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Abstract 
 

Community is a common phenomenon in natural ecosystems, human societies as well as 

artificial multi-agent systems such as those in web and Internet based applications. In 

many self-organizing systems, communities are formed evolutionarily in a decentralized 

way through agents’ autonomous behavior. This paper systematically investigates the 

properties of a variety of the self-organizing agent community systems by a formal 

qualitative approach and a quantitative experimental approach. The qualitative formal 

study by applying formal specification in SLABS and Scenario Calculus has proven that 

mature and optimal communities always form and become stable when agents behave 

based on the collective knowledge of the communities, whereas community formation 

does not always reach maturity and optimality if agents behave solely based on individual 

knowledge, and the communities are not always stable even if such a formation is 

achieved. The quantitative experimental study by simulation has shown that the 

convergence time of agent communities depends on several parameters of the system in 

certain complicated patterns, including the number of agents, the number of community 

organizers, the number of knowledge categories, and the size of the knowledge in each 

category.   
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1. Introduction 
1.1. Motivation 
Community formation is a common phenomenon in natural ecosystems and human 

societies. For example, a community can be defined as a group of people (or organisms) 

who have something in common to share [1]. The substance of shared elements varies 

widely, from a situation of interest to lives and values. In the past a community often 

refers to a group of people or entities that live together in the same area. Nowadays the 

concept of community is not limited by geographical locations, as the wide usage of 

Internet easily brings together people or entities situated at distributed locations to form a 

kind of virtual community. Consequently, the sizes of Internet-based communities may 

vary from tens to millions. For instance, the number of users with running machines in a 

file-sharing application, Gnutella, was reported to be 1,200,000 in March 2005(1), and the 

sheer number of indexable web pages was already over 109 in year 2000 (2). It is not 

scalable for each peer to interact with all the others to discover appropriate resources, 

even to store information about all the others. To enable efficient accesses to internet 

resource as well as to facilitate various types of other service, communities are proposed 

and constructed in the context of peer-to-peer computing [2, 3].  

The considerably increasing dimensions and complexity of contemporary Internet-

based communities require substantial management work to organize and administrate 

proper groups in a large-scale distributed environment. A series of computational 

techniques have been proposed to automate this process. Among these techniques, self-

organization has the advantages of being decentralized, evolutionary, autonomous and 

efficient.  

Generally speaking, a self-organised agent communities consists of a number n>0 of 

autonomous peer agents A1, A2, …, An and a number l>0 of community organizers G1, 

G2, …, Gl. Each peer agent Ai has a subset {Ki,1, Ki,2, …, Ki,si} of knowledge, where each 

piece of knowledge K is classified into a one of r categories {C1, C2, …, Cr}. Each peer 

agent is registered to an organizer with its set of knowledge. If an agent wants to access a 

particular piece of knowledge that it does not possess, it will search for the peers who 

have the knowledge and obtain the assistance from the peer. The search starts within the 

community by submitting a request to its organizer, which looks at its registry of the 

members. If the search fails within the community, the organizer of the community will 

contact other organizers for assistance. Peer agents may move from one community to 
                                                           

(1) See URL: http://www.limewire.com/english/content /netsize.shtml.  
(2) See URL: http://www.inktomi.com/webmap/, accessed  January 2000 
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another from time to time in order to be grouped with other agents that are interested and 

possess the knowledge of in the same category. A peer agent’s movement is autonomous 

and based on a computational algorithm for its decision making using the local 

information about the communities involved.  

However, such computational algorithms are difficult to understand because each 

member behaves autonomously without any central control and only based on the local 

knowledge while hoping the whole system evolves to form communities. It is unclear 

whether mature and optimal communities will always be formed and whether such 

formations will be stable. This paper studies these problems for a series of agent 

community formation algorithms by both a formal logic approach and an experimental 

simulation approach.  

1.2. Related work  
1.2.1. Research in community organization 

A common method of community organization is to cluster entities according to their 

similarity, which can be back dated to 1970s [ 4 , 5 ]. This method selects proper 

representations of entity features or patterns to calculate distance or proximity of entities 

based on feature differences. Communities are then created by grouping together those 

entities with sufficiently close proximity; see [6] for a comprehensive review on data 

clustering. Charikar et al [7] and Fisher [8] extended the clustering method to deal with 

new joining entities. More recently, Khambatti et al [9] and Ogston et al [10] further 

developed the method in a decentralized peer-to-peer environment. Because this method 

employs pre-defined features and computing models to generate communities, it may 

involve a significant amount of computation and re-clustering in dynamic situations, 

especially when entity features continuously change with time. Moreover, because entity 

features or patterns are usually difficult to extract and choose, inappropriate feature 

designs or representations would inevitably deteriorate the clustering results. The formed 

communities therefore may include mismatched entities with mistaken attributes.  

In addition to entity proximity, communities can be formed based on entity 

associations. Iamnitchi et al [11] utilized data-sharing graphs to capture common user 

interests in data. Users that requested similar files had strong links in the graph so were 

formed into the same interest-based communities. By using relevant graph techniques 

such as maximum flow and minimum cut, in a recent study Iamnitchi et al [11] 

discovered a series of web communities in which members had more links to each other 

than to non-members. This method requires the full knowledge of the associations 
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between entities in order to perform community formation. This prerequisite sometimes 

made the community formation inapplicable in large-scale and dynamic applications.  

An outstanding characteristic of communities is that entities working as a group 

usually exhibit behavior that goes beyond the simple addition of individual functions. 

This phenomenon in natural systems has attracted researchers’ attention for a long time; 

c.f. [12, 13]. A similar behavior can also be found in artificial systems, such as in 

decentralized computer applications including Freenet [14] and Anthill [15]. Despite the 

absence of any centralized control point, clusters of specialized nodes in handling similar 

queries were gradually built in these applications, while the nodes simply cached a copy 

of query answers they had transferred. Flake et al. [16] discovered web communities on 

the Internet, though the web pages were written by independent creators. These systems 

possess a common feature of self-organization.  

Based on the principle of self-organization, Wang [17] proposed a novel solution to 

community formation problem. It addressed community management in a decentralized 

way by taking advantage of autonomous agents. Cid-Sueriro and Wang [18] proved that 

the average formation time of the self-organizing communities increased linearly with the 

log of the number of users and also linearly with the number of middle agents.  

However, the logic properties of such systems are unknown. For instance, will such a 

system always reach an optimal configuration in order to maximize its efficiency? If a 

system reaches such a state, will the state be stable? This paper aims to answer these open 

questions, which are essential for building sound and reliable online communities.  

1.2.2. Research on Other Agent Organisation Paradigms 

Agent communities can be regarded as a special type of multi-agent organizations. A 

wide range of organizational strategies and their combinations have emerged in the 

literature, which include hierarchies, teams, congregations, societies, federations, markets, 

and coalitions; see [19] for a recent survey on the research on multi-agent organizations 

and [20] for a collection of research papers that reflect the current research frontier on 

this topic. However, agent communities as a type of agent organizations have not been 

studied satisfactorily as discussed in the previous section. As Horling and Lesser stated, 

each type of agent organization is characterized by the collection of roles, relationships 

and authority structures which govern its behaviour. While the general theories of multi-

agent systems applies to agent communities, the specific features and properties of agent 

communities cannot be directly derived from the results about other agent organization 

paradigms because of the differences between their characteristics. The following 
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discusses such differences.  

A. Coalition.  

Agent coalition is one of the organization paradigms that have similar features of 

agent communities studied in this paper. Agent coalition formation has been widely 

investigated [21, 22, 23, 24] in stable and dynamic environments [25], in software agents 

and embedded robots [ 26 ], and has even been applied to help artists control 

representations on a canvas [27], etc. Usually, agent coalitions are goal-directed and short 

lived: they are formed when a group of agents agree to cooperate in order to perform a 

task [24] and dissolve when the needs no longer exist. For example, in [23], the purpose 

of a coalition is represented as a global goal, which is decomposed into a number of 

subgoals, and each individual in the coalition has its own local goal(s) that matches one 

or more of the subgoals. The agents in a coalition are expected to coordinate their 

activities in a manner appropriate to the coalition’s global goal and to maximize the 

group’s and/or personal utilities. In this sense, agent communities differ from coalitions 

in that the agents to come to form a community with a rather simple goal of sharing 

information. More precisely, agents join in a community mainly because they are 

interested in a common topic and wish to share or exchange information or resources on 

this topic. Furthermore, agent coalition usually has strict membership requirement (for 

goal achieving) and often employ mechanisms that obtain consensus among agents 

before an agent is allowed to change its coalition membership. For example, in [28], the 

majority voting by the current coalition members is used to determine whether to allow 

an agent to join a coalition in the study of the convergence to stable coalitions. In the 

coalition formation algorithms proposed [23], the locally calculated weights of candidate 

coalitions are announced globally and a comparison of all announcements determines 

which coalition candidate is to be adopted by the all agents. In contrast, in the agent 

communities paradigm, an agent may join or quit a community autonomously mainly by 

the agent’s own decision without approval by other community members. The main 

criterion for an agent to make the decision of joining or leaving a community is whether 

the agent can benefit from the community. By the term ‘short lived’, we meant that an 

agent organization is not permanent. In that sense we say that a coalition is usually short 

lived although it may last for a long time.  

It is worth noting that, there is no widely accepted definition of the word ‘coalition’ in 

the literature of multi-agent systems. Some researchers regard coalition as more general 

and at a higher level of abstraction than a specific agent organizational structure. For 

example, in [27], a coalition is not just one kind of an organizational structure. Instead, it 
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is seen more as a framework in which many different organizational structures may be 

possible. From point of view, agent community is a much more concrete and specific 

kind of agent organizations in comparison to coalition in such a definition. Moreover, a 

coalition must have a set of rules for dealing with accepting additional agents and 

dissolving a coalition while the specific rules may vary [27].One particular example of 

such rules is that an agent can join a coalition in order to gain happiness through the 

coalition's actions. Unfortunately, it may also lose happiness by taking coalition’s actions. 

It is thus allowed to leave a coalition if its happiness falls below a threshold. This is very 

similar to agent communities studied in this paper. However, in the coalition framework, 

an agent’s leaving may have much more profound impact than an agent’s leaving from a 

community. As pointed out in [27], “if an agent selects to leave [a coalition], it can make 

sense to dissolve a coalition”. In contrast, agent communities are not dissolved by any 

individual agent’s leaving.   

B. Team. 

Similar to agent coalitions, agent teams also consist of a number of cooperative agents 

which have agreed to work together towards a common goal, but in comparison to 

coalitions, teams attempt to maximize the utility of the team rather than that of the 

individual members. Typically, members of a team are expected to take different roles to 

address different subtasks required to achieve the team goal. Agent communities differ 

from agent teams in that there is usually not a set of roles or subtasks of significant 

differences to be taken by the members. For example, STEAM [29] facilitates explicit 

specification of the relationship between a team operator and individual’s or subteam’s 

contributions to it based on the notion of roles. Here, a role is an abstract specification of 

the set of activities an individual or subteam undertakes in service of the team’s overall 

activity. Role allocation and reallocation is one of the most challenging problems in 

multi-agent team organizations [30]. The convergence issues studied in the research on 

agent teams are focused on the formation of team decisions, which is known as multi-

agent team decision problem rather than the formation of teams [29, 30, 31].  Although 

team formation, which is also known as team construction, is one of the key steps in the 

operation of agent team systems, in a static and reasonably sized agent population, team 

members can be determined off-line as a part of system design. In dynamic environments, 

team members can be dynamically discovered and assessed for selection using well-

known discovery mechanisms such as the contract net protocol or matchmaker 

intermediaries [32].  

C. Congregation.  
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Agent congregations are also groups of individuals who have banded together into a 

typically flat organization as coalitions and teams, but they are not formed with a single 

specific goal in mind. Instead, congregations are formed among agents with similar or 

complementary characteristics to facilitate the process of finding suitable collaborators. 

This is also one of the characteristics of agent communities. However, congregating 

agents are expected to be individually rational for maximizing their local long-term utility, 

which determines how agents select congregation [33]. In contrast, we do not assume the 

existence of such rationality, or an explicit utility for individual agents or implicit usage 

of such utility in agent community formation. Agent congregation, therefore, can be 

regarded as a subclass of agent communities. The convergence issue of the optimal 

congregation formation problem, i.e. how agents self-organize to find the correct 

congregation, has been investigated by Brookes and Durfee [33]. They regard a 

congregation system as a set of agents who simultaneously learn which other agents it 

wants to interact with and applied the CLRI model [34] to determine the complexity of 

congregation formation problem. They concluded that if agents are unable to describe 

congregations to each other, convergence problem is exponential in the number of agents. 

They then introduced labelers as a means of coordinating agent decisions, thus reduced 

the problem’s complexity. They also used simulation experiments for congregations 

without labels, with flat labels and hierarchical labels. The agent communities paradigm 

studied in this paper differs from that of agent congregations in the way that how agents 

decide to move from one group to another. In particular, in the congregation paradigm, 

each agent has a payoff function to measure the value of a congregation that the agent is 

in, but can only estimate the payoff value of a congregation that it is not in when 

considering join a new congregation. The agent decides which congregation to join by 

maximizing the estimated payoff value. In our case of agent communities, we assume 

such a payoff value of a community, which called the strength of the community in this 

paper, is always available from the community organizer no matter whether the agent is a 

member of the community. This is proved to have a significant impact on the 

convergence of community formation as we will see later in the paper.  

D. Society. 

Agent societies are organizational paradigms that individuals of different stripes are 

free to come and go at will but must confined by the constraints imposed on their 

behaviours while remaining in the society, which are known as social laws, norms or 

conventions. The focus of research on agent societies has been on the social laws, such as 

dynamic norm formation; see, for example, [ 35 , 36 , 37 ]. In contrast, normative 
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behaviours are not the focus of research on agent communities, whose behaviours are 

relatively fixed.  

1.3. Overview of the paper 
In this paper, we will extend the work by Wang [17] and Cid-Sueriro and Wang [18] and 

formally investigate a variety of subtle variants of the algorithm that they proposed and 

studied. The main contributions of the paper include the following.  

1. A formal specification of self-organizing agent communities and its variants is 

presented by using the formal specification language SLABS [39, 40]. The properties of 

agent community formation are formally expressed as scenarios in the dynamic 

executions of the system, such as maturity and optimal community formations. Their 

features are expressed as the recurrence properties of multi-agent systems, such as the 

reachability, stability and convergence of the scenarios. These recurrence properties have 

been proposed and formally defined and studied in the formal system of Scenario 

Calculus [46]. This enables the application of scenario calculus to the study of agent 

community formation problem.  

2. The qualitative formal study proves that the formation of mature and optimal 

communities always occurs if agents behave based on collective knowledge of 

communities, and such formations are stable. In contrast, if agents behave solely based on 

individual agent knowledge or the information about community sizes, mature and 

optimal community formation cannot be guaranteed, and it may be instable even if such a 

formation is reached.  

3. The quantitative experimental study by simulation shows that convergence time 

depends on all parameters of the agent community system, which include the number of 

agents in the system, the number of community organizers, the number of knowledge 

categories, and the size of knowledge in each category.  

The remainder of the paper is organized as follows. Section 2 briefly reviews the 

SLABS language and Scenario Calculus. Section 3 formally specifies a variety of self-

organizing agent communities in SLABS, formally defines the required emergent 

behaviours of agent community formation as scenarios and proves their common features 

by applying Scenario Calculus. Section 4 further formally study the recurrent properties 

of various types of agent community systems and prove or disprove their reachability, 

stability and convergence of agent community systems to mature and optimal scenarios. 

Section 5 reports the experimental study of the convergence speed of agent community 

formation using simulation. The impact of various parameters of agent community 
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systems on convergence time is investigated. Section 6 concludes the paper with a 

discussion of further work.  

2. Overview of SLABS and Scenario Calculus 
In this section, we briefly review the formal specification language SLABS and Scenario 

Calculus. Details of the language and Scenario Calculus can be found in [39, 46]. 

SLABS, which stands for Specification Language for Agent-Based Systems, is the 

first and only general purpose formal specification language that is designed for 

engineering agent-based systems [38, 39, 40]. It has been successfully used to specify 

various types of agent systems, including personal assistants [39], speech-act based 

interaction among agents, an evolutionary multi-agent ecosystem [41, 42], emergent 

behaviour of multi-agent systems [43], autonomous agent-based web services [44], etc.(3) 

More recently, Mao et al. [45] extended the meta-model underlying SLABS for more 

flexibility and expressiveness in the development of adaptive multi-agent systems. 

SLABS language’s caste facility is particularly suitable for specifying systems that 

consists of a large number of agents classified into a number of types and interacting with 

each other through well-defined non-deterministic and probabilistic behaviour rules. The 

scenario calculus defined on the basis of SLABS [46] supports the reasoning about the 

dynamic behaviour of such multi-agent systems.  

As in [39, 47], an agent is defined as a proactive computational entity that situates in 

its designated environment and takes actions autonomously according to its own behavior 

rules depending on its own view of the situation in the environment.  

In particular, in addition to a unique identity, each agent A=< SA, ΣA, RA, EA> contains 

a set SA of variables to represent its state, a set ΣA of actions that it is capable of 

performing, a set RA of behavior rules that determines when and which action in ΣA to 

take, and a set EA of other agents or objects in the system that it is observing in order to 

know the situation in the environment.  

Similar to that objects are created and declared as instances of classes, agents are 

defined or created as instances of castes. Each caste specifies a set of actions, a set of 

state variables, a set of behavior rules and a description of the environment in the form of 

a set of agents in the system. Therefore, every agent of the caste has the corresponding 

elements specified by the caste. A multi-agent system (MAS) consists of a number of 

agents that are classified by a number of castes. When an agent A is an instance of caste 

C, we write A∈C. Similar to the inheritance relationship between classes, an inheritance 
                                                           

(3) See http://cms.brookes.ac.uk/staff/HongZhu/SLABS/index.htm for more details.  
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relationship between castes is defined and we write C1<C2 if C1 inherits C2, and we have 

that A∈C1 and C1<C2 implies that A∈C2.  

In the specification of caste in SLABS [39], the state variables are declared by giving 

the variable names and their corresponding data types. An action is declared in the form 

of an identifier plus a sequence of parameters and their types. An environment 

description is in the form of a sequence of clauses in the following form: 

− ‘Id: caste-name’ : where Id is an agent’s name, the specific agent Id of the 

caste is in its environment and thus observed by the agent;  

− 'All: caste-name' : all the agents of the caste are in the environment, and thus 

observed;  

− ‘Var Id : class-name’ : where Id is a variable that ranges over the caste, 

the agent assigned to the variable Id is in the environment and thus is observed.  

In SLABS, a behavior rule is written in the form of  

[<Rule Name>:] St | [Pr] −> Act, IF Sc WHERE Pre-cond 

where Pr is an optional real number expression with value between 0 and 1; Sc is a 

scenario of the system’s state and Act is an action; St is the state of the agent; Pre-cond is 

a Boolean expression that represents the pre-condition of the rule. It means that when the 

environment is in the scenario Sc and the agent is in state St, the agent will take the action 

Act with the probability Pr, if the pre-condition is true. When there is more than one 

possible rule to apply and/or more than one way a rule can be applied, a random choice 

will be made according to the probability Pr. When the probability is omitted, the 

uniform distribution is assumed. Thus, the choice is non-deterministic.  

Informally, a scenario is a runtime situation in the operation of the MAS. As in 

SLABS, it is defined by a predicate on the states of the agents and the actions taken by 

the agents. Formally, scenario expressions are defined inductively as follows. Here, we 

only give an informal semantics of the scenario expressions. The formal semantics can be 

found in [39].  

Definition 2-1. (Patterns and Scenarios) 

Let A and B be agent identifiers or variables that range over agents of a specific caste, 

C be a caste name, Sc and Sc1, Sc2 be well-formed scenario expressions. We define 

scenario expressions inductively as follows.  

− A Boolean expression on an agent’s state is a scenario expression. It means that the 

system is in the scenario when the corresponding agent’s state makes the Boolean 

expression to be true; 
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− A:P is a scenario expression, if A is an agent and P is an activity pattern. It means 

that the system is in the scenario when agent A’s activity matches the pattern P;  

− A=B (or A≠B) is a scenario expression, where A and B are agent variables or 

identifiers. It means that the system is in the scenario when the agents assigned to the 

variables/Ids A and B are the same agent (or not the same agent); 

− A∈C is a scenario expression, where A is an agent and C is a caste. It means that the 

system is in the scenario if agent A is in caste C; 

− ¬Sc is a scenario expression, where Sc is a scenario expression. It means that the 

system is in the scenario when it is not in scenario Sc;  

− ∀x∈C.Sc is a scenario expression, where C is a caste and Sc is a scenario expression. 

It means that the system is in the scenario if Sc[x/A](4) is true for all agents A in caste 

C; 

− ∃[m]x∈C.Sc is a scenario expression, where C is a caste and Sc is a scenario 

expression. It means that the system is in the scenario if there are at least m agents in 

caste C such that Sc[x/A] is true, where the default value of the optional expression m 

is 1; 

− Sc1 & Sc2 is a scenario expression, where Sc1 and Sc2 are scenario expressions. It 

means that the system is in the scenario if both scenario Sc1 and scenario Sc2 are true; 

− Sc1 ∨ Sc2 is a scenario expression, where Sc1 and Sc2 are scenario expressions. It 

means that the system is in the scenario if either scenario Sc1 or Sc2 or both are true; 

A pattern P is represented in the form of [a1, a2, …, ak], k≥0, where ai is an action, or 

an assignment to the state variables, or an action variable (which matches an action), or 

wild card $, or silence τ. A pattern [a1, a2, …, ak] means that the agent has take a 

sequence of n≥k actions and the last k actions match a1, a2, …, ak, respectively, where ak 

is the most recent action. When k=0, the pattern [ ] is true if  the agent has not taken any 

action since its creation. Another special pattern is [$], which matches to all actions.  � 

Examples of scenario expressions can be found in [39].  

The Scenario Calculus proposed in [46] is a formal system about the relations on 

scenarios. It defines the notion of scenario inclusion and orthogonality relations and 

transitions between scenarios in MAS. Informally, scenario Sc1 include Sc2 means that 

the system is in Sc1 implies it is also in scenario Sc2. Scenario Sc1 is orthogonal to 

scenario Sc2 means that the system will never be in scenario Sc1 and Sc2 at same time. A 

                                                           
(4) Sc[x/A] is the scenario expression obtained from Sc by systematically replacing free occurrences 

of variable x with A. 
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scenario Sc1 transits into scenario Sc2 means that the system can move from a state in 

scenario Sc1 to a state in scenario Sc2. The following formal definition of these notions is 

taken from [46]. (5) 

Let r be an execution of a MAS M, t be a time moment of the execution, Sc be a well-

formed scenario expression of M. We write r↓t|=Sc to denote that the system is in 

scenario Sc (i.e. Sc is true) at time t in the execution r.  

Definition 2-2. (Scenario inclusion and transition) 

Let Sc1 and Sc2 be two well-formed scenario expressions of a MAS M.  

A scenario Sc1 includes scenario Sc2 in M, written M |= Sc1⇒Sc2 if and only if for all 

runs r and at all time moments t∈T, r↓t|=Sc1 implies that r↓t|=Sc2.  

Scenario Sc1 transits to Sc2 in M, written M |=S1→S2, if and only if there is a run r of 

the system M and time moments t1 < t2 ∈T such that r↓t1 |= S1 and r↓t2 |= S2. � 

Readers are referred to [46] for properties of these relations.  

As discussed in [46], a recognizable phenomenon of the dynamic behavior of a MAS 

can be specified as a scenario. The recurrence properties of such a phenomenon can then 

be specified and proved as properties of scenarios. The following are the recurrence 

properties defined and studied in [46], which will also be used in this paper to study the 

properties of agent communities.  

Definition 2-3. (Recurrence properties of scenarios) 

Let M be any given MAS and Sc be a given well-formed scenario expression of M.  

System M always reaches scenario Sc, written M Sc if for all runs r there is a time 

moment t such that  r↓t |=Sc.  

Scenario Sc is stable in MAS M, written M@Sc if for all runs r and all time moments 

t∈T, r↓t |=Sc ⇒∀t’>t∈T. (r↓t’ |=Sc).  

MAS M always converges to scenario Sc, written M  Sc if for all runs r there is a 

time moment t such that ∀t’∈T.(t’≥t⇒r↓t’|=Sc). � 

It is worth noting that for each run r, as time t approaches infinity, the probability 

distribution of random chooses of applicable rules must satisfy the specified probability 

constraints in behavior rules. The word ‘always’ must be understood in this context.   

The following lemma gives the relationships between reachability, stability and 

convergence. 

                                                           
(5) The orthogonal relation between scenarios is not used in this paper. Thus, it is not included in the 

formal definition.  
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Lemma 2-1.  

For all MAS M and well-formed scenario Sc,  

(a) (M Sc & M@Sc) ⇒ M  Sc. 

(b) M  Sc ⇒ M Sc. 

Proof.  

(a) Assume that M Sc and M@Sc. By Definition 2-3, from M Sc we have that for all 

runs r there is a time moment tr such that  r↓tr |=Sc. By Definition 2-3, from M@Sc 

we have that ∀t’>tr∈T. (r↓t’ |=Sc). Therefore, we have that M  Sc. Thus, statement 

(a) is true.  

(b) It is straightforward from Definition 2-3. � 

Note that, M  Sc does not imply M@Sc. Please see section 4 for a counterexample. 

In addition to the above properties, we can also prove the following lemma about the 

relationship between recurrence properties and scenario inclusion. It is useful in this 

paper. The proof is straightforward, thus omitted for the sake of space.  

Lemma 2-2.  

(a) For all MAS M and well-formed scenarios Sc and Sc’, M  Sc and M|=Sc⇒Sc’ 

imply that M  Sc’.  

(b) M@Sc ⇔ for all well-formed scenarios Sc’, M|=Sc→Sc’ implies M|=Sc’⇒Sc. � 

3. Self-Organised Agent Communities 
This section formally specifies various models of self-organizing agent communities in 

SLABS and studies their general properties using Scenario Calculus.  

3.1. The Basic Model of Agent Communities 
In the model of self-organizing communities [17, 18], there are two types of agents: 

members and organizers. Each organizer organizes a community by keeping a registry of 

the members of its community, handling the queries made by the members, and 

collaborating with other communities. Each member is registered only with one organizer 

at any time.  

Each member is interested in a particular category of knowledge and has a certain set 

of knowledge of the same category. When a member registers with an organizer, it 

reports its interested category and the set of knowledge that it has; see Figure 3-1(a), 

where arrows represent the actions taken by an agent and observed by the other.  
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A member R may raise a query about a specific topic tp of its interested category cat. 

This query tp is submitted to the organizer, which will then search for a member in its 

community that knows this topic tp. If such a member is found, say member S, the 

organizer will introduce agent R to the member S together with the query on topic tp. 

Member S will then respond with an answer to the query tp; as shown in Figure 3-1(b). If 

the organizer G cannot find a member that is good at this topic within its community, it 

will ask for help from another organizer chosen at random, say M, by making a query on 

the topic tp of category cat. If M finds a member T in its community that knows the topic, 

it will answer the query and pass the identity of the member T to the organizer G. The 

organizer G will then introduce T to R. The member T will take the same action to answer 

R’s question; as shown in Figure 3-1(c).  

 

(a) Registration 

(b) Raise a question and find answers within a community 

(c) Raise a question and find answers outside a community 

Figure 3-1. Interaction between members and organisers 

 
The structure and behaviors of members and organizers can be formally specified in 

SLABS as follows.  
CASTE Member; 
  ENVIRONMENT organiser: Organiser, All: Member; 
  VAR 
    Category: INTEGER;      (* the category of the agent *) 
    Knowledge: SET_OF INTEGER;   (* a set of topics that it knows *) 
  ACTION 
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    Raise(toWhom: Organiser, category: INTEGER, topic: INTEGER ); 
    Respond(Whom: Member, category: INTEGER, topic: INTEGER ); 
    Register(toWhom: Organiser, category: INTEGER,  
    knowledge: SET OF INTEGER); 
    DeRegister(toWhom: Organiser); 
BEGIN 
  <Initialisation>: 
    [] |−> Category:=x; Knowledge:= S; Score:= y; organiser:= M;  
    Register(organiser, Category, Knowledge), 
           where (x>0)&(y>0)&(S≠∅)&(M∈Organiser); 
  <Query>:   
  [$] |−> Raise(organiser, Category, tp), where (tp ∉ Self. Knowledge); 
  <Respond>:   
  [$] |−> Respond(Raiser, cat, tp);  
     if organiser:[Introduce(Raiser, Self, cat, tp)]; 
END Member; 

 

Note that, the <Query> behavior rule specifies that a member will raise a question on 

any topic of the category at random as far as the member does not know the topic. We 

assume that the non-deterministic behavior is fair, thus it will ask all the questions in any 

order eventually. In other words, if a topic of the category is not in the agent’s knowledge, 

the agent will raise queries on the topic at some time moments in all runs of the system 

although the specific time moments can be random from run to run.  
CASTE Organiser; 
  ENVIRONMENT All: Member, All: Organiser; 
  VAR  
  Registry: SET_OF <member: Member; category: INTEGER;  
        knowledge: SET OF INTEGER>; 
  ACTION 
     Query(org: Organiser; category: INTEGER; topic: INTEGER); 
     Answer(org: Organiser; member: Member; cat, topic: INTEGER); 
     Introduce(whom, toWhom: Member, cat, topic: INTEGER);  
  BEGIN 
   <Initialisation>:   
  [] |−> Registry := {}; 
   <Register>: 
     [$] |-> Registry := Registry + <mb,cat,kn>; 
     if ∃mb∈ Member: [Register(Self, cat, kn)]; 
   <DeRegister>: 
     [$] |−> Registry := Registry − <mb, cat, kn>; 
          if ∃mb∈Member: [DeRegister(Self)];  
     where cat = mb.Category & kn=mb.Knowledge; 
   <Introduce>: 
     [$] |−> Introduce(req, sv, cat, tp);  
     if ∃req∈Member:[Raise(Self, cat, tp)], 
           where ∃sv∈Member.((<sv, cat, knowledges> ∈ Registry)  
           & (tp∈ knowledges)); 
   <Query another community>: 
     [$] |−> Query(org, cat, tp);  
     if ∃req∈Member:[Raise(Self, cat, tp)], 
         where ¬(∃m∈Member.((<m,cat,kn>∈Registry) & (tp∈kn)) 
        & (org∈Organiser); 
   <Answer another community>: 
     [$] |−> Answer(org, sv, cat, tp);  
     if ∃org∈Organiser: [Query(Self, cat, tp)] 
         where ∃m∈Member:(<m,cat,kn>∈Registry &(tp∈kn)) 
   <Introduction to another community>: 
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     [Query(org,cat,tp)]|−>Introduce(mb,m,cat,tp); 
         if ∃org∈Organiser:[Answer(Self,m,cat,tp)]  
      & ∃mb∈Member:[Request(Self,cat,tp)] 
END Organiser. 

 

Obviously, the performance of a world of self-organizing communities heavily 

depends on the configuration that members are grouped into communities. It is more 

efficient if a query raised by a member can be answered within the community. Assume 

that, at the beginning, members are registered with organizers at random. Therefore, the 

efficiency of the system cannot be guaranteed and thus reconfigurations of the 

communities are necessary.  

In systems of self-organizing communities, in order to achieve optimized efficiency, 

agent communities reconfigure themselves through members’ autonomous behaviors in 

moving from one community to another without global information. This is achieved by 

members changing their memberships to the communities. That is, a member deregisters 

from one organizer and then registers with another. In this model, members are 

autonomous to decide when or where to move. It is not controlled by the organizers or 

any global controller of the system.  

Suppose that a member R raises a question on a topic, which is not known by any 

member of its community. While a member T of another community provides a 

successful service of answering R’s question. Then, members T and R will try to be in the 

same community. This can be achieved by either member T moving into member R’s 

community or member R moving into member T’s community. In this paper, we are only 

interested in such decision making rules that only use local information that are available 

from the involved member agents and their organizers rather than global information.  

A simple rule to decide which member will move is that the agent who is in the more 

attractive community will stay while the one who is in the less attractive community will 

move. When the agents calculate a community’s attraction in the same way, it is certain 

that one of them will stay and the other will move, thus they will be together after the 

actions. However, the complexity of the algorithms for self-organizing communities is 

due to the fact that each of these agents may move to another community subsequently. 

The situation is more complicated if agents calculate the attraction differently. In such 

cases, it may happen that both of the requester and the server move to the other 

community simultaneously, thus they may still be separated after taking the actions. A 

key question to be answered in the study of self-organizing communities is whether 

agents’ moving between communities will lead to a globally optimal configuration even 
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if only local information is available.  

The following subsection specifies some variants of agent communities.  

3.2. Variants of Agent Communities 
We classify two types of member agents according to the information used in their 

decision making rules.  

Community attracted members (CAM) use information about the whole community, 

which is available from the organizer. We identify two further sub-types CAM agents as 

follows.  

− CAM-K (Community’s amount of knowledge in the category): The agent measures a 

community’s strength of attraction according to the total amount of knowledge in its 

interested category held by the agents registered with the community.  

− CAM-P (Community’s number of agents in the specific category): The agent 

measures a community’s strength of attraction according to its number of agents in 

the same category. 

The second type of member agents is personality attracted members (PAM), which 

use information about the member agent only.  There are also two sub-types of PAM 

agents.  

− PAM-R (Personal amount of knowledge of the service provider): The agent measures 

a community’s strength of attraction according to the amount of knowledge that the 

specific service provider has in the category.  

− PAM-E (Personal attribute irrelevant to its knowledge): The agent measures a 

community’s strength of attraction according to an attribute of the specific service 

provider, where the attribute is irrelevant to its knowledge.  

Consequently, according to the types of members in the communities, we have the 

five different variants of self-organizing agent community systems as summarized in 

Table 3-1. The formal definitions of the variants will be given later in the paper. 
TABLE 3-1. VARIANTS OF AGENT COMMUNITIES 

Variants 

Type Subtype 
Member 
type(s) Main features 

CAM-K: 
knowledge-

based 
CAM-K

An agent changes its community membership by moving 
into a community that collectively has more knowledge of 
the category.  

CAM: 
Community 

attracted 
members 

CAM-P: 
Population-

based 
CAM-P

An agent changes its community membership by moving 
into a community that has a larger number of agents of the 
category 

PAM: 
Personality PAM-R: 

Rational 
PAM-R

An agent changes its community membership by moving 
into a community that has a member possessing more 
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members knowledge of the category than itself 
attracted 
members 

PAM-E: 
Emotional 
members 

PAM-E
An agent changes its community membership by moving 
into a community that has a member that is more attractive 
than itself 

Hybrid: Hybrid systems 

CAM-K, 
CAM-P, 
PAM-R, 
PAM-E

The system contains members of more than one type. They 
may decide moving to another community according to 
difference rules.  

 

3.3. Basic Properties of Agent Communities 
It is desirable that a system of self-organizing communities demonstrates the dynamic 

behavior that its agents will gradually group into communities that members of the same 

category come together in one group and are registered with the same organizer. In order 

to formally define this phenomenon of system’s dynamic behavior, we first introduce 

some notions and notations.  

For the sake of simplicity, in the sequel, a community that is organized by organizer 

G will be referred to as community G. 

Definition 3-1. (Population) 

The member population of a category C in a community G at a time moment t is 

denoted by Pt
G(C) and defined as follows. 

Pt
G(C)={x∈t Member | x.Category = C & x.Organiser=G}. 

The overall population of the members of a category C in the whole world at time 

moment t is denoted by Pt*(C) and defined as follows.   

Pt
*(C)={x∈t Member | x.Category = C}. � 

Because each member registers with one and only one organizer, we have the 

following lemma.  

Lemma 3-1. For all categories C of knowledge, at all time moment t, we have that Pt
G(C), 

G∈Organiser, is a disjoint partitioning of Pt
*(C), i.e.  

Pt
*(C)= { ( ) }G

t tP C G Organiser∈∪ ,   

and    Pt
G(C)∩ Pt

G’(C)=∅, if G≠G’.  � 

Definition 3-2. (Domain of knowledge) 

The domain of knowledge in category C in a community organized by G at time 

moment t is denoted by Dt
G(C) and defined as follows. 

Dt
G(C)= { . ( )}G

tx Knowledge x P C∈∪ . 

The domain of knowledge of category C in the whole system at time moment t is 
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denoted by Dt
*(C) and defined as follows.  

Dt
*(C)= *{ . ( )}tx Knowledge x P C∈∪  

A category C of knowledge is non-trivial, if Dt
*(C) ≠∅.  � 

Similar to Lemma 3-1, we have the following obvious property of the domains of 

knowledge.  

Lemma 3-2. For all categories C of knowledge, at all time moment t, we have that  

Dt
*(C)= { ( ) }G

t tD C G Organiser∈∪ . � 

However, Dt
G(C), G∈Organiser, may have overlaps.  

Definition 3-3. (Closed world) 

A world of self-organizing communities is closed if no agent is added to or removed 

from the world during an execution. � 

In a closed world, the overall population and the domain of knowledge in the whole 

system do not change with the time. Formally, we have the following lemma.  

Lemma 3-3. In a closed world, we have that for all t, t’∈T,  

Pt
*(C)= Pt’

*(C)  

and  Dt
*(C)= Dt’

*(C).  � 

Thus, in a closed world, the subscripts of t can be omitted. In the sequel, for the sake 

of simplicity, we assume that the world is closed.  

In order to achieve optimal performance, it is desirable that an execution of a self-

organizing community reaches the following scenarios.   

Definition 3-4. (Completeness w.r.t a category) 

At time moment t, a community organized by G is complete with respect to the 

knowledge category C if Dt
G(C)= Dt

*(C), and written Completet
C(G). � 

Note that completeness is a well-formed scenario expression of self-organizing 

communities.  

Definition 3-5. (Maturity) 

A system of self-organizing communities is mature, if for every non-trivial category 

C of knowledge, there is a complete community with respect to C. Formally, a system is 

mature at time moment t, if the following scenario Mature is true at time t.  

Mature ≡ ∀C∈Category.(D*(C)≠∅⇒ ∃G∈Organiser.(CompleteC(G))). � 

Definition 3-6. (Optimal) 

A system of self-organizing communities is optimal, if every member is in a complete 
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community of its category. Formally, a system is optimal at time moment t, if the 

following scenario Optimal is true at time t. 

Optimal ≡ ∀u∈Member.(u∈PG(C)⇒CompleteG(C)), 

where G = u.Organiser and C = u.Category. � 

The following lemma proves the relationship between Mature and Optimal scenarios. 

Lemma 3-4.  

In all worlds M of self-organizing agent communities, we have that  

M|= Optimal ⇒Mature. 

Proof.  

Assume that at time moment t, the system M is in the Optimal scenario. Let C be any 

non-trivial category of knowledge, i.e. D*(C)≠∅.  

By Definition 3-2, there is a member agent u such that u.Category=C. By Lemma 3-1, 

there is an organizer agent G such that u∈PG(C). By Definition 3-6, we have that 

CompleteG(C). Therefore, for any category C there is a community G such that G is 

complete w.r.t. C. By Definition 3-5, we have that at the same time moment t, the system 

is also in the Mature state. Thus, the statement of the lemma follows directly Definition 

2-2. � 

An important property of the self-organizing agent communities is the stability of the 

optimal scenario as proved in the following lemma.  

Lemma 3-5.  

In a closed world, for all systems M of self-organised communities, Optimal is a 

stable scenario. Formally, M@Optimal. 

Proof. By the definition of the behavior rules of members, when a system is in the 

Optimal scenario, no agent will change its membership to its community because all 

queries can be answered locally within the community. � 

Obviously, if a world of self-organizing communities is in the scenario of Optimal, all 

queries will be answered locally within the community. Thus, the performance of the 

system is optimal in this sense. It is desirable that an agent community always reaches the 

optimal state. Unfortunately, not every variant of agent community systems has this 

property. The following sections will study their properties.  

4. Formal Analysis of Recurrence Properties  
In this section, we study the recurrence properties of community formation by formally 

analysing the reachability, stability and convergence of the Mature and Optimal scenarios 
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in various types of agent community systems.  

4.1. Worlds of Agents Attracted by Community Strengths  
In this subsection, we study the model in which a member makes a decision about 

moving according to whether the other community is better than the current one.  

4.1.1. Definition of the models 

Suppose that a member R raises a query on topic tp, which is unknown to all other 

members of its community. Instead, a member T of another community provides a 

successful service to answer R’s query. Then, members T and R will decide whether it 

will move to the other community. In the CAM model, the rule to decide which member 

to move is that the member in the stronger community will stay while the one in the 

weaker community will move. When the strengths of the communities are equal, the 

member that raised the question will move. The specification of the caste CAM is given 

below.  It is a sub-caste of Member; hence it inherits all state variables, actions, 

behaviour rules, and environment from the caste Member.  
CASTE CAM <= Member; 
BEGIN 
  <Move To the Better Community> 
    [$] |−>  DeRegister(organiser); Register(NewOrg); organiser:=NewOrg; 
         if organiser:[Introduce(Self,Buddy,cat,tp)]  
      OR organiser:[Introduce(Buddy,Self,cat,tp)]; 
         where ((Buddy.organiser ≠ Self.organiser)  
       & (NewOrg = Buddy.organiser)  
           & (Buddy.Category = Self.Category) 
     &(StrengthCat(Buddy.organiser)>StrengthCat(Self.organiser)) 
  <Move To the Server’s Community> 
    [$] |−>  DeRegister(organiser); Register(NewOrg); organiser:=NewOrg; 
         if organiser:[Introduce(Self,Buddy,cat,tp)]; 
         where ((Buddy.organiser ≠ Self.organiser)  
      & (NewOrg = Buddy.organiser)  
          & (Buddy.Category = Self.Category) 
      &(StrengthCat(Buddy.organiser)=StrengthCat(Self.organiser)) 
END CAM; 

 

The sub-types of CAM systems differ in the way that the strength of a community is 

defined. For the CAM-K members, the strength is defined as the total amount of 

knowledge of category C known by the members of the community. Formally, the 

function StrengthC(x), x∈Organiser, is defined as follows.   

( ) { . . . }CStrength x y Knowledge y Organiser x y Category C= ∧ =� ∪ . Eq.(0.1) 

In other words, at any time moment t, we have that ( ) ( )C x
tStrength x D C= .  

For CAM-P systems, the attraction strength of a community is the population of 

members of the category C. Formally, the strength function is defined as follows. 
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( ) { . . }CStrength x y y Organiser x y Category C= ∧ =�    Eq. (0.2). 
Equivalently, we have that for CAM-P systems, at all time moments t, 

( ) ( )C x
tStrength x P C= .  

4.1.2. Convergence Properties  

For CAM-K systems, we can prove that completeness with respect to a knowledge 

category is stable.  

Lemma 4-1.   

Let M be a closed world of CAM-K.  

(a) When a community G is complete with respect to category C, its population of 

members of category C will never decrease after that. Formally,  

∀t∈T.(M↓t|=CompleteG(C) ⇒∀t’∈T.(t’>t⇒Pt’
G(C) ⊇Pt

G(C))). 

(b) The state that there exists a community complete with respect to category C is stable. 

Formally, let C be any given category of knowledge. We have that 

CAM-K@(∃G∈Organiser.(CompleteC(G))). 

Proof. 

(a) Assume that at time moment t, A∈Pt
G(C) and CompleteC(G) is true, i.e. community 

G is complete with respect to C. We prove by contradiction that it is impossible that 

at any time moment t’>t, A∉Pt’
G(C). Suppose that A∉Pt’

G(C). There are only two 

possibilities. First, agent A is no longer in the system. This is contradiction to the 

assumption that the system is closed. Second, agent A moved to another community 

H at time moment t’>t. By the definition of CAM-K, it can only be the result of 

applying either the rule <Move to the better community> or the rule <Move to the 

server’s community>. The following proves by contradiction that both rules are not 

applicable.  

Case 1: the rule <Move to the better community> was applied.  

This means that Strength(H) > Strength(G). By Definition 3-4, we have that 

DG(C)=D*(C), because G is complete with respect to C. Hence, Strength(G)=||D*(C) ||≥ 

Strength(H). This is in contradiction to the condition that Strength(H) > Strength(G).  

Case 2: the rule <Move to the server’s community> was applied. 

This means that an agent B of community H≠G provided a service to agent A. Thus, 

the query tp raised by agent A was unable to be answered by any agent in community G 

according to the behaviour rules of caste Member. This means that tp∉DG(C). Since 

tp∈B.Knowledge, and B.Category=A.Category=C, tp∈D*(C). Therefore, DG(C)≠D*(C). 
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This is in contradiction to the condition that G is complete with respect to C.  

Therefore, agent A does not move to any other community at any time moment t’>t. 

Thus, Pt’
G(C) ⊇Pt

G(C), for all t’>t. 

(b) Directly follows the above proof of (a). � 

Lemma 4-2.   

In a closed world, for CAM-K systems, Maturity is stable. Formally, CAM-K @Mature.  

Proof. Directly follows Lemma 4-1. � 

The following lemma proves that CAM-K systems always reach the Optimal scenario.  

Lemma 4-3.   

In a closed world of CAM-K system, we have that 

CAM-K ∀u∈Member.(u∈PG(C)&CompleteG(C)). 
Proof. 

Assume that a member u moves from community G to G’. This must be the result of 

applying either the rule of <Move to the Better Community> or the rule <Move To the 

Server’s Community>. In both cases, we prove that Strentht’
G(C) < Strenghtt’

G’(C) after 

applying the rule.  

Case 1: when the rule <Move to the Better Community> was applied. 

By behavior rule <Move to the Better Community> of the CAM-K caste, when the rule 

is applied at time moment t, we have that Strentht
G(C)< Strenghtt

G’(C). After application 

of the rule, i.e. at time moment t’>t, we have that  

Strentht’
G(C)= || Dt’

G(C) ||  

= || '{ . ( )}G
tx Knowledge x P C∈∪ ||  

= || { . ( ( ) { })}G
tx Knowledge x P C u∈ −∪ ||  

≤ || { . ( )}G
tx Knowledge x P C∈∪ ||  

= Strentht
G(C)  

< Strenghtt
G’(C)  

= || '
'{ . ( )}G

tx Knowledge x P C∈∪ ||  

≤ || '
'{ . ( ( ) { })}G

tx Knowledge x P C u∈ ∪∪ ||  

= || Dt’
G’(C) ||  

= Strenghtt’
G’(C).  

Case 2: when the rule <Move To the Server’s Community> was applied. 

Similar to case 1, we can prove that after applying the rule, we have that Strentht’
G(C) 



Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities 

Revised Version Submitted to MAGS International Journal 24 

< Strenghtt’
G’(C).  

Therefore, the statement is true.  

Note that the function Strength is upper bounded by ||D*(C)|| according to Lemma 3-2. 

Therefore, for each member agent, it can only change community for a finite number of 

times. Because in a closed world, the system can only have a finite number of agents, the 

whole system can only have a finite number of reconfigurations, which are caused by 

member agents changing community. Thus, the scenario transitions have finiteness 

property.  

We now prove that the transitions can only terminate in the scenario Optimal. 

Suppose that community G is not complete with respect to C and there is u∈PG(C) and u 

is of category C. Let tp∈D*(C)−DG(C). Eventually, there will be a member u in 

community G raising a question on topic tp. According to the behaviour rules, there will 

be a member, which is either u or a member v in another community G’ that answers the 

question, move to the community G or G’. As proved above, the stronger community will 

increase its strength. Because the maximum value of Strengtht
G(C)=||D*(C)||, every 

member of category C will eventually move to a community G that Strengtht
G(C)= 

||D*(C)||, i.e. the community G is complete by Definition 3-4.  � 

By Lemma 4-1 and Lemma 4-3, we have the following convergence and stability 

theorem of closed worlds of CAM-K organized communities.    

Theorem 4-1.  

In a closed world, we have that CAM-K Optimal.  

Proof. By Lemma 3-5 and Lemma 4-3, the statement follows Lemma 2-1. (a) 

immediately. � 

Corollary. In a closed world, we have that CAM-K Mature. 

Proof. By Lemma 3-4, we have that Optimal ⇒ Mature. The statement directly follows 

Theorem 4-1 and Lemma 2-2. . �  

For CAM-P systems, unfortunately, the Mature scenario is not stable.  

Lemma 4-4.  

For CAM-P systems, the Mature state is not always stable.  

Proof. Let community G be complete on category C and G’ be incomplete on C but 

contain more members of category C. When a member of G’ raises a query to be 

answered by a member A of G, agent A will move to community G’ and breaks the 

completeness of G. Thus, the system becomes not mature. � 
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However, the Optimal state is still always reachable and stable for CAM-P systems.  

Theorem 4-2.  

In a close world, a CAM-P system will always converge to the Optimal scenario.  

Proof.  

The proof of the theorem is similar to the proof of the Lemma 4-3. The only 

difference is that we replace the function StrengthC(G)= || Dt
G(C) || defined in Eq.(0.1) 

with the function StrengthC(G)= ||Pt
G(C)||. The system will always reach state Optimal, 

because u∈PG(C)→u∈PG’(C) implies that ||Pt
G(C)|| < ||Pt’

G’(C)||. The function ||Pt
G(C)|| is 

also finitely upper bounded. Therefore, Optimal is always reachable.  

Moreover, by Lemma 3-5, the Optimal scenario is stable. Therefore, by Lemma 2-1. , 

the theorem is true. � 

Similar to the Corollary of Theorem 4-1, we have that CAM-P will always converge 

to the Mature scenario although in general the scenario is not stable.  

4.2. World of agents attracted by individual strengths 
In the CAM worlds of organized communities, members change their communities 

driven by the motivation of joining a stronger and better community. A variant of this 

model is that the members change their community because of being attracted by a 

particular member of another community. Such models can be formally defined by 

modifying the behavior rules of <Move to a Better Community> and <Move to the 

Server’s Community>. The following specifies the caste PAM-R whose members decide 

whether to move according to the service provider’s knowledge.  
CASTE PAM-R <= Member; 
BEGING 
  <Attracted by the Buddy’s knowledge> 
    [$] |−> DeRegister(organiser); Register(NewOrg); organiser:=NewOrg; 
          if organiser:[Introduce(Self, Buddy, cat, tp)] OR  
    organiser:[Introduce(Buddy, Self, cat, tp)]; 
          where ((Buddy.organiser ≠ Self.organiser)  
     & (NewOrg = Buddy.organiser)  
             & (Buddy.Category = Self.Category)  
     & (Strength(Buddy)>Strength(Self)) 
  <Move to the Buddy’s community> 
    [$] |−> DeRegister(organiser); Register(NewOrg); organiser:=NewOrg; 
          if organiser:[Introduce(Self, Buddy, cat, tp)]; 
          where ((Buddy.organiser ≠ Self.organiser)  
     & (NewOrg = Buddy.organiser)  
            & (Buddy.Category = Self.Category) 
    & (Strength(Buddy)=Strength(Self)) 
END; 

where the function Strength(x) is defined as ( ) .Strength x x Knowledge= . By doing so, 

the strength of personal attraction is determined by the knowledge of the member. In 

comparison with the following caste PAM-E, this criterion for moving to a community 
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has some rationale, hence the name of the caste PAM-R. 

An alternative definition of personal attractive strength is to introduce an integer 

valued attribute of the member to denote its strength. The value assigned to the attribute 

can be independent of other attributes. The structure and behavior rules of such members 

are formally defined as follows. 
CASTE PAM-E<=Member; 
  VAR AttractiveStrength: INTEGER; 
BEGIN 
  <Attracted by the Buddy’s Beauty> 
    [$] |−>  DeRegister(organiser); Register(NewOrg); organiser:=NewOrg; 
     if (organiser:[Introduce(Self,Buddy,cat,tp)]  
  OR organiser:[Introduce(Buddy,Self,cat,tp)]) 
   & (Buddy∈EmotionalMember); 
     where ((Buddy.organiser ≠ Self.organiser)  
    & (NewOrg = Buddy.organiser)  
            & (Buddy.Category = Self.Category) 
    &(Buddy.AttractiveStrength > Self.AttractiveStrength)) 
  <Move to the Buddy’s community> 
    [$] |−>  DeRegister(organiser); Register(NewOrg); organiser:=NewOrg; 
     If (organiser:[Introduce(Self, Buddy, cat, tp)])  
   & (Buddy∈EmotionalMember); 
     where ((Buddy.organiser ≠ Self.organiser)  
    & (NewOrg = Buddy.organiser)  
            & (Buddy.Category = Self.Category) 
    & (Buddy.AttractiveStrength=Self.AttractiveStrength)) 
END. 

For both PAM-R and PAM-E worlds of self-organizing communities, it is possible 

that the system does not converge to the optimal scenario. The following is a situation of 

PAM-R systems where the optimal scenario is not reachable.  

Example 1. (Three Gurus)  

Let A, B and C∈PAM-R be agents shown in Table 4-1.  

Note that, in this system, the domain of knowledge of category 1 is D*(1) ={1, 2, 3}. 

Therefore, agents A and B will only raise questions about topic 3. Only agent C can 

answer this. When agent C is in the same community of agent A, agent A’s question will 

be answered by C without causing reconfiguration of the communities. If C is not in the 

same community of agent A, agent C will move to the community of agent A since A’s 

attractive strength is greater than C. The same is true for agent B. Therefore, if agents A 

and B are initially registered with different organizers, agent C will keep moving between 

two communities, while agents A and B will not change their registration at all. Table 4-2 

shows a concrete example of a sequence of events and the reconfigurations of the 

communities to illustrate the above analysis.  
TABLE 4-1. THE THREE GURUS AND THE INITIAL STATE 

Agent Category Knowledge Initial organiser Strength= 
||Knowledge|| Domain  D*(1) 

A 1 {1, 2} A.organiser = a 2 {1, 2, 3} 
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B 1 {1, 2} B.organiser = b 2 {1, 2, 3} 

C 1 {3} C.organiser = c 1 {1, 2, 3} 

 

In Table 4-2, column 1 is a sequence of events. Column 2 and 3 show the 

corresponding effects on the configuration of the communities and the states of the 

system after the events, respectively, where A@a stands for that agent A is registered 

with organizer a.  � 

 
TABLE 4-2. EXAMPLE SEQUENCE OF RECONFIGURATIONS  

Event Consequence State after the event 

A: raise(orgA,1, 3) C serves; C move to A’s community A,C@a, B@b,  

B: raise(orgB,1, 3) C serves; C move to B’s community A@a, B,C@b 

C: raise(orgC,1, 1) B serves A@a, B,C@b 

A: raise(orgA,1, 3) C serves; C move to A’s community  A,C@a, B@b 

B: raise(orgB,1, 3) C serves; C move to B’s community A@a, B,C@b 

C: raise(orgC,1, 2) B serves A@a, B,C@b 

…  … 

 

Theorem 4-3. (Non-convergence properties of PAM-R) 

There exists a PAM-R system M of agent communities such that  

(a) M does not always reach the Optimal scenario. Formally, M Optimal is not true. 

(b) M does not converge to the Optimal scenario. Formally, M Optimal is not true. 

(c) The scenario Mature is not stable in M. Formally, M@Mature is not true. 

(d) M does not converge to the Mature scenario. M Mature is not true. 

Proof. 

(a) As shown in Example 1, the Three Gurus system cannot reach the Optimal scenario.  

(b) The Three Gurus system does not converge to the Optimal scenario. If the system 

Three Gurus always converges to the Optimal scenario, by Lemma 2-1. (b) it always 

reaches the Optimal scenario. This contradicts (a). Therefore, statement (b) is true.  

(c) To prove this statement, add agent C’ into the Three Gurus system, where 

C’.Knowledge ={4}. Similar to agent C, C’ will keep moving between A’s 
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community and B’s community. When C and C’ are in the same community of either 

agent A or agent B, the system is in the Mature scenario because, say, A.Knowledge 

∪ C.Knowledge ∪ C’.Knowledge is complete. However, agent C and C’ will move 

to the other community when agent B raises a query on topic 3 or 4. The system will 

then be in a scenario that is not Mature since none of the communities are complete 

with respect to category 1. Therefore, scenario Mature is not stable in this system.  

(d) The system constructed in the proof of (c) above gives a counter-example of 

convergence.  

� 
It is worth noting that, according to Lemma 2-1, the reachability to a scenario Sc is a 

necessary but not sufficient condition of the convergence to Sc. Therefore, in Theorem 

4-3, statement (b) is a consequence of statement (a), but not visa versa. The stability of a 

scenario Sc is neither a necessary nor a sufficient condition of the convergence to the 

scenario Sc. Therefore, in Theorem 4-1, statement (c) and (d) are logically independent of 

each other.  

For PAM-R systems, the Mature scenario is reachable although it is not stable.  

Lemma 4-5.  

Let M be a PAM-R system of agent communities and C be any given non-trivial 

category of knowledge in M. The system M will always reach a scenario that M has a 

community G that is complete with respect to category C. Formally, 

M ∃G.(CompleteG(C)).  

Proof . 

To prove that a scenario Sc is always reachable, it is sufficient to construct a sequence 

of actions that will always lead to the scenario Sc. Based on the assumption that the non-

deterministic choices of actions by the agents are fair, the basic theory of probability 

implies that the sequence of actions will eventually happen with probability approaches 1 

as the time increases. The following proves the lemma by constructing such a sequence 

of actions that will lead to the scenario Mature.  

Let Agents(C) be the set of member agents of category C in the system M. Assume 

that at time moment t, G1, G2, …, Gk are the communities that have at least one member 

of category C. We say that member A of category C in Gi is a leader of Gi for category C, 

if  

∀x∈Pt
Gi(C).(||x.Knowledge|| ≤||A.Knowledge||). 

Note that at any time moment t, for a community Gi that Pt
Gi(C)≠∅, there may be 
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many leaders of category C, but there will always at least one leader. Moreover, at 

different time moments, the leaders of a community may be different because a leader 

may move to another community or an agent of high volume of knowledge may join the 

community and becomes a new leader. In the sequel, we will discuss with respect to a 

given category C. Thus, without any risk of confusion, we omit the reference to category 

C.  

Let Li,t be a leader of Gi at time moment t. Define the leadership strength of a 

community G at time moment t, written LSt(G), to be the volume of knowledge held by a 

leader. Formally,  

LSt(G) = ||LG,t.Knowledge||,  

where LG,t is a leader of G at time moment t. 

We define that, at time moment t, a community G is the strongest community with 

respect to its leadership strength is the community such that for all communities G’, 

LSt(G) ≥ LSt(G’).  

Note that the strongest community with respect to its leadership strength may be not 

unique. The following proof will proceed in two cases. The first case is when the 

strongest community is unique. In this case we proof that the strongest community can 

always reach completeness. The second case is when the strongest community is not 

unique, i.e. when there are two or more strongest communities. We proof that the number 

of strongest communities can always be reduced until there is only one strongest 

community, or one of the strongest community will reach the completeness scenario in 

the attempt to reduce the number of strongest communities.  

Case 1: when the strongest community is unique.  

Let G be the strongest community and let L be a leader of G. By definition of 

strongest community, we have that all other community’s leadership is weaker than G’s 

leader. Therefore, for all agents A of category C in any other community G’, we have that  

||L.Knowledge|| > ||A.Knowledge||.     (*) 

Let q be any topic of category C that is not in the domain of knowledge in community 

G, i.e. q∉Dt
G(C) and q∈ Dt

*(C). When L makes a query on q, there must be an agent A 

from another community G’ that answers the query. Because of (*), according to the 

<Attracted by the Buddy’s knowledge > rule, agent A will join community G after 

answering query q.  

Therefore, after L makes queries on all topics that are not known by agents in its 

community, G becomes complete on category C. Therefore, the system will always reach 

the mature scenario.  
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Case 2: when the strongest community is not unique.  

Let G be any one of the strongest communities and L be a leader of G. The same as in 

the proof of Case 1, L will make queries on topics q that are unknown by members in 

community G.  

If a query on topic q is answered by an agent A that has lower volume of knowledge 

than L, agent A will joint community G according to the rule <Attracted by the Buddy’s 

knowledge >. If the query is answered by an agent A that has the same volume of 

knowledge as L, L will join A’s community according to the rule <Move to the Buddy’s 

community>. Then, a new leader L’ for community G will be selected.  

If the volume of knowledge held by the new leader L’ is less than L, G will no longer 

be a strongest community. Thus, the number of strongest community will be reduced by 

one. If the volume of knowledge held by L’ is equal to that of the old leader L, G is still a 

strongest community, but the number of G’s leaders reduces by one. The new leader L’ 

then carries on make queries until either there is no more knowledge that is unknown by 

community G or the leader is changed to someone that has less volume of knowledge. In 

the former situation, we reach a complete community, thus the statement of the lemma is 

true. In the later case, the number of strongest community reduces by one.  

If the strongest community in the system is still not unique, selecting one of the 

strongest communities and repeating the process above will further reduce the number of 

strongest community until there is only one strongest community. Thus, eventually Case 

1 applies and then the strongest community will reach completeness.  

It is worth noting that in the above proof when a leader L of a strongest community 

moves to another community, the total number of strongest communities in the system 

will not increase. According to the rule <Move to the Buddy’s community>, the agent A 

that answers L’s query must have the same volume of knowledge as the L. By the 

definition of leaders, the leader of A’s community must have at least the same volume of 

knowledge as L. Thus, the leader of A’s community must have at least the same volume 

of knowledge as L. Therefore, since L is a leader of a strongest community, A’s 

community must also be a strongest community already.  

Therefore, the lemma is true.  

� 

Theorem 4-4. (Reachability of Mature Scenario in PAM-R systems) 

For all PAM-R systems M of agent communities, scenario Mature is always reachable. 

Formally, we have that M Mature.  
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Proof. The theorem follows directly from Lemma 4-5 and the fact that for all categories 

C and C’ that C≠C’, the actions taken by agents of category C’ will not affect the 

completeness of communities with respect to category C. � 

It is worth noting that PAM-R is a special case of PAM-E when the following 

condition holds.   

∀X∈PAM-E.(X.AttractiveStrength=||X.Knowledge||) 

Therefore, the non-convergence property proved in Theorem 4-3 is also true for 

PAM-E systems in general. Moreover, the none-convergence property is also true even if 

the attractive strengths are inconsistent with the amount of knowledge possessed by the 

agents.  

Definition 4-1. (Consistency between attractiveness and knowledge) 

In a PAM-E system, we say that the attractive strength is consistent with the volume 

of knowledge, if for all A, B∈Member caste, we have that  

(A.AttractiveStrength > B.AttractiveStrength) ⇔ (||A.Knowledge|| > ||B.Knowledge||).  

Otherwise, we say that the attraction strength is irrelevant to the volume of 

knowledge. � 

The PAM-E system given in Table 4-3 is a system that has irrelevant attraction 

strengths. It is a counterexample of the convergence to the Optimal scenario. A similar 

counterexample of the stability of the Mature scenario can be constructed as in the proof 

of Theorem 4-3(c).  

Theorem 4-5. (Non-convergence properties of PAM-E) 

There exists a PAM-E agent community system M whose agents’ attraction strengths 

are irrelevant to the volume of knowledge such that the following statements are true.  

(a) M does not always reach the scenario Optimal. Formally, M Optimal is not true.  

(b) M does not converge to the Optimal scenario. Formally, M Optimal is not true.  

(c) The scenario Mature is not stable in M. Formally, M@Mature is not true.  

(d) M does not converge to the Mature scenario. Formally, M Mature is not true.  

Proof. The proof is similar to the proof of Theorem 4-3 with the Three Gurus example 

replaced by the system given in Table 4-3. Details are omitted for the sake of space. � 
TABLE 4-3. THREE GURUS OF PAM-E 

Agent Category Knowledge Initial organiser Attractive Strength ||Knowledge|| 

A 1 {1} A.organiser = a 2 1 
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B 1 {1} B.organiser = b  2 1 

C 1 {2, 3} C.organiser = c 1 2 

 
Similar to PAM-R system’s reachability of Mature scenario, we can prove that PAM-

E systems are always reachable to the Mature scenario. 

Theorem 4-6. (Reachability of Mature Scenario in PAM-E systems) 

For all PAM-R systems M of agent communities, scenario Mature is always reachable. 

Formally, we have that M Mature.  

Proof. The proof is very similar to the proofs of Lemma 4-5 and Theorem 4-6. The only 

change is to replace the definition of leadership strength by the following formula LSt(G) 

= ||LG,t.AttractionStrength||, and to replace the phrase ‘volume of knowledge’ by 

‘attraction strength’. � 

4.3. Hybrid worlds 
In this subsection, we study the worlds of organized communities that contain more than 

one type of members.  

In order to enable PAM-E agents to compare their attractive strengths with agents of 

other types, we modify the definition of CAM-K, CAM-P and PAM-R agents by adding 

an Integer type constant state attribute AttractiveStrength.  

The following theorems state that hybrid systems have the same convergence 

properties as PAM-R and PAM-E systems if there is at least on of such members.  

Note that, as proved in Lemma 3-5, The Optimal scenario is stable for all kinds of 

member agents. Therefore, it is still true for hybrid systems. The following theorem 

proves the none-convergence properties of hybrid systems.  

Theorem 4-7. (None-convergence properties of hybrid systems) 

There exists a hybrid system M of agent communities that contains one PAM-R or 

PAM-E agent such that the following statements are true.  

(a) M does not always reach the scenario Optimal. Formally, M Optimal is not true. 

(b) M does not converge to the Optimal scenario. Formally, M Optimal is not true. 

(c) In M, the scenario Mature is not stable. Formally, M@Mature is not true. 

(d) M does not converge to the Mature scenario. Formally, M Mature is not true. 

Proof. 

(a) Let’s construct a counterexample of the reachability. Consider the Three Gurus 



Zhu. H, Wang, F. and Wang, S. On the Convergence of Autonomous Agent Communities 

Revised Version Submitted to MAGS International Journal 33 

system of Example 1. By replacing the caste of agent C in the system with CAM, we 

obtain a proper hybrid system. In this system, once C joins a community of agent A 

or B, it will not change its membership to the community because C is attracted to its 

community which is complete. However, both agents A and B will not change their 

community memberships as proved in Example 1. The system will keep in this state 

rather than further evolves into the optimal scenario. Therefore, the system cannot 

reach the optimal scenario.  

(b) By Lemma 2-1.  and statement (a), such a hybrid system may not converge to the 

Optimal scenario.  

(c) To prove that the scenario Mature is not stable, add the same agent C’ in the proof of 

Theorem 4-3(b) to the counterexample constructed in the proof of (a) above. Assume 

that agents A, C and C’ are registered with the same organiser, they form a complete 

community. The system is therefore in the mature scenario. However, when agent B 

raise a query on topic 4, C’ will move to the community of agent B. the agents A, B, 

C and C’ split into two communities {A, C} and {B, C’}. None of these communities 

are complete. Hence, the system is no longer in the scenario mature. Therefore, 

scenario mature is not stable.  

(d) The counterexample given in the proof of (c) is also a counterexample for the 

convergence. �  

There are some phenomena that may happen in a hybrid system but impossible in any 

of the homogenous systems. For example, in a hybrid system, it is possible that two 

agents swap their communities. That is, it is possible that after inter-community 

communication between agents A of community G and B of community H, agent A 

moves to the community H and B moves to community H. This is impossible in 

homogenous systems because of the design of the rules. The following is a concrete 

example of community swap.  

Example 2. (Swap communities) 

Let agent A be a CAM-K and B be a PAM-E with the initial state given in Table 4-4. 
TABLE 4-4. DEFINITION OF A HYBRID SYSTEM 

Agent Category Knowledge Initial organiser  Attractive Strength ||Knowledge|| 

A 1 {1, 2} A.organiser = G 2 2 

B 1 {3, 4, 5} B.organiser = H  1 3 

 

When agent A raises a question on topic 3, B answers the question. Then, A as a CAM 
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agent decides to move to community H since DH(1)=3>DG(1)=2. Meanwhile, agent B as a 

PAM-E agent decides to move to community G because  

AttractiveStrength(A) = ||A.Knowledge|| = 2 >B.AttractiveStrength = 1. 

Therefore, it leads to the state where A is registered with organizer H and B registered 

with organizer G. The system will carry on swapping communities. Agents A and B will 

never get into the same community. �  

The above example gives another counterexample of hybrid systems’ reachability to 

the Mature and Optimal scenarios. Thus, we have the following theorem. 

Theorem 4-8. (Non-reachability of hybrid system) 

There exists a hybrid system that does not reach the Mature and Optimal scenarios.  

Proof. The system given in Example 2 does not reach Maturity and Optimal scenarios in 

all executions. � 

 

Now, we have proved or disproved all the recurrence properties of the Mature and 

Optimal scenarios for all five types of agent community systems. The results are 

summarized below in Table 4-5.  
TABLE 4-5. RECURRENCE PROPERTIES OF AGENT COMMUNITY FORMATION BEHAVIORS 

Maturity Optimality 
Variant 

Reachability Stability Convergence Reachability Stability Convergence 

CAM-K Yes Yes Yes Yes Yes Yes 

CAM-P Yes No Yes Yes Yes Yes 

PAM-R Yes No No No Yes No 

PAM-E Yes No No No Yes No 

Hybrid No No No No Yes No 

 

5. Experimental Study of Convergence Speed 
To further validate the results obtained above and to study the dynamic behaviours of 

agent communities quantitatively, an experimental study through simulations was also 

conducted. The preliminary results of the experiment have been reported in [48]. This 

section reports the further experiment results.  

5.1. Experiment environment 
To enable the experiments, we developed an experiment environment to simulate the 

execution of agent communities. The tool also provides a graphical user interface to setup 

simulation experiments and to collect data for statistical analysis. Figure 5-1 is the 
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snapshot of its GUI interface.  

 
Figure 5-1. Interface of the experiment environment 

As shown in Figure 5-1, the tool takes four parameters as the input to the agent 

community simulation: 

− k: the number of organizers,  

− m: the total number of member agents in the system,  

− c: the number of categories of knowledge, and  

− s: the size of the knowledge for each category. 

For each given set of parameters, an initial setting of the agent communities is 

generated at random according to the uniform distribution. Thus, each agent is initially 

assigned at random with a category, a non-empty set of topics and an organizer. An initial  

setting is called non-trivial if every organizer has at least one member and every category 

has at least one member. The trivial settings are avoided in random generation of initial 

settings, if possible. Figure 5-2 is a screen snapshot showing on the left an initial setting 

and on the right the setting after several iterations in an execution of the same system. 
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Figure 5-2. Example of initial setting and final setting  

The user can select one of the five types of agent community systems to perform an 

experiment. Two basic types of experiments are supported by the tool. The first is to run 

a system for once and to collect the data of the execution and display them in various 

windows. The second is to repeat the execution on an initial setting for a number of times 

and to collect the data, display the data in a graphic user interface and perform statistical 

analysis of the data.  

In each execution, the algorithm is run for a certain number of iterations determined 

by the user. In each iteration, there is a random number of members to raise questions, 

get their answers if exist, and then to make movement according to the members’ 

behavior rules. Each member only raises one question in one iteration cycle. After each 

iteration cycle, the system’s global state is checked to see if it matches of the scenarios 

Mature or Optimal. The tool also allows the user to set the number of iterations in each 

execution and the number of executions to be repeated on each initial setting. Figure 5-1 

is a screen snapshot that displays the statistical data in the middle of an execution for 

repeating simulation for 100 times.  

5.2. Experimental validation of theoretical results 
To validate the theoretical results presented in section 4, simulation experiments were 

conduected for each of the five types of agent community systems. For each type of the 

systems, 1000 initial settings were generated at random with parameters in the range 
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shown in Table 5-1. The system was run repeatedly for 100 times on each initial setting, 

where each execution iterates for 500 cycles.  
TABLE 5-1. PARAMETER RANGES IN THE SIMULATIONS 

Parameter Range 

k: the number of organizers 2≤k≤100 

m: the total number of member agents in the system 2≤m≤100 

c: the number of categories of knowledge 1≤c≤30 

s: the size of each category of knowledge 2≤s≤30  

 
The experiments confirmed the theoretical results as follows.  

− For a scenario that is theoretically always reachable in a type of agent community 

systems, it is confirmed by experiments if and only if in all runs of the agent 

community system on every initial setting the system is in the scenario after a 

number of iterations.  

− For a scenario that is theoretically not always reachable, the property is confirmed 

if and only if there is an initial setting in which there is at least one run of the agent 

community system that does not reach the scenario in all iterations within the set 

number of iterations.  

− For a scenario that is theoretically stable, the property is confirmed by the 

experiments if and only if, for all initial settings and every execution of the agent 

community system in the setting, the system reaches the scenario after a certain 

number of iterations implies that the system is in the scenario for all iterations after 

that in the same execution.  

− For a scenario that is theoretically not stable, the experiments confirm the property 

if and only if there is at least one initial setting and at least one execution of the 

agent community system in the setting such that the system reaches the scenario at 

a certain iteration and breaks the scenario at an iteration afterwards in the same 

execution.  

It is worth noting that, by systematically conducting repeated experiments using a 

large number of randomly generated initial settings and a large number of random 

executions of the system in each initial setting with a large number of iterations, we can 

gain a high confidence in the results. However, the experimental results are not as 

conclusive as the theoretical proofs for reachability, unreachability, and stability. Only 

non-stability can be conclusively confirmed by observing a witness of the non-stability. 
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Thus, simulation experiments cannot replace formal proofs.  

5.3. Quantitative study of convergence speed 
However, simulation experiments do have their advantages in discovering phenomena 

that were unknown. For example, the simulation experiments with CAM-K systems 

revealed a number of interesting relations between the parameters of agent communities 

and the speed for a community to reach a desired scenario. This section reports the main 

findings of the experiments. 

B. Distributions of convergence time 

A question raised in the experiments is when to stop the execution of an agent 

community. A practical approach is to set a number of iterations the agent community 

will execute. Thus, an experiment is carried out aiming at discovering how fast a CAM-K 

agent community system converges to a scenario. The number of iterations that a system 

needs to reach a scenario is called the convergence time in the sequel.  

 
(a) Average convergence time to reach the Mature scenario 

 
(b) Average convergence time to reach the Optimal scenario 

Figure 5-3. Distributions of convergence times on the same initial setting  

(Parameters: k=50, m=50, c=20, s=30) 

The first experiment is on fixed initial settings generated at random with repeated 

executions for 1000 times. This experiment investigates the impact of random behaviours 
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of agents on the convergence time. Figure 5-3 shows the distributions of convergence 

times for the Mature and Optimal scenarios on fixed initial settings with parameters k=50, 

m=50, c=20, and s=30, respectively, where the x axis is the number of iterations the 

system needs to converge; the y axis is the percentage of the number of executions in 

which the system converges to the scenario in the number of iterations.  

The second experiment is on different initial settings generated at random with the 

same fixed parameters. This experiment investigates the impact of initial settings on 

convergence time. Figure 5-4 shows the distribution of average convergence times on 

each initial settings that were generated with parameters k=50, m=50, c=20, and s=30, 

where the x axis represents the average iterations in which a system converges to the 

scenario, and the y axis is the same as in Figure 5-3. The same pattern of the distributions 

of the average convergence times were observed as shown in Figure 5-4.  

 
(a) Average convergence time to reach the Mature scenario 

 
(b) Average convergence time to reach the Optimal scenario 

Figure 5-4. Distribution of average convergence times on variable initial settings  

(Parameters: k=50, m=50, c=20, s=30) 

The overall average convergence times on fixed and variable initial settings with the 

same parameters k=50, m=50, c=20 and s=30 is presented in Table 5-2. 
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TABLE 5-2 AVERAGE CONVERGENCE TIMES  
 Maturity Optimality 

Experiment  Average 
Value 

Standard 
Deviation 

Average 
Value 

Standard 
Deviation 

Fixed initial setting 8.90 4.03 19.11 15.01 
Variable initial settings 9.85 3.10 10.54 3.28 

 

From the experiment results, we conclude that with very high probability an agent 

community will converge within 100 iterations, if it will converge.  

To explore the relationships between convergence time and various parameters of 

agent communities, we carried out further experiments with CAK-M systems. The results 

are reported below.  

C. The effect of number of organizers 

In the experiment that aims at understanding the effect of the number of organizers on 

convergence time, we fixed the parameters m (the number of members), c (the number of 

categories) and s (the size of each category). The parameter k (number of organizers) 

varied from 2 to m, because when k>m, there must be organizers associated with no 

members, which has no effect on the operation of the system, and thus the initial setting 

is trivial. For each value of k, 100 initial settings were generated at random with the 

uniform distribution, and on each initial setting the agent community system was 

executed repeatedly for 100 times. The average convergence time was then calculated. 

The experiment was carried out for several different the number of categories, i.e. c=1, 5, 

10, 15, 20, and 30.  

 
(a) Average convergence time to reach the Mature scenario 
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(b) Average convergence time to reach the Optimal scenario 

Figure 5-5. Impact of the number k of organizers on convergence time  

(Parameters: m=100, c=1,5,10,20,30, s=30, k varies from 2 to m=100) 

The results are shown in Figure 5-5 shows how the average convergence time 

depends on the number of organizers when the parameters are m=100, s=30, and c=1, 5, 

10, 15, 20 and 30, respectively. In general, when the number of organizers increases, the 

agents in the initial setting are spread to more and more communities. Thus, it takes 

longer to form mature communities and to reach optimal scenarios. This pattern is 

observed for all different numbers of categories.  

D. The effect of number of members 

To study the effect of the number of members on convergence time, we fixed the 

parameters of k (number of organizers), c (the number of categories) and s (the size of 

each category) and let the parameter m (the number of members) vary.  

The particular parameters used in the experiments were: k=100 organizers and the 

size of each category s=30. This experiment is also repeated for several different 

numbers of categories, i.e. for c = 1, 5, 10, 15, 20 and 30. The number of iterations set in 

the experiments was 500. Similar to the experiment reported in sub-section C, 100 initial 

settings were generated at random and on each initial setting the CAKM agent 

community system was executed for 100 times and average convergence time were 

calculated.  

As noted above, an organizer that is initially assigned with no member has no effect 

on the operation of the system. In order to minimize the effect of empty initial organizers 

on statistical results, two strategies were used in the random generation of the initial 

settings according to the value of m. When m>k, at least one member is initially assigned 

to each organizer. When m≤k, each organizer was initially assigned with at most one 
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member.  

 

 
(a) Average convergence time to reach the Mature scenario 

 

 
(b) Average convergence time to reach the Optimal scenario 

Figure 5-6. Impact of the number m of members on convergence time 

(Parameters:  k=10, c=1, 5, 10, 15, 20, 30, and s=30, m varies from 1 to 140).  

Figure 5-6 shows how the average convergence time depends on the numbers of 

members in the system when k=10, s=30, and c=1, 5, 10, 15, 20, and 30. In general, the 

experiments demonstrated that, for both the Mature and Optimal scenarios, the 

convergence time first increases then decreases as the number m of members increases. 

The turning point of a curve on which it changes from increase to decrease depends on 

the number of categories. As shown by the dashed line in Figure 5-6, the larger the value 

of c, the later the turning point.  
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E. The effect of number of categories 

In the experiments to investigate the effect of the number of categories on 

convergence speed, we varied the number c of categories while kept the other parameters 

fixed. Note that, when c>m, there must be a category of knowledge that no agent is 

interested in. Such categories have no effect on the operation of the system. Thus, in the 

experiment, the variable c varied in the range of 1<c<m.  

The experiment shows that, to reach the Mature scenario, with the number c of 

categories increasing, the convergence time first increases, and then decreases. In contrast, 

for the Optimal scenario, that with the number c of categories increasing, the 

convergence time decreases sharply, then increases gently, and at last decreases sharply 

again. Figure 5-7 shows how the average convergence time depends on the number of 

categories when k=100, m=100 and s=30, respectively.  

 
(a) Average convergence time to reach the Mature scenario 

 
(b) Average convergence time to reach the Optimal scenario 

Figure 5-7. Impact of the number of categories on average convergence time 

(Parameters: k=100, m=100 and s=30, c varies from 1 to 100) 

F. The effect of the size of categories 
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In the experiments about the size of categories, we varied the size of categories s 

while kept other parameters fixed. This is again repeated for several different values of c. 

The experiment demonstrated that the average convergence time for both Mature and 

Optimal scenarios increases with the size of the category increasing although the speed is 

different. Figure 5-8 shows how the average convergence time depends on the category 

size when k=100, m=100, and c=1, 5, 10, 15, 20, 30, respectively.  

 
(a) Average convergence time to reach the Mature scenario  

 
(b) Average convergence time to reach the Optimal scenario 

Figure 5-8. Impact of category size on convergence time 

(Parameters:  k=100, m=100, c=1, 5, 10, 15, 20, 30, s varies from 1 to 70) 

 
The main findings of the experiments discussed above are summarized in Table 5-3, 

where ↑ indicates that the convergence time increases with the variable, and ↓ for 

decreasing. 
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TABLE 5-3. RELATIONSHIPS BETWEEN SYSTEM PARAMETERS AND CONVERGENCE TIMES 
Convergence Time Parameter Condition 

Maturity  Optimality 
#Organizers  ↑ ↑ 

m≤k ↑ ↑ 
#Members 

m>k ↑↓ ↑↓ 
#Categories  ↑↓ ↓↑↓ 

Size of Category  ↑ ↑ 

 

6. Conclusion 
In this paper, we formally analyzed the properties of various types of self-organizing 

agent community systems. For each variant, we studied two scenarios. The Maturity 

scenario of community formation is the situation that for each category of knowledge, 

there is a community that contains all the knowledge of the category. The Optimal 

scenario of community formation is the situation where every agent in the system is in a 

community that contains all the knowledge that it is interested in. We formally proved or 

disproved the stability and the reachability of these scenarios in self-organizing 

community formation, and their convergence to such scenarios.  

The properties we have proved in this paper for PAM-R, PAM-E and hybrid systems 

are negative. It is an interesting topic for future work to find the conditions in which a 

system is reachable, stable and convergent to the Mature and/or Optimal scenarios. We 

will also study other variants of community formation algorithms by applying the same 

techniques presented in this paper.  

In the experimental study of convergence speed using simulation, we observed 

interesting, and sometime complicated, patterns of convergence time depending on the 

parameters of the agent community systems. Some of these patterns are difficult to 

explain. It is an interesting topic for future work to provide formal proofs of such patterns.  

Our investigation of agent community formation demonstrated that formal methods 

and simulation techniques are complementary to each other. Simulation helps to discover 

recurring phenomena while formal methods help to prove their recurrences with certainty. 

We believe that this approach can be applied to all studies of emergent behaviours of 

multi-agent systems.   
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