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Summary. Agent technology is widely perceived to be a viable solution for large-
scale industrial and commercial applications in dynamic environments such as the
Internet. However, the lack of rigour and language support in the analysis, specifi-
cation, design and implementation of multi-agent systems has hampered the wide
adoption of agent technology. This paper proposes a model-driven approach to the
development of multi-agent systems. It combines graphic modelling with formal
specification through automated tools . The paper reports an agent-oriented mod-
elling language CAMLE and the automated tools in its modelling environment. Two
aspects of particular importance in the model-driven development methodology are
addressed in this paper. The first is the definition and implementation of consis-
tency constraints on graphic models. The second is the automated transformation
of graphic models into formal specifications.

1 Introduction

Agent technology has long been predicted to be the next mainstream com-
puting paradigm; see, for example, [1, 2, 3]. It is widely perceived to be a
viable solution for large-scale industrial and commercial applications in dy-
namic environments such as the Internet [4]. One of the key factors that
contribute to the progress in software engineering over the past two decades
is the development of language concepts and facilities that directly support
increasingly powerful and natural high-level abstractions with which complex
systems are modelled, analyzed and developed. From software engineering
point of view, one of the most appealing features of agent technology is its
natural way to modularise a complex system in terms of multiple, interact-
ing and autonomous components that have particular objectives to achieve
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[5]. Such modularity achievable by multi-agent systems (MAS) is much more
powerful and natural than any kind of modularity that can be achieved by
existing language facilities such as type, module and class.

However, the research on agent-based systems has been mainly an AI en-
deavour so far. The majority of extant agent applications are developed in
an ad hoc fashion without proper analysis and specification of requirements,
and without systematic verification and validation of the properties of the
implemented systems. We believe that there are two major factors that ham-
per the wide adoption of agent technology in software development. First,
being autonomous, proactive and adaptive, agent-based systems can be very
complicated. They may demonstrate emergent behaviours , which sometimes
are neither designed by the developers nor expected by the users. The new
features of agent-based systems demand new methods for the specification of
agent behaviours and for the verification and validation of their properties to
enable software engineers to develop reliable and trustworthy agent-based sys-
tems. It has been recognised that the lack of rigour is one of the major factors
hampering the wide-scale adoption of agent technology [6]. Second, extant
MAS are mostly developed without a proper language facility that directly
supports the effective and efficient utilisation of the modularity and abstrac-
tion underlying the concept of agents. Due to the lack of language support,
the advantages and merits of agent technology are inevitably overwhelmed
by the inefficiency of the implementations in incompatible languages, and the
high cost and poor productivity due to the unnecessary complexity in design,
coding, debugging and testing at a lower level of abstraction, etc.

In this paper, we propose a model driven approach to the develop-
ment of agent-based systems. It combines graphic modelling of MAS with
implementation-independent formal specifications in order to provide the
rigour in the analysis, specification and design of MAS. The central concept
of the approach is caste, which is a language facility introduced as a natural
evolution of the notion of data type in procedural programming and class in
object-oriented paradigm. It is the classifier of agents. It serves as the template
of agents and the organisational unit of multi-agent systems. This language
facility is intended to bridge the gap between the abstract concepts of agent
and their concrete representations in computer software so that MAS appli-
cations can be developed effectively and efficiently. In this paper, we present
an informal introduction to the modelling language CAMLE, which stands
for Caste-centric Agent-oriented Modelling Language and Environment [7].
We also report an automated modelling environment that supports the users
to construct MAS models at requirements analysis and specification stage in
CAMLE graphical notation with multiple views and at different abstraction
levels. We will focus on two aspects of particular importance in the tool sup-
port to model driven software development. They are the consistency problem
of graphic models and the automation problem of model-based development.
Diagrammatic models in CAMLE serve as a representation of users’ require-
ments and used as the bases for further design and implementation of MAS.
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It is therefore of vital importance to ensure model’s consistency [8]. A set of
consistency constraints are defined on CAMLE models and an automatic con-
sistency checker is designed and implemented to help the detection of incon-
sistency according to the constraints. As in many existing modern modelling
languages that employ the so-called multiple view principle , the information
that specifies one caste of agents is scattered over various diagrams. It is there-
fore desirable to specify each caste of agents in one ‘module’ that contains all
necessary information for its further design and implementation without un-
necessary knowledge of other parts of the system. This is achievable through
an automated tool that transforms graphic models into formal specifications
in SLABS (a Specifictation Language for Agent-Based Systems)[9, 10], which
describes a multi-agent system with a set of specifications of the castes that
the sytem contains.

The remainder of the paper is organised as follows. Section 2 presents the
meta-model of MAS, which is independent of the implementation platforms
and applicable to all types of agent theories and techniques. Section 3 is an
informal introduction to the modelling language CAMLE. Section 4 defines
the consistency constraints on models in CAMLE. Section 5 describes the
algorithms and rules that transform graphic models in CAMLE to formal
specifications in SLABS. Section 6 describes the architecture and main func-
tions of the automated modelling environment and reports the case studies
with the modelling language and environment. Section 7 concludes the paper
with a discussion of the further research.

2 Meta-Model of Multi-Agent Systems

Because the concepts of agents and MAS are controversial, it is worthy spend-
ing a few words to clarify what we mean by agent and MAS and how such
systems work. Generally speaking, a consistent definition of the basic con-
cepts, structures and mechanisms underlying a specific type of systems forms
a conceptual model (sometimes also called meta-model) of these systems. A
conceptual model of MAS, therefore, must answer a set of fundamental ques-
tions about agents and MAS. For example, what is the structure of agent? How
do agents perform their activities? What constitute a MAS? How do agents
in a MAS communicate to each other? How are agents in a MAS organised?
etc.

Our conceptual model can be characterized by a set of pseudo-equations.
Each pseudo-equation answers such a question and thus defines a key feature
of MAS. A formal definition of the model can be found in [9, 10].

Pseudo-equation (1) states that agents are defined as real-time active com-
putational entities that encapsulate data, operations and behaviours, and sit-
uate in their designated environments.

Agent = 〈Data, Operations, Behaviour〉Environment (1)
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Here, data represent an agent’s state. Operations are the actions that the
agent can take . Behaviour is described by a set of rules that determine how
the agent behaves including when and how to take actions and change state in
the context of its designated environment. By encapsulation , we mean that an
agent’s state can only be changed by the agent itself, and the agent can decide
‘when to go’ and ‘whether to say no’ according to an explicitly specified set of
behaviour rules. Fig.1 illustrates the control structure of agent’s behaviour.

Begin
 Initialise state; 
 Loop 
  Perceive the visible actions and states of the agents in its 

environment; 
  Take actions and change state according to the situation in the 

environment and its internal state;  
 end of loop; 

end

Fig. 1. The control structure of agent’s behaviour

There are two fundamental differences between objects and agents in our
conceptual model. First, objects do not contain any explicitly programmed
behaviour rule. Second, objects are open to all computation entities to call its
public methods without any distinction of them. However, as argued in [9],
objects can be considered as agents in a degenerate form. In particular, object
is a special case of agent in the sense that it has a fixed rule of behaviour, i.e.
‘executes the corresponding method when receives a message’. Consequently,
in our conceptual model, a MAS consists of agents and nothing but agents,
as stated in pseudo-equation (2).

MAS = {Agentn}, n ∈ Integer (2)

Notice that, an agent’s state variables and actions are divided into two kinds:
visible ones and invisible (or internal) ones. An agent taking a visible action
can be understood as generating an event that can be perceived by other
agents in the system, while an agent taking an internal action means it gen-
erates an event that can only be perceived by its components, which are also
agents. Similarly, the value of a visible state variable can be obtained by
other agents, while the value of an internal state can only be obtained by its
components. Notice that, our use of the term ‘visibility’ is different from the
traditional concept of scope.

The concept of visibility of an agent’s actions and state variables forms
the basic communication mechanism in our conceptual model. Agents com-
municate with each other by taking visible actions and changing visible state
variables, and by observing other agents’ visible actions and visible states, as
shown in pseudo-equation (3).
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Communication(A → B) = A.Action&B.Observation (3)

However, an agent’s visible action is not necessarily observed by all agents
in the system. It is only observed by those interested in its behaviour and
considering it as a part of their environments. In other words, the environment
of an agent in a MAS at time t is a subset of the agents in the system. As
illustrated in pseudo-equation (4), from a given agent’s point of view, only
those in its environment are visible. In particular, from agent A’s point of
view, agent B is visible means that agent A can perceive the visible actions
taken by agent B and obtain the value of agent B’s visible part of state.

Environmentt(Agent,MAS) ⊆ MAS − {Agent} (4)

To enable our model to deal with open and dynamic environments, we
introduced the concept of ‘designated environment’ , i.e. the environment of
an agent is specified when the agent is designed, but the specification allows
the environment to vary within a certain range. Therefore, the set of agents
in the environment of an agent depends on time, hence, the subscription t
in pseudo-equation (4). The language facility that enables us to achieve the
variation of environment is the concept of caste.

In our conceptual model, the classifier of agents is called caste . Agents are
classified into various castes in the way similar to that data are classified into
types, and objects are classifies into classes. However, different from the notion
of class in object orientation, caste allows dynamic classification. That is, an
agent can change its caste membership (called casteship in the sequel) at run
time. It also allows multiple classifications, i.e. an agent can belong to more
than one caste at the same time. As all classifiers, inheritance relations can
also be specified between castes. As a consequence of multiple classifications,
a caste can inherit more than one caste. Caste is the basic organizational
unit in the design and implementation of MAS. As a modularity language
facility, a caste serves as a template that describes the structure and behaviour
properties of agents. Pseudo-equation (5) states that a caste at time t is a set
of agents that have the same structural and behavioural characteristics.

Castet = {agents|structure & behaviour properties} (5)

The weakness of static object-class relationship in current mainstream object-
oriented programming has been widely recognized. Proposals have been ad-
vanced, for example, to allow objects’ dynamic reclassification [11]. In [12], we
suggested that agents’ ability to dynamically change its roles is represented
by dynamic casteship. In our model, dynamic casteship is an integral part
of agents’ behaviour capability. Agents can have behaviour rules that allow
them to change their castes at run-time autonomously. To change its caste-
ship, an agent takes an action to join a caste or retreat from a caste at run
time. Therefore, which agents are in a caste depends on time even if agents
can be persistent, hence the subscript of t in pseudo-equation (5). We believe
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that this feature allows users to model the real world by MAS naturally and
to maximize the flexibility and power of agent technology.

Moreover, dynamic caste membership enables us to describe agents’ desig-
nated environments in a flexible and effective way. The environment descrip-
tion of an agent (or a caste) defines what kinds of agents are visible. With
the concept of caste, we can describe an environment, for example, as the set
of agents in a number of particular castes. An environment such described
is neither closed, nor fixed, nor totally open. Since agents can change their
casteships dynamically, an agent’s environment may change dynamically as
well. For example, an agent’s environment changes when it joins a caste and
hence the agents in the caste’s environment become visible. The environment
also changes when other agents join the caste in the agent’s environment.

It is worthy noting that the conceptual model defined above is independent
of any implementation platform and applicable to all types of agent theories
and techniques.

3 The CAMLE Modelling Language

In this section, we give an informal introduction to the modelling language
CAMLE and illustrate its uses by a simple example.

3.1 The overall structure of models

CAMLE employs the multi-view principle to model complicated systems.
There are three types of models in CAMLE: caste models, collaboration mod-
els and behaviour models. Each model may consist of one or more diagrams. A
caste model specifies the castes of agents in the system and the relationships
between them, such as the inheritance and whole-part relations. A collabo-
ration model specifies how the agents interact with each other. A behaviour
model specifies how an agent decides it actions and state changes.

A caste is called a compound caste if its agents are composed from a
number of other agents; otherwise, it is called atomic. A MAS can, there-
fore, be considered as a compound agent. For example, as shown in Fig.2(a),
the System is directly composed of castes A and B. Each of them can be
further decomposed into smaller components N1 and N2, and M1 and M2,
respectively. To each compound caste, such as the System, A and B in Fig.2,
a collaboration model and a behaviour model are associated. Atomic castes
only have no collaboration models because they have no components, thus no
internal collaboration.

The overall structure of a system’s collaboration models and behaviour
models can be viewed as a hierarchy, which is isomorphic to the whole-part
relations between castes described in the caste model; see e.g. Fig.2(b).

The following subsections describe each model and discuss their uses in
agent-oriented software development.
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(a) Example of Caste Model with Whole-Part Relations (a) Example of caste model with whole-part relations(a) Example of Caste Model with Whole-Part Relations 

(b) Collaboration Models and Behaviour models (b) Collaboration models and behaviour models

Fig. 2. Overall structure of CAMLE models

3.2 Caste model

We view an information system as an organization that consists of a collection
of agents that stand in certain relationships to one another by being a member
of certain groups and playing certain roles, i.e. in certain castes. They interact
with each other by observing their environments and taking visible actions as
responses. The behaviour of an individual agent in a system is determined
by the ‘roles’ it is playing. An individual agent can change its role in the
system. However, the set of roles and the assignments of responsibilities and
tasks to roles are usually quite stable [13]. Such an organizational structure
of information systems is captured in our caste model.

Fig.3 shows the notation and an example of caste diagrams. A caste dia-
gram identifies the castes in a system and indicates the relationships between
them. In CAMLE, there are three types of relationships on castes represented
in caste models. They are inheritance, aggregation and migration relations.

The inheritance relationship between castes defines sub-groups of the
agents that have special responsibilities and hence additional capabilities and
behaviours. For example, in Fig.3, the members of a university are classified
into three castes: students, faculties and secretaries. Students are further clas-
sified into three sub-castes: undergraduates, postgraduates and PhD students.
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Migration relations specify how agents change their casteships. There are
two kinds of migration relationships: migrate and participate. A migrate re-
lation from caste A to B means that an agent of caste A can retreat from
caste A and join caste B. A participate relation from caste A to B means
that an agent of caste A can join caste B while retaining its casteship of A.
For example, in Fig.3, an undergraduate student may become a postgraduate
after graduation. A postgraduate student may become a PhD student after
graduation or become a faculty member. Each student becomes a member of
the alumni of the university after leaving the university. A faculty member
can become a part time PhD student while remaining employed as a faculty
member. From this model, we can infer that an individual can be a student
and a faculty member at the same time if he/she is a PhD student.

Fig. 3. Caste diagram: notations and example

An aggregate relation specifies a whole-part relationship between agents.
An agent may contain a number of components that are also agents. The
former is called compound agent of the latter. In such a case, there exists
a whole-part relationship between the compound and the component agents,
which is represented through an aggregate relation between castes. We iden-
tify three types of whole-part relationships between agents according to the
ways a component agent is bound to the compound agent and the ways a
compound agent controls its components. The strongest binding between a
compound agent and its components is composition in which the compound
agent is responsible for creation and destruction of its components. If the
compound agent no longer exists, the components will not exist. The weak-
est binding is aggregation, in which the compound and the component are
independent, so that the component agent will not be affected for both its
existence and casteships when the compound agent is destroyed. The third
whole-part relation is called congregation . It means that if the compound
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agent is destroyed, the component agents will still exist, but they will lose
the casteship of the component caste. For example, as shown in Fig.3, a uni-
versity consists of a number of individuals as its members. If the university
is destroyed, the individuals should still exist. However, they will lose the
membership as the university member. Therefore, the whole-part relationship
between University and University Member is a congregation relation. This
relationship is different from the relationship between a university and its
departments. Departments are components of a university. If a university is
destroyed, its departments will no longer exist. The whole-part relationship
between University and Department is therefore a composition relation. The
composition and aggregation relation is similar to the composition and ag-
gregation in UML , respectively. However, congregation is a novel concept
in modelling languages. It was introduced by CAMLE. There is no similar
counterpart in object oriented modelling languages, such as UML. It has not
been recognized in the research on object-oriented modelling of whole-part
relations; cf. [14]. We believe that it is important for agent-oriented modelling
because of agents’ basic features viz. dynamic casteship.

3.3 Collaboration model

While caste model defines the static architecture of MAS, collaboration model
defines a dynamic aspect of the MAS organization by capturing the collabo-
ration dependencies and relationships between the agents.

Agents in a MAS collaborate with each other through communication,
which is essential to fulfil the system’s functionality. Such interactions between
agents are captured and represented in a collaboration model. In CAMLE, a
collaboration model is associated to each compound caste and describes the
interactions between the component agents of the compound caste through
a set of collaboration diagrams. Fig.4 gives the notations of collaboration
diagrams.

AgentName: Caste Agent node: CasteName Caste node:

Communication Link: 
Actions

N1 N2

Fig. 4. Notation of collaboration diagram

There are two types of nodes in a collaboration diagram. An agent node
represents a specific agent. A caste node represents any agent in a caste. An
arrow from node A to node B represents that the visible behaviour of agent
A is observed by agent B. Therefore, agent A influences agent B. When agent
B is particularly interested in certain activities of agent A, the activities can
also be annotated to the arrow from A to B.
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Although this model looks similar to the collaboration diagrams in UML,
there are significant differences in the semantics. In OO paradigm, what is
annotated on the arrow from A to B is a method of B. It represents a method
call from object A to object B, and consequently, object B must execute the
method. In contrast, in CAMLE the action annotated on an arrow from A to
B is a visible action of A. Moreover, agent B does not necessarily respond to
agent A’s action. The distinction indicates the shift of modelling focus from
controls represented by the method calls in OO paradigm to collaborations
represented by signalling and observation of visible actions. It fits well with
the autonomous nature of agents.

3.3.1 Scenarios of collaboration

One of the complications in the development of collaboration models is to deal
with agents’ various behaviours in different scenarios. They may take differ-
ent actions, pass around different sequences of messages even communicate
with different agents. Therefore, it is better to describe different scenarios
separately . The collaboration model supports the separation of scenarios by
including a set of collaboration diagrams. Each diagram represents one sce-
nario. In such a scenario-specific collaboration diagram, actions annotated on
arrows can be numbered by their temporal sequence. Fig.5 below gives an
example of scenario-specific collaboration diagram. It describes the collabo-
rations of an undergraduate student with his/her personal tutor, the faculty
members who give lectures and the PhD students who are practical class
tutors.

lectures and the PhD students who are practical class tutors.   

Fig. 5. An example of scenario-specific collaboration diagram

In addition to scenario-specific collaboration diagrams, a general collabo-
ration diagram is also associated to each compound caste to give an overall
picture of the communications between all the component agents by describ-
ing all visible actions that the component agents may take and all possible
observers of the actions. Fig.6 describes the communications within a depart-
ment between various agents.
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3.3.2 Refinement of collaboration models

The modelling language supports modelling complex systems at various levels
of abstraction. Models of coarse granularity at a high level of abstraction can
be refined into more detailed fine granularity models. At the top level, a sys-
tem can be viewed as an agent that interacts with users and/or other systems
in its external environment. This system can be decomposed into a number of
subsystems interacting with each other. A sub-system can also be viewed as an
agent and further decomposed. As analysis deepens, a hierarchical structure
of the system emerges. In this way, the compound agent has its functionality
decomposed through the decomposition of its structure. Such a refinement
can be carried on until the problem is specified adequately in detail. Thus, a
collaboration model at system level that specifies the boundaries of the ap-
plication can be eventually refined into a hierarchy of collaboration models
at various abstraction levels. Of course, the hierarchical structure of collab-
oration diagrams can also be used for bottom-up design and composition of
existing components to form a system.

composition of existing components to form a system.  

Fig. 6. An example of general collaboration diagram

Fig.7 gives an example of general collaboration diagram that refines the
caste Dept Office. In this diagram, the agents in the castes of Student and
Faculty as well as a specific agent called Dept Head in the caste of Faculty
form the environment of the caste Dept Office. Therefore, they are visible for
the component agents of the caste.
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caste Dept Office. Therefore, they are visible for the component agents of the caste.   

Fig. 7. An example of general collaboration diagram that refines a caste

3.4 Behaviour model

While caste and collaboration models describe MAS at the macro-level from
the perspective of an external observer, behaviour model adopts the internal
or first-person view of each agent. It describes an agent’s dynamic behaviour
in terms of how it acts in certain scenarios of the environment at the micro-
level. A behaviour model consists of two kinds of diagrams: scenario diagrams
and behaviour diagrams.

3.4.1 Scenario diagrams

We believe that each agent’s perception of its environment should be explic-
itly specified when modelling its behaviour. From an agent’s point of view,
the situation of its environment is characterized by what is observable by the
agent. In other words, a scenario is defined by the sequences of visible actions
taken by the agents in its environment. Scenario diagrams identify and de-
scribe the typical situations that the agent must respond to. In Fig.8 below,
part (a) shows the layout of scenario diagrams and part (b) shows the layout
of swim lanes.

The swimmer(s) of a swim lane can be in one of the following forms.
(a) ∀x ∈ C, where C is a caste and x is a bounded variable. It means all
agents of caste C take the same sequence of actions specified in the swim lane.
(b)∃x ∈ C, where C is a caste and x is a bounded variable. It means there is
at least one agent in caste C that takes the sequence of actions specified in
the swim lane. (c) α ∈ C, where α is an agent in caste C. It means that agent
α takes the sequence of actions specified in the swim lane.
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and part (b) shows the layout of swim lanes.  

Swimmer(s)

Action 1 

Action 2 

Action K 

(b) The layout of swim lanes 

Scenario Name 

Swim 

Lane 1 

Swim 

Lane N
…

Logic connection network  

(a) The layout of scenario diagrams 

Fig. 8. Format of scenario diagram

& or ¬ Logic connective nodes  

Logic links connect logic connective nodes 

Single action node: the agent takes action Act with parameters p1,…pn

at time t . 
Act(p1,…pn)t:

Repetitive action node: the agent takes action Act repetitively starting 

at time t, where R-Exp defines the number of repetitions of the action.  Act(p1,…pn)

R-Exp 

t:

Continuous state assertion node: the agent’s state satisfies the 

predicate for a continuous period of time starting from t, where the 

period satisfies the expression C-Exp.

t:
C-Exp

Predicate

Temporal order between events: event B is after event A, while there 

may be other events between them, where T-Exp is the constraints on 

the time gap between the events. 
BA T-Exp

T-Exp
A B

Temporal order between events: event B is immediately after event A,

where T-Exp is the constraint on the time gap between event A and B.

State assertion node: the agent’s state satisfies the predicate at time t.t: Predicate

Fig. 9. Notations of scenario diagram

Fig.9 depicts the notations to specify visible events by nodes and temporal
ordering by arrows in scenario diagrams, as well as logic connective nodes and
links for the combination of situations.

For example, Fig.10 describes a scenario where Greenspan announces that
the interest rate will decrease by 0.25 points and all stock market analysts
recommend buy Microsoft’s share.

3.4.2 Behaviour diagrams

A behaviour diagram is associated to a caste to define a set of behaviour rules
for the agents of the caste. The notation of behaviour diagrams includes the
notation of scenario diagrams plus those in Fig.11.

A behaviour diagram contains event nodes linked together by the tempo-
ral ordering arrows as in scenario diagrams to specify the agent’s previous
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Fig. 10. Example of scenario diagram 

Bully_Market 

Greenspan All A: Stock_ Market_Analyst

NewRate(−, 0.25) Recommend(Buy, Microsoft) 

&

Fig. 10. Example of scenario diagram
in Fig. 10.

Scenario

Action arrow: link from behaviour rule’s transition bar to result event.

Transition bar: conflux of scenario, precondition and previous events as

premise of behavior rule. 

Precondition node: give the precondition of an event.Precondition

Scenario node: a scenario identifier, or a detailed scenario description.

Fig. 11. Notation for behaviour diagrams

behaviour pattern. A transition bar with a conflux of scenario, precondition
and previous pattern and followed by an event node indicates that when the
agent’s behaviour matches the previous pattern and the system is in the sce-
nario and the precondition is true, the event specified by the event node under
the transition bar will be taken by the agent. In a behaviour diagram, a refer-
ence to a scenario indicated by a scenario node can be replaced by a scenario
diagram if it improves the readability.

For example, the behaviour diagram in Fig.12 defines the behaviour of an
undergraduate student. It states that if the student is in the final year and the
average grade is ‘A’, he/she may request a reference from the personal tutor
for the application of a graduate course. If the personal tutor agrees to be a
referee, the student may apply for a graduate course. If the department office
offers a position in a graduate course, the student will join the Graduates
caste and retreat from the Undergraduates caste.

4 Consistency Constraints on the Models

Consistency constraints are the conditions on the uses of diagrammatic no-
tations, variables and names, types and symbols so that a set of well-formed
diagrams can be regarded as a meaningful model. These conditions are usually
related to the semantics of the diagrams. However, in order to enable the au-
tomated checking of a model effectively and efficiently, consistency constraints
often have to be simplified and represented as syntactic rules.
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Fig. 12. An example of behaviour diagram

A typical example of such a consistency constraint is that the same identi-
fier that occurs at different places must refer to the same entity and an entity
should be referred to by the same identifier even if it occurs at different places
in the model. This rule cannot be mechanically checked directly. Instead of
checking the consistency against this rule directly, we check a set of syntac-
tical rules that represents the consistency in some more concrete forms. For
example, we can use one model as the declaration of all entities and check
all other occurrences of identifiers against the declaration. An alternative ap-
proach is to check if the entities referred to by the same identifier have the
same features. Such rules are necessary conditions of the consistency rather
than sufficient ones. However, well-defined consistency conditions can signifi-
cantly improve the quality of models just like type compatibility checking in
programming languages can detect programming errors.

In this section we define the consistency constraints for the CAMLE lan-
guage. These constraints are classified into two types. Intra-model consistency
constraints are those conditions that only involve the diagrams of the same
type. Inter-model constraints involve more than one type of diagrams.

4.1 Intra-model consistency

4.1.1 Constraints on caste models

As discussed in section 3.2, a caste diagram defines the castes in the system
and three kinds of relationships between them: inheritance, aggregation and
migration. A well-formed caste diagram must satisfy the following conditions.
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Constraint (1a) A caste diagram defines a naming space. In this naming
space each node defines a caste with a unique name.
Constraint (1b) Each link defines a binary relation on castes by linking two
nodes in the diagram.
Constraint (1c) An inheritance relation and a migration relation must be
associated to two different caste nodes.
Constraint (1d) Inheritance relations must not form any loops in a caste
diagram.

Aggregation and migration relations are allowed to form loops. It is not
required for an aggregation relation to be associated to different caste nodes.

4.1.2 Constraints on collaboration models

A collaboration model may contain a number of collaboration diagrams in-
cluding a general collaboration diagram (GCD) and a set of scenario-specific
collaboration diagrams (SCD). A GCD serves as a declaration of what castes
and their instance agents are involved in the collaborations, while SCDs de-
fine the details of the collaboration protocols in various scenarios. Each SCD
specifies a linear sequence of actions taken by the agents in a specific scenario
of collaboration. To be well-formed a collaboration diagram must satisfy the
following conditions.
Constraint (2a) A caste or agent node in a collaboration diagram must have
a unique name.
Constraint (2b) The number assigned to an action must be unique, if any.

Let G be a GCD, S be the set of SCD and D ∈ S be any given SCD.
Let ANode(X), CNode(X) and Node(X) denote the set of agent nodes, the
set of caste nodes and the set of all nodes in the collaboration diagram X,
respectively. Let CName(x) denote the caste name of a node x. The nodes and
arrows in G and those in S must satisfy the following consistency conditions.
Constraint (2c) Every agent node in the GCD G must appear in at least
one SCD. Formally,

∀n ∈ ANode(G).∃D ∈ S.(n ∈ ANode(D)) (6)

Constraint (2d) A caste node in the GCD must appear at least once in a
SCD as either a caste node or an agent node representing a specific agent of
the caste. Formally,

∀n ∈ CNode(G).∃D ∈ S.

(n ∈ CNode(D) ∨ ∃n′ ∈ ANode(D).(CName(n′) = CName(n))) (7)

Constraint (2e) Every caste node in a SCD must also appear in the GCD.
Formally,
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∀D ∈ S.∀n ∈ CNode(D).(n ∈ CNode(G)) (8)

Constraint (2f) For every agent node in any SCD, there must be either a
node of the same agent or the caste of the agent in the GCD. Formally,

∀D ∈ S.∀n ∈ ANode(D).
(n ∈ ANode(G) ∨ ∃n′ ∈ CNode(G).(CName(n′) = CName(n))) (9)

Assume that a = Act(p1, p2, ..., pn) is an action associated to an arrow
from node b to c. We call 〈a, b, c〉 an interaction from b to c with action a and
define Action(〈a, b, c〉) = a, Begin(〈a, b, c〉) = b, and End(〈a, b, c〉) = c. Let
Interaction(X) be the set of all interactions in a collaboration diagram X.
Constraint (2g) Every interaction in the GCD must appear in at least one
SCD, where a caste node in GCD can be replaced by an agent node of the
same caste in the SCD. Formally,

∀αInteraction(G).∃D ∈ S.∃β ∈ Interaction(D).
(CName(Begin(α)) = CName(Begin(β))
∧CName(End(α)) = CName(End(β))

∧Action(α) = Action(β)
∧Begin(α) ∈ ANode(G) ⇒ Begin(β) ∈ ANode(D)
∧End(α) ∈ ANode(G) ⇒ End(β) ∈ ANode(D)) (10)

Constraint (2h) Every interaction in any SCD must also be defined in the
GCD. Formally,

∀D ∈ S.∀α ∈ Interaction(D).∃β ∈ Interaction(G).
(CName(Begin(α)) = CName(Begin(β))
∧CName(End(α)) = CName(End(β))

∧Action(α) = Action(β)
∧Begin(α) ∈ CNode(G) ⇒ Begin(β) ∈ CNode(D)
∧End(α) ∈ CNode(G) ⇒ End(β) ∈ CNode(D)) (11)

As discussed in section 3.3.2, CAMLE supports the decomposition of an
agent into a number of component agents in the same way as the analysis of
the whole system. The collaboration among the component agents can also
be defined by a set of collaboration diagrams. Thus, the consistency between
diagrams at different levels in the hierarchy of collaboration models of a sys-
tem must be ensured. Let X be a collaboration diagram for a caste. We use
Env(X) to denote the environment of X, i.e. the set of agent and caste nodes
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on the boarder of X.
Constraint (2i) The environment of a SCD must be identical to the envi-
ronment of the GCD. Formally,

∀D ∈ S.(Env(D) = Env(G)) (12)

For the sake of simplicity, we assume that a collaboration model M satisfies
the consistency constraints within one model discussed above. Therefore, we
can overload the notation Env(X) defined on diagrams to be the environment
of the model, i.e. for a model M and any diagram D in M , define Env(M) =
Env(D), provided that M satisfies condition (2i).

Let C be a compound caste in a collaboration model M , and MC be the
collaboration model for C. That is, MC specifies the collaborations between
C’s components. The environment of C defined in M should be consistent
with the environment description in MC . The following two constraints are
imposed on the models at different levels.

Constraint (2j) The set of agents and castes in C’s environment described
in M must be equal to the set of agents and castes in MC ’s environment
description. Formally,

∀n.(n ∈ Env(MC) ⇔
∃α ∈ Interaction(G).(n = Begin(α) ∧ C = End(α))); (13)

where G is the GCD in M .
Constraint (2k) The interactions that C participates as an observer de-
scribed in M must be realized as interactions between environment elements
and C’s components in MC . Formally,

∀α ∈ Interaction(G).∃β ∈ Interaction(GC).
(End(α) = C ⇒ Begin(α) = Begin(β)

∧Action(α) = Action(β)
∧Begin(β) ∈ Env(GC)

∧End(β) ∈ Component(GC)); (14)

where GC is the GCD in MC and Component(GC) is the set of C’s compo-
nents depicted in GC .

4.1.3 Constraints on behaviour models

A behaviour model associated to a caste may contain two kinds of diagrams:
scenario diagrams (SD) and behaviour diagrams (BD). The following well-
formedness conditions are imposed on BDs and SDs.
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Constraint (3a) The temporal order between events must be linear, i.e. the
in-degree and out-degree of an event node must be less than or equal to 1.
Constraint (3b) The logic connective nodes ‘AND’ and ‘OR’ are binary
operators, and ‘NOT’ is unitary operator.
Constraint (3c) A transition bar has at most three nodes directly connected
to it: at most one scenario (may be a logical combination of several scenario
nodes), at most one pre-condition node, and at most one event node.

Each scenario reference node in a BD refers to a scenario defined in a SD.
Therefore, a consistency condition on the relationship between a BD and the
SDs in one behaviour model is defined as follows.
Constraint (3d) The set of scenarios referred to in a BD by using scenario
reference nodes is a subset of the scenarios defined by SDs. Formally, let C be
a caste, DC be the behaviour diagram of caste C, and SC be the set of scenario
diagrams of C.

∀n ∈ ScenarioNode(DC).∃S ∈ SC .(Name(n) = Name(S)). (15)

4.2 Inter-model Consistency

This subsection discusses the consistency between different types of models,
viz. the inter-model constraints. In the sequel, models are assumed to be
consistent with regard to the intra-model constraints defined above.

4.2.1 Consistency between collaboration models and caste models

Let CD be the set of collaboration diagrams in a collaboration model, and C
the caste model for the system in question.

Constraint (4a) The set of the castes in collaboration model must be a subset
of the castes in caste model. Formally,

∀D ∈ CD.∀n ∈ Node(D).∃n′ ∈ Node(C).(CName(n) = Name(n′)). (16)

It is possible that a caste in the caste model does not appear in any
collaboration diagram. For example, a caste can be an abstract caste, which
has no direct instance agent and any instance of the caste is always an instance
of its sub-caste. The behaviours of the agents of the abstract caste can be
defined by its sub-castes. Consequently, the abstract caste may not occur in
any collaboration diagram.

Let CM be the collection of collaboration models of the system. Let x be
a caste in the system, and Mx be the collaboration model for x. For models
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MA and MB in CM , we say that MB is an immediate refinement of model
MA and write MB /MA, if B is the component caste of caste A. Let Aggr(C)
be the set of aggregation relations in the caste model C.

Constraint (4b) The hierarchical structure of the collaboration models must
be consistent with the whole-part relations between castes defined in caste di-
agram. Formally,

∀MA, MB ∈ CM.(MB / MA ⇒ ∃R ∈ Aggr(C).(R(B, A)) (17)

4.2.2 Consistency between behaviour models and caste models

Due to the existence of inheritance relations, some castes may have no explicit
behaviour definition. Therefore, we have the following consistency conditions
on the relationship between a caste model and the set of behaviour models.

Let BM be the set of behaviour models of a system, and C the caste
model. The caste with a behaviour model X defining its behaviour is denoted
by Caste(X).

Constraint (4c) Each behaviour model B in BM defines the behaviour of a
caste and the caste must be in the caste model. Formally,

∀B ∈ BM.∃n ∈ Node(C).(Caste(B) = n). (18)

In a behaviour model, say, of caste B, the description of scenarios may
refer to the agents in the environment of B. Let Agents(B) be the set of
agents referred to in a behaviour model B, CasteOf(x) the caste of such an
agent.

Constraint (4d) Every agent in a scenario in a behaviour model must have
its caste defined in the caste model. Formally,

∀B ∈ BM.∃a ∈ Agents(B).∃n ∈ Node(C).(CasteOf(a) = Name(n)). (19)

In a caste model, an agent’s change of casteship is described through a
migration relation between the castes. In a behaviour model, an agent’s change
of casteship is defined through actions JOIN(caste), MOV ETO(caste) and
QUIT . Such information in the behaviour model must be consistent with the
caste model.

Constraint (4e) Let BC be the behaviour model for caste C.
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* BC contains an action JOIN(C ′), where C ′ is a caste name, if and only if
there is a participate migration relation from C to C ′ in the caste model.

* If BC contains an action MOV ETO(C ′), where C ′ is a caste name, there
must be a migrate relation from C to C ′ in the caste model.

* If BC contains an action QUIT , there must be a migrate relation from C
to some caste in the caste model.

* If there is a migrate from C to some caste (say C ′) in the caste model,
there must be either a MOV ETO(C ′) or QUIT action in the behaviour
model of C.

By ‘an action in a behaviour model’, we mean a result action of a behaviour
rule, depicted as an action node immediately after a transition bar in a BD.

4.2.3 Consistency between collaboration models and behaviour
models

Both collaboration models and behaviour models define the behaviour of
agents. However, collaboration models define the behaviours of agents from
an inter-agent interaction point of view, while behaviour models are from the
view of agents’ internal activities. Due to the overlap in the information pro-
vided by these two types of models, consistency between them is of particular
importance.

Let Components(C) be the set of C’s component castes.
Let V isibleActions(C) be the set of visible actions of caste C defined in the

collaboration model. Let BX be the behaviour model for caste X, Rules(B)
be the set of rules in the behaviour model B, and Action(r) be the result
action of the rule r.

Constraint (4f) Every visible action of caste C defined in the collaboration
models must occur in the behaviour model of C or at least one of C’s compo-
nents as a result action. Formally,

∀a ∈ V isibleActions(C).
((∃r ∈ Rules(BC).(a = Action(r))

∨(∃M ∈ Components(C).∃r ∈ Rules(BM )).(a = Action(r))) (20)

Let G be a caste or agent that has a communication link to caste C
in the collaboration model. We call G a collaborator of caste C and write
Collaborators(C) to denote the set of C’s collaborators. Let Scenarios(B)
be the set of scenarios used in a behaviour model B, and Ref(Sc) denote the
set of castes or agents that a scenario Sc refers to.

Constraint (4g) For each scenario used in the definition of caste C’s be-
haviour, the agents and/or castes that the scenario refers to must occur in the
collaboration model as C’s collaborators. Formally,
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∀Sc ∈ Scenarios(BC).∀G ∈ Ref(Sc).(G ∈ Collaborators(C)). (21)

Notice that, an actor in a scenario may be specified with qualifier, e.g.
‘∀A : CasteX’, and ‘∃Y : CasteX’. In such cases, the caste CasteX must be
a collaborator of caste C. If the actor of a scenario refers to a specific agent,
i.e. in the form of ‘AgentM : CasteX’, the agent AgentM of caste CasteX
must be a collaborator.

Constraint (4h) The agents and castes referred to in a scenario must be
elements in the environment of the caste described by the collaboration model.
Formally, let C to be the caste described by a behaviour model B.

∀Sc ∈ Scenarios(B).∀G ∈ Ref(Sc).(G ∈ Env(C)), (22)

where Env(X) is the set of caste and agents in X’s environment description.
The collaboration between an agent A of caste C and other agents may

be realized through the collaboration of A’s component agents. Therefore, we
do not require all collaborators of caste C to be referred to in the definition
of caste C’s behaviour.

Let p1, p2, ..., pn be the sequence of actions of a caste C (or an agent of
caste C) described in a scenario Sc. Each pi, i = 1, 2, ..., n, is called a referred
action of caste C in scenario Sc. We write ReferredActions(C, Sc) to denote
the set of all such actions.

Constraint (4i) Every referred action in a scenario used in a behaviour dia-
gram must be a visible action of the caste described by the scenario. Formally,

∀Sc ∈ Scenarios(BC).∀a ∈ ReferredActions(C, Sc).
(a ∈ V isibleActions(C)). (23)

It is not required that all visible actions of a collaborator should be referred
to in the definition of a caste’s behaviour, because the collaboration may be
realized through component agents.

4.3 Discussion

Consistency conditions can play at least two important roles in model-driven
development. First, consistency conditions serves as check points for quality
assurance in modelling process. Violation of consistency conditions indicates
the existence of contradictions in the model. Therefore, automatic consistency
check can help engineers to detect errors at modelling stage, hence prevent er-
rors from being propagated to later stages. Inconsistency may also be caused
by conflict in requirements. Consistency checks on requirement models help
to identify and thereafter to resolve and manage such conflict. Second, in



CAMLE: Caste-Centric Modelling of Multi-Agent Systems 23

model-driven development of software systems, it is desirable to automati-
cally transform one model to another model (maybe partial model), and to
generate code (or code framework) from models. Design and implementation
of such tools must ensure that the transformation rules preserve the models’
meanings. Therefore, consistency between the original and the resultant must
be guaranteed. Consistency conditions provide a means to formally specify
the correctness of the transformation rules.

The consistency constraints defined above have been used for both of the
above purposes in the implementation of CAMLE environment [4]. The consis-
tency constraints defined in this paper are computable and have been directly
implemented in the environment as consistency check tools. Diagnostic in-
formation as the result of the check is recorded to help users to locate and
correct errors. The partial diagram generator in the environment generates
partial models (incomplete diagrams) from existing diagrams to help model
construction. The rules to generate partial models are based on the consis-
tency constraints so that the generated partial diagrams are consistent with
existing ones. Preliminary case studies show that both consistency check and
partial model generation are very helpful to improve the quality of models and
software engineers’ productivity. Besides model construction and consistency
check, another main function of CAMLE environment is to automatically
transform graphic models into the formal specifications in SLABS. Consis-
tency check also simplifies the implementation of the automatic transforma-
tion because less error processing is required.

Well-defined visual notations for modelling software systems’ structures
and behaviours have the advantages of readability and preciseness due to
their semi-formal nature. A common feature of such visual notations is that
multiple views are utilized to model a system’s different aspects and/or at
different levels of abstraction. Since different views emphasise on different
aspects of a system or at different levels of abstraction, consistency between
the views has become a serious problem in the development of models. It is
a crucial quality attribute of software models. It is widely recognised as very
desirable to automatically check the consistency of software models [15, 16].
However, due to the semi-formal nature of modelling languages, the definition
of effective and computable consistency constraints is a difficult and nontrivial
problem [17]. Most existing modelling languages, for example UML , have no
explicitly defined consistency constraints.

The past few years has seen a rapid increase in the research on defining
consistency conditions and implementing consistency check tools for mod-
elling languages, especially for UML [18, 19, 20, 21]. Among the related works
on consistency check, Xlinkit is a flexible tool for checking the consistency of
distributed heterogeneous documents [22]. It comprises a language for express-
ing constraints between such documents, a document management mechanism
and an engine that checks the documents against the constraints. In compari-
son with Xlinkit, our approach is language specific. The direct implementation
of consistency constraints as a part of modelling environment is highly efficient
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and effective in detecting errors. In addition, the explicitly defined constraints
form a base for automatic transformations between models. Formal methods,
such as model checking, have also been used for checking the consistency be-
tween multiple views of software specifications, e.g. in [23, 24]. It requires
translating models into a formal notation as the input to a model checker,
while assumes that syntactic errors have been removed before the translation.
Therefore, to check consistency before translation is still necessary.

5 Automatic Generation of Formal Specifications

As shown in the previous sections, graphic models in the CAMLE notation
are suitable for the representation of users’ requirements. To further develop
MAS in a modular way in which castes are used as the templates of agents
and the basic organisational units of software systems, it is desirable to specify
MAS with modularity. That is, all information required to design and imple-
ment a caste should be specified in one module, but nothing more. However,
in the CAMLE language, the information about a caste is scattered over var-
ious diagrams. This section presents the rules and algorithms that transform
models in CAMLE to formal specifications in SLABS, which provide modular
specifications of MAS.

5.1 The specification language SLABS

SLABS is a model-based specification language with the conceptual model
described in section 2 as its meta-model [9, 10].

A formal specification in SLABS consists of a set of descriptions of castes.
Fig.13 shows the structure of the description of a caste in SLABS. The clause
’C ⇐ C1, C2, ..., Cn’ specifies that caste C inherits the structure, behaviour
and environment descriptions of existing castes C1, C2, ..., Cn. The environ-
ment description explicitly specifies a subset of the agents in the system that
may affect the agent’s behaviour. The state space of an agent is described by
a set of variables with keyword VAR. The set of actions is described by a set
of identifiers with keyword ACTION.

Fig. 13. Caste descriptions in SLABS
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A behaviour rule has the following structure.
BehaviourRule ::=

[〈RuleName〉]Pattern[Prob] → Event,[if Scenario][where PreCond];
A pattern describes the behaviour of an agent by a sequence of observ-

able state changes and actions. In addition to the pattern of individual agents’
behaviour, SLABS also provides the facility of scenario to describe global situ-
ation of the whole system. Informally, a scenario is a set of typical combination
of the behaviours of related agents in the system. The syntax of scenarios is
given below.

Scenario ::= AgentName : Pattern | AtomicPredicate
| ∃[ArithmeticExp]AgentV ar ∈ CasteName : Pattern
| ∀AgentV ar ∈ CasteName : Pattern
| Scenario&Scenario|Scenario ∨ Scenario| Scenario

Pattern ::= [{Event[ ‖ Constraint]/, }]
Event ::= [TimeStamp :][Action][!StateAssertion]
Action ::= AtomicPattern[∧ArithmeticExp]
AtomicPattern ::= $ |∼| ActionV ariable

| ActionIdentifier[({ArithmeticExp})]
TimeStamp ::= ArithmeticExp
An informal definition of the semantics of various forms of scenarios and

patterns is given in Table 1. The following are some examples of scenarios.

∃p ∈ Parties : t2004 : [Nominate(Bush)] ‖ t2004 = (March/2004). (24)

It describes the situation that at least one agent in the caste called Parties
took the action Nominate(Bush) at the time of March 2004.

(µx ∈ V oter : [vote(Bush)] > µx ∈ V oter : [vote(Kerry)]). (25)

It describes the situation that there are more agents in the caste Voter who
took the action of vote(Bush) than those in the caste who took the action of
vote(Kerry).

An important feature of the formal specification language SLABS is that it
provides a modular specification of MAS in which each caste is specified by one
caste description. Each caste description contains all necessary information
about one caste but nothing more. The analysis, design and implementation
of a caste can be based on the caste description without referring to other
units. The modular specifications in SLABS are composable and reusable
[25]. Therefore, it is more suitable to be used for further development of MAS
than graphic models where the specification of a caste is spread over a number
of diagrams due to the multiple view principle.

5.2 The overall transformation algorithm

The following algorithm translates each caste in a CAMLE model into a caste
description in SLABS. Various parts of caste description are generated ac-
cording to the information spread in various models. In the sequel, we assume
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Table 1. Semantics of scenario descriptions

Pattern/Scenario Meaning

$ The wild card, it matches with all actions
∼ The silence event
Action variable It matches an action
P∧k A sequence of k events that match pattern P
Action(a1, · · · , ak) An action takes place with parameters that match (a1, · · · , ak)
!Predicate The state of the agent satisfies the Predicate
[p1, · · · , pn] The previous sequence of events match the patterns p1, · · · , pn

A : P Agent A’s behaviour matches pattern P
∀X ∈ C : P The behaviours of all agents in caste C match pattern P
∃[m]X ∈ C : P There are at least m agents in caste C whose behaviour matches

pattern P . The default value of m is 1
µX ∈ C : P The number of agents in caste C whose behaviour matches P
S1 ∧ S2 Both scenario S1 and scenario S2 are true
S1 ∨ S2 Either scenario S1 or scenario S2 or both are true
∼ S Scenario S is not true

that graphic models are consistent with regards to the consistency constraints
defined in section 4.
ALGORITHM 1. {Overall}

INPUT: 〈CM,CLM, BM〉, /* CM is a caste model,
/* CLM is a collaboration model, and
/* BM is a behaviour model

OUTPUT: {Ci}i∈I , /* Ci is a caste description, i ∈ I.
BEGIN

FOR each node N in caste model CM DO
BEGIN /* Generate a caste description with caste name N
/* Step 1: Generate inheritance clause
IF there is an inheritance arrow from node N to node A in CM ,
THEN A ∈ Ancestors(N);
/* Step 2: Generate environment description

IF there is an arrow from node X to node N in a CD in CLM
THEN

CASE X OF
X is an agent node with label ‘A : CasteName’:

‘A : CasteName′ ∈ Environment(N)
X is a caste node with label ‘CasteName’:

‘All : CasteName′ ∈ Environment(N)
END CASE;

/* Step 3: Generate visible actions and variables
FOR each collaboration model CD in CLM that contains N
DO IF there is an arrow from N to X with ‘Action’ annotated

on the arrow
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THEN ‘Action′ ∈ V isibleAction(N);
END FOR;
/* Step 4: Generate invisible actions and variables
FOR each collaboration diagram of caste N
DO IF there is an arrow from caste N to a component node X

with ‘Action’ annotated on the arrow
THEN ‘Action′ ∈ InvisibleAction(N);

END FOR;
/* Step 5: Generate behaviour rules
GenerateBehaviourRule(BMN ),

/* BMN is the behaviour model of caste N .
END FOR

END ALGORITHM
The generation of castes’ behaviour rules is more complex compared with

other parts of caste’s structure. It is discussed in the next sub-section.

5.3 Generation of behaviour descriptions

Generation of a caste’s behaviour description from a behaviour diagram con-
sists of two main steps. The first is to recognize the rules in a network of
interconnected nodes in the diagram. The second is to generate a behaviour
rule in SLABS syntax from each rule recognized in the first step. The algo-
rithm is as follows.
ALGORITHM 2. {Generate Behaviour Rules};

INPUT: BMN /* a behaviour model for caste N
OUTPUT: R = {ri}i∈I ,

/* a set of behaviour rules in SLABS syntax for caste N
VARIABLE: P = {pi}i∈I , /* a set of rules recognized from BMN

BEGIN
P := RecogniseRules(BMN );
FOR each pi in P DO ri := TranslateRule(pi) END FOR

END ALGORITHM

5.3.1 Recognition of behaviour rules

In a behaviour diagram, several behaviour rules may be depicted indepen-
dently or interconnected. The recognition of behaviour rules is achieved
through an analysis of the diagram’s structure. It converts a diagram into
a set of graphically unconnected rules. Fig.14 shows the structure of rules.

When a behaviour diagram contains several interconnected behaviour rules
such as in Fig.15, the number of the transition bars in the diagram determines
the number of the rules contained in the diagram. For example, three rules can
be recognized from the behaviour diagram given in Fig.12. The recognition
algorithm uses the transition bars in the diagram as boundaries between vari-
ous rules. For instance, in Fig.15 the sequence of event nodes between the first
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Pattern of the 

agent’s previous 

behaviour

Scenario Precondition

Event A1

Event AK

…

Event BL

Event B1

Actions to be 

taken

…

Fig. 14. Structure of behaviour rule in behaviour diagrams

and the second transition bar are the first rule’s result-events. They are also
the second rule’s pre-events. Generally, the event nodes on the path from tran-
sition bar T1 to transition bar T2 are result events of the rule corresponding
to T1. They are also the pattern of the rule corresponding to T2.

the rule corresponding to T2.

Fig. 15. Recognition of rules in behaviour diagrams 

Rule1

Rule2

EventA Scenario1 Precondition1 

EventB 

EventC 

Scenario2 Precondition2 

EventD 

EventE 

Fig. 15. Recognition of rules in behaviour diagrams

5.3.2 Translation of rules into SLABS format

As shown in Fig.16, a behaviour rule defines the cause and effect of an agent’s
behaviour through five parts: (a) a scenario that describes the situation in
the environment, (b) a pattern that describes the agent’s own previous be-
haviour, (c) a pre-condition on the agent’s internal state, (d) a sequence of
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resulting events that specifies the actions to be taken, and (e) a transition bar
that links these parts together. The first three parts, which are connected to
the transition bar through logical and temporal links, constitute the premise
of a rule to define ‘when to go’. The transition bar is connected to one or a
sequence of event nodes, which indicates ’what to do’. Fig.16 gives the rule
for transforming a behaviour rule in diagrammatic notation to SLABS syn-
tax. Fig.17 shows a typical behaviour rule, which governs UN-SC member’s
behaviour in a voting process, and its equivalent form in SLABS syntax.

member’s behaviour in a voting process, and its equivalent form in SLABS syntax.  

Scenario Precondition
Pattern

Events

Pattern |→ Events IF Scenario WHERE Precondition 

Fig. 16. Top level transformation rule

Vote(proposal, vote) 

president: Chair 

Distribute(proposal) 

CallVote(proposal, self) 

$ Vote is appropriate 

to the proposal 

[$] |  Vote(proposal, vote),   

 if president∈ Chair.[Distribute(proposal),$^k, CallVote(proposal, self)]; 

 where (vote is appropriate to the proposal) 

Fig. 17. Example of the transformation of behaviour rules

The translation of the precondition of a behaviour rule from the precon-
dition node in the behaviour diagram is fairly straightforward and the details
are omitted for the sake of space. The translation of scenarios and patterns
deserve a few words.

5.3.3 Transformation rules for behaviour patterns

In a behaviour diagram, a pattern as a list of events in a behaviour rule
is depicted as a set of action nodes or state nodes connected by temporal
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links. Therefore, the formal specification of a pattern can be derived as a
combination of the specifications of the events. Fig.18 illustrates some of the
transformation rules for various kinds of nodes and links.

and links.  

Act(p1,…pn)
R-Exp 

t t: Act(p1,…pn)^R-Exp 

t

C-Exp 

Predicate t: !Predicate^ C-Exp 

EventA EventB [EventA, EventB]

EventA EventB [EventA, $^k, EventB] 

Fig. 18. Transformation rules for nodes and links

5.3.4 Transformation rules for scenarios

A scenario description node consists of three parts: the scenario name, a set of
swimming lanes and a logical connective network comprising logical connective
nodes and links which connect the set of swimming lanes. Fig.19 shows the
transformation rule for swimming lanes, where Qu is a qualifier ∀ or ∃.

Qu A∈ Caste . Pattern  

Qu A: Caste 

Pattern

Fig. 19. Transformation rule for pattern nodes

Fig.20 shows the formal specification generated by the CAMLE tools from
the behaviour diagram given in Fig.12.

5.4 Discussion

Our approach to the development of MAS follows model-driven development
(MDD) point of view. Models are not just supportive documents for facilitat-
ing implementation, but they are also treated as indispensable part of software
artefacts. Model transformation , therefore, is widely recognised as the heart
of MDD. It can serve for various development purposes, such as model refac-
toring [26], PIM-to-PIM and PIM-to-PSM [27], code generation [28], etc.; see
e.g. [29] for a classification of the kinds of transformations that can be per-
formed during MDD activities. Different to the above works, our purpose of
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behaviour diagram given in Fig. 12.  

Fig. 20. An example of automatically generated formal specification

transformation from CAMLE models to SLABS formal specification is for
combining the advantages of informal and formal methods.

In software engineering literature, a number of proposals have been ad-
vanced to combine graphic notation and formal methods, such as the employ-
ment of dual languages and method integration [30]. In our previous work,
an automated tool was developed to translate structured models of software
requirements definitions into Z [31]. A flexible framework to define mappings
from graphic models to formal specifications was proposed in [32]. A prototype
program to convert an adapted form of UML class diagrams into specifica-
tions in the B language was reported in [33]. The work in [34] presented some
schemes of the derivation of B specifications from UML behavioural diagrams.
An alternative approach is to project formal specifications back to diagram-
matic models. For example, techniques were presented in [30] to transform
the integrated formalism to UML diagrams. Another approach is to combine
diagrammatic notation with formal notation in one language. [35] discussed
how UML can be augmented with Z in the Unified Process. The work closely
related to this paper is perhaps that reported in [32], which employed two lan-
guages and defined mappings from front-end notations to formal models. The
customisable framework works with different front-end notations and formal
models. It supports mappings of analysis results obtained on the formal model
back to the front-end notation chosen by the practitioners. In comparison, our
approach is language-specific, but more efficient.
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6 The CAMLE Modelling Environment

Modelling environments containing automated tools can play a significant role
in MDD as discussed in [36] of this book and demonstrated in [37, 38, 26, 39,
28] for the tools that supports various MDD activities. This section gives a
brief description of our automated modelling environment.

6.1 The overall architecture

A software environment to support the process of system analysis and mod-
elling in CAMLE has been designed and implemented. The main functionali-
ties of the environment are:

(1) Model construction. It consists of a set of graphical editors to support
the construction of models and tools for version control and configuration
management.

(2) Model consistency check. It checks if a model satisfies the consistency
constraints defined in section 4.

(3) Automated generation of formal specifications. It provides the function of
transforming graphic models into the corresponding formal specifications
in SLABS.

Fig.21 shows the architecture of the environment.
In addition to the consistency checker and formal specification generator

that have been discussed in detail in section 4 and 5, respectively, the diagram
editor supports the manual editing of models through a graphic user inter-
face. The well-formedness checker ensures that the user entered models are
well-formed. The diagram generator can generate partial models (incomplete
diagrams) from existing diagrams to help users in model construction. The
rules to generate partial models are based on the consistency constraints so
that the generated partial diagrams are consistent with existing ones accord-
ing to the consistency conditions.

6.2 Case studies

A number of systems have been modelled in CAMLE and their formal spec-
ifications in SLABS generated as the case studies of the modelling language
and its modelling environment. The following are these systems.

(1) United Nations’ Security Council. The organisational structure and the
work procedure to pass resolutions were modelled and a formal specifi-
cation of the system in SLABS was generated. Details of the case study
as well as modelling in other agent-oriented modelling notations can be
found on AUML’s website at the URL:http://www.auml.org/.
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Fig. 21 shows the architecture of the environment.  
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Fig. 21. The Architecture of CAMLE Environment

(2) Amalthaea. Amalthaea is an evolutionary multi-agent system developed
at MIT’s Media Lab to help the users to retrieve information from the
Internet [40]. A formal specification of the system was generated from a
model in CAMLE.

(3) University. This is a partial model of the university organisation. The
objective of the case study was not to provide a complete model; instead,
it aims at providing illustrative examples to demonstrate the style of mod-
elling in CAMLE. Examples given in this paper were taken from this case
study.

(4) Web Services. The case study modelled the architecture of web services
and an application of web services on online auctions. A formal specifica-
tion in SLABS of the architecture and application was generated success-
fully. See [41] for more details.

Before the development of modelling language and the environment, a
number of agent-based systems were formally specified in SLABS manually.
These systems include Maes’ personal assistant Maxims [42, 9], the speech-
act theory [43, 44, 9], a simplified communication protocol [25], a distributed
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resource allocation algorithm, an ant colony [9], etc. In comparison with the
systems in the case studies, these systems are less complicated and hence
manageable to write the formal specifications without tool support. The for-
mal specification of Amalthaea system in SLABS was first developed manu-
ally, which met much difficulty due to the complexity of the system. It was
only completed with the help of informal diagrams to organise the ideas [45].
This diagrammatic notation was later developed into the modelling language
CAMLE. Using the modelling language and the automated tool, the system
was modelled without too much difficulty and the formal specification was gen-
erated successfully. We found that the use of the modelling language was very
helpful. It is much more efficient to develop formal specifications through mod-
elling with the help of automated tools than manual approach; especially, the
automated consistency checking facility helped to remove syntax errors in the
models. In the case studies, we found that the CAMLE language was highly
expressive to model information systems’ organisational structures, dynamic
information processing procedures, individual decision making processes, and
so on. The models in CAMLE were easy to understand because they naturally
represent the real world systems.

7 Conclusion

In this paper, we proposed a model-driven approach to the development of
MAS. It combines graphical models with formal specifications through the em-
ployment of automated tools. It is based on a common meta-model of MAS,
which is independent of implementation platforms and applicable to all types
of agent theories and techniques. A modelling language CAMLE was intro-
duced and an automated modelling environment was reported. We addressed
two important issues in model-driven software development of MAS. The first
was the consistency problem of the models with multiple view representations.
We formally defined consistency constraints as a set of computable rules and
implemented them as automated consistency checkers. The second was the au-
tomation problem in model-based development. An automated specification
generator was designed and implemented to transform graphic models into
formal specifications. While graphic models containing a number of diagrams
in various views and at different levels of abstraction are more suitable to
the representation and understanding of users’ requirements involving various
stakeholders, modular formal specifications are more suitable to be used by
software engineers as the bases for further design and implementation of the
specified system. The automated specification generator bridges the gap be-
tween them. Case studies show that the approach is effective and efficient for
the development of multi-agent systems, especially at requirements analysis
and specification and system design stages.

We are further investigating language facilities that directly support effi-
cient implementations of multi-agent systems and the techniques that enable
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graphic models and formal specifications to be automatically transformed into
executable code.
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