On the Convergence of Autonomous Agent Communities

Hong Zhu
School Of Technology, Oxford Brookes University,
Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

Fang Wang
Pervasive ICT Research Centre, British Telecom,
Orion 1/12. Ipswich IP5 3RE, UK, Email: fang.wang@bt.comand

Shufeng Wang
National Lab. for Parallel and Distributed Processing,
Changsha, 410073, China, Email: shufeng. wang@gmail.com

Abstract

Community is a common phenomenon in natural ecosystems, human societies as well as
artificial multi-agent systems such as those in web and Internet based applications. In
many self-organizing systems, communities are formed evolutionarily in a decentralized
way through agents’ autonomous behavior. This paper systematically investigates the
properties of a variety of the self-organizing agent community systems by a formal
qualitative approach and a quantitative experimental approach. The qualitative formal
study by applying formal specification in SLABS and Scenario Calculus has proven that
mature and optimal communities always form and become stable when agents behave
based on the collective knowledge of the communities, whereas community formation
does not always reach maturity and optimality if agents behave solely based on individual
knowledge, and the communities are not always stable even if such a formation is
achieved. The quantitative experimental study by simulation has shown that the
convergence time of agent communities depends on several parameters of the system in
certain complicated patterns, including the number of agents, the number of community
organizers, the number of knowledge categories, and the size of the knowledge in each

category.

Keywords:

Adaptive systems, Self-organization, Autonomous agent, Community formation,

Recurrence properties, Reachability, Stability, Convergence

23/07/2010 1

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

1. Introduction

1.1. Motivation

Community formation is a common phenomenon in natural ecosystems and human
societies. For example, a community can be defined as a group of people (or organisms)
who have something in common to share [1]. The substance of shared elements varies
widely, from a situation of interest to lives and values. In the past a community often
refers to a group of people or entities that live together in the same area. Nowadays the
concept of community is not limited by geographical locations, as the wide usage of
Internet easily brings together people or entities situated at distributed locations to form a
kind of virtual community. Consequently, the sizes of Internet-based communities may
vary from tens to millions. For instance, the number of users with running machines in a
file-sharing application, Gnutella, was reported to be 1,200,000 in March 2005, and the
sheer number of indexable web pages was already over 10° in year 2000 @, It is not
scalable for each peer to interact with all the others to discover appropriate resources,
even to store information about all the others. To enable efficient accesses to internet
resource as well as to facilitate various types of other service, communities are proposed
and constructed in the context of peer-to-peer computing [2, 3].

The considerably increasing dimensions and complexity of contemporary Internet-
based communities require substantial management work to organize and administrate
proper groups in a large-scale distributed environment. A series of computational
techniques have been proposed to automate this process. Among these techniques, self-
organization has the advantages of being decentralized, evolutionary, autonomous and
efficient.

Generally speaking, a self-organised agent communities consists of a number n>0 of
autonomous peer agents A;, Ay, ..., A, and a number >0 of community organizers G,
G,, ..., Gi. Each peer agent A; has a subset {Ki,, Ki», ..., Kisi} of knowledge, where each
piece of knowledge K is classified into a one of r categories {C;, C,, ..., C;}. Each peer
agent is registered to an organizer with its set of knowledge. If an agent wants to access a
particular piece of knowledge that it does not possess, it will search for the peers who
have the knowledge and obtain the assistance from the peer. The search starts within the
community by submitting a request to its organizer, which looks at its registry of the
members. If the search fails within the community, the organizer of the community will

contact other organizers for assistance. Peer agents may move from one community to

(' See URL: http://www.limewire.com/english/content /netsize.shtml.
@ See URL: http://www.inktomi.com/webmap/, accessed January 2000

Revised Version Submitted to MAGS International Journal 2

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

another from time to time in order to be grouped with other agents that are interested and
possess the knowledge of in the same category. A peer agent’s movement is autonomous
and based on a computational algorithm for its decision making using the local
information about the communities involved.

However, such computational algorithms are difficult to understand because each
member behaves autonomously without any central control and only based on the local
knowledge while hoping the whole system evolves to form communities. It is unclear
whether mature and optimal communities will always be formed and whether such
formations will be stable. This paper studies these problems for a series of agent
community formation algorithms by both a formal logic approach and an experimental

simulation approach.

1.2. Related work

1.2.1. Research in community organization

A common method of community organization is to cluster entities according to their
similarity, which can be back dated to 1970s [4, 5]. This method selects proper
representations of entity features or patterns to calculate distance or proximity of entities
based on feature differences. Communities are then created by grouping together those
entities with sufficiently close proximity; see [6] for a comprehensive review on data
clustering. Charikar et al [7] and Fisher [8] extended the clustering method to deal with
new joining entities. More recently, Khambatti et al [9] and Ogston et al [10] further
developed the method in a decentralized peer-to-peer environment. Because this method
employs pre-defined features and computing models to generate communities, it may
involve a significant amount of computation and re-clustering in dynamic situations,
especially when entity features continuously change with time. Moreover, because entity
features or patterns are usually difficult to extract and choose, inappropriate feature
designs or representations would inevitably deteriorate the clustering results. The formed
communities therefore may include mismatched entities with mistaken attributes.

In addition to entity proximity, communities can be formed based on entity
associations. lamnitchi et al [11] utilized data-sharing graphs to capture common user
interests in data. Users that requested similar files had strong links in the graph so were
formed into the same interest-based communities. By using relevant graph techniques
such as maximum flow and minimum cut, in a recent study lamnitchi et al [11]
discovered a series of web communities in which members had more links to each other

than to non-members. This method requires the full knowledge of the associations

Revised Version Submitted to MAGS International Journal 3

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

between entities in order to perform community formation. This prerequisite sometimes
made the community formation inapplicable in large-scale and dynamic applications.

An outstanding characteristic of communities is that entities working as a group
usually exhibit behavior that goes beyond the simple addition of individual functions.
This phenomenon in natural systems has attracted researchers’ attention for a long time;
c.f. [12, 13]. A similar behavior can also be found in artificial systems, such as in
decentralized computer applications including Freenet [14] and Anthill [15]. Despite the
absence of any centralized control point, clusters of specialized nodes in handling similar
queries were gradually built in these applications, while the nodes simply cached a copy
of query answers they had transferred. Flake et al. [16] discovered web communities on
the Internet, though the web pages were written by independent creators. These systems
possess a common feature of self-organization.

Based on the principle of self-organization, Wang [17] proposed a novel solution to
community formation problem. It addressed community management in a decentralized
way by taking advantage of autonomous agents. Cid-Sueriro and Wang [18] proved that
the average formation time of the self-organizing communities increased linearly with the
log of the number of users and also linearly with the number of middle agents.

However, the logic properties of such systems are unknown. For instance, will such a
system always reach an optimal configuration in order to maximize its efficiency? If a
system reaches such a state, will the state be stable? This paper aims to answer these open

questions, which are essential for building sound and reliable online communities.

1.2.2. Research on Other Agent Organisation Paradigms

Agent communities can be regarded as a special type of multi-agent organizations. A
wide range of organizational strategies and their combinations have emerged in the
literature, which include hierarchies, teams, congregations, societies, federations, markets,
and coalitions; see [19] for a recent survey on the research on multi-agent organizations
and [20] for a collection of research papers that reflect the current research frontier on
this topic. However, agent communities as a type of agent organizations have not been
studied satisfactorily as discussed in the previous section. As Horling and Lesser stated,
each type of agent organization is characterized by the collection of roles, relationships
and authority structures which govern its behaviour. While the general theories of multi-
agent systems applies to agent communities, the specific features and properties of agent
communities cannot be directly derived from the results about other agent organization

paradigms because of the differences between their characteristics. The following

Revised Version Submitted to MAGS International Journal 4

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

discusses such differences.
A. Coalition.

Agent coalition is one of the organization paradigms that have similar features of
agent communities studied in this paper. Agent coalition formation has been widely
investigated [21, 22, 23, 24] in stable and dynamic environments [25], in software agents
and embedded robots [26], and has even been applied to help artists control
representations on a canvas [27], etc. Usually, agent coalitions are goal-directed and short
lived: they are formed when a group of agents agree to cooperate in order to perform a
task [24] and dissolve when the needs no longer exist. For example, in [23], the purpose
of a coalition is represented as a global goal, which is decomposed into a number of
subgoals, and each individual in the coalition has its own local goal(s) that matches one
or more of the subgoals. The agents in a coalition are expected to coordinate their
activities in a manner appropriate to the coalition’s global goal and to maximize the
group’s and/or personal utilities. In this sense, agent communities differ from coalitions
in that the agents to come to form a community with a rather simple goal of sharing
information. More precisely, agents join in a community mainly because they are
interested in a common topic and wish to share or exchange information or resources on
this topic. Furthermore, agent coalition usually has strict membership requirement (for
goal achieving) and often employ mechanisms that obtain consensus among agents
before an agent is allowed to change its coalition membership. For example, in [28], the
majority voting by the current coalition members is used to determine whether to allow
an agent to join a coalition in the study of the convergence to stable coalitions. In the
coalition formation algorithms proposed [23], the locally calculated weights of candidate
coalitions are announced globally and a comparison of all announcements determines
which coalition candidate is to be adopted by the all agents. In contrast, in the agent
communities paradigm, an agent may join or quit a community autonomously mainly by
the agent’s own decision without approval by other community members. The main
criterion for an agent to make the decision of joining or leaving a community is whether
the agent can benefit from the community. By the term ‘short lived’, we meant that an
agent organization is not permanent. In that sense we say that a coalition is usually short
lived although it may last for a long time.

It is worth noting that, there is no widely accepted definition of the word ‘coalition’ in
the literature of multi-agent systems. Some researchers regard coalition as more general
and at a higher level of abstraction than a specific agent organizational structure. For

example, in [27], a coalition is not just one kind of an organizational structure. Instead, it

Revised Version Submitted to MAGS International Journal 5

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

is seen more as a framework in which many different organizational structures may be
possible. From point of view, agent community is a much more concrete and specific
kind of agent organizations in comparison to coalition in such a definition. Moreover, a
coalition must have a set of rules for dealing with accepting additional agents and
dissolving a coalition while the specific rules may vary [27]. One particular example of
such rules is that an agent can join a coalition in order to gain happiness through the
coalition's actions. Unfortunately, it may also lose happiness by taking coalition’s actions.
It is thus allowed to leave a coalition if its happiness falls below a threshold. This is very
similar to agent communities studied in this paper. However, in the coalition framework,
an agent’s leaving may have much more profound impact than an agent’s leaving from a
community. As pointed out in [27], “if an agent selects to leave [a coalition], it can make
sense to dissolve a coalition”. In contrast, agent communities are not dissolved by any
individual agent’s leaving.

B. Team.

Similar to agent coalitions, agent teams also consist of a number of cooperative agents
which have agreed to work together towards a common goal, but in comparison to
coalitions, teams attempt to maximize the utility of the team rather than that of the
individual members. Typically, members of a team are expected to take different roles to
address different subtasks required to achieve the team goal. Agent communities differ
from agent teams in that there is usually not a set of roles or subtasks of significant
differences to be taken by the members. For example, STEAM [29] facilitates explicit
specification of the relationship between a team operator and individual’s or subteam’s
contributions to it based on the notion of roles. Here, a role is an abstract specification of
the set of activities an individual or subteam undertakes in service of the team’s overall
activity. Role allocation and reallocation is one of the most challenging problems in
multi-agent team organizations [30]. The convergence issues studied in the research on
agent teams are focused on the formation of team decisions, which is known as multi-
agent team decision problem rather than the formation of teams [29, 30, 31]. Although
team formation, which is also known as team construction, is one of the key steps in the
operation of agent team systems, in a static and reasonably sized agent population, team
members can be determined off-line as a part of system design. In dynamic environments,
team members can be dynamically discovered and assessed for selection using well-
known discovery mechanisms such as the contract net protocol or matchmaker
intermediaries [32].

C. Congregation.

Revised Version Submitted to MAGS International Journal 6

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Agent congregations are also groups of individuals who have banded together into a
typically flat organization as coalitions and teams, but they are not formed with a single
specific goal in mind. Instead, congregations are formed among agents with similar or
complementary characteristics to facilitate the process of finding suitable collaborators.
This is also one of the characteristics of agent communities. However, congregating
agents are expected to be individually rational for maximizing their local long-term utility,
which determines how agents select congregation [33]. In contrast, we do not assume the
existence of such rationality, or an explicit utility for individual agents or implicit usage
of such utility in agent community formation. Agent congregation, therefore, can be
regarded as a subclass of agent communities. The convergence issue of the optimal
congregation formation problem, i.e. how agents self-organize to find the correct
congregation, has been investigated by Brookes and Durfee [33]. They regard a
congregation system as a set of agents who simultaneously learn which other agents it
wants to interact with and applied the CLRI model [34] to determine the complexity of
congregation formation problem. They concluded that if agents are unable to describe
congregations to each other, convergence problem is exponential in the number of agents.
They then introduced labelers as a means of coordinating agent decisions, thus reduced
the problem’s complexity. They also used simulation experiments for congregations
without labels, with flat labels and hierarchical labels. The agent communities paradigm
studied in this paper differs from that of agent congregations in the way that how agents
decide to move from one group to another. In particular, in the congregation paradigm,
each agent has a payoff function to measure the value of a congregation that the agent is
in, but can only estimate the payoff value of a congregation that it is not in when
considering join a new congregation. The agent decides which congregation to join by
maximizing the estimated payoff value. In our case of agent communities, we assume
such a payoff value of a community, which called the strength of the community in this
paper, is always available from the community organizer no matter whether the agent is a
member of the community. This is proved to have a significant impact on the
convergence of community formation as we will see later in the paper.

D. Society.

Agent societies are organizational paradigms that individuals of different stripes are
free to come and go at will but must confined by the constraints imposed on their
behaviours while remaining in the society, which are known as social laws, norms or
conventions. The focus of research on agent societies has been on the social laws, such as

dynamic norm formation; see, for example, [35, 36, 37]. In contrast, normative

Revised Version Submitted to MAGS International Journal 7

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

behaviours are not the focus of research on agent communities, whose behaviours are

relatively fixed.

1.3. Overview of the paper

In this paper, we will extend the work by Wang [17] and Cid-Sueriro and Wang [18] and
formally investigate a variety of subtle variants of the algorithm that they proposed and
studied. The main contributions of the paper include the following.

1. A formal specification of self-organizing agent communities and its variants is
presented by using the formal specification language SLABS [39, 40]. The properties of
agent community formation are formally expressed as scenarios in the dynamic
executions of the system, such as maturity and optimal community formations. Their
features are expressed as the recurrence properties of multi-agent systems, such as the
reachability, stability and convergence of the scenarios. These recurrence properties have
been proposed and formally defined and studied in the formal system of Scenario
Calculus [46]. This enables the application of scenario calculus to the study of agent
community formation problem.

2. The qualitative formal study proves that the formation of mature and optimal
communities always occurs if agents behave based on collective knowledge of
communities, and such formations are stable. In contrast, if agents behave solely based on
individual agent knowledge or the information about community sizes, mature and
optimal community formation cannot be guaranteed, and it may be instable even if such a
formation is reached.

3. The quantitative experimental study by simulation shows that convergence time
depends on all parameters of the agent community system, which include the number of
agents in the system, the number of community organizers, the number of knowledge
categories, and the size of knowledge in each category.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
SLABS language and Scenario Calculus. Section 3 formally specifies a variety of self-
organizing agent communities in SLABS, formally defines the required emergent
behaviours of agent community formation as scenarios and proves their common features
by applying Scenario Calculus. Section 4 further formally study the recurrent properties
of various types of agent community systems and prove or disprove their reachability,
stability and convergence of agent community systems to mature and optimal scenarios.
Section 5 reports the experimental study of the convergence speed of agent community

formation using simulation. The impact of various parameters of agent community

Revised Version Submitted to MAGS International Journal 8

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

systems on convergence time is investigated. Section 6 concludes the paper with a

discussion of further work.

2. Overview of SLABS and Scenario Calculus
In this section, we briefly review the formal specification language SLABS and Scenario
Calculus. Details of the language and Scenario Calculus can be found in [39, 46].

SLABS, which stands for Specification Language for Agent-Based Systems, is the
first and only general purpose formal specification language that is designed for
engineering agent-based systems [38, 39, 40]. It has been successfully used to specify
various types of agent systems, including personal assistants [39], speech-act based
interaction among agents, an evolutionary multi-agent ecosystem [41, 42], emergent
behaviour of multi-agent systems [43], autonomous agent-based web services [44], etc.”?
More recently, Mao et al. [45] extended the meta-model underlying SLABS for more
flexibility and expressiveness in the development of adaptive multi-agent systems.
SLABS language’s caste facility is particularly suitable for specifying systems that
consists of a large number of agents classified into a number of types and interacting with
each other through well-defined non-deterministic and probabilistic behaviour rules. The
scenario calculus defined on the basis of SLABS [46] supports the reasoning about the
dynamic behaviour of such multi-agent systems.

As in [39, 47], an agent is defined as a proactive computational entity that situates in
its designated environment and takes actions autonomously according to its own behavior
rules depending on its own view of the situation in the environment.

In particular, in addition to a unique identity, each agent A=< Sp, 2, Ra, EA> contains
a set Sp of variables to represent its state, a set 25 of actions that it is capable of
performing, a set Ra of behavior rules that determines when and which action in 2 to
take, and a set E5 of other agents or objects in the system that it is observing in order to
know the situation in the environment.

Similar to that objects are created and declared as instances of classes, agents are
defined or created as instances of castes. Each caste specifies a set of actions, a set of
state variables, a set of behavior rules and a description of the environment in the form of
a set of agents in the system. Therefore, every agent of the caste has the corresponding
elements specified by the caste. A multi-agent system (MAS) consists of a number of
agents that are classified by a number of castes. When an agent A is an instance of caste

C, we write AeC. Similar to the inheritance relationship between classes, an inheritance

® See http://cms.brookes.ac.uk/staff/HongZhu/SL. ABS/index.htm for more details.

Revised Version Submitted to MAGS International Journal 9

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

relationship between castes is defined and we write C,<C, if C, inherits C,, and we have
that AeC, and C,<C, implies that AeC,.

In the specification of caste in SLABS [39], the state variables are declared by giving
the variable names and their corresponding data types. An action is declared in the form
of an identifier plus a sequence of parameters and their types. An environment
description is in the form of a sequence of clauses in the following form:

— “Id: caste-name” : where Id is an agent’s name, the specific agent Id of the
caste is in its environment and thus observed by the agent;

— "All: caste-name” : all the agents of the caste are in the environment, and thus
observed;

— “Var Id : class-name” : where Id is a variable that ranges over the caste,
the agent assigned to the variable 1d is in the environment and thus is observed.

In SLABS, a behavior rule is written in the form of

[<Rule Name>:] St | [Pr] — Act, IF Sc WHERE Pre-cond

where Pr is an optional real number expression with value between 0 and 1; Sc is a
scenario of the system’s state and Act is an action; St is the state of the agent; Pre-cond is
a Boolean expression that represents the pre-condition of the rule. It means that when the
environment is in the scenario Sc and the agent is in state St, the agent will take the action
Act with the probability Pr, if the pre-condition is true. When there is more than one
possible rule to apply and/or more than one way a rule can be applied, a random choice
will be made according to the probability Pr. When the probability is omitted, the
uniform distribution is assumed. Thus, the choice is non-deterministic.

Informally, a scenario is a runtime situation in the operation of the MAS. As in
SLABS, it is defined by a predicate on the states of the agents and the actions taken by
the agents. Formally, scenario expressions are defined inductively as follows. Here, we
only give an informal semantics of the scenario expressions. The formal semantics can be

found in [39].

Definition 2-1. (Patterns and Scenarios)
Let A and B be agent identifiers or variables that range over agents of a specific caste,
C be a caste name, Sc and Sc;, Sc, be well-formed scenario expressions. We define
scenario expressions inductively as follows.
— A Boolean expression on an agent’s state is a scenario expression. It means that the
system is in the scenario when the corresponding agent’s state makes the Boolean

expression to be true;

Revised Version Submitted to MAGS International Journal 10

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

— AP is a scenario expression, if A is an agent and P is an activity pattern. It means
that the system is in the scenario when agent A’s activity matches the pattern P;

— A=B (or A#B) is a scenario expression, where A and B are agent variables or
identifiers. It means that the system is in the scenario when the agents assigned to the
variables/Ids A and B are the same agent (or not the same agent);

— AeC is a scenario expression, where A is an agent and C is a caste. It means that the
system is in the scenario if agent A is in caste C;

— —Sc is a scenario expression, where SC is a scenario expression. It means that the
system is in the scenario when it is not in scenario SC;

— VxeC.Sc is a scenario expression, where C is a caste and SC is a scenario expression.
It means that the system is in the scenario if SC[x/A] is true for all agents A in caste
C

— JmxeC.Sc is a scenario expression, where C is a caste and SC is a scenario
expression. It means that the system is in the scenario if there are at least m agents in
caste C such that Sc[x/A] is true, where the default value of the optional expression m
s 1;

— Sc; & Sc, is a scenario expression, where SC; and Sc, are scenario expressions. It
means that the system is in the scenario if both scenario Sc; and scenario Sc, are true;

— Sc; v Sc, is a scenario expression, where Sc; and Sc, are scenario expressions. It
means that the system is in the scenario if either scenario Sc, or Sc, or both are true;

A pattern P is represented in the form of [a;, &, ..., &], k>0, where &; is an action, or
an assignment to the state variables, or an action variable (which matches an action), or
wild card $, or silence z. A pattern [a;, &, ..., 8] means that the agent has take a
sequence of n>k actions and the last k actions match a,, a,, ..., a, respectively, where a
is the most recent action. When k=0, the pattern [] is true if the agent has not taken any
action since its creation. Another special pattern is [$], which matches to all actions. []

Examples of scenario expressions can be found in [39].

The Scenario Calculus proposed in [46] is a formal system about the relations on
scenarios. It defines the notion of scenario inclusion and orthogonality relations and
transitions between scenarios in MAS. Informally, scenario Sc; include Sc, means that
the system is in Sc; implies it is also in scenario SC,. Scenario Sc; is orthogonal to

scenario SC, means that the system will never be in scenario Sc; and Sc, at same time. A

@ Sc[x/A] is the scenario expression obtained from Sc by systematically replacing free occurrences
of variable X with A.

Revised Version Submitted to MAGS International Journal 11

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

scenario SC; transits into scenario SC, means that the system can move from a state in
scenario SC; to a state in scenario SC,. The following formal definition of these notions is
taken from [46]. ©

Let r be an execution of a MAS M, t be a time moment of the execution, SC be a well-
formed scenario expression of M. We write r{t|=Sc to denote that the system is in

scenario SC (i.e. SC is true) at time t in the execution I.

Definition 2-2. (Scenario inclusion and transition)

Let Sc, and Sc, be two well-formed scenario expressions of a MAS M.

A scenario Sc; includes scenario Sc, in M, written M |= Sc;=>Sc; if and only if for all
runs r and at all time moments te T, r{t|=Sc, implies that r{t|=Sc,.

Scenario Sc; transits to Sc, in M, written M |=S,—S,, if and only if there is a run r of
the system M and time moments t; <t, €T such that ri«tl |=S; and ritz |=S,. 0

Readers are referred to [46] for properties of these relations.

As discussed in [46], a recognizable phenomenon of the dynamic behavior of a MAS
can be specified as a scenario. The recurrence properties of such a phenomenon can then
be specified and proved as properties of scenarios. The following are the recurrence
properties defined and studied in [46], which will also be used in this paper to study the

properties of agent communities.

Definition 2-3. (Recurrence properties of scenarios)

Let M be any given MAS and Sc be a given well-formed scenario expression of M.

System M always reaches scenario Sc, written M—Sc if for all runs r there is a time

moment t such that rt |=Sc.
Scenario Sc is stable in MAS M, written M@Sc if for all runs r and all time moments
teT, rit|=Sc =Vt'>teT. (rt’ [=Sc).

MAS M always converges to scenario Sc, written M3 Sc if for all runs r there is a

time moment t such that Vt’ e T.(">t=rJt’|=Sc). [

It is worth noting that for each run r, as time t approaches infinity, the probability
distribution of random chooses of applicable rules must satisfy the specified probability
constraints in behavior rules. The word ‘always’ must be understood in this context.

The following lemma gives the relationships between reachability, stability and

convergence.

© The orthogonal relation between scenarios is not used in this paper. Thus, it is not included in the
formal definition.

Revised Version Submitted to MAGS International Journal 12

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Lemma 2-1.
For all MAS M and well-formed scenario Sc,

(a) (M—Sc & M@Sc) = M- Sc.

(b) M3 Sc = M—Sc.

Proof.

(a) Assume that M—Sc and M@Sc. By Definition 2-3, from M—Sc we have that for all

runs r there is a time moment t, such that rt, [=Sc. By Definition 2-3, from M@Sc

we have that Vt’>t,eT. (r»Lt’ |=Sc). Therefore, we have that M3- Sc. Thus, statement

(a) is true.
(b) It is straightforward from Definition 2-3. []

Note that, M3~ Sc does not imply M@Sc. Please see section 4 for a counterexample.

In addition to the above properties, we can also prove the following lemma about the
relationship between recurrence properties and scenario inclusion. It is useful in this

paper. The proof is straightforward, thus omitted for the sake of space.

Lemma 2-2.

(a) For all MAS M and well-formed scenarios Sc and Sc¢’, M3 Sc and M|=Sc=Sc’
imply that M3- Sc’.
(b) M@Sc < for all well-formed scenarios Sc’, M|=Sc—Sc’ implies M|=Sc’=Sc. O

3. Self-Organised Agent Communities
This section formally specifies various models of self-organizing agent communities in

SLABS and studies their general properties using Scenario Calculus.

3.1. The Basic Model of Agent Communities
In the model of self-organizing communities [17, 18], there are two types of agents:
members and organizers. Each organizer organizes a community by keeping a registry of
the members of its community, handling the queries made by the members, and
collaborating with other communities. Each member is registered only with one organizer
at any time.

Each member is interested in a particular category of knowledge and has a certain set
of knowledge of the same category. When a member registers with an organizer, it
reports its interested category and the set of knowledge that it has; see Figure 3-1(a),

where arrows represent the actions taken by an agent and observed by the other.

Revised Version Submitted to MAGS International Journal 13

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

A member R may raise a query about a specific topic tp of its interested category cat.
This query tp is submitted to the organizer, which will then search for a member in its
community that knows this topic tp. If such a member is found, say member S, the
organizer will introduce agent R to the member S together with the query on topic tp.
Member S will then respond with an answer to the query tp; as shown in Figure 3-1(b). If
the organizer G cannot find a member that is good at this topic within its community, it
will ask for help from another organizer chosen at random, say M, by making a query on
the topic tp of category cat. If M finds a member T in its community that knows the topic,
it will answer the query and pass the identity of the member T to the organizer G. The
organizer G will then introduce T to R. The member T will take the same action to answer

R’s question; as shown in Figure 3-1(c).

Register[org:Organiser, cat: INTEGER, tps: Set_of INTEGER])

DeRegister[org:Organiser]

(a) Registration

Respond[mb:Member, cat, tp:INTEGER] ,—m Introduce(mb, ma: Member, cat. tp: INTEGER]
ember
[

mb:Member org:Organiser

Raise[org:Organiser, cat, tpIINTEGER]

(b) Raise a question and find answers within a community

Org.

Answer[ma:User, cat, tp:INTEGER] Query{cat,tp:INTEGER)

Raise[org:Organiser, cat, tpXINTEGER]

i

Respond(mb, cat, tpIINTEGER)

Mombor |
”: f duce(mb, ma: Member, cat, tp: INTEGER]

mb:M

org:Organiser

[

Intr ma:

(c) Raise a question and find answers outside a community

Figure 3-1. Interaction between members and organisers

The structure and behaviors of members and organizers can be formally specified in

SLABS as follows.

CASTE Member;
ENVIRONMENT organiser: Organiser, All: Member;

VAR
Category: INTEGER; (* the category of the agent *)
Knowledge: SET_OF INTEGER; (* a set of topics that it knows *)
ACTION

Revised Version Submitted to MAGS International Journal 14

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Raise(toWhom: Organiser, category: INTEGER, topic: INTEGER);
Respond(Whom: Member, category: INTEGER, topic: INTEGER);
Register(toWhom: Organiser, category: INTEGER,
knowledge: SET OF INTEGER);
DeRegister(toWhom: Organiser);
BEGIN

<Initialisation>:

[1 |- Category:=x; Knowledge:= S; Score:= y; organiser:= M;
Register(organiser, Category, Knowledge),
where (x>0)&(y>0)&(S=)&(MeOrganiser);
<Query>:

[$] |-> Raise(organiser, Category, tp), where (tp ¢ Self. Knowledge);

<Respond>:
[$]1 |-> Respond(Raiser, cat, tp);
if organiser:[Introduce(Raiser, Self, cat, tp)];
END Member;

Note that, the <Query> behavior rule specifies that a member will raise a question on

any topic of the category at random as far as the member does not know the topic. We

assume that the non-deterministic behavior is fair, thus it will ask all the questions in any

order eventually. In other words, if a topic of the category is not in the agent’s knowledge,

the agent will raise queries on the topic at some time moments in all runs of the system

although the specific time moments can be random from run to run.

CASTE Organiser;
ENVIRONMENT All: Member, All: Organiser;
VAR
Registry: SET_OF <member: Member; category: INTEGER;
knowledge: SET OF INTEGER>;
ACTION
Query(org: Organiser; category: INTEGER; topic: INTEGER);
Answer(org: Organiser; member: Member; cat, topic: INTEGER);
Introduce(whom, toWhom: Member, cat, topic: INTEGER);
BEGIN
<Initialisation>:
[1 |- Registry := {};
<Register>:
[$]1 |-> Registry := Registry + <mb,cat,kn>;
if dmbe Member: [Register(Self, cat, kn)];
<DeRegister>:
[$]1 |->Registry := Registry —<mb, cat, kn>;
if dmbeMember: [DeRegister(Self)];
where cat = mb.Category & kn=mb.Knowledge;
<Introduce>:
[$] |- Introduce(req, sv, cat, tp);
if JreqeMember:[Raise(Self, cat, tp)],
where 3dsveMember.((<sv, cat, knowledges> e Registry)
& (tpe knowledges));
<Query another community>:
[$]1 |- Query(org, cat, tp);
if JreqeMember:[Raise(Self, cat, tp)],
where —(3dmeMember . ((<m,cat,kn>eRegistry) & (tpekn))
& (orgeOrganiser);
<Answer another community>:
[$]1 |- Answer(org, sv, cat, tp);
if JorgeOrganiser: [Query(Self, cat, tp)]
where ImeMember:(<m,cat,kn>eRegistry &(tpekn))
<Introduction to another community>:

Revised Version Submitted to MAGS International Journal

15

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

[Query(org,cat,tp)]|—>Introduce(mb,m,cat,tp);
if JorgeOrganiser:[Answer(Self,m,cat,tp)]
& dmbeMember : [Request(Self,cat,tp)]
END Organiser.

Obviously, the performance of a world of self-organizing communities heavily
depends on the configuration that members are grouped into communities. It is more
efficient if a query raised by a member can be answered within the community. Assume
that, at the beginning, members are registered with organizers at random. Therefore, the
efficiency of the system cannot be guaranteed and thus reconfigurations of the
communities are necessary.

In systems of self-organizing communities, in order to achieve optimized efficiency,
agent communities reconfigure themselves through members’ autonomous behaviors in
moving from one community to another without global information. This is achieved by
members changing their memberships to the communities. That is, a member deregisters
from one organizer and then registers with another. In this model, members are
autonomous to decide when or where to move. It is not controlled by the organizers or
any global controller of the system.

Suppose that a member R raises a question on a topic, which is not known by any
member of its community. While a member T of another community provides a
successful service of answering R’s question. Then, members T and R will try to be in the
same community. This can be achieved by either member T moving into member R’s
community or member R moving into member T’s community. In this paper, we are only
interested in such decision making rules that only use local information that are available
from the involved member agents and their organizers rather than global information.

A simple rule to decide which member will move is that the agent who is in the more
attractive community will stay while the one who is in the less attractive community will
move. When the agents calculate a community’s attraction in the same way, it is certain
that one of them will stay and the other will move, thus they will be together after the
actions. However, the complexity of the algorithms for self-organizing communities is
due to the fact that each of these agents may move to another community subsequently.
The situation is more complicated if agents calculate the attraction differently. In such
cases, it may happen that both of the requester and the server move to the other
community simultaneously, thus they may still be separated after taking the actions. A
key question to be answered in the study of self-organizing communities is whether

agents’ moving between communities will lead to a globally optimal configuration even

Revised Version Submitted to MAGS International Journal 16

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

if only local information is available.

The following subsection specifies some variants of agent communities.

3.2. Variants of Agent Communities

We classify two types of member agents according to the information used in their

decision making rules.

Community attracted members (CAM) use information about the whole community,

which is available from the organizer. We identify two further sub-types CAM agents as

follows.

CAM-K (Community’s amount of knowledge in the category): The agent measures a
community’s strength of attraction according to the total amount of knowledge in its
interested category held by the agents registered with the community.

CAM-P (Community’s number of agents in the specific category): The agent
measures a community’s strength of attraction according to its number of agents in
the same category.

The second type of member agents is personality attracted members (PAM), which

use information about the member agent only. There are also two sub-types of PAM

agents.

PAM-R (Personal amount of knowledge of the service provider): The agent measures
a community’s strength of attraction according to the amount of knowledge that the
specific service provider has in the category.

PAM-E (Personal attribute irrelevant to its knowledge): The agent measures a
community’s strength of attraction according to an attribute of the specific service
provider, where the attribute is irrelevant to its knowledge.

Consequently, according to the types of members in the communities, we have the

five different variants of self-organizing agent community systems as summarized in

Table 3-1. The formal definitions of the variants will be given later in the paper.

TABLE 3-1. VARIANTS OF AGENT COMMUNITIES

Variants Member

Main features
Type Subtype | tYPE(s)

CAM-K: An agent changes its community membership by moving
CAM: |knowledge-| CAM-K [into a community that collectively has more knowledge of
Community| based the category.
attracted | cAM-P: An agent changes its community membership by moving
members | popylation-| CAM-P |into a community that has a larger number of agents of the
based category
PAM: An agent changes its community membership by moving

Personality | PAM-R: | pAM.R |into a community that has a member possessing more

Rational

Revised Version Submitted to MAGS International Journal 17

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

members knowledge of the category than itself
attracted | pAM-E: An agent changes its community membership by moving
members | Emotional | PAM-E |into a community that has a member that is more attractive
members than itself

CAM-K,|The system contains members of more than one type. They
CAM-P, |may decide moving to another community according to
PAM-R, |difference rules.

PAM-E

Hybrid: Hybrid systems

3.3. Basic Properties of Agent Communities
It is desirable that a system of self-organizing communities demonstrates the dynamic
behavior that its agents will gradually group into communities that members of the same
category come together in one group and are registered with the same organizer. In order
to formally define this phenomenon of system’s dynamic behavior, we first introduce
some notions and notations.

For the sake of simplicity, in the sequel, a community that is organized by organizer

G will be referred to as community G.

Definition 3-1. (Population)

The member population of a category C in a community G at a time moment t is
denoted by P(C) and defined as follows.

P¢(C)={xe; Member | x.Category = C & x.Organiser=G}.

The overall population of the members of a category C in the whole world at time

moment t is denoted by Pi*(C) and defined as follows.
P, (C)={xe;Member | x.Category = C}. 0
Because each member registers with one and only one organizer, we have the

following lemma.

Lemma 3-1. For all categories C of knowledge, at all time moment t, we have that P5(C),
GeOrganiser, is a disjoint partitioning of P"(C), i.c.

P (C)=J{P®(C)|G ¢, Organiser} ,
and PE(C)n P (C)=a, if G=G’. O
Definition 3-2. (Domain of knowledge)

The domain of knowledge in category C in a community organized by G at time

moment t is denoted by D;®(C) and defined as follows.
D(C)= | {xKnowledge|x & P°(C)}.

The domain of knowledge of category C in the whole system at time moment t is

Revised Version Submitted to MAGS International Journal 18

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

denoted by D (C) and defined as follows.
D)= {x.KnowIedge|x e P'(C)

A category C of knowledge is non-trivial, if D, (C) #&.]
Similar to Lemma 3-1, we have the following obvious property of the domains of

knowledge.

Lemma 3-2. For all categories C of knowledge, at all time moment t, we have that
D (C)=J{DF(C)|G &, Organiser} . O
However, D(C), GeOrganiser, may have overlaps.

Definition 3-3. (Closed world)

A world of self-organizing communities is closed if no agent is added to or removed
from the world during an execution. [

In a closed world, the overall population and the domain of knowledge in the whole

system do not change with the time. Formally, we have the following lemma.

Lemma 3-3. In a closed world, we have that for all t, t’ T,
P((C)=P:'(C)
and D, (C)= D, "(C). 0
Thus, in a closed world, the subscripts of t can be omitted. In the sequel, for the sake
of simplicity, we assume that the world is closed.
In order to achieve optimal performance, it is desirable that an execution of a self-

organizing community reaches the following scenarios.

Definition 3-4. (Completeness w.r.t a category)

At time moment t, a community organized by G is complete with respect to the
knowledge category C if DS(C)= D"(C), and written Complete,“(G). [

Note that completeness is a well-formed scenario expression of self-organizing

communities.

Definition 3-5. (Maturity)

A system of self-organizing communities is mature, if for every non-trivial category
C of knowledge, there is a complete community with respect to C. Formally, a system is
mature at time moment t, if the following scenario Mature is true at time t.

Mature = VCeCategory.(D*(C)=&= 3G eOrganiser.(Complete(G))). 0

Definition 3-6. (Optimal)

A system of self-organizing communities is optimal, if every member is in a complete

Revised Version Submitted to MAGS International Journal 19

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

community of its category. Formally, a system is optimal at time moment t, if the
following scenario Optimal is true at time t.

Optimal = YueMember.(ueP®(C)=Complete®(C)),
where G = u.Organiser and C = u.Category. [

The following lemma proves the relationship between Mature and Optimal scenarios.

Lemma 3-4.

In all worlds M of self-organizing agent communities, we have that
M|= Optimal =Mature.

Proof.

Assume that at time moment t, the system M is in the Optimal scenario. Let C be any
non-trivial category of knowledge, i.e. D*(C)={J.

By Definition 3-2, there is a member agent U such that u.Category=C. By Lemma 3-1,
there is an organizer agent G such that ueP%C). By Definition 3-6, we have that
Complete®(C). Therefore, for any category C there is a community G such that G is
complete w.r.t. C. By Definition 3-5, we have that at the same time moment t, the system
is also in the Mature state. Thus, the statement of the lemma follows directly Definition
2-2.17

An important property of the self-organizing agent communities is the stability of the

optimal scenario as proved in the following lemma.

Lemma 3-5.

In a closed world, for all systems M of self-organised communities, Optimal is a
stable scenario. Formally, M@Optimal.

Proof. By the definition of the behavior rules of members, when a system is in the
Optimal scenario, no agent will change its membership to its community because all
queries can be answered locally within the community. []

Obviously, if a world of self-organizing communities is in the scenario of Optimal, all
queries will be answered locally within the community. Thus, the performance of the
system is optimal in this sense. It is desirable that an agent community always reaches the
optimal state. Unfortunately, not every variant of agent community systems has this

property. The following sections will study their properties.

4. Formal Analysis of Recurrence Properties
In this section, we study the recurrence properties of community formation by formally

analysing the reachability, stability and convergence of the Mature and Optimal scenarios

Revised Version Submitted to MAGS International Journal 20

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

in various types of agent community systems.

4.1. Worlds of Agents Attracted by Community Strengths
In this subsection, we study the model in which a member makes a decision about

moving according to whether the other community is better than the current one.

4.1.1. Definition of the models

Suppose that a member R raises a query on topic tp, which is unknown to all other
members of its community. Instead, a member T of another community provides a
successful service to answer R’s query. Then, members T and R will decide whether it
will move to the other community. In the CAM model, the rule to decide which member
to move is that the member in the stronger community will stay while the one in the
weaker community will move. When the strengths of the communities are equal, the
member that raised the question will move. The specification of the caste CAM is given
below. It is a sub-caste of Member; hence it inherits all state variables, actions,

behaviour rules, and environment from the caste Member.

CASTE CAM <= Member;
BEGIN
<Move To the Better Community>
[$] |-> DeRegister(organiser); Register(NewOrg); organiser:=NewOrg;
if organiser:[Introduce(Self,Buddy,cat,tp)]
OR organiser:[Introduce(Buddy,Self,cat,tp)];
where ((Buddy.organiser = Self.organiser)
& (NewOrg = Buddy.organiser)
& (Buddy.Category = Self.Category)
&(Strength®*(Buddy.organiser)>Strength®‘(Self.organiser))
<Move To the Server’s Community>
[$] |-> DeRegister(organiser); Register(NewOrg); organiser:=NewOrg;
if organiser:[Introduce(Self,Buddy,cat,tp)];
where ((Buddy.organiser = Self.organiser)
& (NewOrg = Buddy.organiser)
& (Buddy.Category = Self._Category)
&(Strength®*(Buddy.organiser)=Strength®*(Self.organiser))
END CAM;

The sub-types of CAM systems differ in the way that the strength of a community is
defined. For the CAM-K members, the strength is defined as the total amount of
knowledge of category C known by the members of the community. Formally, the
function Strength®(x), xeOrganiser, is defined as follows.

Strength®(x) £ ||U {y. Knowledge| y.Organiser = x A y.Category = C}" . Eq.(0.1)

In other words, at any time moment t, we have that Strength®(x) = " D[X(C)" .

For CAM-P systems, the attraction strength of a community is the population of

members of the category C. Formally, the strength function is defined as follows.

Revised Version Submitted to MAGS International Journal 21

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Strength® (x) £ |[{y|y.Organiser = x A y.Category = C} Egq. (0.2).

Equivalently, we have that for CAM-P systems, at all time moments t,

Strength® (x) = |

RY(©C)|-

4.1.2. Convergence Properties
For CAM-K systems, we can prove that completeness with respect to a knowledge

category is stable.

Lemma 4-1.

Let M be a closed world of CAM-K.

(a) When a community G is complete with respect to category C, its population of
members of category C will never decrease after that. Formally,

VteT.(Mt|=Complete®(C) = V1’ T.(">t=P.%(C) 2P(C))).

(b) The state that there exists a community complete with respect to category C is stable.

Formally, let C be any given category of knowledge. We have that
CAM-K@(3G eOrganiser.(Complete®(G))).

Proof.

(a) Assume that at time moment t, AcP(C) and Complete®(G) is true, i.e. community
G is complete with respect to C. We prove by contradiction that it is impossible that
at any time moment t'>t, A¢P.%(C). Suppose that A¢P.°(C). There are only two
possibilities. First, agent A is no longer in the system. This is contradiction to the
assumption that the system is closed. Second, agent A moved to another community
H at time moment t’>t. By the definition of CAM-K, it can only be the result of
applying either the rule <Move to the better community> or the rule <Move to the
server’s community>. The following proves by contradiction that both rules are not
applicable.

Case 1: the rule <Move to the better community> was applied.

This means that Strength(H) > Strength(G). By Definition 3-4, we have that
D®(C)=D"(C), because G is complete with respect to C. Hence, Strength(G)=||D(C) |>
Strength(H). This is in contradiction to the condition that Strength(H) > Strength(G).

Case 2: the rule <Move to the server’s community> was applied.

This means that an agent B of community H#G provided a service to agent A. Thus,
the query tp raised by agent A was unable to be answered by any agent in community G
according to the behaviour rules of caste Member. This means that tpgD®(C). Since

tpeB.Knowledge, and B.Category=A.Category=C, tpeD*(C). Therefore, D(C)=D*(C).

Revised Version Submitted to MAGS International Journal 22

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

This is in contradiction to the condition that G is complete with respect to C.

Therefore, agent A does not move to any other community at any time moment t’>t.
Thus, P.8(C) oPE(C), for all t’>t.
(b) Directly follows the above proof of (a). []

Lemma 4-2.
In a closed world, for CAM-K systems, Maturity is stable. Formally, CAM-K @Mature.

Proof. Directly follows Lemma 4-1. []

The following lemma proves that CAM-K systems always reach the Optimal scenario.

Lemma 4-3.

In a closed world of CAM-K system, we have that

CAM-K— YueMember.(ueP®(C)&Complete®(C)).
Proof.

Assume that a member U moves from community G to G’. This must be the result of
applying either the rule of <Move to the Better Community> or the rule <Move To the
Server’s Community>. In both cases, we prove that Strenth°(C) < Strenght,®'(C) after
applying the rule.

Case 1: when the rule <Move to the Better Community> was applied.

By behavior rule <Move to the Better Community> of the CAM-K caste, when the rule
is applied at time moment t, we have that Strenth°(C)< Strenght,® (C). After application
of the rule, i.e. at time moment t’>t, we have that

Strenth,®(C)= || D°(C) ||

= [J{xKnowledge|x € R (C)} |

= U{X.Knowledge|x e(PC(C)={u |
<l U{X.Knowledge|x eP°(C) |

= Strenth,°(C)
< Strenght®'(C)

= U{x.KnowIedge|x P
<|I{J{xKnowledge|x € (R (C) U {uh} |

=[ID:*(©) ||
= Strenght,“ (C).
Case 2: when the rule <Move To the Server’s Community> was applied.

Similar to case 1, we can prove that after applying the rule, we have that Strenth,5(C)

Revised Version Submitted to MAGS International Journal 23

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

< Strenght®'(C).

Therefore, the statement is true.

Note that the function Strength is upper bounded by ||D"(C)|| according to Lemma 3-2.
Therefore, for each member agent, it can only change community for a finite number of
times. Because in a closed world, the system can only have a finite number of agents, the
whole system can only have a finite number of reconfigurations, which are caused by
member agents changing community. Thus, the scenario transitions have finiteness
property.

We now prove that the transitions can only terminate in the scenario Optimal.
Suppose that community G is not complete with respect to C and there is ueP%(C) and u
is of category C. Let tpeD’(C)-D%(C). Eventually, there will be a member u in
community G raising a question on topic tp. According to the behaviour rules, there will
be a member, which is either U or a member V in another community G’ that answers the
question, move to the community G or G’. As proved above, the stronger community will
increase its strength. Because the maximum value of Strength®(C)=||D"(C)||, every
member of category C will eventually move to a community G that Strength®(C)=
ID*(C)||, i.e. the community G is complete by Definition 3-4. [

By Lemma 4-1 and Lemma 4-3, we have the following convergence and stability

theorem of closed worlds of CAM-K organized communities.

Theorem 4-1.

In a closed world, we have that CAM-K ¢-Optimal.

Proof. By Lemma 3-5 and Lemma 4-3, the statement follows Lemma 2-1. (a)

immediately. []

Corollary. In a closed world, we have that CAM-Ks-Mature.

Proof. By Lemma 3-4, we have that Optimal = Mature. The statement directly follows
Theorem 4-1 and Lemma 2-2. . [J

For CAM-P systems, unfortunately, the Mature scenario is not stable.

Lemma 4-4.

For CAM-P systems, the Mature state is not always stable.

Proof. Let community G be complete on category C and G’ be incomplete on C but
contain more members of category C. When a member of G’ raises a query to be
answered by a member A of G, agent A will move to community G’ and breaks the

completeness of G. Thus, the system becomes not mature. [J

Revised Version Submitted to MAGS International Journal 24

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

However, the Optimal state is still always reachable and stable for CAM-P systems.

Theorem 4-2.
In a close world, a CAM-P system will always converge to the Optimal scenario.
Proof.

The proof of the theorem is similar to the proof of the Lemma 4-3. The only
difference is that we replace the function Strength®(G)= || D(C) || defined in Eq.(0.1)
with the function Strength®(G)= ||PE(C)||. The system will always reach state Optimal,
because ueP%(C)—ueP®(C) implies that ||P,S(C)|| < ||P¢®'(C)||. The function ||PE(C)|| is
also finitely upper bounded. Therefore, Optimal is always reachable.

Moreover, by Lemma 3-5, the Optimal scenario is stable. Therefore, by Lemma 2-1. ,
the theorem is true. [

Similar to the Corollary of Theorem 4-1, we have that CAM-P will always converge

to the Mature scenario although in general the scenario is not stable.

4.2. World of agents attracted by individual strengths

In the CAM worlds of organized communities, members change their communities
driven by the motivation of joining a stronger and better community. A variant of this
model is that the members change their community because of being attracted by a
particular member of another community. Such models can be formally defined by
modifying the behavior rules of <Move to a Better Community> and <Move to the
Server’s Community>. The following specifies the caste PAM-R whose members decide

whether to move according to the service provider’s knowledge.

CASTE PAM-R <= Member;
BEGING
<Attracted by the Buddy’s knowledge>
[$]1 |->DeRegister(organiser); Register(NewOrg); organiser:=NewOrg;
if organiser:[Introduce(Self, Buddy, cat, tp)] OR
organiser:[Introduce(Buddy, Self, cat, tp)];
where ((Buddy.organiser # Self.organiser)
& (NewOrg = Buddy.organiser)
& (Buddy.Category = Self.Category)
& (Strength(Buddy)>Strength(Self))
<Move to the Buddy’s community>
[$] |->DeRegister(organiser); Register(NewOrg); organiser:=NewOrg;
if organiser:[Introduce(Self, Buddy, cat, tp)];
where ((Buddy.organiser = Self.organiser)
& (NewOrg = Buddy.organiser)
& (Buddy.Category = Self._Category)
& (Strength(Buddy)=Strength(Self))
END;

where the function Strength(x) is defined as Strength(x) = ||X.KnOW|edge||. By doing so,

the strength of personal attraction is determined by the knowledge of the member. In

comparison with the following caste PAM-E, this criterion for moving to a community

Revised Version Submitted to MAGS International Journal 25

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

has some rationale, hence the name of the caste PAM-R.

An alternative definition of personal attractive strength is to introduce an integer
valued attribute of the member to denote its strength. The value assigned to the attribute
can be independent of other attributes. The structure and behavior rules of such members

are formally defined as follows.

CASTE PAM-E<=Member;
VAR AttractiveStrength: INTEGER;
BEGIN
<Attracted by the Buddy’s Beauty>
[$] |-> DeRegister(organiser); Register(NewOrg); organiser:=NewOrg;
if (organiser:[Introduce(Self,Buddy,cat,tp)]
OR organiser:[Introduce(Buddy,Self,cat,tp)])
& (BuddyeEmotionalMember);
where ((Buddy.organiser = Self.organiser)
& (NewOrg = Buddy.organiser)
& (Buddy.Category = Self.Category)
&(Buddy .AttractiveStrength > Self._AttractiveStrength))
<Move to the Buddy’s community>
[$] |-> DeRegister(organiser); Register(NewOrg); organiser:=NewOrg;
IT (organiser:[Introduce(Self, Buddy, cat, tp)])
& (BuddyeEmotionalMember);
where ((Buddy.organiser # Self.organiser)
& (NewOrg = Buddy.organiser)
& (Buddy.Category = Self.Category)
& (Buddy.AttractiveStrength=Self.AttractiveStrength))
END

For both PAM-R and PAM-E worlds of self-organizing communities, it is possible
that the system does not converge to the optimal scenario. The following is a situation of

PAM-R systems where the optimal scenario is not reachable.

Example 1. (Three Gurus)

Let A, B and CePAM-R be agents shown in Table 4-1.

Note that, in this system, the domain of knowledge of category 1 is D*(1) ={1, 2, 3}.
Therefore, agents A and B will only raise questions about topic 3. Only agent C can
answer this. When agent C is in the same community of agent A, agent A’s question will
be answered by C without causing reconfiguration of the communities. If C is not in the
same community of agent A, agent C will move to the community of agent A since A’s
attractive strength is greater than C. The same is true for agent B. Therefore, if agents A
and B are initially registered with different organizers, agent C will keep moving between
two communities, while agents A and B will not change their registration at all. Table 4-2
shows a concrete example of a sequence of events and the reconfigurations of the

communities to illustrate the above analysis.

TABLE 4-1. THE THREE GURUS AND THE INITIAL STATE

. . Strength= . .
Agent | Category | Knowledge [Initial organiser [Knowledge| Domain D (1)
A 1 {1,2} A.organiser = a 2 {1,2,3}

Revised Version Submitted to MAGS International Journal 26

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

corresponding effects on the configuration of the communities and the states of the

system after the events, respectively, where A@a stands for that agent A is registered

B 1

{1,2} B.organiser =b 2

{1,2,3}

C 1

{3} C.organiser =¢ 1

{1,2,3}

with organizer a. [

In Table 4-2, column 1 is a sequence of events. Column 2 and 3 show the

TABLE 4-2. EXAMPLE SEQUENCE OF RECONFIGURATIONS

Event

Consequence

State after the event

A: raise(orgA,1, 3) C serves; C move to A’s community | A,C@a, B@b,
B: raise(orgB, 1, 3) C serves; C move to B’s community | A@a, B,C@b
C: raise(orgC,1, 1) B serves A@a, B,C@b
A: raise(orgA,l, 3) C serves; C move to A’s community | A,C@a, B@b
B: raise(orgB, 1, 3) C serves; C move to B’s community | A@a, B,C@b
C: raise(orgC,1, 2) B serves A@a, B,C@b

Theorem 4-3. (Non-convergence properties of PAM-R)

(a) M does not always reach the Optimal scenario. Formally, M—Optimal is not true.

(b) M does not converge to the Optimal scenario. Formally, M 3-Optimal is not true.

There exists a PAM-R system M of agent communities such that

(¢c) The scenario Mature is not stable in M. Formally, M@Mature is not true.

(d) M does not converge to the Mature scenario. M &~Mature is not true.

Proof.

(a)
(b)

(©

As shown in Example 1, the Three Gurus system cannot reach the Optimal scenario.
The Three Gurus system does not converge to the Optimal scenario. If the system
Three Gurus always converges to the Optimal scenario, by Lemma 2-1. (b) it always
reaches the Optimal scenario. This contradicts (a). Therefore, statement (b) is true.
To prove this statement, add agent C’ into the Three Gurus system, where

C’.Knowledge ={4}. Similar to agent C, C’ will keep moving between A’s

Revised Version Submitted to MAGS International Journal

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

community and B’s community. When C and C’ are in the same community of either
agent A or agent B, the system is in the Mature scenario because, say, A.Knowledge
w C.Knowledge u C’.Knowledge is complete. However, agent C and C’” will move
to the other community when agent B raises a query on topic 3 or 4. The system will
then be in a scenario that is not Mature since none of the communities are complete
with respect to category 1. Therefore, scenario Mature is not stable in this system.

(d) The system constructed in the proof of (c) above gives a counter-example of
convergence.

0
It is worth noting that, according to Lemma 2-1, the reachability to a scenario Sc is a

necessary but not sufficient condition of the convergence to Sc. Therefore, in Theorem
4-3, statement (b) is a consequence of statement (a), but not visa versa. The stability of a
scenario SC is neither a necessary nor a sufficient condition of the convergence to the
scenario Sc. Therefore, in Theorem 4-1, statement (c) and (d) are logically independent of
each other.

For PAM-R systems, the Mature scenario is reachable although it is not stable.

Lemma 4-5.
Let M be a PAM-R system of agent communities and C be any given non-trivial
category of knowledge in M. The system M will always reach a scenario that M has a

community G that is complete with respect to category C. Formally,

M>—3G.(Complete®(C)).

Proof .

To prove that a scenario Sc is always reachable, it is sufficient to construct a sequence
of actions that will always lead to the scenario Sc. Based on the assumption that the non-
deterministic choices of actions by the agents are fair, the basic theory of probability
implies that the sequence of actions will eventually happen with probability approaches 1
as the time increases. The following proves the lemma by constructing such a sequence
of actions that will lead to the scenario Mature.

Let Agents(C) be the set of member agents of category C in the system M. Assume
that at time moment t, G,, G,, ..., Gy are the communities that have at least one member
of category C. We say that member A of category C in G; is a leader of G; for category C,
if

vxeP(C).(jx.Knowledge|| <||A.Knowledge]|).

Note that at any time moment t, for a community G; that P(C)~ D, there may be

Revised Version Submitted to MAGS International Journal 28

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

many leaders of category C, but there will always at least one leader. Moreover, at
different time moments, the leaders of a community may be different because a leader
may move to another community or an agent of high volume of knowledge may join the
community and becomes a new leader. In the sequel, we will discuss with respect to a
given category C. Thus, without any risk of confusion, we omit the reference to category
C.

Let Lj; be a leader of G; at time moment t. Define the leadership strength of a
community G at time moment t, written LSy(G), to be the volume of knowledge held by a
leader. Formally,

LS«(G) = ||Lg.Knowledge]|,
where Lg;is a leader of G at time moment t.

We define that, at time moment t, a community G is the strongest community with
respect to its leadership strength is the community such that for all communities G’,
LS«(G) =2 LS(G").

Note that the strongest community with respect to its leadership strength may be not
unique. The following proof will proceed in two cases. The first case is when the
strongest community is unique. In this case we proof that the strongest community can
always reach completeness. The second case is when the strongest community is not
unique, i.e. when there are two or more strongest communities. We proof that the number
of strongest communities can always be reduced until there is only one strongest
community, or one of the strongest community will reach the completeness scenario in
the attempt to reduce the number of strongest communities.

Case 1: when the strongest community is unique.

Let G be the strongest community and let L be a leader of G. By definition of
strongest community, we have that all other community’s leadership is weaker than G’s
leader. Therefore, for all agents A of category C in any other community G’, we have that

IL.Knowledge|| > ||A.Knowledge||. *)

Let g be any topic of category C that is not in the domain of knowledge in community
G, i.e. q¢D(C) and gqe D{(C). When L makes a query on g, there must be an agent A
from another community G’ that answers the query. Because of (*), according to the
<Attracted by the Buddy’s knowledge > rule, agent A will join community G after
answering query g.

Therefore, after L makes queries on all topics that are not known by agents in its
community, G becomes complete on category C. Therefore, the system will always reach

the mature scenario.

Revised Version Submitted to MAGS International Journal 29

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Case 2: when the strongest community is not unique.

Let G be any one of the strongest communities and L be a leader of G. The same as in
the proof of Case 1, L will make queries on topics (that are unknown by members in
community G.

If a query on topic q is answered by an agent A that has lower volume of knowledge
than L, agent A will joint community G according to the rule <Attracted by the Buddy’s
knowledge >. If the query is answered by an agent A that has the same volume of
knowledge as L, L will join A’s community according to the rule <Move to the Buddy’s
community>. Then, a new leader L’ for community G will be selected.

If the volume of knowledge held by the new leader L’ is less than L, G will no longer
be a strongest community. Thus, the number of strongest community will be reduced by
one. If the volume of knowledge held by L’ is equal to that of the old leader L, G is still a
strongest community, but the number of G’s leaders reduces by one. The new leader L’
then carries on make queries until either there is no more knowledge that is unknown by
community G or the leader is changed to someone that has less volume of knowledge. In
the former situation, we reach a complete community, thus the statement of the lemma is
true. In the later case, the number of strongest community reduces by one.

If the strongest community in the system is still not unique, selecting one of the
strongest communities and repeating the process above will further reduce the number of
strongest community until there is only one strongest community. Thus, eventually Case
1 applies and then the strongest community will reach completeness.

It is worth noting that in the above proof when a leader L of a strongest community
moves to another community, the total number of strongest communities in the system
will not increase. According to the rule <Move to the Buddy’s community>, the agent A
that answers L’s query must have the same volume of knowledge as the L. By the
definition of leaders, the leader of A’s community must have at least the same volume of
knowledge as L. Thus, the leader of A’s community must have at least the same volume
of knowledge as L. Therefore, since L is a leader of a strongest community, A’s
community must also be a strongest community already.

Therefore, the lemma is true.

0

Theorem 4-4. (Reachability of Mature Scenario in PAM-R systems)

For all PAM-R systems M of agent communities, scenario Mature is always reachable.

Formally, we have that M— Mature.

Revised Version Submitted to MAGS International Journal 30

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Proof. The theorem follows directly from Lemma 4-5 and the fact that for all categories
C and C’ that C#C’, the actions taken by agents of category C’ will not affect the
completeness of communities with respect to category C. [J

It is worth noting that PAM-R is a special case of PAM-E when the following
condition holds.

VXePAM-E.(X.AttractiveStrength=||X.Knowledge||)

Therefore, the non-convergence property proved in Theorem 4-3 is also true for
PAM-E systems in general. Moreover, the none-convergence property is also true even if
the attractive strengths are inconsistent with the amount of knowledge possessed by the

agents.

Definition 4-1. (Consistency between attractiveness and knowledge)

In a PAM-E system, we say that the attractive strength is consistent with the volume
of knowledge, if for all A, BeMember caste, we have that

(A.AttractiveStrength > B.AttractiveStrength) < (||A.Knowledge|| > ||B.Knowledge||).

Otherwise, we say that the attraction strength is irrelevant to the volume of
knowledge. [

The PAM-E system given in Table 4-3 is a system that has irrelevant attraction
strengths. It is a counterexample of the convergence to the Optimal scenario. A similar

counterexample of the stability of the Mature scenario can be constructed as in the proof

of Theorem 4-3(c).

Theorem 4-5. (Non-convergence properties of PAM-E)
There exists a PAM-E agent community system M whose agents’ attraction strengths

are irrelevant to the volume of knowledge such that the following statements are true.

(a) M does not always reach the scenario Optimal. Formally, M>—Optimal is not true.

(b) M does not converge to the Optimal scenario. Formally, M 3-Optimal is not true.

(¢c) The scenario Mature is not stable in M. Formally, M@Mature is not true.

(d) M does not converge to the Mature scenario. Formally, M 9-Mature is not true.

Proof. The proof is similar to the proof of Theorem 4-3 with the Three Gurus example

replaced by the system given in Table 4-3. Details are omitted for the sake of space. [J

TABLE 4-3. THREE GURUS OF PAM-E

Agent | Category | Knowledge | Initial organiser Attractive Strength |[Knowledge||

A 1 {1} A.organiser =a 2 1

Revised Version Submitted to MAGS International Journal 31

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

B 1 {1} B.organiser =b 2 1

C 1 {2, 3} C.organiser =c¢ 1 2

Similar to PAM-R system’s reachability of Mature scenario, we can prove that PAM-

E systems are always reachable to the Mature scenario.

Theorem 4-6. (Reachability of Mature Scenario in PAM-E systems)

For all PAM-R systems M of agent communities, scenario Mature is always reachable.

Formally, we have that M>—Mature.

Proof. The proof is very similar to the proofs of Lemma 4-5 and Theorem 4-6. The only
change is to replace the definition of leadership strength by the following formula LS(G)
= |ILgAttractionStrength||, and to replace the phrase ‘volume of knowledge’ by

‘attraction strength’. [

4.3. Hybrid worlds
In this subsection, we study the worlds of organized communities that contain more than
one type of members.

In order to enable PAM-E agents to compare their attractive strengths with agents of
other types, we modify the definition of CAM-K, CAM-P and PAM-R agents by adding
an Integer type constant state attribute AttractiveStrength.

The following theorems state that hybrid systems have the same convergence
properties as PAM-R and PAM-E systems if there is at least on of such members.

Note that, as proved in Lemma 3-5, The Optimal scenario is stable for all kinds of
member agents. Therefore, it is still true for hybrid systems. The following theorem

proves the none-convergence properties of hybrid systems.

Theorem 4-7. (None-convergence properties of hybrid systems)
There exists a hybrid system M of agent communities that contains one PAM-R or

PAM-E agent such that the following statements are true.
(a) M does not always reach the scenario Optimal. Formally, M>—Optimal is not true.
(b) M does not converge to the Optimal scenario. Formally, M -~Optimal is not true.

(c) In M, the scenario Mature is not stable. Formally, M@Mature is not true.

(d) M does not converge to the Mature scenario. Formally, M 9~Mature is not true.

Proof.

(a) Let’s construct a counterexample of the reachability. Consider the Three Gurus

Revised Version Submitted to MAGS International Journal 32

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

(b)

(c)

(d)

system of Example 1. By replacing the caste of agent C in the system with CAM, we
obtain a proper hybrid system. In this system, once C joins a community of agent A
or B, it will not change its membership to the community because C is attracted to its
community which is complete. However, both agents A and B will not change their
community memberships as proved in Example 1. The system will keep in this state
rather than further evolves into the optimal scenario. Therefore, the system cannot
reach the optimal scenario.

By Lemma 2-1. and statement (a), such a hybrid system may not converge to the
Optimal scenario.

To prove that the scenario Mature is not stable, add the same agent C’ in the proof of
Theorem 4-3(b) to the counterexample constructed in the proof of (a) above. Assume
that agents A, C and C’ are registered with the same organiser, they form a complete
community. The system is therefore in the mature scenario. However, when agent B
raise a query on topic 4, C” will move to the community of agent B. the agents A, B,
C and C’ split into two communities {A, C} and {B, C’}. None of these communities
are complete. Hence, the system is no longer in the scenario mature. Therefore,
scenario mature is not stable.

The counterexample given in the proof of (c) is also a counterexample for the
convergence. [

There are some phenomena that may happen in a hybrid system but impossible in any

of the homogenous systems. For example, in a hybrid system, it is possible that two

agents swap their communities. That is, it is possible that after inter-community

communication between agents A of community G and B of community H, agent A

moves to the community H and B moves to community H. This is impossible in

homogenous systems because of the design of the rules. The following is a concrete

example of community swap.

Example 2. (Swap communities)

Let agent A be a CAM-K and B be a PAM-E with the initial state given in Table 4-4.

TABLE 4-4. DEFINITION OF A HYBRID SYSTEM

Agent | Category [Knowledge Initial organiser | Attractive Strength | |Knowledgel||

A 1 {1,2} A.organiser = G 2 2

B 1 {3,4, 5} B.organiser =H 1 3

When agent A raises a question on topic 3, B answers the question. Then, A as a CAM

Revised Version Submitted to MAGS International Journal 33

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

agent decides to move to community H since D"(1)=3>D%(1)=2. Meanwhile, agent B as a
PAM-E agent decides to move to community G because
AttractiveStrength(A) = ||A.Knowledge|| = 2 >B.AttractiveStrength = 1.
Therefore, it leads to the state where A is registered with organizer H and B registered
with organizer G. The system will carry on swapping communities. Agents A and B will
never get into the same community. [
The above example gives another counterexample of hybrid systems’ reachability to

the Mature and Optimal scenarios. Thus, we have the following theorem.

Theorem 4-8. (Non-reachability of hybrid system)
There exists a hybrid system that does not reach the Mature and Optimal scenarios.
Proof. The system given in Example 2 does not reach Maturity and Optimal scenarios in

all executions. [

Now, we have proved or disproved all the recurrence properties of the Mature and
Optimal scenarios for all five types of agent community systems. The results are

summarized below in Table 4-5.

TABLE 4-5. RECURRENCE PROPERTIES OF AGENT COMMUNITY FORMATION BEHAVIORS

Maturity Optimality
Variant
Reachability Stability Convergence | Reachability | Stability | Convergence

CAM-K Yes Yes Yes Yes Yes Yes
CAM-P Yes No Yes Yes Yes Yes
PAM-R Yes No No No Yes No
PAM-E Yes No No No Yes No
Hybrid No No No No Yes No

5. Experimental Study of Convergence Speed

To further validate the results obtained above and to study the dynamic behaviours of
agent communities quantitatively, an experimental study through simulations was also
conducted. The preliminary results of the experiment have been reported in [48]. This

section reports the further experiment results.

5.1. Experiment environment
To enable the experiments, we developed an experiment environment to simulate the
execution of agent communities. The tool also provides a graphical user interface to setup

simulation experiments and to collect data for statistical analysis. Figure 5-1 is the

Revised Version Submitted to MAGS International Journal 34

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

snapshot of its GUI interface.

- AGENECOm MUYV = [B]x]
| [Chart_| Table | Statistics | Org# Report | Member#Report | Cat# Report | Cat Size# Report |
maturityReachableWorldsNo [¥] Stableworldsho [¥] optimalityReachableWorldsNo [¥] StableworldsNo
100|100
a0
&0
a0
0
o 20 a0 &0 a0 100
simulationNo
Manual System Type: Organizer # 10 | category #:15 () iteration Times: [100 ‘ ‘RAND "|
File ||:hfbrid m Member # 100 | Category Size: |20 \ (@ Simulation Times: [100 | = = |

Figure 5-1. Interface of the experiment environment

As shown in Figure 5-1, the tool takes four parameters as the input to the agent

community simulation:

— k: the number of organizers,

— m: the total number of member agents in the system,
— ¢ the number of categories of knowledge, and

— st the size of the knowledge for each category.

For each given set of parameters, an initial setting of the agent communities is
generated at random according to the uniform distribution. Thus, each agent is initially
assigned at random with a category, a non-empty set of topics and an organizer. An initial
setting is called non-trivial if every organizer has at least one member and every category
has at least one member. The trivial settings are avoided in random generation of initial
settings, if possible. Figure 5-2 is a screen snapshot showing on the left an initial setting

and on the right the setting after several iterations in an execution of the same system.

Revised Version Submitted to MAGS International Journal 35

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

_AgentCommunityv2 = B
[Chart | Table | Members | Setting

Original setting |* | # Final setting at iteration 8 =
#FriMar 168 16:42:31 GMT 2007 #FriMar 16 16:42:31 GMT 2007

B Categories, 8 Organizers, 66 Members #8 Categaories, 8 Organizers, 66 Members

cat catd: [K1, k2, k3, k4] cat catd: [k1, k2, k3, k4]

catcata: k1, k2] cat cats: k1, k2]

catcat2: [k1, k2, k3, k4, kG, kB, k7, k8, k9, k10] =|| cat catZ: [k1, k2, k3, k4, k3, kB, K7, k8, k&, k10] =
catcatd: [k1, k2] cat cat3: [k1, k2]

catcal?: [k1, k2, k3, kd, k5, KB, k7, k8, k9, K10, k11, k12, k13 k14, cat cat?: [k1, K2, k3, kd, k5, k6, k7, k8, k3 K10, k11, K12, k13, k14,

K16, k16, k17, k18, k19, k20] K15, K16, k17, k18, k19, k20]

catcath: [K1, k2, k3, k4, k5, kE] cat cathi [k1, k2, k3, kd, kS, k6]

catcatd: [K1, k2, k2, k4, k] | catcatd: [k1, K2, k2, ké, ki] |
catcatl: [T, k2, k3, k4, k5, KB, k7, K8, k9, K10, k11, k12, k13, k14, cat catt: [k1, K2, k3, k4, kS, kB, k7, k8, k3, k10, k11, K12, K13, k14,

k15, kK16, k17] k1§, k16, K17]

org orgd org orgd

PARM m44 catd 2 k1, k2] FPAEM m53 cath 1 [k4, K1]

PARM m38 cath & [k3, k6, k1, kG, k2] FPARM ma4 cata 2 [k1, k2]

PARM mS55 catd 1 [k] PAEM m1 call 4 k16, K3, k12, k1, K13, k15, k9, k11, K5, k2, k7]

PARM m23 catd 2 [k1, k2] PARM m38 cath & [k3, kB, K1, k3, k2]

PARM A0 catl 7 k10, k14, k8, k17, k11, k5, k2] PARM m23 cats 2 [k1, k3]

CAKM mS catl 11 k10, k14, k8, K17, k16 k4, k2, k12, K13, K11, k8] FARNM m24 catd 1 [k4]

CAKM m22 cat2 4 k10, ké, kG, k1] CARM macat! 11 [k10, k14, k8, K17, K16, kd, k3, k12, k13, k11, k5]

CARM mME2 catl & [kE, K16, k3, kd, kB, k1, k11, k3]

org orgl!

PAEM m1 cat! 4 (k16 k3, K12, K1, K13, K15, k3, K11, k3, k2, k7] org orgl

PARM m48 catd 2 k1, k2] PAEM ma0 cat3 0 [k2]

PARM m&1 catd 1 (k1] CAKM m12 catd 1 [k1]

PARM m30 catd 2 [k, k2] PARM mdd cat 2 [k1, k2]

CASM m46 cat2 & k10, k4, K, k2, k7]

org org3

org org3 PARM m&3 cat3 1 [k1]

CAKM m3 catd 1 k1] - || PARM mS1 catd 1 [k1]]
{ Manual System Type Organizer # 10 | category 15 ® Hteration Times: |8 [[pane [+

File | ’:Wbl’\d ' Member # (100 | Category Size: 20 || Simulation Times: 1 > = [

Figure 5-2. Example of initial setting and final setting

The user can select one of the five types of agent community systems to perform an
experiment. Two basic types of experiments are supported by the tool. The first is to run
a system for once and to collect the data of the execution and display them in various
windows. The second is to repeat the execution on an initial setting for a number of times
and to collect the data, display the data in a graphic user interface and perform statistical
analysis of the data.

In each execution, the algorithm is run for a certain number of iterations determined
by the user. In each iteration, there is a random number of members to raise questions,
get their answers if exist, and then to make movement according to the members’
behavior rules. Each member only raises one question in one iteration cycle. After each
iteration cycle, the system’s global state is checked to see if it matches of the scenarios
Mature or Optimal. The tool also allows the user to set the number of iterations in each
execution and the number of executions to be repeated on each initial setting. Figure 5-1
is a screen snapshot that displays the statistical data in the middle of an execution for

repeating simulation for 100 times.

5.2. Experimental validation of theoretical results
To validate the theoretical results presented in section 4, simulation experiments were
conduected for each of the five types of agent community systems. For each type of the

systems, 1000 initial settings were generated at random with parameters in the range

Revised Version Submitted to MAGS International Journal 36

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

shown in Table 5-1. The system was run repeatedly for 100 times on each initial setting,

where each execution iterates for 500 cycles.

TABLE 5-1. PARAMETER RANGES IN THE SIMULATIONS

Parameter Range

k: the number of organizers 2<k=<100

m: the total number of member agents in the system | 2<m<100

c: the number of categories of knowledge 1=c<30

s: the size of each category of knowledge 2<s8<30

The experiments confirmed the theoretical results as follows.

— For a scenario that is theoretically always reachable in a type of agent community
systems, it is confirmed by experiments if and only if in all runs of the agent
community system on every initial setting the system is in the scenario after a
number of iterations.

— For a scenario that is theoretically not always reachable, the property is confirmed
if and only if there is an initial setting in which there is at least one run of the agent
community system that does not reach the scenario in all iterations within the set
number of iterations.

— For a scenario that is theoretically stable, the property is confirmed by the
experiments if and only if, for all initial settings and every execution of the agent
community system in the setting, the system reaches the scenario after a certain
number of iterations implies that the system is in the scenario for all iterations after
that in the same execution.

— For a scenario that is theoretically not stable, the experiments confirm the property
if and only if there is at least one initial setting and at least one execution of the
agent community system in the setting such that the system reaches the scenario at
a certain iteration and breaks the scenario at an iteration afterwards in the same
execution.

It is worth noting that, by systematically conducting repeated experiments using a
large number of randomly generated initial settings and a large number of random
executions of the system in each initial setting with a large number of iterations, we can
gain a high confidence in the results. However, the experimental results are not as
conclusive as the theoretical proofs for reachability, unreachability, and stability. Only

non-stability can be conclusively confirmed by observing a witness of the non-stability.

Revised Version Submitted to MAGS International Journal 37

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Thus, simulation experiments cannot replace formal proofs.

5.3. Quantitative study of convergence speed

However, simulation experiments do have their advantages in discovering phenomena
that were unknown. For example, the simulation experiments with CAM-K systems
revealed a number of interesting relations between the parameters of agent communities
and the speed for a community to reach a desired scenario. This section reports the main

findings of the experiments.

B. Distributions of convergence time

A question raised in the experiments is when to stop the execution of an agent
community. A practical approach is to set a number of iterations the agent community
will execute. Thus, an experiment is carried out aiming at discovering how fast a CAM-K
agent community system converges to a scenario. The number of iterations that a system
needs to reach a scenario is called the convergence time in the sequel.

14

=
[1

Percentage of Executions

[SR N = N - o]

0 5 10 15 20 25 30 35 40
Number of Iterations

(a) Average convergence time to reach the Mature scenario

ES

(ST S

Percentage of Executions

—

0 1 Il 1 1 1 Al
0 10 20 30 40 50 60 70 80 90 100
Number of Iterations

(b) Average convergence time to reach the Optimal scenario
Figure 5-3. Distributions of convergence times on the same initial setting
(Parameters: k=50, m=50, c=20, s=30)
The first experiment is on fixed initial settings generated at random with repeated

executions for 1000 times. This experiment investigates the impact of random behaviours

Revised Version Submitted to MAGS International Journal 38

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

of agents on the convergence time. Figure 5-3 shows the distributions of convergence
times for the Mature and Optimal scenarios on fixed initial settings with parameters k=50,
m=50, ¢=20, and s=30, respectively, where the X axis is the number of iterations the
system needs to converge; the y axis is the percentage of the number of executions in
which the system converges to the scenario in the number of iterations.

The second experiment is on different initial settings generated at random with the
same fixed parameters. This experiment investigates the impact of initial settings on
convergence time. Figure 5-4 shows the distribution of average convergence times on
each initial settings that were generated with parameters k=50, m=50, ¢c=20, and s=30,
where the X axis represents the average iterations in which a system converges to the
scenario, and the y axis is the same as in Figure 5-3. The same pattern of the distributions
of the average convergence times were observed as shown in Figure 5-4.

25

20

15

10

Percentage of Executions

0 I 1 I — L 1

0 5 10 15 20 .25 30 35 40
Number of Iterations

(a) Average convergence time to reach the Mature scenario

=]
tn

- =
= n =

tn

Percentage of Executions

|
10 15 20 .25 30 35 40
Number of Iterations

- I |

=]
=]
o -

(b) Average convergence time to reach the Optimal scenario
Figure 5-4. Distribution of average convergence times on variable initial settings
(Parameters: k=50, m=50, ¢c=20, s=30)
The overall average convergence times on fixed and variable initial settings with the

same parameters k=50, m=50, c=20 and s=30 is presented in Table 5-2.

Revised Version Submitted to MAGS International Journal 39

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

TABLE 5-2 AVERAGE CONVERGENCE TIMES

Maturity Optimality
Experiment Average | Standard | Average | Standard
Value Deviation Value Deviation
Fixed initial setting 8.90 4.03 19.11 15.01
Variable initial settings 9.85 3.10 10.54 3.28

From the experiment results, we conclude that with very high probability an agent
community will converge within 100 iterations, if it will converge.

To explore the relationships between convergence time and various parameters of
agent communities, we carried out further experiments with CAK-M systems. The results

are reported below.

C. The effect of number of organizers

In the experiment that aims at understanding the effect of the number of organizers on
convergence time, we fixed the parameters m (the number of members), € (the number of
categories) and s (the size of each category). The parameter k (number of organizers)
varied from 2 to m, because when k>m, there must be organizers associated with no
members, which has no effect on the operation of the system, and thus the initial setting
is trivial. For each value of k, 100 initial settings were generated at random with the
uniform distribution, and on each initial setting the agent community system was
executed repeatedly for 100 times. The average convergence time was then calculated.
The experiment was carried out for several different the number of categories, i.e. c=1, 5,

10, 15, 20, and 30.

12

R M c=1 N
X - c=%
"‘;)?53(/ —e—c=10
10| % —A—c=15
X‘I —&—c=20
S 10
i — A— e =30
% 7_"*1//&\ —a
'
g 8 e h————A——a———h——h A
£ P LN S
g I
3
Z
=2 6 ‘
2
=2 B o 4
g - S
2 _— ¢ &

0 10 20 30 40 50 60 70 80 90 100
Number of Organizers

(a) Average convergence time to reach the Mature scenario

Revised Version Submitted to MAGS International Journal 40

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

30

Number of Iterations

0lafD 1 L 1 L L 1 L L

0 10 20 30 Nélll(l)]]l)ﬁl' osf%rgal ﬁggrs 70 80 90 100
(b) Average convergence time to reach the Optimal scenario
Figure 5-5. Impact of the number K of organizers on convergence time
(Parameters: m=100, ¢c=1,5,10,20,30, =30, K varies from 2 to m=100)

The results are shown in Figure 5-5 shows how the average convergence time
depends on the number of organizers when the parameters are m=100, s=30, and c=1, 5,
10, 15, 20 and 30, respectively. In general, when the number of organizers increases, the
agents in the initial setting are spread to more and more communities. Thus, it takes

longer to form mature communities and to reach optimal scenarios. This pattern is

observed for all different numbers of categories.

D. The effect of number of members

To study the effect of the number of members on convergence time, we fixed the
parameters of K (number of organizers), C (the number of categories) and s (the size of
each category) and let the parameter m (the number of members) vary.

The particular parameters used in the experiments were: k=100 organizers and the
size of each category $=30. This experiment is also repeated for several different
numbers of categories, i.e. forc =1, 5, 10, 15, 20 and 30. The number of iterations set in
the experiments was 500. Similar to the experiment reported in sub-section C, 100 initial
settings were generated at random and on each initial setting the CAKM agent
community system was executed for 100 times and average convergence time were
calculated.

As noted above, an organizer that is initially assigned with no member has no effect
on the operation of the system. In order to minimize the effect of empty initial organizers
on statistical results, two strategies were used in the random generation of the initial
settings according to the value of m. When m>Kk, at least one member is initially assigned

to each organizer. When m<k, each organizer was initially assigned with at most one

Revised Version Submitted to MAGS International Journal 41

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

member.

12

10

Number of Iterations
o

1 N & & & & &y &y

&
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Number of Members

(a) Average convergence time to reach the Mature scenario

30

—o—c=1 4
o-ens P

—8—c=10 e

25| c=1s o 4
—A—c=20 / /l/
——c=30 / pe

O =

[
=3

15

Number of Iterations

—
=}

0 1 I 1 1 I 1 1 I 1 1 I 1 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Number of Members

(b) Average convergence time to reach the Optimal scenario
Figure 5-6. Impact of the number m of members on convergence time
(Parameters: k=10, c=1, 5, 10, 15, 20, 30, and $=30, m varies from 1 to 140).

Figure 5-6 shows how the average convergence time depends on the numbers of
members in the system when k=10, s=30, and c=1, 5, 10, 15, 20, and 30. In general, the
experiments demonstrated that, for both the Mature and Optimal scenarios, the
convergence time first increases then decreases as the number m of members increases.
The turning point of a curve on which it changes from increase to decrease depends on
the number of categories. As shown by the dashed line in Figure 5-6, the larger the value

of c, the later the turning point.

Revised Version Submitted to MAGS International Journal 42

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

E. The effect of number of categories

In the experiments to investigate the effect of the number of categories on
convergence speed, we varied the number C of categories while kept the other parameters
fixed. Note that, when ¢c>m, there must be a category of knowledge that no agent is
interested in. Such categories have no effect on the operation of the system. Thus, in the
experiment, the variable ¢ varied in the range of 1<c<m.

The experiment shows that, to reach the Mature scenario, with the number ¢ of
categories increasing, the convergence time first increases, and then decreases. In contrast,
for the Optimal scenario, that with the number Cc of categories increasing, the
convergence time decreases sharply, then increases gently, and at last decreases sharply
again. Figure 5-7 shows how the average convergence time depends on the number of

categories when k=100, m=100 and s=30, respectively.

16
Py
14 T T
=)
>

12 -
S
=
=
= \
T 8l - \
I \
E s &
= 4 '\“

4| 4

2| * \

i
i
0 L 1 1 L L 1 1 Il L 1
0 0 20 30 6 70 80 90 100

40 50
Number of Categories

(a) Average convergence time to reach the Mature scenario
30

MNumber of Iterations
—
n
/
\
*
i
\
\
!
]
)
t

ol I I I L L L 1 L L
] 10 20 30 a0 70 80 an 100

Td‘:::nhcr n?'oﬂntcgm'ies
(b) Average convergence time to reach the Optimal scenario

Figure 5-7. Impact of the number of categories on average convergence time
(Parameters: k=100, m=100 and s=30, c varies from 1 to 100)

F. The effect of the size of categories

Revised Version Submitted to MAGS International Journal 43

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

In the experiments about the size of categories, we varied the size of categories S
while kept other parameters fixed. This is again repeated for several different values of c.
The experiment demonstrated that the average convergence time for both Mature and
Optimal scenarios increases with the size of the category increasing although the speed is
different. Figure 5-8 shows how the average convergence time depends on the category
size when k=100, m=100, and c=1, 5, 10, 15, 20, 30, respectively.

12

10

Number of Iterations
=N

0 L 1 1 1
0 10 20 30 40 50 60 70
Size of Categories

(a) Average convergence time to reach the Mature scenario

45

40

20

Number of Tterations

-
i

10

1
0 10 20 30 40 50 60 70
Size of Categories

(b) Average convergence time to reach the Optimal scenario
Figure 5-8. Impact of category size on convergence time
(Parameters: k=100, m=100, c=1, 5, 10, 15, 20, 30, s varies from 1 to 70)

The main findings of the experiments discussed above are summarized in Table 5-3,
where 1 indicates that the convergence time increases with the variable, and | for

decreasing.

Revised Version Submitted to MAGS International Journal 44

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

TABLE 5-3. RELATIONSHIPS BETWEEN SYSTEM PARAMETERS AND CONVERGENCE TIMES

.. Convergence Time
Parameter Condition - —
Maturity Optimality
#Organizers t t
m<k t t
#Members
m>k t t
#Categories t Vi
Size of Category t t

6. Conclusion

In this paper, we formally analyzed the properties of various types of self-organizing
agent community systems. For each variant, we studied two scenarios. The Maturity
scenario of community formation is the situation that for each category of knowledge,
there is a community that contains all the knowledge of the category. The Optimal
scenario of community formation is the situation where every agent in the system is in a
community that contains all the knowledge that it is interested in. We formally proved or
disproved the stability and the reachability of these scenarios in self-organizing
community formation, and their convergence to such scenarios.

The properties we have proved in this paper for PAM-R, PAM-E and hybrid systems
are negative. It is an interesting topic for future work to find the conditions in which a
system is reachable, stable and convergent to the Mature and/or Optimal scenarios. We
will also study other variants of community formation algorithms by applying the same
techniques presented in this paper.

In the experimental study of convergence speed using simulation, we observed
interesting, and sometime complicated, patterns of convergence time depending on the
parameters of the agent community systems. Some of these patterns are difficult to
explain. It is an interesting topic for future work to provide formal proofs of such patterns.

Our investigation of agent community formation demonstrated that formal methods
and simulation techniques are complementary to each other. Simulation helps to discover
recurring phenomena while formal methods help to prove their recurrences with certainty.
We believe that this approach can be applied to all studies of emergent behaviours of
multi-agent systems.

ACKNOWLEDGEMENT
The work reported in this paper was done while Hong Zhu was on sabbatical leave from
Oxford Brookes University and visiting the Pervasive ICT Research Centre of British

Telecom at Ipswich.

Revised Version Submitted to MAGS International Journal 45

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

REFERENCES

[1] United Nations Joint Programme on Aids. 1997. Community mobilization and
AIDS: UNAIDS Technical Update, Geneva: UNAIDS.

[2] Akram, A. and Rana, O. F. 2003. Structuring peer-2-peer communities. Proc. of
IEEE International Conference on Peer-2-Peer Computing, Linkoping, Sweden.

[3] Wang, Y. and Vassileva, J. 2004. Trust-based community formation in peer-to-peer
file sharing networks. Proc. of 2004 IEEE/WIC/ACM International Conference on
Web Intelligence (W1 2004), Beijing, China, pp341-348.

[4] Duda, R.O. and Hart. P. E. 1973. Pattern Classification and Scene Analysis. John
Wiley & Sons.

[5] LuS.Y.andFu, K.S. 1978. A sentence-to-sentence clustering procedure for pattern
analysis. IEEE Transactions on Systems, Man and Cybernetics, Vol. 8, pp381-389.

[6] Jain, A.K., Murty, M.N., and Flynn, P.J. 1999. Data clustering: a review. ACM
Computing Survey, Vol. 31, No.3, pp264-323.

[7] Charikar, M., Chekuri, C., Feder, T. and Motwani, R. 1997. Incremental clustering
and dynamic information retrieval. Proc. of the Conference on Theory of
Computation, pp626-635.

[8] Fisher, D. 1987. Knowledge acquisition via incremental conceptual clustering.
Machine Learning 2, pp139-172.

[9] Khambatti, M., Ryu, K., and Dasgupta P. 2003. Structuring peer-to-peer networks
using interest-based communities. Proc. of International Workshop On Databases,
Information Systems and Peer-to-Peer Computing, pp48-63.

[10] Ogston, E, Overeinder, B., Van Steen M. and Brazier F. 2004. Group formation
among peer-to-peer agents: learning group characteristics. Proc. of the Second
International Workshop on Agents and Peer-to-Peer Computing (AP2PC), Springer
Lecture Notes in Computer Science Vol. 2872, pp59-70.

[11] Iamnitchi, A, Ripeanu, M and Foster I. 2004. Small-world file-sharing communities.
Proc. of INFOCOM 2004, Hong Kong, Vol. 2, pp952- 963.

[12] Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G. and
Bonabeau, E. 2001. Self-Organization in Biological Systems. Princeton University
Press.

[13] Green, D.G. 1994. Emergent Behaviour in Biological Systems. Complexity
International, Vol. 1.

[14] Clarke, I. and Sandberg, O. 2000. Freenet: A distributed anonymous information
storage and retrieval system. Proc. of ICSI Workshop on Design Issues in
Anonymity and Unobservability, California, USA, pp25-26.

[15] Babaoglu, O., Meling, H. and Montresor, A. 2003. Anthill: A Framework for the
Development of Agent-Based Peer-to-Peer Systems. Proc. of the 22nd International
Conference on Distributed Computing Systems, Vienna, Austria, pp15-22.

[16] Flake, G.W., Lawrence, S. and Giles, C.L. 2000. Efficient identification of web
communities. Proc. of the Sixth International Conference on Knowledge Discovery
and Data Mining, pp150-160.

[17] Wang, F. 2002. Self-organising communities formed by middle agents. Proc. of 1%
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’02), Italy, pp1333-1339.

[18] Cid-Sueirro, J. and Wang, F. 2002. A scalability analysis of self-organizing agent
communities. Proc. of International Conference on Learning, Madrid, Spain.

[19] Bryan Horling and Victor lesser. 2005. A survey of multi-agent organizational
paradigms. The knowledge Engineering Review, Vol. 19:4, pp281-316.

[20] Virginia Dignum, (Ed.). 2009. Handbook of Researches on Multi-Agent Systems:

Revised Version Submitted to MAGS International Journal 46

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Semantics and Dynamics of Organizational Models. IGI Global.

[21] Ketchpel, S.P. 1995. Coalition formation among autonomous agents, From
Reaction to Cognition, LNCS 957, Springer, pp. 73-88.

[22] Shechory O. and Kraus, S. 1995. Coalition formation among autonomous agents:
Strategies and complexity, From Reaction to Cognition, LNCS 957, Springer, pp.
57-72.

[23] Shehory, O. and Kraus, S. 1998. Methods for task allocation via agent coalition
formation. Artificial Intelligence, Vol. 101, pp. 165-200.

[24] Shehory, O. 2004. Coalition formation: towards feasible solutions. Fundamenta
Informaticae, Vol. 63, pp. 107-124.

[25] Klusch, M. and Gerber, A. 2002. Dynamic Coalition formation among rational
agents, IEEE Intelligent Systems, Vol. 17, pp. 42-47

[26] Vig, L. and Adams, J. A. 2007. Coalition formation: from software agents to robots.
J Intell Robot Syst., Vol. 50, pp. 85-118

[27] Mason, K., Denzinger, J. and Carpendale, S. 2005. Negotiating Gestalt: Artistic
expression by coalition formation between agents. LNCS 3638, Springer, pp. 103-
114.

[28] Merida-Campos C. and Willmott, S. 2007. Stable Collaboration Patterns of Self-
Interested Agents in Iterative Request for Proposal Coalition Formation
Environments. International Transactions on Systems Science and Applications, Vol.
2, No. 1, pp40-45.

[29] Milind Tambe. 1997. Towards Flexible Teamwork. Journal of Artificial Intelligence
Research, Vol. 7, pp83-124.

[30] Nair, R., Tambe, M. and Marsella, S. 2003. Role allocation and reallocation in
multiagent teams: Towards a practical analysis, Proc. of AAMAS’03, Melbourne,
Australia, pp552-559.

[31] Pynadath D. V. and Tambe, M. 2002. Multiagent teamwork: analyzing the optimal
and complexity of key theories and models. Proc. of AAMAS’02, Bologna, Italy,
pp873-880.

[32] Sycara, K., Decker, K. and Williamson, M. 1997. Middle-Agents for the Internet,
Proc. of IJCAI-97, pp578-583.

[33] Brooks C. and Durfee, E. 2003. Congregation Formation in Multiagent systems,
Journal of Autonomous Agents and Multi-Agent Systems, Vol. 7, pp145-170.

[34] Vidal, J. M. and Durfee, E.H. 1998. The Moving Target Function Problem in Multi-
Agent Learning. Proc. of the Third International Conference on Multiagent Systems
(ICMAS 1998), Paris, France, pp317-324.

[35] Shoham Y. and Tennenholtz, M. 1997. On the emergence of social conventions:
modeling, analysis and simulation. Artificial Intelligence, Vol. 94, No.1-2, pp139-
166.

[36] Savarimuthu B. T. R. and Purvis, M. 2007. Mechanisms for norm emergence in
multi-agent societies. Proc. of AAMAS’07, pp1104-1106, 2007.

[37] Mukherjee, P., Sen S., and Airiau, S. 2008. Norm emergence under constrained
interactions in diverse societies, Proc. of AAMAS’08, Estoril, Portugal, Vol. 2,
pp779-786.

[38] Zhu, H. 2000. Formal Specification of Agent Behaviour through Environment
Scenarios. Formal Approaches to Agent-Based Systems: Proc. of First Goddard
Workshop on FAABS 2000, NASA Goddard Space Flight Center, Springer LNCS
1871, pp263-2717.

[39] Zhu, H. 2001. SLABS: A Formal Specification Language for Agent-Based Systems.
International Journal of Software Engineering and Knowledge Engineering, Vol. 11
No.5, pp529-558.

[40] Zhu, H. 2003. A Formal Specification Language for Agent-Oriented Software

Revised Version Submitted to MAGS International Journal 47

Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities

Engineering. Proc. of AAMAS'2003, Melbourne, Australia, pp1174 — 1175.

[41] Zhu, H. 2002. Formal Specification of Evolutionary Software Agents. Proc. of
ICFEM’2002, Shanghai, China, Oct. pp249-261.

[42] Zhu, H. 2002. Developing Formal Specifications of Multi-Agent Systems in SLABS
-- A Case Study of Evolutionary Multi-Agent Ecosystem. Proc. of AOIS’2002 at
AAMAS’02, Bologna, Italy, pp20-34.

[43] Randles, M., Zhu, H. and Taleb-Bendiab, A. 2007. A Formal Approach to the
Engineering of Emergence and its Recurrence. Proc. of The Second International
Workshop on Engineering Emergence in Decentralised Autonomic Systems
(EEDAS 2007), Jacksonville, Florida, USA. Greenwich University Press, London,
UK, pp12-21.

[44] Zhu, H. and Shan, L. 2007. Agent-Oriented Modelling and Specification of Web
Services. The International Journal of Simulation and Process Modelling, Special
Issue on Trustworthy Web Services, Vol. 3, No.1&2, pp26 — 44.

[45] Mao, X., Shan, L., Zhu, H. and Wang, J. 2008. An Adaptive Casteship Mechanism
for Developing Multi-Agent Systems. International Journal of Computer
Application in Technology, Vol. 31, Nos. 1/2, pp17-34.

[46] Zhu, H. 2005. Formal reasoning about emergent behaviours of MAS. Proc. of
Software Engineering and Knowledge Engineering, Taipei, pp280-285.

[47] Jennings, N. R. 2000. On agent-based software engineering. Artificial Intelligence
Vol. 117, pp277-296.

[48] Wang, S. and Zhu, H. 2007. An Experimental Study of the Emergent Behaviors of
Self-organizing Agent Communities. Proc. of the 2007 IEEE Congress on
Evolutionary Computation (CEC 2007), Singapore, pp3239-3246.

Revised Version Submitted to MAGS International Journal 48

