A Case Study on Algebraic Specification of Cloud Computing

Dongmei Liuf, Hong Zhu* and Ian Bayley*
* School of Computer Science and Technology, Nanjing University of Science and Technology,
Nanjing, 210094, P.R. China. Email:dmliukz @njust.edu.cn
f Department of Computing and Communication Technologies, Oxford Brookes University,
Oxford OX33 1HX, UK. Email:hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract—A cloud often provides a RESTful interface with
which to access its services. These are usually specified through
an open but informal document in the IT industry. There is no
agreed standard for the specification of RESTful web services.
In this paper, we propose the application of an algebraic
method to the formal specification of such services and report
a case study with the GoGrid’s RESTful API, an industrial
real system that provides Infrastructure-as-a-Service. The case
study demonstrates that the algebraic approach can provide
formal unambiguous specifications that are easy to read and
write. It also demonstrates that formalisation can identify and
eliminate ambiguity and inconsistency in informal documents.

Keywords-Cloud computing, RESTful Web Services, Formal
specification, Algebraic specification.

I. INTRODUCTION

The development of reliable and dependable software
systems has long been regarded as a grand challenge. Formal
methods have been advanced in the past several decades as
a viable solution to this problem [1]. The advent of cloud
computing, and other forms of service-oriented computing,
has raised the demands further. Formal specifications must
now be uniformly applicable to all levels of services in-
cluding Infrastructure, Platform and Software as a Service
(TaaS, PaaS, SaaS). It must also be flexible enough to support
dynamic discovery and composition of services without
revealing vendor-specific design and implementation details.
This paper explores the applicability of the algebraic method
to cloud computing.

Algebraic specification was proposed in the 1970s as
an implementation-independent specification technique for
abstract data types [2]. Since then, it has been extended
to concurrent systems, state-based systems and software
components, by applying theories of behavioural algebras
[3] and co-algebras [4]-[6]. In [7], a specification language
called CASOCC-WS was proposed and a supporting tool
was reported for the specification of the so-called big web
services (WS), i.e. SOAP/WSDL-based WS. A distinctive
feature of CASOCC-WS is that it allows both the domain
and co-domain of an operator to be multiply sorted, thus
breaking the restrictions of algebraic and co-algebraic ap-
proaches. It was argued and demonstrated by a case study
that this is necessary and useful to specify big WS [7].

However, the majority of existing WS, especially cloud
services, are RESTful rather than based on SOAP and
WSDL. In contrast to the big WS, no agreed standard exists
for describing RESTful services either at the semantic or at
the syntax level. Documents are in natural language, and thus
leave space for ambiguity and misinterpretation. The current
research on the description of RESTful WS focuses on
developing formats for annotating the syntax and semantics
of services. The most well known such efforts include
WADL [8], hRESTS/MicroWSMO [9], and SA-REST [10].
They describe RESTful WS by defining the data types of
the input and output and the operations in XML or HTML.
The definition of semantics relies on ontology rather than
the effects of the operations on the states of the resources.
Recently, an extension of UML state machine diagrams was
proposed to describe how the states of RESTful WS were
changed [11].

In comparison with these approaches, algebraic specifi-
cations are at a very high level of abstraction and com-
pletely independent of any implementation detail. From such
specifications, software properties, such as correctness, can
be proven, and implementations can be derived [12]. A
particularly attractive feature of algebraic specifications is
that they can be used directly for automated software testing
[13], [14]. This is particularly important when services bind
dynamically and thus testing must be done on-the-fly. This
paper proposes the application of algebraic methods to the
specification of cloud’s RESTful WS interfaces and reports
a case study with GoGrid’s API [15], a real industrial IaaS-
level cloud. It demonstrates the applicability and merits of
the algebraic approach to cloud computing and RESTful
WS.

The remainder of this paper is organized as follows.
Section II presents the specification of GoGrid to illustrate
the applicability of algebraic approach to cloud services.
Section III discusses the findings of the case study. Section
IV concludes the paper with a discussion of future work.

II. SPECIFICATION OF GOGRID API

GoGrid is the world’s largest pure-play Infrastructure-as-
a-Service (IaaS) provider specializing in cloud infrastructure
solutions. It provides an API with which its customers can



Table I
APPLICABLE OPERATORS ON OBJECTS

Object List | Get | Add | Delete | Edit | Other

Load Balancer | Yes Yes Yes Yes Yes

Server Yes Yes Yes Yes Yes Power

Server image Yes Yes Yes Yes Save,
Restore

Job Yes Yes

1P Yes

Password Yes Yes

Billing Yes

Option Yes

dynamically deploy and manage their resources through a
programmatic interface.

We choose GoGrid for the case study because it is a
typical cloud service whose API is informally defined by an
open specification [16] and accessed through the RESTful
web service protocol. Moreover, the GoGrid, along with its
rivals, supports multiple programming languages, such as
Java, Ruby, Python, C#, as well as shell script languages
such as Bash. It is a real industrial test case for the proposed
formal method.

A. Overview of GoGrid API

The GoGrid API has a REST-like query interface; that is,
it is based on the HTTP protocol and each GoGrid API call
is an individual HTTP query. However, GoGrid API only
uses GET and POST rather than all four HTTP operators.
For HTTP GET calls, the input data are passed via the query
string. For HTTP POST calls, the input data are passed in the
request body, which is URL encoded. The server responds
to each request by changing the internal state of the service
if needed and returning a message to the service requester.

The current version of GoGrid API (version 1.8) has 11
types of objects and 5 common operators. Some of the
operators are not applicable for all types of objects. There are
3 types of objects only used as parameters of the operators,
thus they have no operators; while 2 types of objects have
additional special operators. Table I gives the applicable
operators for each type of objects.

B. Overall Structure of the Specification

The specification of GoGrid API consists of a number of
units:

o For each type of objects, such as load balancer, there
is a corresponding specification unit to define the ap-
plicable operators on the objects.

« For each applicable operator on each type of object,
there are two more specification units that define the
structures and constraints on the requests and responses
of the operation, respectively. These units are imported
to the unit that specify the type of objects.

o For each non-primitive data type that occurs in the
requests and/or responses of multiple operators, there

is also a unit to define its structure and constraints to
reduce the redundancy. It is imported into the specifi-
cation units of the requests and/or responses.

By dividing the specification of a system into a number of
units, the specification is modular, making it easier to read
and easier to revise as it evolves.

For the sake of space, here we only give the specification
of the Load Balancer objects as an example.

C. Specification of Load Balancer Objects

The load balancer objects are structural, which consist
of a number of attributes. Each attribute is defined by an
observer operator, which is similar to the getfers in object-
oriented programs for getting the value of attributes.

The operators on the load balancer objects have a number
of parameters, which include Option, IPPP, etc. Therefore,
their corresponding sorts are imported into the specification
unit for Load Balancer.

Spec LoadBalancer;
Sort Option, IPPP, ListofIPPP;
Operators:
Observer:
id: LoadBalancer -> Long;
name, description: LoadBalancer -> String;
virtualip: LoadBalancer -> IPPP;
realiplist: LoadBalancer -> ListofIPPP;
type, persistence, os, state, datacenter:
LoadBalancer -> Option;
Axiom:
For all LBO: LoadBalancer that
LBO.id <> NULL;
End
End

where NULL is a value that represents no information.
An operation may also return a list of load balancer
objects. Thus, we have a unit called ListofLB.

Spec ListoflB;
Sort LoadBalancer;
Operators:
Observer:
items: ListofLB, Int -> LoadBalancer;
length: ListofLB -> Int;
End

D. Specification of Requests and Responses

1) Common query parameters: There are four query
parameters that are common to all GoGrid API calls, and
they are specified as follows.

Spec CommonParameter;
Operators:

Observer:

api_key, sig, v, format:

CommonParameter —-> String;

Axiom:

For all CP: CommonParameter that

CP.api_key <> NULL;

CP.sig <> NULL;

CP.v <> NULL;

End
End



where api_key is a key generated by GoGrid for security in
the access of resources. It is obtained before API calls can
be made. sig is an MDS5 signature of the API request data,
v is the version id of the API, and format is an optional
field to indicate the required response format. The signature
is generated by an MD5 hash from the api_key, the user’s
shared secret, which is a string of characters set by the user
and known only by the GoGrid server, and a Unix timestamp,
which is the number of seconds since the Unix Epoch of the
time when the request was made.

The api_key and shared secret act as an authentication
mechanism. Because the signature is time-dependent, the
relationship between query parameters cannot be specified
without the context of the request. So, the axioms only state
that these parameters cannot be omitted. The authentication
mechanism is specified later.

2) Requests of the Get Operator: In addition to the
parameters common to all types of requests, the requests of
a specific operator on each type of object may also contain
various other types of parameters. For the sake of space, here
we only give the specification of the get operator, which, as
shown in Table I, is the most common operator.

Spec LBGetRequest;
Sort CommonParameter, ListofString;

Operators:

Observer:
para: LBGetRequest —-> CommonParameter;
id, name, loadbalancer

LBGetRequest -> ListofString;
timestamp: LBGetRequest -> Int;

Axiom:
For all x: LBGetRequest that
x.name == NULL, If x.id <> NULL;
x.loadbalancer == NULL, If x.id <> NULL;
x.1d == NULL, If x.name <> NULL;
X .loadbalancer == NULL, If x.name <> NULL;
x.id == NULL, If x.loadbalancer <> NULL;
x.name == NULL, If x.loadbalancer <> NULL;
End
End

where para is the common query parameters defined in the
previous subsection. The parameters id, name, loadbalancer
are used to filter load balancer objects, only one of them
is required and they are exclusive and cannot be mixed
in a request. The last parameter timestamp is used for
authentication purposes.

3) Responses to the Get Operation: A load balancer get
service call returns a list of load balancers in the GoGrid
system that satisfy the query conditions. In addition to a list
of returned objects, the response also contains the response
status, request method, and a summary of the list. The
summary can be specified as follows.

Spec GetSummary;
Operators:
Observer:
total, start, returned, numpages:
GetSummary -> Int;

Axiom:
For all GS: GetSummary that

GS.total >= 0;
GS.start == 0;
GS.returned ==
End

End

GS.total;

where fotal is the total number of objects in the system, start
is the index of the first object in this returned list, returned is
the number of objects returned, and numpages is the number
of pages available.

The structure of the responses to Get Load Balancer
requests is as follows. For the sake of space, we omit the
axioms.

Spec LBGetResponse;
Sort ListofLB, GetSummary;
Operators:
Observer:
status, request_method:
LBGetResponse —-> String;
summary: LBGetResponse —-> GetSummary;
objects: LBGetResponse —-> ListofLlB;
statusCode: LBGetResponse —-> Int;
Axiom:
End

In addition to status, request method, summary of the
list and a list of returned objects, each HTTP response will
contain a status code: 200 means that the call is successful,
4xx means there is an error in the client’s request, and 5XX
means a server error occurred.

E. Semantics of the operations

An operator can be a transformer, such as Add, Delete
and Edit, or an observer, such as List and Get. They all
have the state of the cloud as the context. In particular, we
need to know the clock time of the cloud and also the shared
secret chosen by each user for checking the authentication of
access. The following is the signature of the sort LBGoGrid
that represents the state of the cloud and the operators.

Spec LBGoGrid;

Sort CommonParameter, LoadBalancer, ListofLB,
Option, IPPP, ListofIPPP, ListofString,
LBListRequest, ListSummary, LBListResponse,
LBGetRequest, GetSummary, LBGetResponse,
LBAddRequest, AddSummary, LBAddResponse,
LBDelRequest, DelSummary, LBDelResponse,
LBEditRequest, EditSummary, LBEditResponse;

Operators:
Observer:
clockTime: LBGoGrid -> Int;
sharedSecrets: LBGoGrid, String -> String;
List: [LBGoGrid]
LBListRequest —-> LBListResponse;
Get: [LBGoGrid]
LBGetRequest —-> LBGetResponse;
Transformer:
Add: [LBGoGrid]
LBAddRequest —> LBAddResponse;
Delete: [LBGoGrid]
LBDelRequest —-> LBDelResponse;
Edit: [LBGoGrid]
LBEditRequest —-> LBEditResponse;
End



For each operator, its semantics can be characterised by a
set of axioms. Here, we only illustrate the style of algebraic
specification using the get operator as an example.

First of all, GoGrid checks the authentication of each get
call by using the MDS5 function to reconstruct the signature
from the api-key, the user’s shared secret and the time stamp.
It then compares this to the signature contained in the request
parameter. It also checks the time stamp with its server
clock time, allows a discrepancy up to 10 minutes. This
authentication rule can be specified as follows.

Axiom <Authentication>:
For all G:LBGoGrid, X:LBGetRequest that
Let key = X.para.api_key,
sig_Re = MD5 (key, G.sharedSecret (key),
X.timeStamp)
in G.Get (X) .statusCode == 403,
If X.para.sig <> sig_Re
or abs(X.timeStamp - G.clockTime) > 600;

End
End

where MDS5 and abs are auxiliary functions.

An important feature of the Get operator is that it is an
observer. So, its application will not change the state of the
context sort LBGoGrid.

The following axiom states that when an operation
changes the state of the cloud, for example, by adding a
load balancer, the Get operator should be able to observe the
difference accordingly. In fact, such an axiom also defines
the semantics of the transformer operator.

Axiom <Add-Get>:
For all G: LBGoGrid, X1: LBAddRequest,

X2, X3: LBGetRequest, i: Int that
[G.Add (X1)].Get (X2) .objects == G.Add(X1l) .objects,
If X2.name.length == 1,
X1l.name == X2.name.items (0),
G.Add (X1) .statusCode == 200,
G.Get (X2) .statusCode == 200;
[G.Add (X1)].Get (X2) .objects == G.Get (X2) .objects,
If search(X2.name, X1l.name) == False,
G.Add (X1) .statusCode == 200,
G.Get (X2) .statusCode == 200;

[G.Add (X1)].Get (X2) .objects ==
insert (G.Get (X3) .objects, G.Add(X1l).objects)

If search(X2.name, Xl1l.name) == True,
search (X3.name, Xl.name) == False,
search (X3.name, X2.name.items (i)) == True,

X2 .name.items (i) <> X1.name,
0 =< i, i < X2.name.length,

G.Add (X1) .statusCode == 200,
G.Get (X2) .statusCode == 200;
G.Get (X3) .statusCode == 200;

End

where insert and search are auxiliary functions, the former
inserts a list of load balancer objects into another list, and
the later searches for a string in a list of strings.

The following axiom states that when an operation
changes the state of the cloud by deleting a load balancer, the
Get operator should also be able to observe the difference.

Axiom <Delete-Get>:
For all G: LBGoGrid, X1: LBDeleteRequest,

X2: LBGetRequest that

[G.Delete (X1)].Get (X2) .statusCode == 500,
If search(X2.name, X1l.name) == True,
G.Delete (X1) .statusCode == 200,

[G.Delete(X1)].Get (X2) .objects
== G.Get (X2) .objects,

If search(X2.name, Xl.name) == False,
G.Delete (X1) .statusCode == 200,
G.Get (X2) .statusCode == 200;
End

III. DISCUSSION

The original document of the GoGrid API [16] specifies
the data types of the API request parameters and their
corresponding responses, and describes the meaning of each
in normative text one by one. Sample requests and responses
are also given to explain the semantics and usage of the API.

The algebraic specification of GoGrid can be beneficial
to cloud computing community in many different ways. In
this section, we will discuss these advantages with examples
from the case study.

A. Removing Ambiguity and Improving preciseness

As one may expect, in the process of formalisation, we
found that in some places the original documentation is
ambiguous, thus the narrative texts could be interpreted
differently by different users.

A typical example of such ambiguity is caused by in-
completeness. For example, the GoGrid document is unclear
about the range of values for a parameter and what will
happen when the value is out of the range. For instance,
should the num_items parameter (the number of items in
a page) in the list request be greater than 0?7 What will
happen if it is 0?7 These questions remain open in our formal
specification due to the lack of clear documentation.

Another example of ambiguity in the GoGrid document
is about the relationship between the request and response
of some service calls. Take get job objects operation as an
example. In the sample given in the GoGrid document, the
id of the request is not the same as in the response. There
is no way to work out from the document what id should
be in the response.

A similar ambiguity due to incompleteness occurs in the
description of the list job objects operation, which states that
‘This call will list all the jobs in the system for a specified
date range’. However, requests can be also made to list all
the job objects of a specified type, state or owner.

B. Checking consistency and support evolution

As all software artefacts, the API of a cloud service is
subject to frequent changes. The support to service evo-
lution is of particular importance. Algebraic specifications
in CASOCC-WS are modular. The consistency within a
specification unit and between specification units can be
checked at both syntactic and semantic levels. In our case
study, we have employed a parser of the CASOCC-WS



language to perform consistency checking at the syntactic
level. This detected a number of inconsistencies.

For example, from version 1.5 and later, GoGrid adds the
attribute named datacenter in the request query parameter,
but the description of objects does not add the attribute
correspondingly. This results in inconsistency between the
description of job objects and request query parameters.
Similarly, there is no attribute named numpages in the Get,
Edit, Delete requests, but it exists in the sample responses.
Moreover, the port in parameters of Edit operator on Load-
Balancer objects is required to be more than or equal to 0,
while it is required to more than O in other operators of
LoadBalancer objects.

In an unstructured document, redundancy is also a prob-
lem. In the GoGrid document, it is common for the same
information to be given in several different places with
different presentations. Take error code for example. There
is a detailed description in the document entitled Anatomy
of a GoGrid API Call. However, in each document on a
particular type of API calls, there is also a description.
Response format is another example of such redundancy.

C. Easiness to understand and write algebraic specification

Formal methods have been widely regarded as difficult
to learn and expensive to apply. However, our case study
demonstrates that it is easy to learn how to write algebraic
specifications. This confirms the findings reported in [17].

In particular, we find in the case study that following the
guidelines given in [7], the GoGrid API’s semantics and
syntactic structures can be defined fairly straightforwardly.
The cost of writing the specification is not expensive, as
shown in Table II, where column Sorts is the number
of the sorts used for specifying the type of objects, and
column Lines gives the number of lines that the algebraic
specification of each type of objects contains.

Table 1T
RESULTS OF CASE STUDY

Object Sorts | Lines Object Sorts | Lines
Common 24 272

Load Balancer | 16 455 Billing 4 70
Server 19 557 P 4 170
Server image 19 546 Password | 7 212
Job 7 242 Option 4 174
Total 104 2698

IV. CONCLUSION

In this paper, we reported a case study on the algebraic
specification of RESTful cloud services in the CASOCC-
WS language. It clearly demonstrated the value of algebraic
approach in the specification of cloud services.

We are currently studying its theoretical foundation of the
algebraic specification language that combines algebraic and
co-algebraic features. We are also extending the language by
including an extension mechanism so that specifications can

be written more concisely. Meanwhile, we are developing
a tool that uses the language as input to support automated
testing of cloud services. The case study reported in this
paper fully specifies the functions of resource management
what GoGrid API original document specifies. Further case
studies on the formal specification of PaaS and SaaS will
also be interesting.
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