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Abstract—Web services are designed to be discovered and
composed dynamically, which implies that testing must also
be done dynamically. This involves both the generation of test
cases and the checking of test results. This paper presents
algorithms for both of these using the technique of algebraic
specification. It focuses in particular on the problem that web
services, when they are third-party, have poor controllability
and observability, and introduces a solution known as monic
floating checkable test cases. A prototype tool has implemented
the proposed testing technique and it is applied to a case study
with a real industry application GoGrid, demonstrating that
the technique is both applicable and feasible.

Keywords-Web Services; Algebraic Specifications; Test Au-
tomation; Test Case Generation; Test Oracle.

I. INTRODUCTION

A major challenge of service-oriented software devel-
opment is to ensure that third-party services dynamically
discovered and composed are semantically correct. This
means that their functions and behaviours are as expected.
Testing is one solution but it must be done on-the-fly and
therefore automatically [1]. Existing methods have not yet
achieved this automation, so this paper proposes a novel
technique called monic algebraic testing.

Section II briefly reviews existing work and identifies the
open problems. Section III introduces the basic concepts of
algebraic specification and algebraic testing, and introduces
a running example, to explain further concepts and illustrate
theorems. Section IV introduces our proposed solution.
Section V gives the algorithms of test case generation.
Section VI reports a case study with GoGrid, a real industrial
RESTful web service. Section VII concludes the paper with
a discussion of future work.

II. RELATED WORK AND THE OPEN PROBLEM

This section reviews related work in the areas of testing
web services, an active area of research for the past decade
[2]-[4], and testing software in general based on algebraic
specifications.

A. Testing Web Services

Most of the existing work on testing web services are
based on definitions in WSDL. Since such definitions are
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purely syntactic and limited to input and output data types,
any testing that uses them as specification cannot ensure
semantic correctness. Some works, on the other hand, are
based on semantic web services (SWS) specifications. These
provide both additional behavioural information and onto-
logical description of the meanings of data and operations
using a domain vocabulary. Such information is useful for
checking the correct sequencing of messages passed between
service requesters and providers, but semantic descriptions
based on ontology are not verifiable for functional correct-
ness [5].

It is widely recognised that formal specifications can
be used for automated software testing [6], enabling the
correctness of a software system and its components to
be verified. A large amount of work on integrating for-
mal methods with software testing has been reported in
the literature [7]. However, relatively little of this work
concerns services, where the standard approach is to derive
formal specifications indirectly by translating from service
descriptions in WSDL, OWL-S and/or BPEL [2]-[4]. Such
translations often require additions to the semantics. This
requires human input so the testing cannot be done on-the-
fly. Where formal specification is applied directly to web
services it is all behaviour-based. Examples include:

o finite state machines and their variants and extensions,
such as EFSMs [8], Stream X-Machines [9], and pro-
tocol state machines (PSMs) [10].

« labelled transition systems and process algebra, such as
symbolic labelled transition systems (STLs) [11].

o various kinds of Petri nets, such as [12]-[14].

The behaviour-based approach, in the context of service
composition, defines valid sequences of service invocations,
but functional correctness cannot be specified this way so we
use algebraic specification instead as it is property-based.

B. Software Testing based on Algebraic Specifications

The algebraic method of specification was first proposed
in the 1970s for abstract data types [15], [16]. Since then
it has been applied to concurrent systems, state-based sys-
tems, software components and service-oriented systems
[17], [18]. The theoretical mathematical foundations have



expanded from initial and final algebras to behavioural
algebras [19] and co-algebras [20], [21]. Both functional and
behavioural properties can thereby be specified and it seems
that this approach may be suitable for web services [5], [22].

Moreover, algebraic specifications make it possible to au-
tomate the whole testing process, including both generating
the test cases and checking the test results. Since its first
introduction in the early 1980s [23], the algebraic testing
technique has been advanced significantly. The most well
know works include:

o Gaudel et al.’s use of Prolog to implement a tool for
testing procedural programs [24],

o Frankl and Doong’s work of LOBAS specification lan-
guage and ASTOQT tool [25], and Hughe’s DAISTISH
system [26] for testing OO software, and

e Zhu et al.’s CASOCC language and CASCAT tool [27],
[28] for Enterprise JavaBeans software components.

o Chen et al’s studies of the theoretical foundations in
the context of object-oriented software [29]-[31]

e Zhu’s study connecting algebraic testing to formal
semantics of specification [32].

However, how to apply this to web services for automated

testing is still an open problem.

C. The Problem

Consider the following test case for an online banking
service.

deposit(acnt, $200); withdraw(acnt, $100); balance(acnt)
= deposit(acnt, $100); balance(acnt)

Existing testing techniques would generate the following
execution sequence.

deposit (acnt, $200);

withdraw (acnt, $100);

integer x:= balance (acnt);

deposit (acnt, $100);

integer y:= balance (acnt);

IF (x=y) THEN "Pass" ELSE "Error" ENDIF

o U W N

However, this sequence is wrong as an implementation of
the test case, because acnt, denoting the state of the web
service, in line 4 is different from acnt in line 1. Existing
solutions to this problem are to have two copies of the
service, one for each side of the equation, or to reset the state
after executing the left side. Unfortunately, neither approach
can be applied to web services, because their third-party
nature means that such copying and resetting operations are
not usually available. Our solution is a new algebraic testing
technique called monic testing.

III. PRELIMINARIES

A. Algebraic Specification and SOFIA Language

1) General Concepts of Algebraic Specifications: An
algebraic specification consists of a signature ¥ and a set
Az of axioms. The signature comprises a set S of sorts

and a set @ of operators. Each sort represents the type of a
software system entity, such as a data item, object, software
component, or even, in our present context of web services,
a message passed between services.

Each operator ¢ € ® is associated with two lists of sorts:
a domain U = s1,- -+ Sp, where n > 0, and a codomain ¥ =
sy, ,s.,, where m > 1. We summarise this as ¢ : @ — ©.

The axioms collectively define the semantics of the opera-
tors, and each one can be either an equation or a conditional
equation. An equation is written in the form 7 = 7/, where
7 and 7' are terms formed by applying the operators to
constants and variables of various sorts. It means that the
equation holds for every possible consistent substitution of
values for the variables. A conditional equation, on the other
hand, is written in the form 7 = 7/, if C, where C is a set
of equations. It means the equation 7 = 7’ holds as above
but only if the values satisfy the condition C.

2) The SOFIA Language: SOFIA, defined in [17], [18],
is an algebraic specification language for service-oriented
systems. Each specification is modular and therefore made
up of one or more units each defining a sort.

A specification in SOFIA is a triple (S, ¥, Ax), where

1) S=(S,>,>>), where S is a finite set of sorts, > and
> are binary relations on S representing the uses and
extends relations on S, respectively, which represent
the two ways in which one unit can be constructed
from another;

2) ¥ = {X;|s € S} is a set of signatures indexed by s,
where Y is called the unit signature of a sort s and
has typed operators whose domain and codomain are
in{zreS|s=zVr=s}

3) Ax = {Axs|s € S} is a finite set of axiom sets
indexed by s, where the semantics of the operators
in ¥, are defined by the set Az, U, Az,

For each s € S, (X5, Ax) is called the specification unit
for sort s and, using BNF notation, has the following syntax.
<Spec unit> ::=

Spec <Sort Name> [<Observability>];

[extends <Sort Names>] [uses <Sort Names>]
<Signature>; [<Axioms>] End

Here, keywords extends and uses indicate that the
sorts being defined are connected by the corresponding
relations of the same name. SOFIA distinguishes two spe-
cialised types of operators: constants and attributes, denoted
by keywords Const and Attr. Any operator that is neither
is denoted by the keyword Operat ion. More formally, let
Qi 81, 8, — 84, -, s, be an operator defined in X.
It is a constant if n = 0, m = 1, and s} = s, but an attribute
ifn>0,s€{s1, - ,sp},and s ¢ {s},---,s,}

Here is a specification unit in SOFIA for a single Integer
stack, running on a server on a network, and accessed by
sending a message for an operation over the network. That
operation changes the internal state and sends a message
back to the service requestor.



Example 1:
1: Spec StackService;
2 uses Integer, Bool, Message;
3: Const: nil;
4: Attr
5: length: Integer;
6: isEmpty: Bool;
7: top: Integer;
8: Operation
9: push (Integer) : Message;
10: pop () : Message;
11: Axiom
12: nil.isEmpty = True;
13: nil.length = 0;
14: For all s: StackService that
15: s.isEmpty = True, if s.length=0;
16: s.isEmpty = False, if s.length>0;
17: s. [pop].length=s.length-1, if s.length>0;
18: End
19: For all x: Integer, s: StackService that
20: s.[push (x)].isEmpty = False;
21: s;push(x) .top = x;
22 s;push (x) ;pop = s;
23: s;push (x) .length = s.length+1;
24: End
25: End

g

Note that signature declarations for operators resemble
those of methods in OO programming languages, in that
push(Integer) : Message is equivalent to this:

push : StackService, Integer — StackService, Message.

Similarly, terms in SOFIA can be written in a so-called
dot format to resemble the expressions of OO programming
languages. For example, the following two conditional equa-
tions are equivalent.

s.isEmpty = False, if s.length >0
tsEmpty(s) = False, if length(s) >0

Moreover, we introduce a further format, the ;-format
which enables us to distinguish the state of a service after an
operation and the response message of the service request.
Let e be a term representing an entity of sort s. Then e.[¢(Z)]
represents the state of e after ¢ has been performed with
parameters &, and e.(Z) represents the reply message. As
a syntactic sugar, we write 7; ¢1(d1); - - ; @k (dy) to denote
T.[¢1(@1)]. - - - [ex(d@x)]. For example, s;push(z);pop de-
notes s.[push(z)].[pop].

Informally, a sort is observable if it has an operation ==
defined on it that can be used to tell if two terms of the
sort are equal. The primitive sorts of SOFIA i.e. Integer,
Boolean, Character, and String are all observable but
many structured datatypes, software components and ser-
vices cannot be checked for equality in this way. Any user-
defined sort that is observable is declared to be so, with an

indicator of which operator plays the role of ==. Defining
observability formally, for an algebraic specification .S, a sort
s is observable, if there is a binary predicate == defined

on s such that for all ground terms 7 and 7’ of sort s,
St 7 =7"if and only if S+ (7 == 7') = true.

B. Algebraic Testing

Algebraic testing is based on the observation that each
ground term of a signature can be interpretted either as a
value or as a sequence of operation invocations. So to check
whether an equation is satisfied, we can simply substitute test
data for each of the variables and then invoke operations to
calculate the left-hand and right-hand sides. If the two are
equal, the software under test is correct on the test case;
if not, there are errors. Researchers have examined how to
select test cases, how to check whether an equation holds
and how to translate a term into a sequence of operations
on the entity under test. We now summarise the existing
techniques.

1) Types of Test Cases: Positive vs Negative: A test case
(7, 7') of ground terms is positive if T and 7’ are equivalent
and negative otherwise [25]. The latter are redundant, how-
ever, because Chen et al. proved that passing all the positive
test cases is sufficient to guarantee the correctness [31].

2) Generation of Test Cases: Normalisation vs Instan-
tiation: There are two approaches for generating positive
test cases. One way is to generate a ground term and then
to use the algebraic specification to rewrite the term into
a normal form, containing constructors and constants. The
original term 7 and its normal form 7’ then form a positive
test case [25]. This approach assumes that the specification
is complete, and requires a tool to support term rewriting.
Another simpler way, with neither of these limitations, is to
substitute every variable in each axiom with a ground term.
Chen et al. [29], [30] proved that both ways are equally
effective.

3) Checking Equality: Observation Context vs Checkable
Test Cases: There are three ways to check a test case
(t =7'") when the sort of 7 and 7’ is not observable. One
way is simply to implement =, making the sort observable.
Another is to test for equality by applying what we call
observation contexts to both sides. An observation context of
sort s is a term 6(x5) of observable sort with one occurrence
of a free variable =, of sort s.

Both of these ways require that an original entity be
copied to give one copy for each side of the equation. This
cannot be done in a component-based system, however, nor
can it for third-party web services. Addressing this problem,
the checkable test case technique of Kong et al. [27], [28]
makes all test cases be of an observable sort by transforming
each traditional test case (7 = 7’) into a set of test cases
{(r.0 = 7'.0) |6(x) € OC(x)}, where OC(x) is the set of
observation contexts of sort s.

4) Validating Test Case: Logic Inference vs Conditional
Test Cases: A test case in the form of a conditional equation
can be validated prior to testing by deciding whether the
conditions are true. This again assumes completeness for the
formal specification and requires a logic inference engine.
Kong et al’s solution to the problem was conditional test



cases to postpone the validation of test cases to runtime
[27], [28].

A conditional test case (7 = 7/,if c¢) is a triple {71, T2, ¢),
where 7 and 75 are ground terms, and the condition c
is a set of checkable equations. To test this, execute the
condition and if it is true, execute each of the ground terms
and compare the results; if it is false, do nothing.

5) Execution of Test Cases: A test case must be translated
into a sequence of invocations of operations on the software
entity under test. Various techniques have been advanced for
testing procedural programs [24], OO programs [25], [26]
and software components [27], [28]. None of them can be
applied immediately to web services because they all assume
an ability to create and initialise arbitrary instances of the
entity, or to copy and store the entity for comparison. Web
services in general, however, can neither be reinitialised or
copied since they may be third-party.

IV. THE PROPOSED APPROACH

We adopt a standard approach of instantiating conditional
checkable positive test cases from axioms but with a few
novelties added. We start with three notions.

o floating test cases, which have terms containing a
variable that represents the state of the entity under
test, can be applied without resetting or initialising that
state and are in contrast to fixed test cases, which are
formed entirely from ground terms;

« controllable sorts, which model entities whose state can
be saved and then recovered, after the execution of a
few operations; and

« monic test cases, which are those that require only one
copy of entity under test since they execute a linear
sequence of operations.

We prove that if a sort is controllable then its checkable
test cases are monic, but if it is uncontrollable then the
test cases may or may not be monic. We have devised an
algorithm to decide this and to generate a monic execution
sequence if one exists. Our case study shows that for one real
industrial example of web services, a significant proportion
(about 20%) of the specification units are uncontrollable.
This necessitates our new technique, which, also shown by
the case study, succeeds in testing all but a few (less than
5%) of the service’s axioms.

In this section we define the three notions more formally
and present the theorems underlying the algorithms for
our technique. Proofs are omitted to save space and the
algorithms themselves are given in the Appendices, but
summarised in Section V.

A. Floating Test Cases
Consider the following axiom of StackService.

Vs : StackService, x : Int.(s; push(x); pop = s) (1)

Existing algebraic testing techniques would generate a test
case by substituting ground terms for variables. For example,
with 2 for x, and nil; push(1) for s, representing an initial
starting state of a stack containing only the element 1, we
obtain the following.

nil; push(1); push(2); pop = nil; push(1) )

To test this we need to initialise the entity. We can do this
either by creating a new instance of the entity and setting it
to a standard initial state, such as the empty stack here, or
by resetting an already existing entity to that initial state.

The ability to perform initialisations is invaluable when
testing for the original authors of a web service but it will not
be made available to its clients because each initialisation
will be global and affect all users. So a client, when testing
a web service before dynamic composition, must use the
current state. If we call this s, then the following is a suitable
test case that pushes 2 onto the stack, pops it off and then
checks that the stack is as it was before the push.

s; push(2); pop = s 3)

We call this a floating test case because it can be applied
to the entity whatever its current state. As a test case, it is
unusual for not using ground terms and in fact it must not
have constants of the same sort as the entity. More formally,

Definition 1: (Fixed and Floating Test Cases)

Given an algebraic specification S, a test case T =
(11, 72,c) for testing an entity of sort s is floating, if it
contains only one variable, which must be of sort s, and
it does not contain any constants of sort s. Test case 7' is
fixed, if it does not contain any variables. O

Example 2: Equ (3) above is a floating test case derived
from the axiom in Eqn (1) and so is Eqn (4) below.

s; push(1); push(2); pop = s; push(1) “)

O

Note that for some axioms only fixed test cases can be
derived. Examples include the axioms nil.isEmpty = T'rue
and nil.length = 0. In general, the following theorem can
be used to determine whether an axiom has floating test
cases.

Theorem 1: (Existence of Floating Test Cases)

An axiom has an instance that is a floating test case
for sort s, if the equation of the axiom has a universally
quantified variable of sort s and it contains no constants of
sort s. U

In the sequel, we say an axiom is floatable for sort s,
if it has an instance that is a floating test case for sort s.
By Theorem 1, we can easily see that the axioms on Line
12 and 13 are not floatable but all the other axioms are.
Similarly, a term for sort s can also be said to be floatable
if it contains only one variable of sort s and no constant
of sort s. Theorem 2 follows the definition of floating test
cases.



Theorem 2: (Construction of Floating Test Cases)
Let Az be a floatable axiom for sort s.

1) An instance T of an axiom Az is a floating test case,
if T' is obtained by substituting every variable of a sort
s’ # s with a ground term and leaving one variable of
sort s as a free variable in the equation of the axiom.

2) T’ is a floating test case, if it is obtained from a
floating test case I’ by substituting a floatable term
of sort s in place of the free variable of sort s in 7.
a

We call test cases obtained by the two methods above
primary and derived floating test cases, respectively.
Example 3: Here are some primary floating test cases
based on the axioms of StackService.
s.isEmpty = False, if s.length > 0 5)
s;pop.length = s.length — 1, if s.length >0 (6)

Here are some derived floating test cases based on them.
s;push(1).isEmpty = False, if s;push(l).length >0 (7)

s; push(1); pop.length = s;push(1).length — 1
if s;push(1).length > 0 8)

O

Note that conditional test cases are not just convenient
but necessary too because often the truth of a condition
cannot be determined statically. Floating test cases can be
checkable, just like fixed test cases are, if all of their
terms are observable. They can be obtained by composing
observation contexts, such as in the following examples,

derived from Equ (4).
z; push(1); push(2); pop.length = z; push(1).length, )
z; push(1); push(2); pop.top = x; push(1).top, (10)
z; push(1); push(2); pop; pop.top = x; push(1); pop.top  (11)

B. Controllable Sort

A major difficulty in testing third-party web services is
lack of controllability, a notion we now formally define. First
note that a floatable term 7 can be written 7(x) to indicate
that z is the variable that appears free in it.

Definition 2: (Controllable Sort) A sort s in algebraic
specification S is controllable if for each floatable term 7(x)
of sort s, there is a pair p,(x) and J,(x) of floatable terms
for sort s such that for all ground terms 6 of sort s, we have
that

S+ 8- (r(pr(9))) = 6,
S+ 7(pr(6)) = 7(6).

We call p.(x) and 0, (z) the recorder and recoverer of
T on sort s, and use Recorders(r) and Recoverers(T) to
denote them, respectively. O

Informally, suppose that a sequence of operations 7 is
applied to an entity in state 6, changing it to a new state
0" = 7(0). If sort s is controllable then applying p, to

0 first, before applying the operations in 7, will make it
possible to recover 6 afterwards by applying d.-. Both p and
& are parameterised by 7 since in general the knowledge of
T is required to define both the recording process and the
corresponding recovery. One special case of a controllable
sort is a recordable sort, where ¢, and p, are independent
of 7 so the subscript 7 can be dropped from the conditions.
Another special case is a reversible sort, where J, does still
depend on T but a recorder p. is not needed.

Definition 3: (Reversible and Recordable Sorts) A sort s
specified in algebraic specification S is reversible if for every
floatable term 7(z), there is a floatable term ¢, such that for
all ground terms 6 we have

St 5.7(0) = 0.

We say that §, is the reverse of T, and write it as 1

A sort s specified in S is recordable, if there are floatable
terms p(x) and §(z) such that for all floatable terms 7(x)
for sort s and ground terms 6 of sort s we have that

S+ o(r(p(6)) =0,
S 1(p(0)) =7(0).

Once again, similar to controllable sorts, p(z) is called
the recorder for sort s and written Recorders, and §(z) is
called the recoverer for sort s and written Recovererg. O

The sorts for primitive datatypes like Integer, Bool,
Character and String are controllable because we can
always copy the values of such entities to save them and
then restore their values no matter how many operations have
been performed on them in the meantime. Formally, for each
floatable term 7(z) of a primitive sort s, where 7 is a ground
term, we can perform (y := z);7(z); (z := y), where y
is an entity of the primitive sort s. The following theorem
states that reversible and recordable are special cases of
controllable.

Theorem 3: If a sort s specified in algebraic specification
S is reversible then it is controllable. In addition, if it is
recordable then it is controllable.O]

As the following example demonstrates with
StackService, a sort can be controllable even if we
cannot copy and save the whole state of the service.

Example 4: (Controllability of Stack Services)

If 7(x) is a floatable term for sort StackService, then it
can be transformed into one of the following two forms.

z; push(a1); push(az); - - - ; push(ag) 12)
Z; pop; pop; - -+ ; pop . (13)
N —

k
In the case of the first form, let

8- () = x; pop; pop; - - - ;pop, and pr(x) = 2.
— —
k
By induction on k, we can prove the two controllability
conditions J,(7(p,(x))) = z and 7(p-(z)) = 7(z) by
applying axioms of StackServices. We can use induction



again to prove these same two equations for the second form.
This time we let

pr(x) = x; (a1 = top); pop; (az := top); pop;
- ; (ag = top); pop; push(ag); - - - ; push(ai),
dr(z) = x; push(ag); - - - ;push(a1) O

The following theorem gives for any controllable sort
the required execution sequences for checkable floating test
cases.

Theorem 4: (Testing A Controllable Sort)

Let S be a given algebraic specification, s be a control-
lable sort, T'= (11 = 79, if c¢) be a checkable floating test
case for sort s, and F an instance of sort s.

E is a correct implementation of specification .S implies
that the following execution of the test case T returns frue.

Begin

1) Invocation sequence of Recorder(c); (*save the state of E*);
2) Invocation sequence of c;

3) Invocation sequence of Recoverer(c); (*restore the state of E*)
4) If result of c is True then

a) Invocation sequence of Recorder(71); (*save the state of E*)

b) Invocation sequence corresponding to 77;

¢) Save the result of 7 to local variable vy;

d) Invocation sequence of Recoverer(ri); (*restore state of
E¥*)

e) Invocation sequence of To;

f) Save the results of 7o to a local variable v2o;

g) Check v1 == va.

End
O

We now illustrate this for StackServices. The following
execution sequence below is for test case (9), where A
denotes the service.

A.push(1l);
Int RB = A.length;

A.pop; (*Reverse to the original statex)
A.push (1) ;

A.push(2);

A.pop;

Int RA = A.length;

Assert (RA == RB);

C. Monic Test Cases

A key feature of the example test execution sequence
we have just seen is that it requires only one instance of
the entity under test so it can be used for testing web
services. The question now is whether we can generate such
an execution sequence when the sort is uncontrollable? We
now define the concept of monic test cases, which are those
that can be implemented by a linear sequence of operation
invocations applied to a single entity of the sort.

Definition 4: (Monic Execution)

Let T be a test case for a sort s specified in a specification
S. A monic execution of T is a linear sequence of operations
that only applies to one instance entity £ of sort s such that
if E is correct on test case 1" with respect to the specification
S then the test execution returns True.

A test case 1 is monic, if it has a monic execution. An
axiom is monic, if it has at least one instance that is a monic
test case.O

Therefore, by Definition 4 and Theorem 4, we have the
following theorem.

Theorem 5: For controllable sorts, all checkable floating
test cases are monic. O

Howeyver, for uncontrollable sorts, test cases and axioms
can be non-monic and even a term can be, as shown in this
example that specifies a sort for lists of numbers.

Example 5: (Non-monic term)

1: Spec List uses Integer;

2: Operation

3: Sorting: List -> List;

4: /* Sort the list«*/

5: Merge: List, List -> List;

6: /* merge 2 sorted lists into 1 sorted listx/
7: Odd: List -> List;

8: /*get the odd elements of the listx/
9: Even: List -> List;

10: /*get the even elements of the listx/
11: Axiom ... End

12: End

The following term cannot be implemented correctly by
a linear sequence of invocations on a single entity of List.

Merge(s.Odd.Sorting, s.Even.Sorting). 14)

O

In the sequel, we say that a term 7(x) is monic if it can be
correctly implemented by a monic execution. The following
theorem gives some properties of monic terms and test cases.

Theorem 6: (Monic Terms and Test Cases)

Let x be a variable of sort s; ¢ be an operation on s; «
and «; be attributes of sort s; d, I;, and 52 be floatable terms
or ground terms that do not change the state of z; and c be
a condition that does not change the state of x.

1) A floatable term 7(z) in one of the forms below is

monic.

z.a(a) (15)

2) If floatable terms 71 (x) and 72 (x) are monic, 71 (72(x))
is also monic.

3) A test case for sort s in the form below is monic.

,z.an(gn)), if c. (16)

@; ¢(@).a(b) = Op(z.ay(b), - -

O

It is worth noting that the majority of axioms that we have
come across in the specification of services and software
components are in the format of (16).

V. ALGORITHMS

Our test case generation process consists of three main
steps:

1) For each axiom to be tested, instantiate it to produce
a set of primary floating test cases;



2) For each of these floating test cases, if the sort is not
observable, generate a set of checkable test cases by
composing them with applicable observation contexts;

3) For each of those test cases, if it is monic, generate a
monic execution sequence.

Step 1 and 2 are based on the theorems given in the
previous section so we will focus here on Step 3.

A. Test Execution Graph

To determine whether a test case is monic and to generate
an execution sequence if it is, we construct a directed graph
to model the state transitions that the test execution will
cause. We therefore call the graph a test execution graph
(TEG).

Definition 5: (Test Execution Graph)

A test execution graph (TEG) for a set of terms
{71, 7} is a finite directed graph G(s) = (I, A), where
N and A are finite sets of nodes and arcs, respectively, such
that

1) N is partitioned into entity nodes /N¢ and operation
nodes N°;ie. N = N UN° and N*NN° = (). These
will be drawn as circles and rectangles respectively.

2) Each node n in N€ is labelled x : s and represents the
state of an entity x of sort s, where x can be either a
variable or a constant and s must be one of the sorts of
the specification. The x can be omitted for nameless
entities that are created at run-time.

3) Each node n in N° is labelled with an operator or an
attribute.

4) AC(N¢x N°)U(N°x N¢). An arc a = (n,n’) €
A represents a data flow from node n to n’ and is
graphically depicted with an arrow from n to n/. O

B. Generation of TEG
Given a checkable floating test case in the form

To="Th, if I =T, ,Tn =Th,

the first step is to generate TEGs for the terms 7; and 7/,
1 = 0,---,n. The algorithm for this is given in Appendix
A.

The second step is connecting these TEGs together by
adding operation nodes labeled with “=="" for checking the
equations and entity nodes of Boolean type to store the
results. The conditions of the test case are then connected to
the equation by adding an operation node IsT'rue between
the Boolean nodes and the start nodes of the equations. The
algorithm for this is given in Appendix B.

The single connected TEG for a test case is then reduced
by repeatedly performing merges until there are no more
applicable merges. The four types of merges are as follows:

1) any two root entity nodes with the same label;

2) any two operation nodes with the same label if their

entry arcs come from the same entity nodes;

3) any two entity nodes with the same label from the
same operation;

4) any two arcs with the same source node and the same
target node.

Example 6: Consider a  sort  RepStack, like
StackService but with an additional operator replace(Int)
that replaces the element on top of the stack with the
parameter supplied. Consider the following test case.

z; push(1); replace(2).top = x; push(2).top, if x.length > 1.

As shown in Fig. 1, three TEGs are constructed: one of
each side of the equation, and one for the condition. They
are then connected by the nodes and edges in blue ink. After
the merging step we finish with the TEG shown in Fig. 2.
0O

x.length>1 x;push(1),replace(2).top x;push(2).top

| 1:int ||x:RepStack| |x:RepStack|| 2:int |

x:RepStack

Figure 1. Test Execution Graphs Generated from Terms and Connected
| 1:int | |x:chStack| | 2:int |
Figure 2. Test Execution Graph Obtained by Merging Common Nodes

Once we have generated a TEG for a test case, we can
determine whether it is monic using the theorem below.

Theorem 7: (Existence of Monic Test Execution)

Let G be a TEG generated from a checkable floating test
case 7. Then T is not monic, if and only if there exists an
entity node d in G such that

1) d is labeled with a sort s that is not controllable, and

2) d links to at least two different operation nodes op;
and op», each linked to a different entity node labelled
with sort s. O



For example, RepStack is no longer controllable due
to the extra operation replace. By Theorem 7, we cannot
generate a monic execution of the test case in Example
6. This is because in the TEG shown in Fig. 2 the start
node labeled with z : RepStack is linked to two operation
nodes that lead to two different entity nodes labeled with
x : RepStack.

C. Generation of Monic Test Sequence

Given a connected and merged TEG for a checkable
floating test case 7', the test execution sequence can be
generated with the algorithm given in Appendix C, which
generates sequences based on cases for entity nodes and
operation nodes, according to these two rules.

Rule 1: For a subset of paths in the form of pattern A shown
in Figure 3, we generate this:

Op1,1(x1); Op1,2(x1);- -+ ;0p1,n, (21);

Op2,1(x2); Op2,2(22); - -+ ; OP2,ny (22);
Opi,1(zx); Opk,2(%k); 5 OPk,ny, (k)5
Op(x1,22,- -+ ,Tk);

’l X1:8; | /l X2:82 |

_ | X1:8) | < <
< S
g < 4 3 1Y E
L | X1:8) l \l X528y |
Figure 3. Pattern A of Paths in Test Execution Graph

Rule 2: For a subset of paths in the form of pattern B shown
in Figure 4, a monic execution sequence can be generated if
(a) the sort s is controllable; or (b) only one of the operation
nodes produces an entity node of sort s.

For case (a), we generate this:

Var y:s;
y = x;0p1,1(2); Op1,2(1); - -+ 5OP1,ny (T1);

x :=y;0p2,1(x); Op2,2(x2); - -+ ; ODP2,ns (w2);
x :=y; Opg,1(2); Opr2(2k); - -+ 5 OPk,ny, (Th);

For case (b), we must make sure the operation node does
not produce two or more entity nodes of sort s. If it does,
the algorithm must terminate with the verdict “not monic”.
If not, call the operation node Opy, 1 and generate this:

Op1,1(); Op1,2(x1); -+ ;Op1,ny (21);
Op2,1(2); Op2,2(22); - -+ ; Op2,ny (%2);

Opg,1(x); Opr,2(xk); -+ 5 OPk yny (k)5

Path B,

X1:8 | | X2:8
\l 1181 [ X282

Figure 4. Pattern B of Paths in Test Execution Graph

VI. CASE STUDY

We have implemented the test case generation technique
outlined above in an automated testing tool and used it in a
case study, designed to demonstrate that it is applicable to
real industrial web services. The RESTful web service we
chose was GoGrid as we had already developed an algebraic
specification for it in previous work [33], [34].

GoGrid is the world’s largest pure-play Infrastructure-
as-a-Service provider specialising in Cloud Infrastructure
solutions. It provides an API with which its customers can
easily and dynamically deploy and manage their applications
and workloads through a programmatic interface.

The GoGrid API has a REST-like query interface and it
has 5 types of common operations: List, Get, Add, Delete
and Edit. These types of operations can be applied to 8
different types of objects: Job, Load balancer, Server, Image,
IP, Passwords, Billing and Utility Option. Some of the
operations are not applicable to all types of objects, while
some objects have additional special operators. Table I gives
the applicable operators for each type of objects.

Table 1
APPLICABLE OPERATORS ON OBJECTS

Object List | Get | Add | Delete | Edit | Other

Load Balancer | Yes Yes | Yes Yes Yes

Server Yes Yes Yes Yes Yes Power

Server image Yes Yes Yes Yes Save,
Restore

Job Yes Yes

1P Yes

Password Yes Yes

Billing Yes

Option Yes




Table II
NUMBER OF UNITS AND AXIOMS IN GOGRID SPECIFICATION

Type of Spec Unit | #Units | #Obs | #Ctrl | #Axm | #FAx
WS Framework 10 10 10 11 4
Message Structures 12 12 12 17 17
Object Structures 11 0 0 8 8
Server Ops 13 12 12 29 29
Server Image Ops 13 12 12 30 30
Load Balancer Ops 11 10 10 28 28
Job Ops 5 5 5 9 9
IP Ops 3 2 2 3 2
Password Ops 5 4 4 5 4
Bill Ops 3 2 2 3 2
Option Ops 3 2 2 3 2
Total 89 71 71 146 135
Table 11T

STATISTICS OF MONIC AXIOMS OF UNCONTROLLABLE ENTITIES

Entity #Axioms | #Monic

Server 14 13

Server Image 11 11

Load Balancer 13 12

Job 6 6

i3 4 4

Password 6 6

Bill 1 1

Option 4 4

Total 59 57

The specification of GoGrid is based on a framework for
specifying RESTful web services. That framework defines
the common structure and features of all RESTful web
services. Examples of this include the structure of HTTP
requests and responses in a set of specification units in
SOFIA. A concrete RESTful web service can be specified
in a number of specification units that extend the framework
units. The whole GoGrid API has been specified in SOFIA.
Table II gives the numbers of specification units in GoGrid
specification. The column #Obs gives the number of speci-
fication units that are observable and the column #Ctrl gives
the number of specification units that are controllable. The
data show that there are a significant proportion (20.2%)
of entities in GoGrid specification that are not controllable.
Moreover, these entities are the GoGrid objects, and there-
fore the most important entities of the web service, so monic
test execution sequences must be generated for them.

Among those entities that are not controllable, 96.6% of
the axioms are monic as shown in Table III, and 92.5% of all
axioms are floating as shown in Table II, where the column
#Axiom gives the total number of axioms in the type of units
and the column #FAx gives the number of floatable axioms.

Therefore, our proposed technique is applicable to a large
proportion of axioms in the specification of web services.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach for generating
test cases for web services using algebraic specifications

written in SOFIA. A case study with a real industrial service
demonstrated the feasibility of the proposed approach.

We are now conducting more experiments to evaluate the
fault detection ability of the monic testing technique. An
observation that we have made in the case study is that,
although there are some axioms that are not monic, these
axioms can be rewritten into one or more equivalent axioms
and thereby become monic. We are further studying how to
transform non-monic axioms into equivalent monic axioms.
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APPENDIX A. ALGORITHM TO GENERATE TEG

Algorithm 1 generates a TEG for a term. Note that, a term
7 must be in the following form.

E;1(@1); 5 on(@n).(q) @1 91(b1) ®2 -+ @ O (bm),

where n,m > 0; E is either a constant C' or a variable
x of sort s; ¢;, ¢ = 1,---,n, are operations or attributes
of sort s; « is an attribute of sort s; ¥;, ¢ = 1,---,m,
are attributes or operations of an imported sort st # s; for
eachi=1,---,m, ®; is either ”;” or ”.”; d;, b and ¢ are

sequences of terms in the above form.

Algorithm 1 TEG(7) : Construction of TEG from Term 7

Input: A term 7 (* 7 must be in the form of (??) *).
Output: I' = (N¢, N°, Ar), where (N© U N°, Ar) is the TEG.
Step 1: (* Initialize *)
N¢ =0; N°=0; Ar = 0;
Step 2: (¥ Process the main term *)
2.1. (*Construct nodes and edges *)
N¢ := {d07 T 7dn+m+l};
(* do and dp4m+1 are called the start and end entity nodes *)

Ne ::{d/17“'7d,+m+1}

Ar:={e1,  ,entm+1}U{e], -+ e 01}, Where
e; = (d;_ 1,dl> fori=1,--- ,n+m+1,

e, = d’d>forz—1 n+m+1;

2.2. (* Label entity nodes *)
if £ = x (* where x is a state variable of sort s *) then
Label entity node do with "x:s
fori=1,--- ,ndo
label d; with ”’x:s”
end for
else (* E = C, where C is a constant of sort s *)
Label entity node do with ”C:s”;

fori=1,---,ndo
label d; with ”Cl,:s” (* where C,, is a new variable *)
end for
end if

Label entity node dn41 with "—:s’; (*where s’ is the result sort of

attribute « *)

fori=n-+1,--- ,n+m—1do

label entity node di; with "—:s;” (¥ where s; is the result sort of
9i *)
end for

Label entity node dy,+m41 with "—:s,,” (¥*where sy, is the result sort
of ¥ *)

2.3. (* Label operation nodes *)

fori=1,--- ,ndo

label operation nodes d; with ¢;;
end for
Label operanon node d!, ., with o
fori=n+2,- n+m+1dolabeldgwith79i;
end for
Step 3: (¥ Progess sub-terms *)
for v € {@;,b;,q} do

'] :=TEG(mt);

N¢ := N°UT7.N¢;

N°:=N°U FT Ne; o,

Ar = Arury. ArU{<d“ d®)} (* d* is the end entity node of term
7¢, d® is the operation node of ¢;, a, or ©; corresponding to subterm
Tt. ¥)
end for
return I'.
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APPENDIX B. ALGORITHM FOR CONNECTING TEGS

Algorithm 2 connects the TEGs of the terms in one test
case into one TEG by adding operator nodes labelled with
”=="and IsTrue and arcs to link them together.

Algorithm 2 ConnectTEGs: Connect TEGs of a Test Case

Input: TEGs (Go, c G, GG, ,G’n).
Output: (N€¢, N°, Ar), where (N€ U N°, Ar) is the TEG.
Step 1. (*Initialisation *)
e n .
No 70 G- o I i no.
N —Ul 0Gi-N UUZ. 0 Gi-N°;
Ar = 0 Gi-Ar UL, G}.Ar;
Step 2. (* Connect Terms for Each Equation *)
for:=0,1,--- ,ndo
N° := N°U{c}}, and label ¢} with operation ==;

N¢ := N¢U{c;} and label c; with label ”-: Bool”;

Ar = Ar U {{c,ci)};

Ar = Ar U {(de;, c})}, where de; is the end entity node of G;.

Ar = Ar U {(de}, c,)}, where de] is the end entity node of G.
end for

Step 3. (* Connect Conditions to Equation )
N° := N°U{c"} and label ¢’ with operation IsTrue;
Ar = Ar U {{c",dso)}, where dsq is the start entity node of Go;
Ar = Ar U {<c”7 d56>}, where dsj) is the start entity node of G{,.
fori=1,--- ,ndo
Ar = ArU {{ci, ) };

end for

APPENDIX C: GENERATE MONOLITHIC CODE

This algorithm is for generating a test execution sequence
from a TEG.

The algorithm uses two queues QE and QOp to recognise
the path structures and control the processing of the nodes
in the TEG. QF is a list of entity nodes to be processed.
It initially contains all start nodes of the conditions and the
entity nodes that have no inward arrows, which are constants
or the state variable node. QQOp is a set of operations to be
processed. Its elements are in the form of (Op, Rs, N Rs),
where Op is an operator node, Rs and N Rs are two lists
of entity nodes representing those operants of Op that have
already processed and not yet processed, respectively.

Table IV lists the functions used in the algorithm.

Table IV
FUNCTIONS USED IN ALGORITHM 3

Function Meaning
Get(Q : List of N€¢) Return the top element of ) and remove it
from Q.

InDegree(xz : N) The in degree of x

OutDegree(x : N) The out degree of «

NextOps(z : N°) {y € N°[(z,y) € Ar}

NextEs(z : N°) {y € N°[3z € N°.((z, 2), (z,y) € Ar)}
OpOutEs(xz : N°) {y € N°[(z,y) € Ar}

OpInEs(x : N°) {y € N°[{y,z) € Ar}

Sort(xz : N€) The sort labeled on x

Object(z : N¢) The object name labeled on z

GenCode(x : String) | Add string x to the end of CodeSeq

NewVar(z : Sort) A new variable identifier of sort




Algorithm 3 GenExecSeq(G): Generate test execution se-
quence from a TEG

Input: (N¢, N° Ar) (* (N©U N, Ar) is the TEG for a test case t. *)
Output: CodeSeq: a monolithic sequence of operation invocations.
1: Var QE: List of N¢;
2: Var QOp: List of (Op, Rs, NRs);
3: Var CE : N€; (* The current entity node to be processed. *)
4: Var COp : N; (* The current operation node to be processed. *)
5: Var EChd : List of N¢;
6: Var OpChd : List of N°;
7: Step 1. (* Initialisation *)
8: QOp :=0;
9: QE := QE + {z € N¢|InDegree(xz) = 0};
10: if Test case t has at least one condition then
11: QFE := QE + {x|z is a start entity node of a condition} ;
12: else
13: QFE := QE + {z|z is a start entity node of the equations}.
14: end if
15: Step 2.
16: CE = Get(QE);
17: while CE # nil do
18: if OutDegree(CE) =0 then

19: GenCode(“Output” + Object(CE));

20: else if OutDegree(CE) =1 then

21: OpChd := NextOps(CE);

22: else if OutDegree(CE) > 1 then

23: EChd := NextEs(CE);

24: OpChd := NextOps(CE);

25: Var s := Sort(CE);

26: Var Copies: List of N¢ := {nd € EChd|Sort(nd) = s};
27: if ||Copies|| > 1 then

28: if s is not controllable then

29: Terminate (* The TEG is not monolithic. *)
30: else(* Assert: s is controllable *)

31: (* Generate code of saving CE *)

32: Var String x := NewVar(s);

33: GneCode("Var” +x+7:7 +s+7;");
34: GenCode(x + 7 :=7 + Object(CE));
35: end if

36: end if

37: end if

38: Order nodes in OpChd such that attribute nodes are listed first;
39: for Each COp € OpChd do

40: (* Process Operation Node COp *);

41: if InDegree(COp) = 1 then

42: if OpOutEs(COp) € Copies then

43: GenCode(Label(CE) 4+ 7 :=" + z);

44: end if

45: GenCode(Label(COp) + 7 (7 + Object(CE) +7)”);
46: EChd := OpOutEs(COp);

47: Add all elements of EChd to the front of QF);
43: else(* Assert: InDegree(Op) > 1 *)

49: Search COp in the QOp;

50: if (COp, Rs, NRs) € QOp then

51: Rs:= Rs+ CE;

52: NRs:= NRs — CE;

53: if NRs = () then

54: if OpOutEs(COp) € Copies then

55: GenCode(Label(CE) +7 :=" + x);
56: end if

57: GenCode(COp+7(” + Rs+"7)");

58: Remove COp from QOp;

59: EChd := OpOutEs(COp);

60: Add all elements of EChd to the front of QFE;
61: end if

62: else(*Assert: (COp, Rs, NRs) ¢ QOp*)

63: Var Rs := (CE);

64: Var NRs := OpInEs(COp) — CE;

65: Add (COp, Rs, NRs) into QOp;

66: end if

67: end if

68: end for

69: CE = Get(QE);
70: end while
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