013) this is
widely quoted. Other advocates of ET give similar definitions. Gra-
ham et al. (2007, Page 113) defines it as “a test design technique
where the tester actively controls the design of the tests as those
tests are performed and uses information gained while testing to
design new and better tests”. Copeland (2004, Page 202) states
that “to the extent that the next test we do is influenced by
the result of the last test we did, we are doing exploratory
testing. We become more exploratory when we can’t tell what
tests should be run, in advance of the test cycle”. Loveland et al.
(2005, Page 339) call ET “artistic testing”, defined as “testing
that takes early experiences gained with the software and uses
them to device new tests not imagined during initial planning.
It is often guided by the intuition and investigative instincts of
the tester”. Whittaker (2009, Page 16) also characterised ET as
a process in which “testers may interact with the application in
whatever way they want and use the information the application
provides to react, change course, and generally explore the appli-
cation’s functionality without restraint”. He argued that ET is not
ad hoc but a powerful testing technique. The power comes from
using the information provided by the software under test to alter
the course of testing. This process is what Hendrickson (2013,
Page 7) called “steering”. Given its importance in ET, Hendrickson
(2013) revised Bach’s definition by including steering explicitly.
She wrote that ET is “simultaneously designing and executing
tests to learn about the system, using your insights from the last
experiment to inform the next”. She further identified four essen-
tial elements of ET and explains these distinctive key attributes
by regarding ET as experiments as follows.

The Journal of Systems & Software 187 (2022) 111231

e Designing: identifying interesting things to vary and inter-
esting ways in which to vary them so that the experiment
can be better performed.

e Executing: all dynamic testing involves executions of the
software on test cases, but in ET a test case is executed
immediately when it is designed.

e Learning: the testers “discover how the software operates”.

e Steering: using the insights gained from the previous test
execution(s) to inform the next.

It is worth noting that “learning”, or more precisely, “discov-
ery”, is perhaps the most fundamental feature that distinguishes
ET from traditional approaches to software testing, which is re-
garded as a validation and verification technique and/or method;
see, for example, Kung and Zhu (2009). Itkonen et al. (2016)
regard such traditional approaches to software testing as con-
firmatory testing. In other words, it aims to confirm existing
theories about the software under test, typically to prove (or
disprove) the correctness of the software with regards to the
expected output and behaviour. They pointed out that ET aims
to discover behaviours that are new in contrast to mechanical
executions of pre-scripted test cases. Therefore, as Whittaker
(2009) pointed out, ET is most suitable for testing software where
a precise specification of the system is not available, such as GUI-
based systems. Machine learning applications also lack precise
specifications so ET is applicable for them as well.

ET is often considered to be a manual testing approach but it
need not be. Whittaker (2009) explicitly states that it “doesn’t
mean we cannot employ automation tools as aids to the pro-
cess”. Itkonen et al. (2016) also point out that the goal of test
automation in ET is “to free human resources for other types
of testing activities”. The goal of this paper is to automate the
application of ET in this way when testing machine learning
applications.

ET is usually unscripted, whereas traditional testing is scripted
as it pre-specifies test cases, mechanically executes them and
compares output values to expected values, also pre-specified.
However, ET need not be unscripted. Whittaker (2009) pointed
out that “It isn’t necessary to view exploratory testing as a strict
alternative to script-based manual testing. In fact, the two can
co-exist quite nicely”. He distinguishes four types of ET: freestyle,
scenarios-based, strategy-based, and feedback-based (Whittaker,
2009, Page 184). He proposed a set of test strategies as guides to
exploratory testers and studied a set of scenarios in exploratory
testing. From freestyle to feedback-based ET, the patterns and
guides for the testers become more and more specific and pre-
scriptive. However, none of these exploratory strategies have
been automated. Our approach to automating ET is to formally
define the strategies of exploration as algorithms and then to
implement them in the framework of datamorphic testing.

2.3. Datamorphic testing

In the datamorphic software testing method (Zhu et al., 2019a),
software artefacts involved in testing are classified into two
types: entities and morphisms.

Test entities are objects and data that are used and/or gen-
erated in testing. These include test cases, test suites/sets, the
programs under test, and test reports, etc.

Test morphisms are mappings between entities. They generate
and transform test entities to achieve testing objectives. They
can be implemented as test code and invoked to perform test
activities and composed to form test processes. The following
are the test morphisms recognised by the datamorphic test tool
Morphy (Zhu et al., 2020).

H. Zhu and I. Bayley

e Test set creators create sets of test cases. They are called seed
test case makers in Zhu (2015) and Zhu et al. (2019b). A typi-
cal example is random test case generators like fuzzers (Sut-
ton et al., 2007).

e Datamorphisms are mappings from existing test cases to new
test cases. They are called data mutation operators in the
data mutation testing method (Shan and Zhu, 2009).

e Metamorphisms are mappings from test cases to Boolean
values that assert a program’s correctness on test cases.
They are test oracles. Formal specifications and metamor-
phic relations in metamorphic testing (Chen et al.,, 2018;
Segura et al,, 2018) can also be used as metamorphisms.
Mutational metamorphic relations introduced in Zhu (2015)
are metamorphisms.

e Test case metrics are mappings from test cases to real num-
bers. They measure test cases giving, for example, the simi-
larity of a test case to the others in the test set.

e Test case filters are mappings from test cases to truth values.
They can be used, for example, to decide whether a test case
should be included in a test set.

e Test set metrics are mappings from test sets to real num-
bers. They measure the test set quality, such as its code
coverage (Zhu et al., 1997).

e Test set filters are mappings from test sets to test sets. For
example, they may remove redundant test cases from a test
set for regression testing.

e Test executers execute the program under test on test cases
and receive the outputs from the program. They are map-
pings from a piece of program to a mapping from input data
to output. That is, they are functors in category theory (Barr
and Wells, 1989).

e Test analysers analyse test sets and generate test reports.
Thus, they are mappings from test sets to test reports.

A test system 7 = (&, .#) in datamorphic testing consists
of a set & of test entities and a set .~ of test morphisms. In
Morphy (Zhu et al,, 2019a), a test system is specified as a Java
class that declares a set of attributes as test entities and a set of
methods as test morphisms.

Given a test system, Morphy provides testing facilities to auto-
mate testing at three different levels. At the lowest level, various
test activities can be performed by invoking test morphisms
via a click of buttons on Morphy’s GUI. At the medium level,
Morphy implements various test strategies to perform complex
testing activities through combinations and compositions of test
morphisms. At the highest level, test processes are automated
by recording, editing and replaying test scripts that consist of a
sequence of invocations of test morphisms and strategies.

Test strategies are complex combinations of test morphisms
designed to achieve test automation. Three sets of test strategies
have been implemented in Morphy:

e Mutant combination: combining datamorphisms to generate
mutant test cases; see Zhu et al. (2019a).

e Domain exploration: searching for the borders between clus-
ters/subdomains of the input space;

e Test set optimisation: optimising test sets by employing ge-
netic algorithms.

This paper focuses on domain exploration strategies, which
will be defined in Section 4.

2.4. Overview of the proposed approach

The approach of this paper and its previous work (Zhu and
Bayley, 2020) is to apply the four ET principles identified previ-
ously to test feature-based classifiers built using machine learning
and data analytics techniques:

The Journal of Systems & Software 187 (2022) 111231

Firstly, on test design, the variations in test cases are formally
defined by a set of datamorphisms that can be applied to the
features of the classifier under test. These datamorphisms are
employed to explore the data space of the ML application. A
major contribution of this paper is to formally define the notion
of completeness for ET test systems, and we prove that complete
test systems exist for feature-based classifiers; see Section 3. This
enables a complete exploration of the input space.

Secondly, on execution, in our approach, each time a new test
case is generated, the ML model is invoked, and the output of the
invocation is used to generate the next test case. In fact, the test
executor is an important component of our definition of ET test
systems; see Section 3.

Thirdly, on learning, our goal in testing is to discover the
borders between classes as defined by the ML model under test.
Such information is unknown before testing, but the results in
the form of Pareto front can improve significantly the tester’s
knowledge about the behaviour of the model.

Finally, on steering, we study three strategies in which the out-
puts of previously executed test cases are used in three different
ways to decide the next test case. These strategies are defined
as algorithms and implemented in the automated datamorphic
testing environment Morphy. We will also formally prove that
these strategies correctly achieve the goal of exploration, i.e. they
detect the borders between classes as defined by the ML model
under test; see Section 4.

We will also automate the testing process by implementing
the technique in the datamorphic testing framework.

3. Exploratory test systems for feature-based classifiers

Exploratory test systems are test systems for ET. In this sec-
tion, we will introduce the notion of exploratory test systems and
the notion of completeness for such test systems. We will then
constructively prove the existence of complete test systems for
each type of feature-based classifier.

3.1. Structure of exploratory test system

To apply an exploratory test strategy to a classification pro-
gram P : D — G with a distance function ||, -||, we require that
the test system .7 = (&, .#) has the following properties.

1. The set .~ of morphisms contains a test executer Exep(x)
that executes the program P under test on a test case x
and receives the output of P; that is Exep(x) = P(x). In
the sequel, we will write P(x) for Exep(x) for the sake of
simplicity.

2. There is a set W C .# of unary datamorphisms defined on
D. Informally, for each w € W and x € D, w(x), w?(x), - - -,
w"(x) can generate a sequence of data points in D, where
wl(x) = w(x), w"(x) = w(w"(x)). These datamorphisms
are called traversal methods.

3. There is also a binary datamorphism m € .# such that

vx,y € D.(|Ix. ¥l > 8m = [Ix, m(x, y)||
< 1%yl A lly, mx, Il < lIx, y1D) . (1)

where 8y = Minyzyep{lIx, y|}.

Informally, the datamorphism m calculates a point between
x and y, if the distance between them is greater than the
minimal distance §,, among points in the data space. We
will call m the midpoint method.

Note that for all x,y € D, because the program P under
test classifies x and y into different classes, the midpoint m(x, y)

H. Zhu and I. Bayley

between x and y must be either not in the same class as x or not
in the same class as y. Formally, we have:

(P(x) # P(y)) = (P(x) # P(m(x,y))) v (P(y) # P(m(x,y))). ~ (2)

Also, note that it is unnecessary to include the distance metric
II-, <]l in the test system as a test morphism. As we will see in
Section 4, the algorithms of exploratory test strategies do not
need it.

3.2, Completeness of exploratory test systems

For a test system to be able to explore the whole data space
of a classifier, we require that the set of datamorphisms is able
to reach every data point in the space by applying the data-
morphisms on any arbitrary starting point. We say such a set of
datamorphisms is complete. Completeness may not be possible for
a classifier on continuous data space. In such cases, we would like
to reach the target point as close as is desired. This property of
test system is called approximate completeness.

Before we formally define these notions of completeness, we
first define the notion of compositions of datamorphisms. Let
¥ be a set of datamorphisms.

Definition 4 (Composition of Datamorphisms). Let X be a set of
variables ranging over test cases. The set of compositions of
datamorphisms in .# is recursively defined as follows.

1. For all x € X, x is a composition of datamorphisms in .# of
order O.

2. m(eq, ..., ex) is a composition of datamorphisms in .# of
order n+ 1,if m € .# is k-ary, and ey, ..., e, are compo-
sitions of datamorphisms in .#, and n is the maximum of
the orders of ey, ..., e, O

Informally, a composition of datamorphisms is an expression
with datamorphisms as the operators and variables as the param-
eters. For example, my(my(ms(x1, x2))) is a composition of two
unary datamorphisms my, m, and one binary datamorphism ms,
where x; and x, are variables. Given a composition of datamor-
phisms, a test case can be obtained by substituting existing test
cases for the variables of the composition, and we say that the
result is a mutant test case obtained by applying the composition
to the existing test cases.

Definition 5 (Completeness). An exploratory test system 7 =
(&, .#) on data space D is complete, if for all a, b € D, there is
a composition ¢(x) of datamorphisms in .# such that b = ¢(a).
An exploratory test system .7 is approximately complete, if for
all a,b € D and every § > 4, there is a composition ¢ of
datamorphisms in .# such that ||b, ¢(a)|| <§. O

Note that, in a real-world application, in a multi-dimensional
data space some combinations of feature values may be invalid
or meaningless. For example, a human who is 2 metres tall but
only weights 20 kg is physically impossible. Our completeness
requirements on an exploratory test system still require the test
system to cover such data. This will enable testing on invalid
inputs, which are useful, for example, to understand how the
software will react to input errors.

In the remainder of this section, we construct a complete or
approximately complete exploratory test system for each type of
feature-based classifier.

The Journal of Systems & Software 187 (2022) 111231

3.3. Continuous numerical classifiers

Given a continuous numerical classifier, we construct two
unary datamorphisms up;(x) and down;(x) for each feature f; as
the traversal methods and a binary datamorphism midg(x, y) as
the midpoint method. The set of datamorphisms will form an
approximately complete test system. Let ¢; > 0 be a given
constant real value. We define:

upi({X1, ..., Xk)) = X1, ..., Xi +Ciy ..., Xg) (3)
down;((x1, ..., X)) = (X1, ..., X — Ci, ..., Xg) (4)

. X1+ Xk +
mzd5<<x1,...,x,<>,m,...,yk>)=< A sz"> (5)

There are many different ways that we can define distance
metrics on real numbers. The following is the Euclidean distance
on multi-dimensional real numbers.

Il X1, o Xk) s V1o o Vi) lE =

The following are a few well-known properties of Euclidean
distance, which are useful for proving the approximate complete-
ness of the test system.

Lemma 1. The distance metrics ||-, -||g has the following properties.

1. Vx € D. ||x, x||g = 0;

2.Vx,y €D. |Ix,yllg = 0;

3.Vx,y € D |Ix,zlle < lIx,ylle ANz, ¥lle < lIx, yllg, where
z = midg(x, y).

4. Vx,y eD. |x,z|g = % where z = midg(x,y). O

Let Wg = {up;(x) |i=1,...,K}U{down;(x) |i=1,...,K}U
{mid(x, y)}. Applying these properties of the midpoint datamor-
phism midg(x, y) and Euclidean distance metrics |x, y||g, we can
prove that the set of datamorphisms W; defined above satisfies
the requirements of exploratory test systems on datamorphisms.

Theorem 1. The set Wy of datamorphisms together with the
distance metrics ||x,y||g satisfy the conditions of exploratory test
systems on datamorphisms.

Proof. By (6), 8, = Minyzyep (X, ylle) = 0. Therefore, by
Lemma 1(4), the condition given in Eq. (1) is true. The theorem
is true. O

Example 2. Fig. 2 gives the traversal and midpoint methods
in the Morphy test specification for the classifier of the running
example. The leftward and rightward methods implement the
traversal methods down, and upy, respectively. The upwards and
downward methods implement the traversal methods up, and
down,, respectively, where ¢y, = ¢, = 0.2. The method mid
implements the midr datamorphism, which calculates the geo-
metric midpoint between x and y as defined in Eq. (5). Therefore,
by Theorem 1, they form an exploratory test system with the
following distance function.

X1, %), Y1, y2) Il = V(X1 —y1 2+ (X2 —y22 O

The following theorem states that W is approximately com-
plete.

Theorem 2. The set W of datamorphisms is approximately com-
plete for a continuous numerical feature-based classifier P defined
on the data space D = D; x --- x Dg, K > 0.

H. Zhu and I. Bayley

@Datamorphism

The Journal of Systems & Software 187 (2022) 111231

public TestCase<TwoD, Colour> upward(TestCase<TwoD, Colour> seed){

TestCase<TwoD, Colour> mutant =

new TestCase<TwoD,Colour>();

TwoD point = new TwoD(seed.input.x, seed.input.y + 0.2);

mutant.input = point;
return mutant;

}

@Datamorphism

public TestCase<TwoD, Colour> downward(TestCase<TwoD, Colour> seed){

TestCase<TwoD, Colour> mutant =

new TestCase<TwoD,Colour>();

TwoD point = new TwoD(seed.input.x, seed.input.y - 0.2);

mutant.input = point;
return mutant;

b

@Datamorphism

public TestCase<TwoD, Colour> leftward(TestCase<TwoD, Colour> seed){

TestCase<TwoD, Colour> mutant =

new TestCase<TwoD,Colour>();

TwoD point = new TwoD(seed.input.x-0.2, seed.input.y);

mutant.input = point;
return mutant;

}

@Datamorphism

public TestCase<TwoD, Colour> rightward(TestCase<TwoD, Colour> seed){

TestCase<TwoD, Colour> mutant =

new TestCase<TwoD,Colour>();

TwoD point = new TwoD(seed.input.x+0.2, seed.input.y);

mutant.input = point;
return mutant;

}

@Datamorphism

public TestCase<TwoD, Colour> mid(TestCase<TwoD, Colour> x1,

TestCase<TwoD, Colour> x2){
TestCase<TwoD, Colour> mutant =

new TestCase<TwoD, Colour>();

TwoD point = new TwoD((x1.input.x + x2.input.x)/2,
(x1.input.y + x2.input.y)/2);

mutant.input = point;
return mutant;

Fig. 2. Datamorphisms of the running example.

Proof. We prove that for any given points a = (a;, ..., ax),b =
(b1, ...,bk) € Dand § > 0, we can construct a composition ¢ of
datamorphisms such that ||b, ¢(a)||r < §. The composition ¢(x) is
defined as follows.

B(x) =m" oud]' o oud(x), (7)
where

ni .
— i niey _ Jup; (x) if a; > b;
m(x) = midg(b, x), ud;’(x) = {down?"(x) if q; < by’

L [

n=| c 5

Note that ud;(x) is either up;(x) or down;(x) depending on
whether the i'th element of a is greater than the i'th element of
b

Let ' = ud}' o---oudf(x) = (d}, ..., a). We have that @’
is obtained by applying ud;(x) for n; times on q, fori =1, ..., K.
The i'th element of @’ will be a; = a; & n; - ¢; by the definition
of datamorphisms up;(x) and down;(x). By the definition of n;, we

have that |b; — a}| < ¢, foralli=1,..., K. Therefore,

K

K
Ib.dll= | > bi—aP=< |} =c
n=1

n=1

Applying m(x) on a for n times, we get a’ = m"(a’). By
Lemma 1(4), we have that ||b, a”| = ||b, @'||/2" < c¢/2". Therefore,
when n > In(5), we have that ||b, a’|| < 8. The theorem follows
immediately that ns = [In(5)] > In(5). O

Example 3. The exploratory test system given in Example 2 is
approximately complete, because for all points a, b in the data
space and § > 0, we have a composition ¢(x) of datamorphisms
such that ||b, ¢(a)|| < 8; see Fig. 3 for an illustration of how to
construct the composition of datamorphisms. O

3.4. Discrete non-numerical classifiers

If the classifier P is a discrete non-numerical feature-based
classifier then for eachi =1, ..., K, D; is a non-empty finite set.
Let D; = {vj 1, vi2, ..., Uiy}, where n; > 0. We define two unary
datamorphisms up;(x) and down;(x) as the traversal methods as
follows.

upi((X1, ..., X)) = (X1, .. X[, .o Xk)

H. Zhu and I. Bayley

The Journal of Systems & Software 187 (2022) 111231

T

711

a’= up,X(down,’(a)),
a’= mid(b, a’),

’ F @
NG n = 1n(g)],c= lc2 + 2

_d
- » X
C,
Fig. 3. Construction of the walk path in the running example.
iy ifx; = vi; and i . _) -) i —
where x| = Ul‘,j+1 !le, = U{,; and j < n; (8) 'Let Wp ={upi(x)|i=1,...,K} U{downi(x)|i=1,...,K} U
Vi,n; I X; = Vip; {midp(x, y)}.
downi((x;, . .., x¢)) = (Xi, X XK), Theorem 3. W)y and the distance metrics ||-, -||p together satisfy

(9)

where X/- _ {v,;j_l lf X; = Vjj andj > 1
1 Vi1 if X,{ = Vi1

Let x,y € D,x = {(x1,...,X¢) and y = (y1,...,Yk). The
distance between x and y, written ||x,y|p, is defined as the
number of elements in x and y that are different. Let A(x,y) =
(dq,...,dy), 0 < k < K, be the sequence of elements in x that
are different from the corresponding elements in y. Therefore, we
have that ||x, y|lp = k.

The following Lemma states that the function |-, :||p : D x
D — N satisfies the conditions of distance metrics. The proof is
straightforward, and thus is omitted for the sake of space.

Lemma 2. The function ||-,-|[p : D x D — N defined above
satisfies the conditions of distance metrics. That is, for all x, y, z € D,
we have that |x,x]lp = O, IX,yllp = O, x,yllp = lly,xlp, and
%, ¥llp + 11y, zllp = lIx, zllp. O

We now define a binary datamorphism midp(x, y) as the mid-
point method as follows.

midp(x,y) = (21, ...,) , (10)
where
X ifx =y
R B if x; # y; and x; is an odd-indexed element in A(x, y)
=

y; if x; #Zy; and x; is an even-indexed
element in A(x, y)

(11)

The following theorem gives some useful special properties
of the distance metrics || ||p and midpoint datamorphism midp
on discrete data space. These properties are easy to prove by
using the definitions of the distance function and discrete non-
numerical data space. Details are omitted for the sake of space.

Lemma 3. For all x,y € D, we have that

XxFEY= %yl > 1

%, ylp < K;

. midp(x, X) = Xx;

. 1%, yllp = 1 = (midp(x, y) = x) V (midp(x, y) = y);

%, ylp > 1= |Ix, zllp < 1%, ¥lIpAllz, ¥llp < lIX, ¥lIp, where
z = midp(x,y). O

U AN WN =

the requirements of exploratory test systems on datamorphisms.

Proof. By Lemma 3(1), 8, = MineyeplllX,yllp} = 1. By
Lemma 3(5), midp(x,y) and ||x, y||p meet the condition on the
midpoint method given in Eq. (1). Thus, the theorem is true. 0O

The following theorem states that the set of datamorphisms
constructed above is complete.

Theorem 4. The set Wy of datamorphisms is complete for a discrete
non-numerical feature-based classifier P defined on the data space
D=D;x---xDg, K>0.

Proof. For any given points a, b € D, we construct a composition
of datamorphisms ¢(x) such that ¢(a) = b. We define

B(x) = ud} o - - o ud(x), (12)
where
if ai = Vi, € D,‘,
bi = vic, € Dy, and ¢, > ¢q
downi(x) if a; = vi, € Dy,

b,’ = Vi, € D; and Cp < Cq

up;(x)
ud!(x) =

)

ni = |cx — ¢l (13)

By (13), udi(x) is either up;(x) or down;(x) depending on the
difference between a and b on the i'th element, and n; is the
distance between the i'th elements of a and b. By the definitions
of upi(x) and down;(x), we have that ¢(a) = b. Therefore, by
Definition 5 of completeness, the theorem is true. O

3.5. Discrete numerical classifiers

For a discrete numerical classifier, we also define two unary
datamorphisms up;(x) and down;(x) for each feature f; as the
traversal methods. The up;(x) datamorphism on feature f; is de-
fined as follows.

upi((x1, ..., X)) = (X1, ..., X[, ..., Xk), where x; =x; + 1. (14)
The datamorphism down;(x) is defined as follows.
downi((x1, ..., xk)) = (x1, ..., X, ..., x¢) (15)
where x{ = x; — 1, if the dataset D; is the set of integer values;
and x; =)(;i -1 i; Xi i 8 , if the dataset D; is the set of natural
Xi =
numbers.

H. Zhu and I. Bayley

The midpoint datamorphism midy(x, y) is defined as follows.

midy({x1, ..., xg), Y1, ..., Yk))
[x1 — y1l Xk — Ykl
=(l——1, ..., |— 16
<L 5 J L 3] (16)
Now, we define the distance metric |-, -||y on the data space,
as follows.
K
%1, X s o y) v = Ly = xil (17)
i=1
Similar to Lemma 2, we can prove that the function |-, -||y :

D x D — N satisfies the conditions of distance metrics. The proof
is straightforward, and thus is omitted for the sake of space.

Lemma 4. The function |-,-[v : D x D — N defined above
satisfies the condition of distance metrics. That is, for all x,y,z € D,
we have that ||x, x|y = 0, [x,ylln = 0, Ix,ylly = Ily,xlln, and

% yln + 1y, zliv = lIx, zlly. O

The midpoint datamorphism midy(x, y) and the distance met-
rics ||x, y||v have the following properties. Again, they are easy
to prove by the definitions of the distance function and discrete
numerical data space. Details are omitted for the sake of space.

Lemma 5. For all x, y € D, we have that

Lx#y=xyln=1;

2. midy(x, x) = x;

3. 1% ylly =1 = (midn(x,y) = x) vV (midn(x, y) = y);

4 % ylIv > 1 = [Ixzlln < %YlIn A lz,¥ln < lIX YN,
where z = mid(x,y). O

Let Wy = f{upi(x) | i = 1,...,K} U {down;j(x) | i =
1,...,K}U{mid(x, y)}. The following theorem states that the set
Wy of datamorphisms constructed above satisfies the conditions
of exploratory test systems. The proof is very similar to that of
Theorem 3 so the details are omitted for the sake of space.

Theorem 5. W,y and the distance metrics ||-, ||y together satisfy
the requirements of exploratory test systems on datamorphisms. O

The following theorem states that the set Wy of datamor-
phisms constructed above is complete.

Theorem 6. The set Wy of datamorphisms is complete for a discrete
numerical feature-based classifier P defined on the data space D =
Dy x---xDg, K >0,

Proof. For any given points a, b € D, we construct a composition
¢(x) of datamorphisms such that ¢(a) = b. We define

¢(x) = ud}' o - - o udf(x), (18)
where

ud”i(x) — up?i(x) if ai = bi

: down(x) ifa <b ° "= 1% bil (19)

By (19), ud;(x) is either up;(x) or down;(x) depending on the
difference between a and b on the i'th element, and n; is the
absolute value of the distance between the i'th elements of a
and b. By the definitions of up;(x) and down;(x), we have that
¢(x) = b. Therefore, by Definition 5 of completeness, the theorem
is true. O

3.6. Hybrid feature-based classifiers

Let P : D — C be a hybrid feature-based classifier. Without
lost of generality, we assume that D = D; X --- X D, X Ni X

The Journal of Systems & Software 187 (2022) 111231

- X N, X Ry X --- x Ry, where Dq,...,D, are discrete non-
numerical features, Ni, ..., N, are discrete numerical features,
and Ry, ..., R, are continuous numerical features, and at least
two of u, v and w are greater than zero.

We now define unary datamorphisms up;(x) and down;(x) as
the traversal methods as follows.

1. If feature f; is discrete non-numerical, we use Eq. (8) to
define up;(x).

2. If feature f; is discrete numerical, we use Eq. (14) to define
up;i(x).

3. If feature f; is continuous numerical, we use Eq. (3) to define
upi(x).

Similarly, we define down;(x) depending on the type of fea-
tures and using the Egs. (9), (15) and (4), accordingly.

Before we formally define a binary datamorphism as the mid-
point method and a distance metric, let us first introduce some
notation.

Let x = (dy,...,dy,nq,...,0,1q,...,7,) € D. We write
xp = {dy,...,dy), xy = (n1,...,n,),and xg = (rq,...,7ry). We
also write x = xp ®xy Dxg. In general, P is an operator on vectors
defined as follows.

X1, oo X)) @ Y1y - Ym) = Xty oo Xy Y1 - Yim)

Now, we define a binary datamorphism midy(x, x’) as follows.

midy(x, X') = midp(xp, X)) @ midy(xy, xy) & mide(xg, X;) (20)
We now define ||-, ||y : D x D — R™* as follows.

1%, X la = IId, d'llp + lIn, n'lIn + lIr, 7'l (21)
The following lemma states that the above equation defines a

distance metric. It follows immediately the properties of |-, -||p,

I-, -y and |-, -||z. Details are omitted.

Lemma 6. Function ||-,-||y satisfies the conditions of distance

metrics. O

Let Wy = {upi(x)}i U {downi(x)}; U {midy(x)}, where up;(x),
down;(x) and midy(x, y) are defined as above.

Theorem 7. The set of datamorphisms Wy and the distance metrics
lIx, ¥l together satisfy the conditions of exploratory test systems.

Proof. First, from the definition of |x, y||y, we have that §,, =
Minyzyep{llX, ¥llu}. If there is at least one feature in the data space
D that is a continuous numerical feature, then it is easy to see that
8m = 0. Otherwise, all features are either discrete non-numerical
or discrete numerical so we have §,, = 1.

Second, let x,y € D and ||x, y|lg > &m, and z = midy(x, y). By
the definitions of midy(x, y) and ||x, ¥||y, we have that

1%, zlle = llxp, zpllp + lXn, Zn 1IN + [1XE, ZE £

= |Ixp, midp(xp, yp)llp + llXn, midn(xn, Yn)lIn + lIXe, midg(xe, ye)lle
< |lxp, ¥pllp + Xn, YN lIn + lIXe, Ve

= 1%, ¥lln

Similarly, we have ||y, z|ly < X, ¥||y. Therefore, the theorem
is true. O

Theorem 8. Let P be a hybrid feature-based classifier, and Wy be
the set of datamorphisms defined above.

1. If there is a continuous numerical feature in the data space of
P, Wy is approximately complete.

2. If there is no continuous numerical feature in the data space
of P, the set Wy of datamorphisms is complete.

H. Zhu and I. Bayley

Proof. Similar to the proofs of Theorems 4, 6 and 2, for any
given points a and b in the data space, and any given real number
8 > 0, we construct a composition ¢(x) of datamorphisms such
that ||b, ¢(a)llu < 4.

Leta=ap @ ay D ag and b = bp & by @ b.

By the proof of Theorem 4, there is a composition of datamor-
phisms ¢p(x) such that bp = ¢p(ap).

By Theorem 6, there is a composition ¢y (x) of datamorphisms
such that b, = ¢n(ay).

By Theorem 2, there is a composition ¢g(x) of datamorphisms
such that ||bg, ¢e(ag)|| < 8.

By the definition of the datamorphisms for hybrid feature-
based classifier, ¢p(x), ¢n(x) and ¢g(x) are also compositions of
the datamorphisms in Wy. Therefore, ¢(x) = ¢ o ¢y o Pp(x) is a
composition of datamorphisms in Wy.

Let @ = ¢(a). It is easy to see that ¢(a) = ¢p(ap) ® Pn(an) ®
¢e(ag). Therefore,

b, |z = |Ib, $(a)llu

= ||bp @ by @ bg, ¢p(ap) ® ¢n(an) ® de(ag)llu

= |Ibp, ¢p(ap)llp + lIbn, ¢n(an)lin + lIbe, Pe(ae)lle
=0+ 0+ b, pe(ag)lle < 8

Therefore, statement (2) of the theorem is true.

If there is no continuous numerical feature in the data space,
i.e. by and ag are empty, then | bg, ¢e(ag)|lg = 0. Therefore, in
such a case, statement (1) is true. O

4. Exploration strategies

This section presents the algorithms of three different ex-
ploratory strategies for testing clustering and classification ap-
plications. We also prove their correctness and illustrate their
behaviour by using the running example given in the previous
section.

4.1. Random target strategy

Let us start with a simple exploration strategy based on ran-
dom selection of two test cases in order to find the Pareto front
of the classification groups between these two test cases. We call
this strategy random target strategy.

The strategy starts by selecting a pair of two test cases x
and y at random. If the outputs of the program P under test on
these test cases are different, i.e. P(x) # P(y), then a point z;
between x and y is generated by using the binary datamorphism
of the midpoint method mid(x, y), i.e. z; = mid(x, y). The program
P is executed on this mutant test case z; to classify it. The
classification of z; must be different from one of the original pair
of test cases; say P(z;) # P(x). Thus, we can repeat the above
steps with x and z; as the pair of test cases, and a further mutant
z, can be generated. This process is repeated a number of times
to ensure the distance between the final pair of points is small
enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT(n) =
(a, b) to denote the results of executing Algorithm 1 with n as
the parameter steps and (a, b) as the output.

Assume that the exploratory test system has the following
properties.

1. There is a constant ¢ > 1 such that
Max{||x, z|l, ||z,
Vx.y €D, ({llx, z||, y||}> <1/c
lIx, yIl
where z = mid(x, y).
2. There is a constant d,; > 0 such that

vx,y € D.(IIx, yll < dm). (23)

The Journal of Systems & Software 187 (2022) 111231

Algorithm 1 (Random Target Strategy)

Input: testSet: Test Pool; steps: Integer; mid(x, y): Binary datamorphism;
Output: a, b: Test Case;
Begin
1: Select two different test cases x and y in testSet at random;
2: Execute program P on test cases x and y;
3: Check if a pair of the Pareto front exists between x to y:
if (x.output = y.output) then return (null, null)
end if
4: Refinement:
for i < 1 to steps do
z = mid(x,y);
if (x.output # z.output) then y =z
else x = z;
end if
end for;
a=x;b=y;
return (a, b);
End

Then, we have the following theorem about the correctness of
the random target strategy algorithm.

Theorem 9. [f RT(n) = (a, b) # (null, null), then {a, b) is a pair
in the Pareto front according to P with respect to ||-, || and §, if
dp/c" < 4.

Proof. If RT(n) = (a, b) # (null, null) then the condition of the
If-statement in step (3) is false. Thus, the loop is executed. It is
easy to see that the For-loop in Step 4 in the algorithm terminates.

We now prove that the following is a loop invariant by induc-
tion on the number i of iterations of the loop body.

dn
I, ylIl < e P(x) # P(y).

When entering the loop, by assumption (23), the distance
between the data points stored in variable x and y satisfies the
following inequality.

%, yll < dnm
Since the condition of the If-statement is false, we have that
P(x) = x.output # y.output = P(y).

Therefore, the loop invariant is true for i = 0.

Assume that the loop invariant is true for i =n > 0.

After the execution of the loop body one more time (i.e. i =
n+1), by applying the Hoare logic of the If-statements in the loop
body, the distance d, between the data points stored in variables
x and y will become either ||x, z|| or ||z, y||, where z = mid(x, y).
By assumption (22), in both cases we have that

d, < Max{llx, z|l, Iz, yII} < Ix, yll/c < dm/c" .

By the condition of the If-statement in the loop body and the
property (2), applying Hoare logic we have that, after the exe-
cution of the loop body, the data points stored in variables x and
y have the property that P(x) # P(y). Therefore, the condition is
a loop invariant according to Hoare logic.

When the loop exits, i = steps = n. By Hoare logic, after
executing the assignment statements a = x and b = y, we have
that

lla, bl < dm/c" A P(a) # P(b).
Therefore, the theorem is true by Definition 1. O

The algorithm of random target strategy can be run multiple
times to generate a number of pairs for the Pareto front.

H. Zhu and I. Bayley

Fig. 4. Pareto front generated by random target.

Example 4. For example, applying the random target strategy
to the running example, we can obtain a test set shown in Fig. 4
when 1000 pairs of test cases are selected at random from a test
set of 300 random test cases. A total of 641 pairs of Pareto front
test cases were generated. The success rate in generating a pair
for the Pareto front is 64.1%. The set of Pareto front pairs shows
clearly the boundary between the subdomains classified by the
software.

In this example, the number of steps n is 20. Since the data
space D = [0, 2] x [—1, 1], if the distance function |x, y| is
Eucl(x,y), we have that d,, = 2+/72 + 1. By the definition of
mid(x, y), we have that

M Lz s z
ax({llx. 2l 1y.21)) _ o
X, yll

So, ¢ = 2. By Theorem 9, for the distance § between each pair in
the Pareto front, we have that

8<dm_\/n2+1
R T

Note that the pairs of test cases in the Pareto front are so close
together that they are visually indistinguishable. O

4.2. Directed walk strategy

A variation of the random target strategy is to start with one
test case (rather than a pair) and apply a unary datamorphism
repeatedly until a test case of different classification is found.
Then, the Pareto front between these two test cases is searched
for in the same way as for the random target strategy. In this
strategy, the unary datamorphism (i.e. a mutation operator) is
the traversal method. The repeated application of the mutation
operator makes a ‘walk’ in one direction until a test case in a
different class is found or too many iterations have been carried
out and the exploration has gone too far.

Note that, a walk in one direction may not be able to find a
data point in a different class. In that case, the algorithm returns
(null, null). Let m, n > 0 be any given natural numbers. We write
DW(m, n) = (a, b) to denote the results of executing Algorithm
2 with m as the walking distance and n as the number of steps
and (a, b) as the output. Assume that the exploratory test system
satisfies assumption (22) and has the following property.

There is a constant d; > 0 such that

Vx e D. (||lx, d(x)| < ds) . (24)

where d; is called the step size of the traversal method d(x). Then,
we have the following correctness theorem for the directed walk
algorithm.

Theorem 10. If DW(m, n) = (a, b) # (null, null) then (a, b) is a
pair in the Pareto front according to P with respect to ||-, -|| and 6,
if ds/c™ < §, where n is the number of steps.

(null, null), then the condition of

Proof. If DW(m, n) = {(a, b)
(4) is false. Thus, the For-loop of Step (5)

the If-statement in step

10

The Journal of Systems & Software 187 (2022) 111231

Algorithm 2 (Directed Walk)

Input: TestSet: test set; walkDistance: integer; steps: Integer;
d(x): Unary datamorphism; mid(x, y): Binary datamorphism;
Output: a, b: Test Case;
Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case X;
3: Walk in one direction as follows:
Bool found = false;
for i < 1 to walkingDistance do
y =dx);
Execute software on test case y;
if (x.output # y.output) then found = true; break;
else x =y;
end if
end for
4: Check if a Pareto front can be found:
if (—found) then return (null, null);
end if
5: Refinement:
for i < 1 to steps do
z = mid(x, y);
if (x.output # z.ouptut) then y = z;
else x = z;
end if;
end for
a=x b=y,
return (a, b);
End

is executed. It is easy to see that the For-loop in Step 5 Refinement
in the algorithm terminates.

Similar to the proof of Theorem 9, by the definition of d; and
assumption (24), the following is a loop invariant of the loop by
induction on the number i of iterations of the loop body.

ds
X, yll < A P(x) # P(y).

When the loop exits, i steps = n. By Hoare logic, after
executing the assignment statements a = x and b = y, we have
that

lla, bll < ds/c" A P(a) # P(b).

Therefore, the theorem is true by Definition 1.

O

Example 5. For example, starting from 1000 random test cases
using the directed walk strategy with the upward(x) datamor-
phism as the unary traversal method, a set of 161 Pareto front
pairs were generated; shown in Fig. 5. The set of Pareto front pairs
also shows clearly parts of the boundaries between classes. The
success rate of finding a pair of Pareto front on one test case is
16.1%.

In this example, the number n of steps is also 20. By the
definition of upward(x) traversal method, we have that d; = 0.2,
if the distance function ||x, y|| is Eucl(x, y). As in Example 4, by
the definition of mid(x, y), we have that ¢ = 2. By Theorem 10,
for the distance § between each Pareto front pair, we have that

dg 1
20 =0.2x 52"

§ =<
Again, the distance between the test cases in each Pareto front
pair is so small that they are not visually distinguishable, so they

appear as one dot in Fig. 5. O

4.3. Random walk strategy

If multiple traversal methods are available, a random walk
can be performed by selecting the direction of the next step at

H. Zhu and I. Bayley

Fig. 5. Pareto fronts generated by directed walk.

random. This is similar to the random walk testing in a web GUI
hyperlink test. The algorithm is given below.

Algorithm 3 (Random Walk Strategy)

Input: testSet: Test Set; walkingDistance: Integer; steps: Integer;
di(x), - -+ , dp(x): Unary datamorphism (k > 1); mid(x,y): Binary
datamorphism;

Output: a, b: Test Case;

Begin
1: Select a test case x in testSet at random;

2: Execute program P on test case x;
3: Walking at random to search for test case in a different class:
Bool found = false;
for i < 1 to walkingDistance do
Get a random integer r in the range [1, k]
y = dr(x);
Execute program P on test case y;
if (x.output # y.output) then found = true; break;
else x=y;
end if
end for
4: Check if a Pareto front can be found:
if (—found) then return (null, null);
end if
5: Refinement:
for i < 1 to steps do
z = mid(x, y);
if (x.output # z.ouptut) then y = z;
else x = z;
end if
end for
a=x;b=y;
return (a, b);
End

We write RW(m, n) = (a, b) to denote the results of executing
Algorithm 3 with m as the walking distance and n as the steps
and (a, b) as the output. Assume that the exploratory test system
satisfies assumption (22) and has the following property. There is
a constant dg;, > 0 such that

Vx € D.Vd; € W.(||x, di(X)|| < dgm). (25)

where d, is called the maximal step size of the traversal methods
di(x) € W. Then, we have the following correctness theorem for
the algorithm of random walk strategy.

Theorem 11. If RW(m,n) = (a, b) # (null, null) then (a, b) is
a Pareto front pair according to P with respect to ||-, -|| and §, if
dsm/c" < 8, where n is the number of steps.

Proof. If RW(m, n) = (a, b) # (null, null) then the condition of
the If-statement in step (4) is false. Thus, the For-loop of Step (5)
is executed. It is easy to see that the For-loop in Step 5 Refinement
in the algorithm terminates.

Similar to the proof of Theorem 9, by the definition of dj,
and assumption (25), we can prove that the following is a loop

11

The Journal of Systems & Software 187 (2022) 111231

Fig. 6. The Pareto fronts generated by random walk.

invariant of the loop by induction on the number i of iterations
of the loop body.

sm

d
X, ylIl < = A P(x) # P(y).

When the loop exits, i = steps
assignment statements a = x and b
by Hoare logic.

lla, bll < dgn/c" A P(a) # P(b).

n. After executing the
=y, the following is true

Therefore, the theorem is true by Definition 1. O

Example 6. For example, by applying the random walk strategy
on a test set containing 300 random test cases, 1000 random
walks generated 805 pairs of Pareto front test cases, as shown
in Fig. 6, where the walking distance was 20 steps.

In this example, the number n of steps is also 20. By the def-
inition of upward(x), downward(x), leftward(x) and rightward(x)
traversal methods, we have that d; = 0.2, if the distance function
llx, || is Eucl(x,y). As in Examples 4 and 5, by the definition
of mid(x, y), we have that ¢ 2. By Theorem 11, the distance
8 between each pair in the Pareto front satisfies the following
inequality.

ds 1

5. Empirical evaluation

We have conducted empirical evaluations of the proposed test
strategies to determine their practical applicability for detect-
ing borders between subdomains. In particular, we answer the
following two research questions:

e RQ1: Capability. Are the exploratory strategies capable of
discovering the borders between subdomains?

e RQ2: Cost. Are the exploratory strategies costly for discover-
ing the borders between subdomains?

Capability is the probability of a test strategy returning a
Pareto front pair when executed. The expected size of a Pareto
front set produced by a strategy can then be calculated as C;, x W
pairs, where Cp, is the strategy’s capability for testing classifier m
and W is the number of invocations of the strategy, called the
number of walks in the sequel.

Cost is related to the amount of computational resources
needed to find a Pareto pair. We measure the cost using the
average number of test executions of the classifier for discover-
ing each Pareto pair, since the specific time and storage space
depends on the classifier. Note that the strategies do not require
manual labelling of the test cases or any form of test oracle.
Therefore, the time taken to complete the testing process can be
estimated as

Time =W x Cp X E, X S (26)

H. Zhu and I. Bayley

S
bR

(3) Circle 1

The Journal of Systems & Software 187 (2022) 111231

(8) Triangle 2

(4) Circle 2

@sn1

i
TN

(10) Sin 2

Fig. 7. lllustration of the sample applications.

where G, and E, denotes the strategy’s capability and cost for
testing the model m, and W is the number of walks and s the
average time taken by each invocation of the classifier.

We have conducted two empirical evaluations of the pro-
posed test strategies. The first is a set of controlled experiments
with 10 hand-coded classifiers on two-dimensional continuous
numerical features. The second is a set of case studies with 16
machine learning models built by training on three real-world
datasets. Both evaluations were conducted using the automated
datamorphic testing tool Morphy. The raw data collected, source
code of the test systems, test scripts, etc. are all available on
GitHub repository together with the executable code of the au-
tomated testing tool Morphy for download.! This section reports
the results of these empirical studies.

5.1. Controlled experiments

5.1.1. Design and conduct of the experiments

The goal of the controlled experiments is to study the fac-
tors that affect the cost and capability of these test strategies
in finding Pareto front pairs between subdomains. In doing so,
we demonstrate that Pareto front pairs can represent borders
between subdomains; the aim is not to compare the strategies,
however.

The experiments are carried out with the ten classifiers shown
in Fig. 7. These classifiers are all on the same input domain of
two-dimensional real numbers in the range of [0, 27] x [—1, 1].
As shown in Fig. 7, they are continuous numerical feature-based
classifiers.

The choice of the subjects enables us to visually display the
Pareto fronts obtained from executing the test strategies so that
we can verify the results against the theoretical borders between
the subdomains. This has been done visually for a large number
of random samples taken from the Pareto fronts and all have been
found to be correct. For example, Fig. 7 shows some example
screen snapshots of the visualisations of these test results. Each
figure contains both the random test cases from which the start-
ing points were selected and the test cases generated through
testing. Figs. 4-6 contain only the latter.

1 The URL of the GitHub repository is https://github.com/hongzhu6129/
ExploratoryTestAlgit.

12

In addition to the visual validation of the outputs of the
tests, the strategies are executed repeatedly 10 times for each
number of walks. The number of executions of the classifiers and
the number of mutants generated were collected for statistical
analysis of the capability and cost of the strategies. The following
subsections reports this analysis.

5.1.2. Main results
e Results of experiments with the directed walk strategy

The controlled experiments on the directed walk strategy con-
sisted of randomly selecting a number of test cases from the
uniform distribution and walking 20 steps in one direction using
the upward datamorphism. Both the average number of test
executions of the subject program under test and the average
number of mutant test cases generated (i.e. the number of Pareto
front pairs) are recorded.

The experimental data shows that the number of mutant test
cases generated with the directed walk strategy increases linearly
with the number of walks; see Fig. 8. Similarly, the number of test
executions is also linear with respect to the number of walks. In
Fig. 8, the x-axis is the number of random seed test cases, which
equals the number of walks, and the y-axes of (a) and (b) are
the average numbers of test executions and mutant test cases,
respectively. In (a), the average numbers of test executions on
various subject programs are so close to each other that they are
not visually separable. The y-axis of (c) measures the average cost
as the number of test executions per test case in the generated
Pareto front. We can see that this is fairly invariant for each
subject as the former ranges from 200 to 1200. Similarly, (d)
shows the average capability remains invariant when the number
of walks increases.

e Results of experiments with the random walk strategy

The random walk strategy is parameterised by the number of
seed test cases and the number of walks starting from them. So,
we fix the first parameter at 200 seeds and vary the number of
walks, and then we fix the second parameter at 800 walks and
vary the number of seeds. Fig. 9 shows the results of the first
set of experiments with the random walk strategy. Fig. 9(a) and
(b) clearly shows that the number of runs and the size of Pareto
fronts increase linearly with the number of walks, while the cost
and capability remains mostly invariant as shown in (c) and (d).

https://github.com/hongzhu6129/ExploratoryTestAI.git
https://github.com/hongzhu6129/ExploratoryTestAI.git

H. Zhu and I. Bayley

26,000

24,000

Box1 Box2

22,000 ——circle 1 Circle 2

20,000 Line 2

18,000 sin1 sin2

16,000 Traimgle 1 Triangle 2

14,000
12,000
10,000
8,000
6,000

4,000

a00 600 800 1000 1200

(a) Average Number of Executions

Box 1

Box2
——circle 1
Circle 2
——tine1
——Line2
Sin1
sin2

Traingle 1

Triangle 2

600 700 800 900 1000 1100 1200

(c) Average Cost

The Journal of Systems & Software 187 (2022) 111231

sin1

sin2

Traingle 1 Triangle 2

[Treingle? — Tenee®]

200

1000 1100 1200

(b) Average Number of Mutants

—a—Box1

——Box2

Circle1

— —a—Circle2
~a—tine1
Line2
—a—sin1
—a—sin2

—a—Traingle1

——Traingle2

(d) Average Capability

Fig. 8. Results of the directed walk strategy with variable number of walks.

a00 500 00 1000 1200

(a) Average Number of Executions

600

800 1000 1100

(c) Average Cost

(d) Average Capability

Fig. 9. Results of the random walk strategy with variable numbers of walks.

Similarly, Fig. 10(a) and (b) shows that the number of runs
increases slightly as the number of seed test cases increases,
while the size of generated Pareto front remains almost invariant.
Moreover, the cost and the capability remain almost invariant as
the number of seed test cases increases as shown in Fig. 10(c) and
(d), respectively.

e Results of the experiments with the random target strategy

The random target strategy only has one parameter: the num-
ber of pairs of test cases selected at random. The experiments are
conducted with this parameter ranging from 200 to 1200. The
results, as shown in Fig. 11(a) and (b), are that the average num-
ber of test executions and the average size of generated Pareto
front are linear in the number of walks for all subject programs.
The test cost, as shown in Fig. 11(c), increases slightly with the
number of walks since the average number of test executions
needed to generate a test case in the Pareto front decreases as

13

the number of walks increases. However, the capability remains
invariant with the number of walks as shown in (d).

5.1.3. Discussion
From the experiments, we observed the following phenomena
in addition to the results stated above.

e Factors influencing cost and capability

The test cost of the strategies on various subject programs
are summarised in Table 1 and depicted in Fig. 12, where larger
numbers indicate higher test cost.

The data show that for each strategy, the test cost and capabil-
ity vary significantly according to the subject programs. However,
for each strategy, test cost and capability of Box 1 are lower than
Box 2, Circle 1 is lower than Circle 2, and so on. This phenomenon
is not a coincidence.

From the theorems given in Section 4, we can see that the
capability for the directed walk strategy is determined by the

H. Zhu and I. Bayley

The Journal of Systems & Software 187 (2022) 111231

19,500 1000
’/7‘__é.:j§‘ 900
19,000 —=
S _—
E 800
18,500
700
600
18,000
500
17,500
400
17,000 300
200 00 00 s00 1000 1200 200 400 600 00 1000 1200

(a) Average Number of Runs

(b) Average Number of Mutants

bt —Box1 ~8—Box 1
o . 0 ————— A o2
38 —cirde2 50 — e — ~e—Circle1
16 —Line 1 —8—(Circle 2
- p—
—
S .
w s — s
—
w
u
"
. " w p o w
w wm wo s n wo we on we ae um
(c) Average Cost (d) Average Capability

Fig. 10. Results of the random walk strategy with variable number of seeds.

16,000 1,600
14,000 Box 1 Box 2 1,400 Box 1 Box2
——circlel ——Circle 2 ———Circle 1 Circle 2
12,000 1,200 .
Line 1 Line 2 ——Line1 Line 2
10,000 ———sSin1 sin2 1,000 Sin 1 Sin2
—Traimgle 1 Triangle 2 Traingle 1 Triangle 2
8,000 200

(a) Average number of runs

Box 1

——circle 1
——Line1

——sin1

Traingle 1

Box2

Circle 2

——Line2

sin2

Triangle 2

1200

1100 1200

(b) Average number of mutants

Jr—

—a—tox2
—e—cirde1
—a—Circe2
—a—tine1
o tine2
—asin1

—asn2

—a—Traingle1

—a—Traingle2

200 300 400 500 600 700 800 900 1000 1100
(c) Average Cost (d) Average Capability
Fig. 11. Results of the random target strategy.
Capabilit
200 Cost o p y
350 60
300 50
250
40
200
150 30
100 20
. | I.] A
o LY oed el wd wl ol BN S R [[]
> v > v > v > 4 > ~ N ~ o N~ o > v ~ o
S &
S & S s _@Qo? V@Qo}w R I S N S
Q <& PG

mRandom Walk m Random Target

m Directed Walk

m Random Walk = Random Target ® Directed Walk

Fig. 12. Test cost and capability on subject programs.

probability that there is a border between two subdomains in the
right direction from a test case and within the walking distance.
For the random target strategy, it is determined by the probability

14

that two random test cases fall in two different subdomains, and
for the random walk strategy, it is determined by the probability
that there is a border near to a randomly selected test case. For

H. Zhu and I. Bayley

Table 1
Summary of test cost and capability.

Subject Directed walk Random walk Random target
Cost Cap Cost Cap Cost Cap
Box 1 323.45 50.53 52.46 20.72 11.49 12.69
Box 2 93.85 50.53 22.83 51.59 10.38 50.53
Circle 1 247.32 20.67 42.59 26.03 10.93 21.49
Circle 2 105.82 47.32 25.50 46.01 10.41 48.31
Line 1 105.82 49.15 29.02 40.13 10.41 48.25
Line 2 55.76 58.03 23.94 48.56 10.33 58.40
Sin 1 122.35 50.10 20.65 45.51 10.38 49.76
Sin 2 64.75 62.34 26.03 60.54 10.31 61.76
Triangle 1 370.38 7.62 66.79 16.06 12.46 8.33
Triangle 2 93.19 46.96 23.98 49.08 10.41 47.01
Avg 158.27 44.32 33.38 40.46 10.75 40.65

test cost, the more Pareto front pairs found, the more runs of the
classifier will be required to refine the pairs of test cases in order
to reduce the distance between each pair.

Two implications follow from these properties. First of all,
given a classification application, one should select the most cost
efficient strategy to explore the Pareto fronts between subdo-
mains based on the understanding of the application. The data
obtained from our experiments are not sufficient to compare the
strategies on their cost. This is because the probability of finding
a pair in the Pareto front heavily depends on the size and location
of the subdomains of the classification application. Our subjects
in the experiments may not be representative of the distribution
of the parameters in real applications. Secondly, we now have an
explanation why the number of pairs generated for the Pareto
front is a linear function of the number of walks since the results
of a walk is independent of the results of its predecessors.

Moreover, although the cost is mostly determined by the size,
shape and location of the subdomains that the program classifies,
for directed walk and random walk strategies, it is also affected
by the number of steps walked and the number of iterations
in the refinement. The number of steps walked influences the
probability of finding two points in different subdomains and also
the total number of test executions. The longer the walk, the more
likely one is to find two points in different subdomains, but this
requires more test executions. Thus, a balance between these two
contradictory factors of cost must be made to achieve the best test
effectiveness.

Finally, the number of iterations in the refinement loop con-
trols the distance between the pairs of test cases in the Pareto
fronts generated. It has no impact on capability, i.e. the probabil-
ity of finding two data points in different subdomains, but it does
have an affect on test cost. The shorter distance requires more
iterations, and thus more test executions, and therefore, it is more
costly. For random walk and directed walk strategies, the number
of iterations can be selected according to the formula given in the
correctness theorems given in Section 4. For the random target
strategy, usually more iterations are required than the other two
strategies.

o Validity of the experiments

As pointed out at the beginning of the section, the experiments
are designed to determine which factors have an effect on the
capability and cost of the strategies. The subject programs used
in the controlled experiments are manually coded by the authors.
They have been designed in such a way that their subdomains
are of typical shapes in data mining and machine learning appli-
cations (Aggarwal, 2015; Mohri et al., 2012; Shalev-Shwartz and
Ben-David, 2014). As discussed above, they provide insight into
the factors that affect capability and cost.

15

The Journal of Systems & Software 187 (2022) 111231

The manual examinations of the Pareto fronts generated by
the test strategies confirmed that they are indeed test cases
very close to the borders of subdomains. The phenomena ob-
served from the experiments are consistent with the predictions
made from the theorems. However, the specific data about cost
and capability obtained from the experiments depends on the
specific features of the subdomains such as their sizes and loca-
tions. Therefore, the experiment data do not answer the question
whether the test strategies are applicable to testing real machine
learning applications. This issue is addressed in the case studies
reported in the next subsection.

5.2. Case studies

This subsection reports a set of case studies with the ex-
ploratory testing of machine learning and data analytics applica-
tions using the test strategies.

5.2.1. Design and conduct of the case studies
The procedure for the case study consists of the following
steps:

1. Select sample applications of classifiers.
2. For each selected sample,

(a) Download the dataset.

(b) Construct classifiers by applying machine learning
techniques on the dataset.

(c) Develop test system according to the specification of
the test systems defined in Section 3.

(d) Write test scripts in Morphy’s test scripting lan-
guage for repeated executions of the experiments
and collection of data.

(e) Execute test strategies on the test classifiers by run-
ning the test scripts.

The following describes each step in detail.
e Sample datasets

The following three datasets were selected at random from the
well-known Kaggle collection of datasets for machine learning
and data analytics applications. They were as follows:

(1) Red Wine Quality. This dataset concerns red varieties of the
Portuguese “Vinho Verde” wine (Cortez et al., 2009). There
are 11 physicochemical variables as inputs (i.e. there is
no data about grape types, wine brand, wine selling price,
etc.) and the output is a classification of wine quality as
a number from 1 to 10. The classes are ordered but not
balanced in that there are many more normal wines than
excellent or poor ones.

(2) Mushroom Edibility. This dataset concerns hypothetical sam-
ples of 23 species of gilled mushrooms in the Agaricus
and Lepiota family drawn from The Audubon Society Field
Guide to North American Mushrooms (Society, 1981). Each
species is identified as definitely edible, definitely poi-
sonous, or of unknown edibility and not recommended.
This latter class was combined with the poisonous one in
the dataset. The Guide clearly states that there is no simple
rule for determining the edibility of a mushroom, i.e. no
rule like “leaflets three, let it be” for poison oak and poison
ivy. The dataset has been available to researchers on data
mining and machine learning for 30 years.

H. Zhu and I. Bayley

W w ™ sw e0 70 80 9w 100 W ow s e

(a) Random Walk on Red Wine

(b) Random Target on Mushroom

The Journal of Systems & Software 187 (2022) 111231

bHE

iy

FEEEEE

60 © w0 w100 w m

(c) Directed Walk on Bank

Fig. 13. Variation of the number of runs with the number of walks.

Table 2

Summary of datasets.
Dataset Records Classes DF NF CF Features
Red wine quality 1599 8 0 0 11 11
Mushroom edibility 8124 2 22 0 0 22
Bank churners 10127 2 5 11 3 19

(3) Bank Churners. This dataset concerns credit card customers
and can be used to predict churners, who are bank cus-
tomers who leave the credit card service. It consists of
more than 10,000 real data items with 19 features about
customer’s age, salary, marital status, credit card limit,
credit card category, etc. It is, however, considered to be
a difficult task to train a model to predict churning cus-
tomers.

All three datasets are available from the Kaggle repository.234
The first two datasets are commonly used in research on machine
learning and data analytics to determine which physiochemical
properties make a wine good and which features are most indica-
tive of a poisonous mushroom, respectively. As well as Kaggle,
they can also be found at the UCI machine learning repository.”®
The Bank Churners dataset originates from a LEAPS website,’
which specialises in application of data analytics and machine
learning techniques to solve business problems.

Table 2 summarises the datasets used in the case study. The
column Records gives the number of records in the dataset and
Classes is the number of classes (subdomains) in the classifi-
cation. Columns DF, NF and CF are the numbers of discrete
non-numerical features, discrete numerical features and continu-
ous numerical features, respectively. The column Features shows
the total number of features. We can see that the dataset Red
Wine Quality is a continuous numerical data space, whereas the
dataset Mushroom Edibility is a discrete non-numerical data space,
and the Bank Churners dataset is a hybrid data space.

e Construction of machine learning models

Since the goal of the case study is to demonstrate that our test
strategies are applicable to real machine learning applications, we
have used the datasets to train models that use a wide variety
of machine learning techniques. This enables us to demonstrate
that our testing techniques are effective on both low-quality and
high-quality models as well as on different types of models.

The training consists of executing a Python program, adapted
from code posted on the Kaggle website and selected at random

https://www.kaggle.com/uciml/red-wine-quality- cortez-et-al-2009.
https://www.kaggle.com/uciml/mushroom-classification.
https://www.kaggle.com/sakshigoyal7/credit-card-customers.
https://archive.ics.uci.edu/ml/datasets/wine+quality.
https://archive.ics.uci.edu/ml/datasets/Mushroom.
https://leaps.analyttica.com/home.

N o U WwN

16

again. For each dataset, we build 16 different models, as shown
in Table 3. The Python programs for training and invoking the
models as well as all datasets used in the case study can be found
on the project’s GitHub repository; see Footnote 1 for the URL.

A total of 48 models were constructed. Their accuracy varies
from 49.9% to 100%; see Appendix B.1 for details. It is worth
noting that no effort was spent to construct a model of high
quality because the purpose of the experiment is to determine
if the strategies are capable and cost efficient for models of all
different kinds of quality.

e Development of test systems

The test system for the Red Wine Quality dataset was a
straightforward implementation of the appropriate algorithm in
Section 3 and the code for the experiments was a clone of the
code written for Section 5.1. The main difference in the test sys-
tem is that the executions are performed by invoking programs
in Python through executing test morphisms in Java.

The test system for Mushroom Edibility was made by refac-
toring the test system for Red Wine Quality to make the code
common to both ready for reuse. Once again, the datamorphisms
were a straightforward implementation of the definitions in Sec-
tion 3. Similarly, the test system for Bank Churners prediction is
again a straightforward implementation of the algorithms given
in Section 3.

e Executions of test strategies

As with the controlled experiments in Section 5.1, the test
strategies are applied to each classifier to generate the Pareto
fronts and the same kinds of data are collected from their exe-
cutions.

In particular, both the random target and random walk test
strategies were executed with varying numbers of walks (10
times in each case) ranging from 100 to 1000 in order to calcu-
late the average number of mutant test cases generated, i.e. the
number of test cases in the generated Pareto front. The directed
walk strategy was executed with starting points of 100, 200, ...,
1000 test cases selected at random from the original dataset on
all directions (i.e. each unary datamorphism) for 10 times; the
average of these directions was calculated for each of the models.

The repeated executions of the test strategies were conducted
by invoking test scripts written in Morphy’s test scripting facility.
The test scripts can be found in the GitHub repository.

5.2.2. Main results
e Numbers of runs and mutants

The case studies clearly show that for all machine learning
models, the average numbers of runs of the model increase lin-
early with the number of walks made when executing the test
strategies. Fig. 13 shows some typical examples.

Similarly, the average numbers of mutant test cases (i.e. the
points in Pareto fronts generated by strategies) increase linearly

https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/sakshigoyal7/credit-card-customers
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/Mushroom
https://leaps.analyttica.com/home

H. Zhu and I. Bayley

The Journal of Systems & Software 187 (2022) 111231

Table 3
Machine learning models constructed for each dataset.
Name Type Details
LR Logistic Regression Trained on whole dataset
LR2 Logistic Regression Used train-test 90-10 split
KNN K-Nearest Neighbours Trained on whole dataset
KNN2 K-Nearest Neighbours Used train-test 90-10 split
DT Decision Tree Trained on whole dataset
DT2 Decision Tree Used train-test 90-10 split
NB Naive Bayes Trained on whole dataset
NB2 Naive Bayes Used train-test 90-10 split
SVM Support vector machine Trained on whole dataset
SVM2 Support vector machine Used train-test 90-10 split
SV Ensemble via Soft voting Trained on whole dataset; LR+KNN+DT
SvV2 Ensemble via Soft Voting Used train-test 90-10 split; LR+KNN+DT
HV Ensemble via Hard Voting Trained on whole dataset; LR+KNN+DT
HV2 Ensemble via Hard Voting Used train-test 90-10 split; LR+KNN+DT
Stack1 Ensemble via Stacking Used train-test 90-10 split; KNN as Meta; LR24+KNN2+4-DT2+HV2
Stack3 Ensemble via Stacking Used train-test 90-10 split; LR as Meta; KNN2+4-DT+SV2+HV2

am

(a) Random Target on Mushroom

500

(b) Random Walk on Bank

1000 W W W W sw e

(c) Directed Walk on Red Wine

G0 70 80 s W

Fig. 14. Variation of the number of mutants with the number of walks.

70 s

=ss———————————]

w20 W A s 60 70 s 9w

(a) Random Target on Red Wine

1000 Average w3 sw

Fig. 15.

Capability of The Random Target Strategy

0
W
b
0
& P @
B
N B

.
&

I
&

HRed Wine ®Mushroom Bank = Red Wine

s 6o

(b) Random Walk on Mushroom

Capability of The Random Walk Strategy

= Mushror

om = Bank

80 S0 1000 Avers WO M0 MW IS0 100 280 260 30 300 W00 Aversge

(c) Directed Walk on Bank

Variation of capability with the number of walks.

Capability of the Directed Walk Strategy

Fig. 16. Capabilities of testing different ML models.

with the number of walks from 100 to 1000. Again, this is for all
machine learning models. Three typical examples are shown in
Fig. 14.

The data of the case studies confirmed the observations made
in the controlled experiments.

e Capability of discovering borders

The capability of each test strategy in discovering border
points for each machine model, measured as the probability of
finding a border point via a walk, remains invariant in the number
of walks as shown in Fig. 15. However, the capability varies
significantly over different machine learning models; see Fig. 16.

17

e Cost

As was seen with the controlled experiments in Section 5.1,
the case studies show that the cost of the strategies was mostly
invariant as the number of walks increases; see Fig. 17 for some
typical examples. The cost for each model is shown in Fig. 18.

5.2.3. Discussion
e Answers to the research questions.

From the data collected from the case studies, we can draw
the following conclusions.

First, the data of the case study are consistent with the obser-
vations made in the controlled experiments that both capability

H. Zhu and I. Bayley

o
o w40 s 60 7w 8w 9w 1000 w2

(a) Random Walk on Mushroom

(b) Random Target on Bank

The Journal of Systems & Software 187 (2022) 111231

1000 w 2w w0 © s s 1m0

(c) Directed Walk on

Red Wine

Fig. 17. Variations of cost with numbers of walks.

120
80
a0

znl
[T o

(a) Random Target (b) Random Walk (c) Directed Walk
Fig. 18. Cost of testing different ML models.
Table 4
Summary of the capability and cost of the strategies.
. Cost Capability
Strategy Subject Max Min Avg StDev Max Min Avg StDev
Red Wine Quality 63.03 14.12 25.70 0.15 62.89 8.79 35.74 0.24
Directed Walk Mushroom Edibility 32.63 18.90 25.57 0.38| 5.79 0.80 4.10 0.06)
Bank Churners 35.56 14.07 19.26 0.21 43.43 0.00 25.75 0.21
Red Wine Quality 33.14 11.47 17.39 0.46 62.51 18.18 43.62 0.72
Random Target Mushroom Edibility 12.61 3.92 6.23 0.26 43.05 0.00 25.18 0.59
Bank Churners 18.81 12.40 14.06 0.18 41.66 0.00 25.60 0.64
Red Wine Quality 40.87 14.31 20.71 0.39 91.87 24.12 61.61 0.87]
Random Walk Mushroom Edibility 488.50 21.42 92.01 6.35 38.87 2.15 25.87 0.63
Bank Churners 30.34 8.10 15.94 0.28 99.43 0.00 62.83 0.47

and cost of the strategies heavily depends on the model under
test, but is invariant in the number of walks. In other words, both
cost and capability are constants that only vary with the model
under test.

Second, the strategies are capable of discovering borders be-
tween subdomains. The overall average of the capabilities of all
three strategies is 34.48%. The average capabilities of the directed
walk, random target and random walk strategies over three sub-
jects are 21.86%, 31.47% and 50.10%, respectively. The highest
capability reached was 62.83% in testing bank churner prediction
using the random walk strategy. The average capabilities are
almost all above 25% except that the average capability of testing
mushroom edibility models using the directed walk strategy is
only 4.10%. Table 4 shows the maximal, minimal, and the average
capability and cost of the test strategies over different models.®

Third, the case study also clearly demonstrated that applying
exploratory strategies is cost efficient for discovering borders
between classes; also see Table 4. The overall average cost of
three strategies over all subjects is 26.32, which means that
on average one would detect a border point by executing the
machine learning model on about 27 test cases. In other words,
within a fraction of second, a large number of border points can
be found by applying these exploratory test strategies. The best
cost efficiency was achieved in the testing of mushroom edibility
models using the random target strategy, where the average cost
over 16 models is 6.23. In contrast, the worst cost of 92.01 is

8 When no Pareto Front is found, the cost is infinite. In such cases, the
numbers given in Table 4 for the maximal, minimal and average cost have been
calculated by excluding the infinite.

18

observed also when testing mushroom edibility but using the
random walk strategy.

Fourth, comparing with the data of the controlled experi-
ments, we observed that the costs and capabilities of the strate-
gies in the case study are compatible to those of controlled
experiments, although the dimensions of the input data spaces of
the real-world examples are significantly larger than those coded
classifiers. This indicates that the approach is scalable to high
dimensional data spaces.

Moreover, the data of the case study provides some useful
hint for the choice of strategies when testing a machine learning
application. The data show that on average, the random walk
strategy is the most capable in detecting borders. However, the
walk may require many steps to find a border point. Thus, it could
be slightly less cost efficient than the random target strategy in
many cases. For the directed walk strategy, searching for borders
in all directions is very much like a brute force search. Thus, it
could be of higher cost in general.

Finally, in the case study, we observed a few cases where ex-
ploratory strategies performed poorly. These cases provide some
insight for how to choose from the proposed strategies.

Among the worst capabilities observed in the case studies is
that of the directed walk strategy which performed poorly on
testing mushroom edibility with an average capability of 4.10%
over 16 models. The reason why directed walk performed poorly
on testing mushroom edibility models is as follows.

The theorems proved in Section 4 imply that the capability of
the directed walk in a given direction depends on the existence of
a border in the direction from the randomly selected starting test
case. If a border point is found, it only differs from the starting
test case in one feature. This is a limitation of the capability of

H. Zhu and I. Bayley

the strategy. This is the case for testing the mushroom edibility,
where it is rare that changing just one feature of a mushroom
variety will change its edibility; usually at least two features must
change.

It was also observed that the random target strategy has zero
capability when used for testing the NB and NB2 models of
mushroom edibility, as does all three strategies when testing the
SVM and SVM2 models of bank churners. The reason for the poor
performances is as follows.

The random target strategy discovers a border point when
the two starting points are in different classes. If a subdomain
is small, the probability of selecting a point inside it is corre-
spondingly small. In the extreme case, when all test cases are
in the same class, no border will be discovered. The NB and
NB2 models of mushroom edibility classify all mushrooms in
the training dataset as poisonous. Similarly, the SVM and SVM2
models of bank churners classify all credit card customers to
be non-churners so no Pareto front can be discovered by any
strategy.

It is worth noting that the NB and NB2 models have the
worst accuracy among all models of mushroom edibility, and
SVM/SVM2 models are the worst on accuracy among the models
of bank churners. They are underfit models, which means they
are insufficient for classifying the input data space. Therefore, ex-
ploratory testing cannot detect the borders between subdomains.

On average, the random walk strategy achieved the best per-
formance on capability. It can discover a border point even if all
start points are in the same class; it is only required that a border
exists within walking distance from the starting point. Moreover,
the Pareto front found may be different from the starting point on
many features. Although its cost is not the lowest of the three, it
balances capability and cost best of the three.

e Length of Execution Time.

The real cost of the testing strategies in terms of the lengths of
execution time required to generate a Pareto front for a classifier
depends on the speed of the computer system, the time needed
to invoke the classifier to classify an input data, and the number
of walks to be executed. The measure of test cost in terms of
the number of invocations of the classifier under test per pair
of points in the Pareto front gives an abstract metric, which is
independent of these factors while the real cost can be calculated
with these factors as parameters by using Eq. (26). To give an
indication to the scale of real cost, we have run each strategy 10
times for each classifier, and each time we have executed 1000
walks and recorded the clock times spent and the sizes of Pareto
fronts generated. The testing tool Morphy was run on a Windows
PC with Intel Xeon x64 CPU E3-1230V5 3.40 GHz and 32 GB
memory.

Table 5 shows the average numbers of Pareto front pairs
generated per second for various coded classifiers used in the
controlled experiments. From these data, the average real cost of
generating Pareto fronts of a certain size, such as 1000 pairs of
points, can be easily calculated by the formula Time = %, where
P is the size of Pareto front, RC is the data of real cost given in
Table 5, i.e. the average number of Pareto front pairs per second.

The data shows that, for coded classifiers, on average, gener-
ating a Pareto front consisting of 1000 pairs of points only took
less than 0.4 s. The worst case, for directed walk strategy, for the
same size of Pareto front was 1.66 s and the best case, for random
target strategy, took 0.27 s.

Table 6 shows the results of testing those real ML models used
in our case studies. It gives the average number of pairs generated
per second for various types of ML models using different ex-
ploratory strategies in the same experimental setup, where DW,

19

The Journal of Systems & Software 187 (2022) 111231

Table 5

Average number of pairs generated per second for coded classifiers.
Classifier Directed walk Random target Random walk Average
Box 1 645.93 3059.24 1919.92 1875.03
Box 2 2734.57 3532.37 2954.01 3073.65
Circle 1 1084.63 3730.02 228191 2365.52
Circle 2 2956.22 3591.11 2909.88 3152.40
Line 1 2421.86 3709.12 2749.14 2960.04
Line 2 2434.26 3610.46 2985.71 3010.14
Sin 1 2133.10 3733.23 2880.03 2915.45
Sin 2 2500.64 3653.87 3090.02 3081.51
Triangle 1 601.53 3104.84 1853.88 1853.42
Triangle 2 2773.01 3697.53 2932.50 3134.35
Average 2028.57 3542.18 2655.70 2742.15

RT and RW stand for Directed Walk, Random Target and Random
Walk strategies, respectively.

The data shows that it took less than 10 s to generate Pareto
fronts of 1000 pairs. In the worst case, which is when testing
the Stack model of Mushroom Edibility using the directed walk
strategy, it took an average of 117.11 s (less than 2 min) in 10
executions of the test strategies to generate 1000 pairs. The best
case is when testing the Logistic Regression model LR of Bank
Churners using the random walk strategy. This took less than 2 s
to generate the same number of pairs.

There are two machine learning models in our case study that
do not have any border between classes as our exploratory testing
discovered. They are the naive Bayes model NB of mushroom
edibility and the Support Vector Machine model SVM of bank
churners prediction. Table 7 shows the average lengths of time
that the strategies completed the search for borders by taking
1000 walks to test these two models. In the worst case, it took
less than 2 min, while in most cases it took between a fraction of
a second and a few seconds.

In general, the time taken to execute a test strategy heavily
depends on how fast the classifier under test is for classifying
an input data. Our experiment data presented in the previous
sections shows that the time to execute the strategies increases
linearly with the number of walks and with the number of pairs
of border points generated. Therefore, the experiment data with
real machine learning models indicate that to generate a Pareto
front containing 1000s of pairs, on average we only need 10s of
seconds. It is highly efficient for practical uses of the strategies.

e Validity of the Conclusions.

The case studies have been conducted on datasets selected
at random from a large library with each dataset representing a
different type of classifier system. It is possible that the datasets
chosen had special properties that had an impact of the results
but this threat to validity can be eliminated by repeating the case
studies on other datasets.

The case studies used a wide range of models of different types
and of different quality (e.g. of different accuracy). They were con-
structed by using Python code selected from the Kaggle website
at random. The distribution of the quality among these models
may be not representative of the models in a real production
environment. Thus, the statistics may be biased. However, due
to the lack of data on the distributions of model quality, we are
unable to eliminate such a potential bias. The way to improve this
aspect is to use the test strategy in a real production environment.

The test systems were implemented by the authors according
to the formal definitions given in Section 3. They were debugged
and tested on a large number of test cases. A threat to the validity
of the case study is the existence of bugs in the test system, which
may have impact on the correctness of the data. The source code
of the test systems is written in Java and freely available from

H. Zhu and I. Bayley

Table 6
Average number of pairs generated per second for real ML models.

The Journal of Systems & Software 187 (2022) 111231

ML Red wine quality Mushroom edibility Bank churners Average
model DwW RT RW DwW RT RW DwW RT RwW
DT 84.46 266.68 203.21 131.52 329.42 176.43 278.04 188.77 327.33 220.65
HV 21.68 32.13 28.62 22.56 119.62 2343 33.68 35.09 47.05 40.43
KNN 30.16 21.95 37.70 36.73 140.34 9.23 19.68 47.57 39.35 42.52
LR 272.68 260.63 202.64 135.44 307.29 121.53 276.27 204.84 526.73 256.45
NB 146.81 156.79 148.69 - - - 166.61 231.19 113.20 160.55
Stack 9.03 13.21 10.86 8.54 46.29 8.76 10.66 13.83 14.53 15.08
SV 8.62 20.31 14.39 11.52 63.03 12.09 17.87 18.92 22.13 20.99
SVM 37.02 68.94 52.74 120.37 306.60 61.98 107.94 - - -
Avg 76.31 105.08 87.36 66.67 187.51 59.06 114.69 105.74 155.76 105.70
Table 7 6.1. Exploratory testing

Lengths of time (second) to complete search when no border in the classifier.

ML model Directed walk Random target Random walk
NB-Mushroom 14.83 0.25 2.87
SVM-Bank 102.47 0.69 7.51

Table 8

Comparison of related testing methods.
Test method Test design Execution Learning Steering
Proposed method (ET) v v v v/
Fuzz testing X v X X
Data mutation testing v v X X
Adaptive random test X X X v
Metamorphic testing x|V v X v
Search-based testing XV Xlv X v
Domain testing X X X X

GitHub for inspection. We are reasonably confident that the test
system has no serious bugs.

The process of the case studies is highly automated by exe-
cuting test scripts written in Morphy’s test scripting language.
Manual operational errors in the conduct of the case studies can
be eliminated to the highest extent. However, there may be bugs
in the test script and in the Morphy testing tool. Such bugs form a
threat to the validity of the conclusions drawn from the data. We
believe that this threat should have a minimal impact, however,
as the Morphy tool and test scripts have been tested, too. Morphy
is available for download and use for free. The test scripts are also
available on GitHub for download and inspection. The whole case
study can be repeated easily.

Finally, the observations made in the case studies and the
conclusions drawn from the data are consistent with the ob-
servations made in the controlled experiments and what the
formally proved theorems imply from the formal definitions and
the algorithms. Therefore, we can confidently conclude that the
conclusions drawn from the cases studies are valid and can be
generalised to other machine learning models built via supervised
training on datasets.

6. Related work

The most closely related work is exploratory testing (ET). We
will review the current state of research in this field and sum-
marise our contributions to it. We will also discuss the similarities
and differences between our work and adaptive random testing
(ART), fuzz and data mutation testing, metamorphic testing (MT),
and search-based testing (SBT). Finally, since the work of this
paper is partially inspired by the traditional testing method of
domain testing, we will also briefly discuss the applicability of
that method to machine learning models.

20

ET has been widely applied to many types of software sys-
tems, but most successfully to GUI-based systems; see, for ex-
ample, Whittaker (2009). Pfahl et al. (2014) reported an online
survey of Estonian and Finnish software developers and testers
on their uses of exploratory testing in practice, revealing that
a majority used it intensively for usability-critical, performance-
critical, security-critical and safety-critical software. However, as
far as we know, there is no report on the systematic application
of ET for testing Al applications.

Research on ET exists that evaluates its fault detection ef-
fectiveness and efficiency, including reports on its effectiveness
in practice. Itkonen and Rautiainen (2005), Itkonen et al. (2007)
and Itkonen and Madntyld (2014) were amongst the first. They
used students as subjects to compare ET with traditional software
testing techniques that based on pre-designed test cases (TCT).
Through replicated experiments, they found that ET had the
same effectiveness in fault detection but greater time-efficiency
because less design effort was needed. Moreover, TCT produces
more false-positive defect reports than ET.

Afzal et al. (2014) conducted a controlled experiment with 24
practitioners and 46 students who performed manual functional
testing to compare the effectiveness of exploratory testing against
traditional test techniques. Unlike Iktonen et al. they reported
that ET found significantly more defects, including those at vary-
ing levels of difficulty, type and severity. Also unlike Iktonen et al.
they did not report that ET reduced the number of false-positive
defect reports.

However, both of these experiments were conducted on tra-
ditional software and since Al applications have different failure
modes and faults, it is unclear whether ET is effective and efficient
for machine learning applications.

Since ET is used as a manual testing method, research on it
has mostly focused on the human factors that alter effectiveness
and efficiency. An industrial case study by Gebizli and Sozer
(2017) with 19 practitioners of different educational backgrounds
and experience levels show that both factors affects efficiency
but only experience affects the number of critical failures de-
tected. Micallef et al. (2016) found that trained testers employed
different types of exploratory strategies than untrained testers.
The trained testers were more effective at finding input validation
errors, while untrained testers tended to uncover mostly content
bugs. The two groups were however equally effective at detecting
logical bugs or functional Ul bugs.

Shoaib et al. (2009) found that people with extrovert personal-
ities are more likely to be good exploratory testers. Itkonen et al.
(2013) found that exploratory testers applied their knowledge for
test design and failure recognition differently. Martensson et al.
(2021), after interviewing testers in six companies, identified nine
key factors that determine the effectiveness of exploratory testing
in an organisation and proposed a simple model for improving it.

H. Zhu and I. Bayley

On the automation of ET, Eidenbenz et al. (2016) employed ar-
tificial intelligence techniques to predict test cases that are likely
to cause failure in testing an industry control software. Makondo
et al. (2016) used neural networks to train test oracles to help
the analysis of test results. Research has also been reported on
the development of test environments to support exploratory
testing. For example, ARME enables the automatic refinement
of system models based on recorded testing activities of test
engineers (Gebizli and Sozer, 2016). Tapir supports team col-
laboration in exploratory testing and reconstruction of system
models (Bures et al., 2018). However, as far as we know, there
is no work in the literature that automates exploratory strategies
as we have done, even though many exploratory strategies have
been documented in the literature such as those by Whittaker
(2009) and Hendrickson (2013).

Our main contributions to exploratory testing are to apply it to
machine learning applications and to automate it. By identifying
the discovery of boundary values as a specific goal of testing,
we demonstrated how the elements of ET can be formalised and
implemented in the datamorphic testing framework to achieve
test automation. Our approach can be summarised as follows.

Firstly, test design is formalised and implemented by a set
of datamorphisms. Together with a test executor test morphism,
these datamorphisms form a test system for exploratory testing.
We introduced the notion of complete exploratory test systems,
developed a systematic way to construct exploratory test systems
for feature-based classifiers, and proved that such exploratory
test systems are complete so that they ensure the whole data
space of the model can be explored.

Secondly, steering strategies are formalised and implemented
as algorithms that invoke the datamorphisms and the test ex-
ecutor. We then formally proved that the strategies are correct;
that is, they always terminate and produce Pareto fronts that
represent the borders between classes. In other words, these
strategies always achieve the goal of ET: to discover the borders
between classes defined by the machine learning model under
test.

Finally, the strategies have been implemented in the auto-
mated datamorphic testing tool Morphy (Zhu et al., 2020, 2019a).
We have also conducted empirical evaluations of the strategies
to determine their capability and cost through controlled ex-
periments and case studies. The results demonstrated that the
approach can discover the borders between classes in a cost
efficient way. The data also provide insight into the factors that
affect capability and cost for each test strategy. This can be used
to select appropriate parameters for appropriate strategies for
each classification application.

6.2. Random and adaptive random testing

Generally speaking, random testing (RT) is a software testing
method that selects or generates test cases through random sam-
pling over the input domain or a profile of the software under
test (SUT) according to a given probability distribution (Hamlet,
2002). As discussed in Zhu et al. (1997), RT techniques can be
classified into two types: representative and non-representative.

The representative type uses the probabilistic distribution on
the input domain as the input distribution for the SUT. One
approach is to sample at random the operation profile of the
software under test (Myers et al., 2011). Another approach is
to develop a Markov model of the human computer interaction
process and use it to generate random test cases (Whittaker and
Thomason, 1994). Although representative RT works well for fault
detection in simulation-based experiments (Duran and Ntafos,
1984; Hamlet and Taylor, 1990; Tsoukalas et al., 1993; Ntafos,
1998), its most compelling advantage is that test results naturally

21

The Journal of Systems & Software 187 (2022) 111231

lead to an estimate of software reliability. However, such random
testing requires a much larger number of test cases to achieve the
same level of fault detection ability in comparison to test methods
where the test cases are purposely designed.

In contrast, the non-representative type of RT uses a distri-
bution unconnected to the operation of the software. The major
subtype of ART methods, for example, spread test cases evenly
over the entire input space (Chen et al., 2001b, 2004b, 2007,
2010) and experiments show that they improve both fault de-
tection ability (Chen and Kuo, 2007) and reliability (Liu and
Zhu, 2008). Even spread over the input space can be achieved
by manipulating randomly generated test cases. Many such ma-
nipulation algorithms (called “strategies” in the literature) have
been developed and evaluated, including mirror (Chen et al,
2004a), balance (Chen et al., 2006), distance (Huang et al., 2020),
filter (Chan et al., 2005), lattice (Mayer, 2005), partition (Mao
et al,, 2020), etc. In a recent comprehensive survey of ART, Huang
et al. (2019) classified these techniques into Select-Test-From-
Candidates Strategies, Partitioning-Based Strategies, Test-Profile-
Based Strategies, Quasi-Random Strategies, and their combina-
tions (called Hybrid-Based Strategies). Even spread can also be
achieved with evolutionary computing algorithms, as discussed
later in the subsection on search-based testing.

A common feature of these ART algorithms for test case gen-
eration is that the new test cases are generated or selected based
on the positions of existing test cases in the input space. This is
similar to the so-called steering feature of exploratory testing.
However, none of them uses the information revealed in test
executions. In fact, the generation and/or selection of new test
cases in ART strategies do not require the execution of the soft-
ware under test at all. Of course, the most fundamental difference
between ART and ET is that ART does not aim to discover the
system’s behaviour although evenly spreading the test cases may
help indirectly. Another difference is in test design, which is the
selection of a probability distribution on the input domain for ART
and a decision on how to change the test cases for ET.

6.3. Fuzz and data mutation testing

Datamorphic testing evolved from data mutation testing
(DMT) (Shan and Zhu, 2009) and its integration with metamor-
phic testing (Zhu, 2015). Data mutation testing was proposed
by Shan and Zhu (2006) to generate realistic test cases that are
structurally complex, such as those for software modelling tools.
The basic idea is to develop a set of operators that transform
existing test cases (called seed test cases) to new test cases
(called mutant test cases). These operators were originally called
data mutation operators, but were renamed as datamorphisms
in Zhu et al. (2019b). Shan and Zhu (2009) also proposed that
data mutation operators (i.e. datamorphisms) can indicate the
correctness of the program on mutant test cases. Metamorphic
relations associated with data mutation operators were formally
defined in Zhu (2015) as mutational metamorphic relations, and
called metamorphisms in datamorphic testing (Zhu et al., 2019b).
The uses of seed makers, datamorphisms and metamorphisms in
one general purpose testing tool to achieve test automation was
first reported in Zhu (2015).

Data mutation testing has similarity to fuzz testing; see, for
example, Sutton et al. (2007). However, mutation testing em-
phasises an engineering process of developing data mutation
operators that can be used to generate meaningful and realistic
test cases for the software under test, while fuzz testing ran-
domly makes a change without first determining whether the
mutants are meaningful and realistic or not. A datamorphic test
system can include either random or purposeful datamorphisms
or even a combination of both. Most importantly, datamorphic
testing recognises other types of test morphisms and uses them
to achieve test automation at a high level of strategy and test
process (Zhu et al., 2019b, 2020).

H. Zhu and I. Bayley
6.4. Metamorphic testing

Metamorphic testing was proposed by Chen et al. (1998b) to
use metamorphic relations to check test results and to generate
test cases. A metamorphic relation is a relation on inputs and out-
puts of multiple test cases. Theoretically speaking, metamorphic
relations are axioms about the software under test presented in
a special form as axioms that contain multiple test cases. Such
axioms can be specified in algebraic specification languages. For
example, a metamorphic relation Vx, y.(x +y = y 4+ X) on integer
values of x and y can be written in all algebraic specification
languages such as SOFIA (Liu et al.,, 2014).

Algebraic specifications have been used for test automation
since the early 1980s. They have been developed for testing
procedural programs (Gonnon et al., 1981; Bernot et al., 1991),
object oriented programs (Doong and Frankl, 1994; Hughes and
Stotts, 1996; Chen et al., 2001a, 1998a), component-based sys-
tems (Kong et al., 2007; Yu et al., 2008), and more recently for
service-oriented systems (Liu et al., 2016). The research on meta-
morphic testing demonstrated that such axioms can be useful
for testing software even if they do not form a complete set of
axioms, though the latter are often required by test tools that
automate software testing from algebraic specifications (Chen
et al,, 2001a, 1998a).

The main difficulty of applying metamorphic testing is to
define the metamorphic relations for the software under test. This
is because metamorphic relations are in fact definitions of the
semantics of the application. Zhu (2015) proposed a feasible engi-
neering solution via the integration of data mutation testing with
metamorphic testing through mutational metamorphic relations
(i.e. metamorphisms). This approach is further developed into
datamorphic testing (Zhu et al., 2018, 2019a). The test automation
environment Morphy shows that the approach can be efficiently
implemented and applied. However, datamorphic testing is more
general than metamorphic testing. It may contain test morphisms
other than metamorphisms. It can also be applied without meta-
morphic relations as demonstrated by the case study reported
in Zhu et al. (2020) and the exploratory strategies studied in this
paper, while metamorphic relations is essential for metamorphic
testing (Chen et al., 2018).

Research on testing Al applications has been active in recent
years (Bai et al., 2018; Gotlieb et al., 2019; Roper and Zhou, 2020).
Metamorphic testing is one of the most popular approaches to
testing machine learning applications. The testing of driverless
vehicles is an interesting application; see for example, Tian et al.
(2018) and Zhou and Sun (2019). These works demonstrate that
synthetic test cases can find many erroneous behaviours under
different realistic driving conditions, many of which led to poten-
tially fatal crashes in three best performing DNNs in the Udacity
self-driving car challenge. Most existing testing techniques for
DNN-driven vehicles are heavily dependent on the manual col-
lection of test data under different driving conditions. This is
prohibitively expensive as the number of test conditions is huge.
The works by Tian et al. (2018) and Zhou and Sun (2019) also
show that the metamorphic approach can be cost efficient.

Metamorphic testing has also been applied to testing cluster-
ing and classification algorithms. Xie et al. (2011) developed a set
of metamorphic relations as test oracles for testing such machine
learning algorithms. Yang et al. (2019) reported a case study on
the use of metamorphic relations to test a clustering function
generated by the data mining tool Weka.

It is interesting to observe that datamorphisms are actually
used in these cases. For example, DeepTest automatically gener-
ates test cases that leverage real-world changes in driving condi-
tions like rain, fog, lighting conditions, etc. via image transforma-
tions (Tian et al., 2018). Metamorphic relations are defined based

22

The Journal of Systems & Software 187 (2022) 111231

on such image transformations and used to detect erroneous
behaviours. Zhu et al. (2019b) reported a case study on the testing
of four real industry applications of face recognition. They used
feature-editing operators like changing the subject’s age, gender,
skin tone, make-up etc., to generate synthetic test cases from
existing pictures. In Xie et al. (2011) and Yang et al. (2019)'s
work, manipulations of datasets were used to test clustering
and classification algorithms. The transformations of images and
manipulation of datasets are actually datamorphisms.

In general, metamorphic testing differs from the work of this
paper because it belongs to confirmatory testing, i.e. it checks that
the metamorphic relations are satisfied, rather than discover the
behaviour of the software under test. New test cases are usually
generated based on existing test cases, where the new test cases
are called follow-up test cases in the literature. Thus, metamorphic
testing replicates the feature of steering in the exploratory testing
process. When metamorphic testing is combined with data muta-
tion testing as in the examples discussed above, test designs can
be represented in the form of datamorphisms.

6.5. Search-based testing

Search-based testing regards testing as an optimisation prob-
lem (Harman et al., 2012; Dave and Agrawal, 2015) to maximise
the test effectiveness or test coverage by searching on the space
of test cases. Search-based testing techniques can also be applied
to ART by considering even spread of test cases as the goal of
optimisation.

Genetic algorithms, and other algorithms within evolutionary
computing, are often employed to realise such optimisations. In
the evolution process, new test cases are generated from ex-
isting ones in the population through mutation, crossover and
randomisation operators to improve the fitness of the population.
Therefore, genetic algorithms provide a steer, just as exploratory
test algorithms do. Test design in ET can be represented in the
form of the mutation and crossover operators of evolutionary
computing, but this fact is rarely studied and used explicitly.
Depending on what the fitness metrics encode, a new test case
may be executed if it requires information about the program’s
behaviour. Therefore, search based testing has most of the es-
sential features of ET, but the key difference is in their goals:
search-based testing aims to optimise, while ET aims to discover.

6.6. Domain testing

The work reported in this paper is inspired by the domain
testing method, in which the input space of the software under
test is decomposed into a number of sub-domains according to
either the specification or the program code of the software
under test. Test cases are then selected on or near to the bor-
ders between sub-domains. Domain errors are very common
programming errors; for example, sub-domains could be missing
and/or the boundaries between sub-domains could be incorrectly
implemented. The method of domain testing aims to detect such
errors.

The research and practical uses of domain testing can be traced
backed to the late 1970s and early 1980s. For example, White
and Cohen (1980) studied how programming errors are related
to domain modifications and proposed a strategy to select N test
cases on the borders and 1 test case near to the borders of the
subdomains in order to detect boundary parallel shift errors for
linear borders, where N is the dimension of the input space.
Similarly, Clarke et al. (1982) proposed a strategy to select N test
cases on the border and N test cases nearby. They proved this
strategy is capable of detecting both a parallel shift and a rotation
of the linear boundary. Afifi et al. (1992) proposed a strategy

H. Zhu and I. Bayley

Original Coded Classifier

The Journal of Systems & Software 187 (2022) 111231

Deep Neural Network (DNN)

Decision Tree (DT)

e o
/J[‘,/ ‘E — S
//’. \‘\,__//[
l!//
K-Nearest Neighbour (KNN) Logistic Regression (LR)
,,,,,, T e P
g N

Soft Voting of LR, KNN and DT (SV)

Supporting Vector Machine (SVM)

Fig. 19. Subdomain boundaries of various machine learning models of Box 2.

that selects N + 2 test cases on and nearby to each border of a
subdomain. By applying Zeil’s theory of perturbation testing (Zeil,
1983, 1989), they proved that the strategy is capable of detecting
linear errors of boundaries defined by non-linear functions (Zeil
et al,, 1992), where linear errors are linear transformations of the
boundary function. A survey of the research on domain testing in
the 1980s and 1990s can be found in Zhu et al. (1997). Since then
little progress has been reported in the literature.

Domain testing is a typical traditional scripted and confir-
matory testing method that derives a complete test set before
testing is actually executed and the test results are compared
with predetermined expected outputs. There is no immediate
execution of test cases after generation, no steering of the testing
using the output of previous tests, and the design of test cases
is not focused on the variations in the behaviour space. The
purpose of domain testing is to confirm that the borders between
sub-domains are correctly drawn.

The research on domain testing demonstrated that program-
ming errors often manifest themselves as changes in the bound-
aries between sub-domains. Test cases on or near those borders
are effective at detecting these errors. Errors in a machine learn-
ing model must also occur around the borders between sub-
domains. It is very useful to know where borders are actually
drawn between sub-domains defined by the model. However, the

23

existing domain testing techniques cannot easily be applied to
classifiers built from machine learning techniques, because both
the expected border as specified and the implemented border
as coded are usually not available. Moreover, the domain errors
of a machine learning model could be much more complicated
than traditional programming errors. Fig. 19 visualises the Pareto
fronts of the original coded classifier Box 2 and various ma-
chine learning models built from a dataset obtained by a random
sampling of Box 2 on 5000 points. It shows that the boundary
errors of these machine learning models are highly complicated
and significantly different from the coding errors assumed in the
research on domain testing.

6.7. Summary of the comparison

To summarise the differences between the proposed approach
and the related testing methods discussed above, we contrast
these methods on the four essential elements of ET; see Table 8.
7. Conclusion and future work

The Pareto fronts generated by the algorithms studied in this

paper contain a huge amount of information about behaviour of
the ML models and we are exploring their potential benefits. First,

H. Zhu and I. Bayley

the Pareto front brings a number of possible new ways to analyse
and improve ML models. We are currently working on how to use
Pareto fronts in the measurement and comparison of ML model’s
performance.

Another possible benefit is in explaining and/or interpreting
the output of a ML model, which has been an active research topic
recently; see, for example, Linardatos et al. (2021) and Molnar
(2021). Given a Pareto front that represents the borders between
classes, a model’s classification of a data point could be explained
and interpreted, for example, by contrasting it against the nearest
points on the surrounding borders and the distance of the point
to these boundary points.

The test cases contained in a Pareto front seem also useful to
improve model’s performance. For example, when the training
data is imbalanced, those Pareto front points in minority classes
could be used as additional synthetic training data similar to the
SMOTE technique (Fernandez et al., 2018).

How to present the information contained in Pareto fronts is
another interesting topic for future research. For example, the
visualisation of Pareto fronts of various ML models in Fig. 19
provides a clear view of their behaviours. An interesting research
question for future work is how to visualise models on higher
dimensional data spaces. There are a few existing techniques
to visualise higher dimension spaces, such as contour charts for
visualising 3D models on a 2D space. The effectiveness of such
techniques needs to be tested with empirical studies.

There are also many possible variations of the strategies pro-
posed and studied in this paper. In particular, the strategy’s
algorithms do not need a measurement of the distance between
two test cases. However, a distance measurement can be used
to decide when to terminate the refinement loop, thereby im-
proving the effectiveness. We are conducting further research on
strategies that improve both cost and capability.

This paper focused on multi-class feature-based classifiers
whose data spaces are symbolic or numerical values of features
and each instance of data is assigned with a single label. A
valuable topic for further study is to extend the approach to
classifiers on other types of data spaces, such as time series,
images, audio and video data, and natural language texts, etc.

Moreover, a machine learning classifier can be:

e single-labelled, where one label is assigned to each instance
in the data space, thus the classes are non-overlapping sub-
domains;

e multi-labelled, where multiple labels can be assigned to an
instance, thus, a data point may belong to multiple classes
and the sub-domains may overlap with each other; and

e hierarchical, where labels are organised in a hierarchical
structure thus the sub-domain of a class can be divided into
a number of subclasses, etc.

In this paper, we have focused on single labelled classifiers. It
will be interesting to investigate how to extend the theory and
their algorithms to multi-labelled and hierarchical classifiers.

More generally, classifiers are classification models that map
from a data space to a set of categorical labels, while predic-
tors are models of functions of continuous or ordered numerical
values. Such predictors are often constructed through regression
analysis and used for numeric predictions (Aggarwal, 2015). It
will also be interesting to adapt the approach studied in this
paper to predictors.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

24

The Journal of Systems & Software 187 (2022) 111231
Acknowledgements

The work reported in this paper is partially supported by the
2020 Research Excellence Award of Oxford Brookes University,
UK. The authors are grateful to the members of the Al Software
Engineering research reading group at the School of Engineering,
Computing and Mathematics, Oxford Brookes University, for their
comments on the drafts of the paper, and discussions at the
reading group’s activities.

Appendix. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jss.2022.111231.

References

Afifi, F.H., White, LJ., Zeil, SJ., 1992. Testing for linear errors in nonlinear
computer programs. In: Proceedings of the 14th International Conference
on Software Engineering (ICSE '92). Association for Computing Machinery,
New York, NY, USA, pp. 81-91.

Afzal, W., Ghazi, A, Itkonen, J., Torkar, R., Andrews, A., Bhatti, K., 2014. An
experiment on the effectiveness and efficiency of exploratory testing. Empir.
Softw. Eng. 20, 844-878.

Aggarwal, C., 2015. Data Mining: The Textbook. Springer.

Bach, J., 2002. Exploratory testing. In: van Veenedale, E. (Ed.), The Testing
Practitioner. UTN Publishers, Den Bosch, pp. 261-273.

Bach, J., 2003. Exploratory Testing Explained. Technical Report, satisfice.com,
Online. URL: http://www.satisfice.com/articles/et-article.pdf.

Bai, X., Li, J., Ulrich, A. (Eds.), 2018. Proc. of IEEE/ACM 13th International
Workshop on Automation of Software Test (AST 2018). IEEE Computer
Society, Gothenburg, Sweden.

Barr, M., Wells, C., 1989. Category Theory for Computing Science. Prentice Hall.

Bernot, G., Gaudel, M.C., Marre, B., 1991. Software testing based on formal
specifications: a theory and a tool. Softw. Eng.]. 387-405.

Bures, M., Frajtdk, K., Ahmed, B.S., 2018. Tapir: Automation support of ex-
ploratory testing using model reconstruction of the system under test. IEEE
Trans. Reliab. 67, 557-580.

Chan, K.P., Chen, T.Y., Towey, D., 2005. Adaptive random testing with filtering: An
overhead reduction technique. In: Proceedings of the 17th International Con-
ference on Software Engineering and Knowledge Engineering (SEKE'2005).
pp. 292-299.

Chen, T.Y., Cheung, S.C,, Yiu, S.M., 1998b. Metamorphic Testing: A New Approach
for Generating Next Test Cases. Technical Report, Dept. of Computer Science,
Hong Kong Univ. of Science and Technology.

Chen, T.Y., Huang, D., Kuo, F.C., 2006. Adaptive random testing by balancing. In:
Proceedings of the 1st International Workshop on Random Testing (RT'06).
ACM Press, pp. 2-9.

Chen, T.Y., Kuo, F.C., 2007. Is adaptive random testing really better than random
testing. In: Proceedings of the 2nd International Workshop on Random
Testing 2007 (RT 2007). ACM Press, pp. 64-69.

Chen, T.Y., Kuo, F.C, Liu, H., 2007. On test case distributions of adaptive random
testing. In: Proceedings of the 19th Internatio al Conference on Software
Engineering and Knowledge Engineering (SEKE’07). pp. 141-144.

Chen, T.Y. Kuo, F.C, Liu, H., Poon, P.L, Towey, D. Tse, T.H., Zhou, Z.Q.,
2018. Metamorphic testing: A review of challenges and opportunities. ACM
Comput. Surv. 51, 4:1-4:27.

Chen, T.Y., Kuo, F.C., Merkel, R.G., Ng, S., 2004a. Mirror adaptive random testing.
Inf. Softw. Technol. 46, 1001-1010.

Chen, T.Y., Kuo, F.C.,, Merkel, R.G., Tse, T.H., 2010. Adaptive random testing: The
art of test case diversity. J. Syst. Softw. 83, 60-66.

Chen, T.Y., Leung, H., Mak, LK., 2004b. Adaptive random testing. In: Proc. of the
9th Asian Computing Science Conference. pp. 320-329.

Chen, H.Y., Tse, T.H., Chen, T.Y. 1998a. In black and white: an integrated
approach to class-level testing of object-oriented programs. ACM TOSEM 7,
250-295.

Chen, H.Y., Tse, T.H., Chen, T.Y., 2001a. Taccle: a methodology for object-oriented
software testing at the class and cluster levels. ACM Trans. Softw. Eng.
Methodol. 10, 56-109.

Chen, T.. Tse, T.H., Yu, Y.T., 2001b. Proportional sampling strategy: a
compendium and some insights. J. Syst. Softw. 58, 65-81.

Clarke, L., Hassell,]J., Richardson, D., 1982. A close look at domain testing. IEEE
Trans. Softw. Eng. SE-8, 380-390.

Copeland, L., 2004. A Practitioner’s Guide to Software Test Design. Artech House
Publishers, Boston and London.

https://doi.org/10.1016/j.jss.2022.111231
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb1
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb1
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb1
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb1
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb1
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb1
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb1
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb2
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb3
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb4
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb4
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb4
http://www.satisfice.com/articles/et-article.pdf
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb6
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb7
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb8
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb8
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb8
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb9
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb9
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb9
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb9
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb9
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb11
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb11
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb11
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb11
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb11
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb12
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb12
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb12
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb12
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb12
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb13
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb13
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb13
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb13
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb13
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb15
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb15
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb15
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb15
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb15
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb16
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb16
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb16
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb17
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb17
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb17
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb19
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb19
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb19
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb19
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb19
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb20
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb20
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb20
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb20
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb20
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb21
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb21
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb21
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb22
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb22
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb22
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb23
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb23
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb23

H. Zhu and I. Bayley

Cortez, P., Cerdeira, A., Almeida, F.T.M,, Reis,]., 2009. Modeling wine preferences
by data mining from physicochemical properties. Decis. Support Syst. 47,
547-553.

Dave, M., Agrawal, R., 2015. Search based techniques and mutation analysis
in automatic test case generation: A survey. In: 2015 IEEE International
Advance Computing Conference (IACC). pp. 795-799.

Doong, K., Frankl, P., 1994. The astoot approach to testing object-oriented
programs. ACM Trans. Softw. Eng. Methodol. 3, 101-130.

Duran, J.W., Ntafos, S.C., 1984. An evaluation of random testing. IEEE Trans.
Softw. Eng. SE-10, 438-444.

Eidenbenz, R., Franke, C., Sivanthi, T., Schoenborn, S., 2016. Boosting exploratory
testing of industrial automation systems with ai. In: 14th IEEE Conference
on Software Testing, Verification and Validation (ICST 2021). pp. 362-371.

Fernandez, A., Garcia, S., Herrera, F., Chawla, N.V., 2018. Smote for learning from
imbalanced data: Progress and challenges.]. Artificial Intelligence Res. 61,
863-905.

Gebizli, C.S., S6zer, H., 2016. Automated refinement of models for model-based
testing using exploratory testing. Softw. Qual. J. 25, 979-1005.

Gebizli, C.S., Sozer, H., 2017. Impact of education and experience level on the
effectiveness of exploratory testing: An industrial case study. In: 2017 IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2017). pp. 23-28. http://dx.doi.org/10.1109/ICSTW.2017.
8.

Gonnon, J., McMullin, P., Hamlet, R., 1981. Data-abstraction implementation,
specification and testing. ACM Trans. Program. Lang. Syst. 3, 211-223.

Gotlieb, A., Roper, M., Zhang, P. (Eds.), 2019. Proc. of the First IEEE International
Conference on Artificial Intelligence Testing (AlTest 2019). IEEE Computer
Society, Los Alamitos, CA, USA.

Graham, D., van Veenedaal, E., Evans, 1, Black, R., 2007. Foundations of Software
Testing - ISTQB Certification. Thomason, London.

Hamlet, R., 2002. Random testing. In: Marciniak, J. (Ed.), Encyclopedia of Software
Engineering. Wiley, pp. 970-978.

Hamlet, D., Taylor, R., 1990. Partition testing does not inspire confidence. IEEE
Trans. Softw. Eng. 16, 1402-1411. http://dx.doi.org/10.1109/32.62448.

Harman, M., Mansouri, A., Zhang, Y., 2012. Search based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45, 11, 61 pages.

Hendrickson, E., 2013. Explore it!. In: The Pragmatic Bookshelf.

Huang, R., Cui, C, Sun, W., Towey, D., 2020. Poster: Is euclidean distance the
best distance measurement for adaptive random testing? In: 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification
(ICST). pp. 406-409.

Huang, R., Sun, W., Xu, Y., Chen, H., Towey, D., Xia, X., 2019. A survey on adaptive
random testing. IEEE Trans. Softw. Eng..

Hughes, M., Stotts, D., 1996. Daistish: systematic algebraic testing for oo
programs in the presence of side-effects. In: Proceedings of ISSTA’96. IEEE
CS Press, pp. 53-61.

Itkonen, J., Mdntyld, M.V., 2014. Are test cases needed? replicated comparison
between exploratory and test-case-based software testing. Empir. Softw. Eng.
19, 303-342.

Itkonen, J., Mantyla, M.V, Lassenius, C., 2007. Defect detection efficiency: Test
case based vs. exploratory testing. In: First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007). pp. 61-70.

Itkonen,]., Mantyla, M.V., Lassenius, C., 2013. The role of the tester’s knowledge
in exploratory software testing. IEEE Trans. Softw. Eng. 39, 707-724.

Itkonen,], Mantyld, .M.V., Lassenius, C., 2016. Test better by exploring:
Harnessing human skills and knowledge. IEEE Softw. 33, 90-96.

Itkonen,]., Rautiainen, K., 2005. Exploratory testing: a multiple case study. In:
Proceedings of International Symposium on Empirical Software Engineering
(ISESE 2005). Association for Computing Machinery, pp. 84-93.

Kaner, C., 1988. Testing Computer Software. John Wiley and Sons.

Kaner, C., Falk, J., Nguyen, H.Q., 1999. Testing Computer Software, second ed.
John Wiley and Sons.

Kong, L., Zhu, H., Zhou, B., 2007. Automated testing EJB components based on
algebraic specifications. In: Proc. of COMPSAC 2007, Vol. 2. pp. 717-722.

Kung, D., Zhu, H., 2009. Software verification and validation.

Linardatos, Papastefanopoulos, V., Kotsiantis, S., 2021. Explainable Al: A review
of machine learning interpretability methods. Entropy 23 (18), 1-45.

Liu, D., Wuy, X,, Zhang, X., Zhu, H., Bayley, 1., 2016. Monic testing of web services
based on algebraic specifications. In: Proc. of the 10th IEEE International
Conference on Service Oriented System Engineering (SOSE 2016). IEEE
Computer Society, Oxford, England, UK, pp. 24-33.

Liu, Y., Zhu, H., 2008. An experimental evaluation of the reliability of adaptive
random testing methods. In: 2008 Second International Conference on Secure
System Integration and Reliability Improvement. pp. 24-31.

Liu, D., Zhu, H., Bayley, 1., 2014. Sofia: An algebraic specification language for
developing services. In: Proc. of the 8th IEEE International Symposium on
Service-Oriented Systems Engineering (SOSE 2014). IEEE Computer Society.
[EEE Computer Society Press, Oxford, UK, pp. 70-75.

25

The Journal of Systems & Software 187 (2022) 111231

Loveland, S., Miller, Jr., G.R.P., Shannon, M. 2005. Software Testing Tech-
niques: Finding the Defects that Matter. Charles River Media, Inc., Hingham,
Massachusetts, USA.

Makondo, W., Nallanthighal, R., Mapanga, I, Kadebua, P., 2016. Exploratory test
oracle using multi-layer perceptron neural network. In: 2016 International
Conference on Advances in Computing, Communications and Informatics
(ICACCI 2016). pp. 1166-1171.

Mao, C., Zhan, X., Chen, J., Chen, J., Huang, R., 2020. Adaptive random testing
based on flexible partitioning. IET Softw. 14, 493-505, (12).

Martensson, T., Stahl, D., Martini, A., Bosch, J., 2021. Efficient and effective
exploratory testing of large-scale software systems.]. Syst. Softw. 174,
110890.

Mayer, J., 2005. Lattice-based adaptive random testing. In: Proceedings of the
20th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’05). Association for Computing Machinery, pp. 333-336.

Micallef, M., Porter, C., Borg, A., 2016. Do exploratory testers need formal train-
ing? an investigation using hci techniques. In: 2016 IEEE Ninth International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW 2016). pp. 305-314.

Mohri, M., Rostamizadeh, A., Talwalkar, A. 2012. Foundations of Machine
Learning. The MIT Press.

Molnar, C., 2021. Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable. URL: https://christophm.github.io/interpretable-ml-
book/.

Myers, G.J., Sandler, C., Badgett, T., 2011. The Art of Software Testing, third ed.
Wiley.

Ntafos, S., 1998. On random and partition testing. In: Proceedings of the 1998
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA '98). Association for Computing Machinery, New York, NY, USA, pp.
42-48.

Pfahl, D., Yin, H., Mdntyld, M.V., Miinch,]., 2014. How is exploratory testing used?
a state-of-the-practice survey. In: Proceedings of the 8th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement.
Association for Computing Machinery, New York, NY, USA, pp. 1-10.

Roper, M., Zhou, Z.Q. (Eds.), 2020. Proc. of the Second IEEE International
Conference on Artificial Intelligence Testing (AlTest 2020). IEEE Computer
Society, Los Alamitos, CA, USA.

Segura, S., Towey, D., Zhou, Z.Q., Chen, T.Y., 2018. Metamorphic testing: testing
the untestable. IEEE Softw. (1), http://dx.doi.org/10.1109/MS.2018.2875968.

Shalev-Shwartz, S., Ben-David, S., 2014. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press.

Shan, L., Zhu, H., 2006. Testing software modelling tools using data mutation.
In: Proc. of the First IEEE/ACM Workshop on Automation of Software Test
(AST 2006). ACM Press, Shanghai, China, pp. 43-49.

Shan, L., Zhu, H., 2009. Generating structurally complex test cases by data
mutation: A case study of testing an automated modelling tool. Comput.
J. 52, 571-588.

Shoaib, L., Nadeem, A., Akbar, A., 2009. An empirical evaluation of the influence
of human personality on exploratory software testing. In: 2009 IEEE 13th
International Multitopic Conference. pp. 1-6.

Society, N.A., 1981. Field Guide to North American Mushrooms. Knopf.

Sutton, M., Greene, A., Amini, P., 2007. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley.

Tian, Y., Pei, K, Jana, S., Ray, B., 2018. Deeptest: Automated testing of deep-
neural-network-driven autonomous cars. In: Proc. of the 40th IEEE/ACM
Int'l Conf. on Software Engineering (ICSE 2018). IEEE Computer Society,
Gothenburg, Sweden, pp. 303-314.

Tsoukalas, M., Duran, J., Ntafos, S., 1993. On some reliability estimation problems
in random and partition testing. IEEE Trans. Softw. Eng. 19, 687-697.

White, L., Cohen, E.I, 1980. A domain strategy for computer program testing.
IEEE Trans. Softw. Eng. SE-6, 247-257.

Whittaker, J.A., 2009. Exploratory Software Testing: Tips, Tricks, Tours, and
Techniques to Guide Test Design. Pearson Education.

Whittaker, J., Thomason, M., 1994. A markov chain model for statistical software
testing. IEEE Trans. Softw. Eng. 20, 812-824.

Xie, X., Ho, J.JW.K,, Murphy, C., Kaiser, G., Xu, B., Chen, T.Y., 2011. Testing and
validating machine learning classifiers by metamorphic testing. J. Syst. Softw.
84, 544-558.

Yang, S., Towey, D., Zhou, Z., 2019. Metamorphic exploration of an unsupervised
clustering program. In: Proc. of IEEE/ACM 4th International Workshop on
Metamorphic Testing (MET 2019). IEEE Computer Society, pp. 48-54.

Yu, B, Kong, L., Zhang, Y., Zhu, H., 2008. Testing java components based on
algebraic specifications. In: Proceedings of the First International Conference
on Software Testing, Verification, and Validation (ICST 2008). Lillehammer,
Norway. pp. 190-199.

Zeil, S., 1983. Testing for perturbations of program statements. IEEE Trans. Softw.
Eng. SE-9, 335-346.

Zeil, S., 1989. Perturbation techniques for detecting domain errors. IEEE Trans.
Softw. Eng. 15, 737-746.

http://refhub.elsevier.com/S0164-1212(22)00009-7/sb24
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb24
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb24
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb24
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb24
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb25
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb26
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb26
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb26
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb27
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb27
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb27
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb28
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb28
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb28
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb28
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb28
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb29
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb29
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb29
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb29
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb29
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb30
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb30
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb30
http://dx.doi.org/10.1109/ICSTW.2017.8
http://dx.doi.org/10.1109/ICSTW.2017.8
http://dx.doi.org/10.1109/ICSTW.2017.8
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb32
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb32
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb32
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb33
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb34
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb34
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb34
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb35
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb35
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb35
http://dx.doi.org/10.1109/32.62448
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb37
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb37
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb37
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb38
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb39
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb40
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb40
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb40
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb41
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb41
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb41
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb41
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb41
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb42
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb42
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb42
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb42
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb42
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb43
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb44
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb44
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb44
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb45
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb45
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb45
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb46
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb47
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb48
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb48
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb48
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb50
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb51
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb51
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb51
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb52
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb53
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb54
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb54
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb54
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb54
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb54
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb54
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb54
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb55
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb55
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb55
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb55
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb55
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb56
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb56
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb56
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb56
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb56
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb56
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb56
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb57
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb57
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb57
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb58
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb58
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb58
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb58
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb58
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb59
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb59
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb59
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb59
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb59
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb60
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb60
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb60
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb60
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb60
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb60
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb60
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb61
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb61
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb61
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb63
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb63
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb63
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb64
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb65
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb66
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb66
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb66
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb66
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb66
http://dx.doi.org/10.1109/MS.2018.2875968
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb68
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb68
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb68
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb69
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb69
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb69
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb69
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb69
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb70
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb71
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb71
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb71
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb71
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb71
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb72
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb73
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb73
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb73
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb74
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb74
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb74
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb74
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb74
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb74
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb74
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb75
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb75
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb75
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb76
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb77
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb77
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb77
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb78
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb78
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb78
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb79
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb79
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb79
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb79
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb79
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb80
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb82
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb82
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb82
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb83
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb83
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb83

H. Zhu and I. Bayley

Zeil, S.J., Afifi, F.H., White, LJ., 1992. Detection of linear errors via domain testing.
ACM Trans. Softw. Eng. Methodol. 1, 422-451.

Zhou, Z.Q., Sun, L., 2019. Metamorphic testing of driverless cars. Commun. ACM
62, 61-67.

Zhu, H., 2015. Jfuzz: A tool for automated java unit testing based on data
mutation and metamorphic testing methods. In: Proc. of the 2nd Int’l Conf.
on Trustworthy Systems and their Applications (TSA 2015). IEEE Computer
Society, pp. 8-15.

Zhu, H., Bayley, 1., 2020. Exploratory datamorphic testing of classification applica-
tions. In: Proc. of The 1st [EEE/ACM International Conference on Automation
of Software Test (AST 2020). pp. 51-60.

Zhu, H., Bayley, L, Liu, D., Zheng, X., 2019a. Morphy: A Datamorphic Software
Test Automation Tool. Technical Report OBU-ECM-AFM-2019-01, School
of Engineering, Computing and Mathematics, Oxford Brookes University,
Oxford, UK, URL: http://arxiv.org/abs/1912.09881.

26

The Journal of Systems & Software 187 (2022) 111231

Zhu, H., Bayley, I, Liu, D., Zheng, X., 2020. Automation of datamorphic testing. In:
Proc. of 2nd IEEE International Conference on Artificial Intelligence Testing
(AlTest 2020), pp. 64-72.

Zhu, H., Hall, P., May, J., 1997. Software unit test coverage and adequacy. ACM
Comput. Surv. 29, 366-427.

Zhu, H., Liu, D., Bayley, I, Harrison, R., Cuzzolin, F., 2018. Datamorphic Testing:
A Methodology for Testing Al Applications. Technical Report OBU-ECM-
AFM-2018-02, School of Engineering, Computing and Mathematics, Oxford
Brookes University, Oxford 0X33 1HX, UK, URL: http://arxiv.org/abs/1912.
04900.

Zhu, H.,, Liu, D., Bayley, L., Harrison, R., Cuzzolin, F., 2019b. Datamorphic testing:
A method for testing intelligent applications. In: Proc. of the First IEEE
International Conference on Artificial Intelligence Testing (AlTest 2019). IEEE
Computer Society, Los Alamitos, CA, USA, pp. 149-156.

http://refhub.elsevier.com/S0164-1212(22)00009-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb84
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb85
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb86
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb86
http://arxiv.org/abs/1912.09881
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb90
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb90
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb90
http://arxiv.org/abs/1912.04900
http://arxiv.org/abs/1912.04900
http://arxiv.org/abs/1912.04900
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb92
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb92
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb92
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb92
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb92
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb92
http://refhub.elsevier.com/S0164-1212(22)00009-7/sb92

	Discovering boundary values of feature-based machine learning classifiers through exploratory datamorphic testing
	Introduction
	Preliminaries
	Classification applications
	Exploratory testing
	Datamorphic testing
	Overview of the proposed approach

	Exploratory test systems for feature-based classifiers
	Structure of exploratory test system
	Completeness of exploratory test systems
	Continuous numerical classifiers
	Discrete non-numerical classifiers
	Discrete numerical classifiers
	Hybrid feature-based classifiers

	Exploration strategies
	Random target strategy
	Directed walk strategy
	Random walk strategy

	Empirical evaluation
	Controlled experiments
	Design and conduct of the experiments
	Main results
	Discussion

	Case studies
	Design and conduct of the case studies
	Main results
	Discussion

	Related work
	Exploratory testing
	Random and adaptive random testing
	Fuzz and data mutation testing
	Metamorphic testing
	Search-based testing
	Domain testing
	Summary of the comparison

	Conclusion and future work
	Declaration of competing interest
	Acknowledgements
	Appendix . Supplementary data
	References

