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Abstract

This paper surveys the research on power management techniques for high performance
systems. These include both commercial high performance clusters and scientific high
performance computing (HPC) systems. Power consumption has rapidly risen to an
intolerable scale. This results in both high operating costs and high failure rates so it is
now a major cause for concern. It is imposed new challenges to the development of high
performance systems. In this paper, we first review the basic mechanisms that underlie
power management techniques. Then we survey two fundamental techniques for power
management: metrics and profiling. After that, we review the research for the two major
types of high performance systems: commercial clusters and supercomputers. Based on
this, we discuss the new opportunities and problems presented by the recent adoption of
virtualization techniques, and again we present the most recent research on this. Finally,

we summarise and discuss future research directions.
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1. Introduction

In the community of high performance computing (HPC), the word “performance” is
synonymous with “speed”. With greater demands on performance, the scale of these
systems becomes larger and larger, and the integration density of chipsets increases
drastically. Consequently, there is a so-called “Moore’s law for power consumption”, that
the power consumption of each computer nodes doubles every 18 months [1].

The power consumptions are already tremendous. According to the recent TOP500
list of high performance systems, the most power-consuming supercomputer runs at 6.95



megawatts (MW), and Roadrunner, No.l in the TOP500 list, runs at 2.48 MW [2]. In
2006, U.S. servers and data centers consumed around 61 billion kilowatt hours (kWh) at a
cost of about 4.5 billion US Dollars. This is about 1.5% of the total U.S. electricity
consumption or the output of about 15 typical power plants [3]. Many data center projects
have been cancelled or delayed because of an inability to meet such enormous power
requirements. High density power consumption also causes overheating so energy must
also be spent on cooling. For example, 0.7 W of cooling is needed to dissipate every 1.0
W of power consumed by one HPC system at Lawrence Livermore National Laboratory
(LLNL) [4]. Construction costs are also increased. For example, statistical data from
American Power Conversion (APC) shows that 63% of the infrastructure cost is used for
power supply and cooling [5].

High power consumption naturally causes huge environment pollution. According to
the U.S Environmental Protection Agency (EPA), each 1000 kWh of energy consumption
generates 0.72 tons CO, emission. This means that U.S data centers contributed about 44
million tons of CO, emission in 2006, equivalent to the output of about 8 million
passenger vehicles, or the carbon sequestered by 1.12 billion tree seedlings grown for 10
years [3, 6]. The EPA has therefore appealed to the government to prevent the
environment pollution caused by data centers. Finally, there is also a cost to the reliability
and availability of the system. Feng used empirical data from leading vendors to calculate
that the failure rate of a computing node doubles with every 10°C increase in temperature
[1].

So power consumption is now a major area of concern for researchers and leading
vendors. Nearly half of the TOP500 supercomputers report their power usage alongside
their performance [2]. The notion of power-aware computing emerged in 1990s in the
different context of mobile or embedded systems. These usually run on batteries, so
energy consumption ultimately dictates their availability [3,7]. Nowadays, power
management has also become essential for high performance systems.

In addition, high performance systems are inefficient in their energy consumption.
Ge et al. studied five supercomputers and observed that the average performance of these
systems is only 54-71% of the peak performance on the optimized benchmark package. It
is even worse on actual scientific applications, where the performance is only about 10%
of the peak [8]. That inefficiency is mainly caused by an unequal distribution between the
nodes in the cluster of the various computing, communication and /O activities. During
idle or slack times, faster components waste their energy by waiting for slower
components. They could be slowed down or even shut down to save energy. Better power
management could help a lot with this. The past few years have seen much research in
this area, research which we shall now review.

The remainder of the paper is organized as follows. Section 2 introduces the basic
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mechanisms that underlie power management techniques for high performance systems.
Section 3 reviews the feasible metrics of power efficiency. Section 4 discusses issues
related to the profiling of power consumption. Sections 5 and 6 review the power
management techniques for commercial high performance clusters and for
supercomputers, respectively. These are different because the architectures and
application domains are different. Section 7 discusses the new challenges introduced by
the use of virtual machines. Section 8 concludes the paper with a summary and a
discussion of future directions.

2. Power Management Mechanisms

There are two different types of mechanism for power management.

(1) Dynamic Speed Scaling (DSS).

DSS dynamically changes the performance state of the target component to save
power, i.e. it slows it down to reduce power consumption and speeds it up when needed
but at the cost of greater power consumption.

One typical example is Dynamic Voltage Frequency Scaling (DVFS). Here, the
reduction in power consumption is made by reducing the supply voltage or clock
frequency [7]. Most existing processors allow this. Examples include Intel Xeon, AMD
Atholon, and ATI co-processors. Thermal throttling is another example. Here, it is the
processor’s temperature that is controlled. This is done, as before, by modulating the duty
cycle of the processor clock or by reducing the operating frequency and voltage of the
processor [9].

Other examples of DSS include multi-frequency memories, which dynamically scale
the working frequency and thus the data rate [10], and multi-speed disks [11, 12, 13].

However, in all of these methods, the transition between different performance states
consumes additional energy and causes latency overhead [7, 14].

(2) Dynamic Resource Sleeping (DRS).

DRS dynamically hibernates components to save energy and then wakes them on
demand. So each component may be in an active running state, or in one of several sleep
states or in the power-off state. In the ACPI industry standard, the active state is called CO
and the sleep states called C1, C2...Cn [14]. For instance, in the Intel Nehalem-EP
processor, the transition is made by turning off the clock and other components [9]. Each
sleep state consumes less power than idling in the CO state. The deeper the processor
sleeps, the less power it consumes, but the more energy is needed to wake it up [15].
Memory controllers and chipsets may dynamically switch a memory rank’s power on and
off [10, 16]. Disks may also support active, ready and standby states [17, 18]. So may



I/O buses and other devices [14, 19]. In fact, the entire computer can also be managed as
a DRS component with active, suspended, hibernated, and powered off states [20, 21].
Each state transition consumes energy though and takes time. [14, 15].

3. Power Efficiency Metrics

Metrics are essential for us to quantitatively measure and thereby evaluate the
efficiency of energy consumption. They form the basis for decision making. In the past
few years, many such metrics have been proposed and used. They can be classified into
three types: (a) Metrics for solo equipment and devices, (b) Metrics for parallel systems,
(c) Metrics for cluster systems.

3.1. Metrics for solo equipment and devices

The most basic metric of power efficiency, borrowed from the circuit design
community, is the formula ED" [22]. Here, E is the energy consumed while running an
application, D is the time taken to complete the application, and n is a non-negative
integer parameter to characterize the trade-off between E and D. It combines the cost

measurements in two different dimensions, energy and time.

ED2P, the special case of ED" when n=2, was suggested by Martonosi et al. [23] for
use with DVFS. It cancels out the influence of frequency scaling because E is
proportional to the square of the frequency, whereas D’ is proportional to the inverse of
the square of the frequency. ED2P considers both performance and energy consumption,
but it does not consider the different requirements for different systems. Based on ED2P,
Ge et al. [8] proposed Weighed ED2P as a more general metric:

Weighted ED2P = 09 5 pAi+d o

Here, |0] < 1 is a weight factor determined by user preference. This metric is believed to
be weighted in favor of performance when 0<0, and in favor of energy when 0<0. If 6 =0,
the performance and the energy are treated equally, and the metric reduces to ED2P. Their
own experiments used 0 = 0.2.

3.2. Metrics for parallel systems

In [24], Hsu et al. argued that using a large value of n in ED" produces a bias in
favour of massively parallel systems. In fact, the reciprocal variant of ED", i.e. 1/ED",
means performance”/power, or FLOPS'/W, where FLOPS stands for floating point
operations per second. When a supercomputer has s processors and each processor can
deliver F flops at P watts, the FLOPS"/W metric can be re-expressed as follows.
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s-P P

FLOPS"/W = (s-F) s”‘l-F—

(2)

Hsu et al. ranked the top 500 supercomputers with respect to their power efficiency.
Their list is called the Green500. (They use n=1 because with n>1, the metric increases
exponenetially with the number of processors s and thus is highly misleading.) For No. 1
on the Green500 list, ranked as No. 422 on the TOP500, the MFLOPS/W measure, which
actually reduces to F/P, was 536.24. For No. 500, ranked as No. 311 on the TOP500, the
measure was 13.03. For No. 1 on the TOP500 list, ranked as No. 4 in Green500, the
measure was 444.94 [25]. Notably, the Green500 ranking of supercomputers using (2)
with n=1 matches fairly well with the TOP500 [26].

Energy consumption is usually not a linear function of the performance, so Choi ef al.

[27] calculated a relative performance slowdown & below

-, (3)
T(fmax)

where f'is the working frequency, f,... is the peak CPU frequency, 7(f) is the execution
time to complete the workload at frequency f. From this, the power efficiency gain can
more accurately be calculated, Hsu et al. [28] and Ge ef al. [29] in power management.

Feng et al. [1, 24] are concerned with the total cost of ownership (TCO). TCO
consists of two parts: cost of acquisition and cost of operation. The former is the one-time
cost of acquiring a computer system. The latter is a recurring cost made up of multiple
components, such as system administration, power consumption, cooling and space. TCO
is often quite difficult to calculate though, so they used metrics that are related to TCO,
such as performance/power [1]. However, although TCO was initially proposed for
supercomputers, it is also used for cluster systems [30].

3.3. Metrics for cluster systems

For commercial servers and data centers, the performance is indicated by the
information service output, which is a complex mix of computational processing, data
storage and network communication [3]. In order to test the power consumed by servers
and data centers when running a full range of applications, Standard Performance
Evaluation Corporation (SPEC) set up an industry-standard power-performance
benchmark, SPECpower ssj2008 [31].

For data centers or HPC centers, the power consumption includes not only the power
consumed by computer systems but also cooling, lighting, power supplying and all the
other facilities. Green Grid [32] proposed the Power Usage Efficiency (PUE) metric and
its reciprocal, Datacenter Infrastructure Efficiency (DcIE), to estimate the energy
efficiency of data centers. The PUE metric is defined as follows.
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PUE = Total Facility Power/IT Equipment Power, 4)

where Total Facility Power is the total power dedicated to the whole data center. IT
Equipment Power is the part used to support all IT equipment in a data center, including
both the functional equipment for computing, storage and networking, and the
supplemental equipment such as monitors and computers used for monitoring or
controlling the data center. The PUE ranges from 1.0 to infinity. A PUE value approaching
1.0 indicates 100% efficiency. This goal has been accepted by many organizations, such
as Microsoft, Google, Intel and IBM. Most data centers have values around 3.0, but this
can be improved to 1.6 or better with proper design. For example, the data center at
Lawrence Berkley National Labs (LBNL) has a PUE value of 1.3 [32].

In addition to the PUE metric, also known as Site Infrastructure Energy Efficiency
Ratio (SI-EER), the Uptime Institute also uses two other metrics for data centers [33].
One is IT Productivity per Embedded Watt (IT-PEW). The other is Data Center Energy
Efficiency and Productivity (DC-EEP) Index. They are defined by the following equations,

respectively.
IT-PEW = IT Productivity/ Embedded Watt (5)
DC-EEP Index = IT-PEW/SI-EER = IT Productivity/Total Facility Power  (6)

where IT Productivity is the IT service output of the data center, and Embedded Watt is a
synonym of IT Equipment Power. The IT-PEW metric indicates the power efficiency of
IT equipment, while the DC-EEP Index indicates that of the whole data center.

Lim et al. [30] created a benchmark with four types of workload to represent the
different services in the internet sector of data centers. They used performance per watt
(Perf/W), performance per TCO (Perf/TCO-$) and performance per cost of power and
cooling (Perf/P&C-$) as their power efficiency metrics in the tests.

4. Profiling Power Consumption

An essential requirement of power management is that the energy usage patterns of
the target system be captured precisely [34]. In other words, we need to know where and
when the energy has been spent and who is responsible [35]. Building such a profile is
called power consumption profiling in the sequel. A number of profiling techniques have
been developed. These include the use of simulations, analytical modeling, direct online
power consumption measurement, monitoring-based power consumption analysis, power
behavior sampling and software instrumentation.

In the simulation approach, the power consumption features are embedded into a
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traditional hardware simulator based on the power characteristics derived from
measurement of sample components [36]. These simulators estimate both performance
and power consumption by tracking the running of applications. Simulation has already
been employed successfully in profiling power consumptions of microprocessors [37],
memories [38], disks [11, 17] and complete machines [39]. The simulation approach is
helpful for profiling the power-activity, but there may be a mismatch between the
simulation and the real systems due to the inaccuracy of the simulation models [34].
Moreover, simulation is time-consuming.

Analytical modeling techniques abstract the power consumption as analytic functions
on a set of parameters. They estimate power consumptions based on the dependency
correlations of power on given variables. Pinheiro et al. [18] modeled storage systems
comprised of disks with redundancy configuration. The power-related parameters are: (a)
the powers of each disk in active ready or standby mode, (b) the energies and times taken
by a disk to spin up and down. Given the parameters of the disks and their other
characteristics, the model predicts the power behavior of the storage systems from the
redundancy configuration, the disk management policy and the workloads. Heath et al.
[40] used the following linear equations (7) to model the power consumed by each node
P;:

i

P UL
pi=B+2XM; X[C”] (7)

where B; is the power consumption of node i while it is idle, M;" is the power consumption
of resource r at node i at full utilization, U;" is the utilization of resource r and C; is the
capacity of resource r. So the power consumed by a cluster is the sum of the power
consumed by all hardware resources in the system.

Analytical modeling can also be employed in thermal profiling. Heath et al. [41]
developed a software suite, called Mercury, for temperature emulation, which computes
the temperature based on their power model and the correlation between heat and power
consumption. Skdaron et al. [42] also developed an architecture-level thermal model
based on the resistances and capacitances (RC) of architectural components. Analytical
modeling has the advantage of being an all-software solution, but it is coarse-grained and
its accuracy depends on the granularity of the model.

Online measurement is a direct solution to the profiling problem. It employs
additional measurement tools, such as multimeters, to measure and record power
consumption at run-time [43]. A key issue addressed in [34, 44] is the choice of an
appropriate application to use as a representative benchmark. However, this approach is
impractical for most systems, as the thousands of target components involved would

require larger numbers of multimeters.



Monitoring-based power consumption analysis employs performance monitoring
counters (PMC), which are embedded into current commodity processers. The technique
has been applied successfully in power consumption profiling. Bellosa et al. [35, 45, 46,
47] define computation activities as PMC events that contribute significantly to power
consumption, such as clock cycles, retired instructions and memory references. The
power model is a linear combination of n types of PMC events. The coefficients V=[V,
Vs, .., V4] of the model are derived during the training period. For an application software
with activity profile E=[ey, e, ..., €,], Where ¢; is the number of occurrences of event i
during the execution, the energy consumption can be predicted by

EV=Ye,x,, (®)
i=1

This is employed for power and energy management [35, 45, 46, 48, 49] as well as
thermal management [47]. However, the accuracy of PMC-based profiling is limited by
the types of events that can be monitored by PMC. When embedded in a processor, PMCs
are less accurate for describing operations outside the processor, such as direct memory
access (DMA) activities. One way to improve this is to employ platform monitors, such as
temperature sensors. However, the capability of platform sensor is very limited, too, and
the access to these sensors through I’C or SM buses is usually very slow, taking
miliseconds rather than microseconds.

Sampling techniques sample system power consumptions and execution behaviors to
find the correlation between them. Flinn et al. [43] designed a time-driven sampling tool,
called PowerScope. It periodically measures the power consumption along with the
program counter (PC) and process ID (PID), and links the sampled power consumptions
back to the PIDs (i.e. the processes) and the PCs (i.e. execution phases). Chang et al. [50],
in contrast, sample the power when the energy consumption changes. Sampling
techniques do not need system-dependent hardware components, but it is then difficult to
determine which components are using the most power, and the sampling may not be
frequent enough.

The Instrumentation approach inserts additional pieces of code into the target
applications to collect power information and program execution context. Hu ef al. [51]
used a compiler to insert profiling code into the assembly code that measures power
consumption. Isci ef al. [52] used an instrumentation tool to dynamically insert profiling
routines into the binary code to collect the values of PC, PMC and power measurement.
Instrumentation can be used to build a fine-grained power model, but it requires either a
special purpose compiler or other tool support to modify the binary or source code.

5. Power Management for Commercial Clusters
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Three goals of power management for commercial clusters, such as data centers and
server farms, are improving the energy efficiency, capping the power consumption and
throttling the heat dissipation. One key feature of commercial clusters is the amount of
interactive transaction processing. So the workloads for transaction-oriented clusters vary
significantly depending on the time of day or the day of the week, and there is much
scope for reducing nodes below peak capacity to save power [16, 53].

In general, the power and energy management techniques in data centers and server
farms can be classified into single-node techniques and cluster techniques [54, 55].
Single-node techniques are beyond the scope of this paper, so we focus on the power
management techniques for clusters.

5.1 Improving Energy Efficiency

Noticing the dynamic variation of workload, Pinheiro et al. [21] proposed a load
concentration policy to manage cluster-wide power consumption. This turns nodes in a
cluster on or off dynamically, according to the workload imposed on the system, to make
sure the expected performance is just about acceptable. When the load is lighter, some
nodes are turned off dynamically to save energy. After a node is added or removed, the
forthcoming requests need to be redistributed to balance the workload across the active
nodes. Chase et al. [20] introduced a similar energy-conscious cluster-wide resource
management technique, called Muse. It is based on an economic model in which the
amount of resources is a function of service quality and it uses the Service Level
Agreement (SLA) to make dynamic tradeoffs between service quality and energy
consumption. In this way, it allocates a suitable share of server resources to each
customer’s service requests and it dynamically changes the active node set for the service
in a way that maximizes the resource efficiency and minimizes unproductive cost. The
idle servers then enter low-power states to conserve the energy and cooling costs.

Chen et al. [56] also used the SLA to direct the tradeoffs between performance and
energy consumption. They noticed the time overhead of turning off/on nodes, the energy
consumption in the transition and the effect of start-stop cycle on reliability. So they
combined processor DVFS with dynamic cluster reconfiguration. Every 7 minutes, they
regulate the allocation of servers by turning them on or off to accommodate the
time-varying workload. Likewise, every ¢ minutes, where ¢ <7 and T is an integer multiple
of ¢, they adjust each active server to an appropriate frequency. However, they only
considered homogeneous clusters. A server is not shared between different applications,
and servers allocated to the same application are assumed to run at the same frequency.

Horvath et al. [57] also exploited DVFS for use with dynamic reconfiguration for
multi-tier server clusters, which is a typical architecture of current server clusters. For
example, in a three-tier web server architecture, the first tier presents a web interface, the
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second executes business logic scripts, and the third processes database accesses [58].
Each tier has a varying number of servers. All the servers in one tier run the same
application, and a request goes through all tiers. Because the users only care about the
response time across the entire pipeline, Horvath et al. make tradeoff decisions using the
end-to-end delay as a simple SLA and they take into consideration the overheads for each
transition between multiple sleep states and standby power levels. So their periodic
energy optimization policy consisted of both active and inactive portions.

For the active portion, the policy assigns servers to each tier and sets appropriate
frequencies to minimize the total energy expenditure of the multi-stage pipeline under the
constraints of SLA. The optimization is then performed in two phases. The first phase
finds the minimum number of servers in each tier so that the SLA is satisfied using the
highest frequency for the machines. The second phase decreases the tier frequencies step
by step ensuring that the SLA is still met.

For the inactive portion, the policy used is called sleep energy optimization, as it is
concerned with choosing appropriate sleep states for the inactive servers. Horvath et al.
observed that load fluctuations occur on a large time scale in practice. So the energy
consumed during a transition from a sleep state to the active state is negligible but the
time delay may make the system unresponsive. The policy therefore makes a tradeoff
between system responsiveness and the sleep energy conservation. However, their policy
does not consider how the tiers affect each other.

The research above is also limited to homogeneous clusters, but most recent
commercial clusters are heterogeneous with respect to their performance, capacity and
power consumption. Heath et al. [40] argued that one should model the different types of
nodes when designing heterogeneous clusters, and used this when building their analytical
model of power consumption in heterogeneous systems. This can be used to search for the
best request distribution and cluster configuration that achieves minimum
power/throughout ratio. If the real workload becomes greater than the maximum
throughput in all configurations, then they choose the configuration that provides the
maximum throughput. Their experiments were with a heterogeneous cluster that consisted
of traditional nodes and blade nodes. They were able to show that their model-based
solution conserved 45% more energy than the policy based on homogeneous clusters,
where requests are distributed randomly across the active nodes and the decision which
nodes to turn on and off is random.

The key issue surrounding these cluster-wide techniques is the decision on whether
to reconfigure the system. Two factors must be taken into consideration. The first is the
power model, discussed in the previous section. The second is the workload prediction.

Compared with clusters of front-end and computer servers, storage cluster
techniques can leverage access-based allocation to nodes and disks [54, 55]. The Popular
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Data Concentration (PDC) [11] technique conserves the energy of two-speed disk arrays.
It copies the popular data to a high-speed disk and it slows down the other. The Massive
Array of Idle Disks (MAID) [17] technique is one such technique. Considering that disk
redundancy is commonly implemented in a storage system, the Diverted Access (DIV)
technique [18] was proposed to leverage this redundancy and conserve disk energy. DIV
handles reads and writes as follows: 1) a read is directed to the original disk only if the
load is not too high; 2) when the load is high, a write is performed on all disks. When the
load is light or moderate, a write is directed to the original disk immediately, but only
propagated to redundant disks periodically. The goal of DIV is to increase idle times for
the redundant disks so that they can be put into low power mode (standby) to conserve

energy.
5.2 Power Capping

By studying the long-term data gathered from a spectrum of real-world deployment,
Ranganathan et al. [59] summarized two trends of power consumption in data centers or
clusters as follows: 1) resource utilization is low and bursty with spikes being relatively
infrequent and of small duration; 2) the probability of synchronized spikes on all servers
at the same time is rather low. The gap between the maximum power actually used by a
large group of machines and their aggregate theoretical peak usage can be as large as 40%
in data centers. Power capping is a technique that sets a safe threshold of power
consumption and controls the cluster to prevent the actual power from exceeding it. It can
enable the running of additional machines while keep the total power consumption under
budget. It is also useful as a safety mechanism to prevent power supply spikes [60].

Fan et al. noticed that the nameplate ratings of power consumption tend to
overestimate the actual maximum power usage [60]. They used the CPU utilization-based
power model to estimate the power consumption of servers. By monitoring the power
usage of an actual datacenter for six months, they found that power capping is effective
for data centers, especially at the cluster level.

Power capping techniques generally consist of power sensing followed by power
throttling. Ranganathan et al. [59] designed a cluster level power management controller
and employed a management agent running on each server. The agent provides local
power monitoring by runtime power measurement and power control. The controller
periodically collects all local readings and estimates the total power consumption of the
cluster. If the total exceeds the predefined power budget, the controller determines which
server to throttle based on SLA and directs it to throttle at an appropriate level.

Femal et al. [61] noticed the uneven distribution in workload between nodes so they
allocated power non-uniformly, according to these demands. Their power management

framework is a two-level solution. The cluster-level power manager dynamically collects
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information on all the nodes and assigns power to each node to ensure the total power is
within budget. The node-level power manager then, at a fine level of granularity, allocates
power to each device in the node, making sure its power expenditure is beneath its local
threshold.

Wang et al. pointed out that the servers in a cluster are usually coupled together
because they often run the same application or share a common power supply, and
therefore, their management should be coordinated [ 62 ]. They proposed a
multi-input-multi-output (MIMO) control algorithm to control the power consumption of
multiple servers simultaneously. In every control cycle, the controller collects the power
value and CPU utilization of each server, computes a new CPU frequency for each
processor, and directs each processor to change frequency in a coordinated way. Wang et
al. conducted experiments to compare the coordinated DVFS based on MIMO and the
individual DVFS in each local server. The latter is described as a
single-input-single-output (SISO) controller. Their experiments demonstrated that the
greatest improvement MIMO can bring is 15.3% with the same power budget. However,
the system used for their experiments has only four nodes. It is unclear whether the
centralized MIMO controller is scalable to large-scale systems.

5.3 Thermal Management

Increasing power density leads to high temperatures that exponentially decrease
system reliability and increase the cooling cost too. Thermal management techniques are
similar to capping power consumption in that they also consist of heat sensing and heat
throttling subsystems. Heat can be monitored either by direct thermal profiling or by
indirect power profiling, which would then use the correlation between temperature and
power consumption. Also, heat can be throttled either by power management or by
strengthened cooling. However, the latter of these may increase the cooling cost and the
power consumption of cooling facilities. This section focuses on the thermal management
techniques based on power management.

Skadron et al. [63] used a Proportional Integral Differential (PID) controller to
implement dynamic thermal management. The control loop is depicted in Figure 1.

m

L . ° target
—») ){controller }—){ actutaor }—b .
system
TT ‘
sensor

Figure 1: Feedback control loop.

where 7' is the measured temperature, L is the temperature threshold. The difference e = L
— T'is the current error, used as the input of the controller. At any time ¢, controller output

m(t) is expressed as:
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m(t) = Kc[e(t)+K,j'e(t)dt+KD dil(tt)j’ ©)

where K, K; and Kp are constants that can be set according to the target systems. The
sensor uses the resistances and capacitances of architectural components to model
temperature [42]. The PID controller corrects error by three actions. The first is
proportional action, which adjusts power in proportion to the error in direction of
reducing the error. The second is integral action, which adjusts power in proportion to the
time integral of previous errors. This action maintains the system at the zero-error state.
The last is derivative action, which adjusts the power in proportion to the rate of change
of error in direction of reducing rate of change. This action damps the response to avoid
overshoot and maintain the stability of controller. If m(?) < 0, the system is overheated and
the heat dissipation should be reduced during the next internal. Then the actuator disables
the instruction fetch at an appropriate rate according to the thermal stress m(?). Skadron et
al. extended the power simulator Wattch [37] with their thermal model and demonstrated
that their PID controller completely prevented thermal emergencies while improving
performance by 36% over a hand-designed threshold technique.

Heath et al. [41] developed a thermal management system for server clusters, called
Freon. The heat is periodically monitored by temperature daemons at each server. They
defined two temperature thresholds for each component ¢ at each server: high threshold
T, and red-line threshold 7,. When the temperature of component ¢ exceeds 7, Freon
reduces the workload on the server by request redirection. When it exceeds T, Freon will
turn the server off. Heath et al. also developed the energy conservation analogue to Freon
(Freon-EC) which combines the energy conservation and thermal management. Freon-EC
turns off as many servers as possible without degrading the performance. The decision
whether to add or remove a server from the active cluster configuration is based on the
predicted usage. If this figure is higher than a threshold, U}, (70% in their experiments)
then the server will be added. If the usage predicted for each server is lower than another
threshold, U; (60% in their experiments), even after the removal of a particular server,
then that server is removed. Unlike load concentration [21] or Muse [20], the policy
selects which servers to turn on and off according to their temperatures and physical
locations within the data center.

In view of the dramatic increasing cost of cooling, Moore et al. [64] studied the use
of temperature-aware workload placement as a means to reducing cooling cost. They
explored the physics of heat transfer, captured the thermodynamic behavior in the data
center, and then prioritized the servers based on their cooling costs. Examining the
location-aware cooling cost of each server, they explored the resources supply issue with
minimum cooling cost. Unlike the previous schemes, they not only turn servers on and off
dynamically but they also adjust the computer room air conditioning (CRAC) supply
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temperature. When a server inlet exceeds the safe temperature, the CRCR supply
temperature will be lowered to bring the server’s temperature back below the system safe
threshold. Only if all servers are safe will the CRCR supply temperature be adjusted to as
high a value as possible to reduce cooling cost.

6. Power Management for High Performance Computing Systems

A typical HPC system can be divided into three sub-systems: front-end server nodes,
computing nodes and storage nodes. The front-end server nodes provide an operating
interface to users, impose jobs on computing nodes and monitor their status. The
computing nodes provide a high performance computing capability to process jobs. The
storage nodes provide massive storage capacity. These three sub-systems are integrated
into a tightly coupled system by the high speed inter-connecting network.

Unlike commercial clusters, the scientific applications are generally non-interactive.
They involve many, even massively many, coordinated nodes. Communication and
synchronization is interlaced with the computation, and the running time is relatively long.
Ge et al. [8, 65] analyzed the difference in power consumption between the
non-interactive scientific parallel HPC and the interactive workloads in distributed cluster
systems. They observed that the CPU typically dominates system power consumption in

supercomputers. This is demonstrated by the distribution shown in Figure 2 below [65].
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Figure 2: CPU dominates system power consumption in supercomputers.
These characteristics of HPC impose new challenges and opportunities to power
management for supercomputers. The techniques for HPC systems can be classified into
execution phase analysis and job allocation approaches. They are discussed below.

6.1. Execution Phase Analysis

Parallel applications consist of CPU computing, memory access, /O, communication
and synchronization. In a supercomputer, I/O is implemented as communication with a

storage sub-system, so we treat it as a special case of communication. Synchronization is
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also a form of communication. So there are really only three types of execution phases:
CPU-bound phases, memory-bound phases and the communication-bound phases. When
the execution is bounded by one component, the other components can be put into lower
power states without significant performance degradation. A number of power
management techniques have emerged to take advantage of the boundedness on various
components.
A. CPU activity analysis

Processor DVFS based on the CPU computing stress is a traditional power
management approach. Linux [66] uses CPU utilization as the metric of CPU-
boundedness. Hsu et al. [28] in contrast used the number of millions of instruction
executed per second (MIPS). They decomposed the workload into two parts: on-chip
workload, whose performance depends on CPU frequency, and off-chip workload, whose
performance does not. The impact of CPU frequency change on execution-time was
modeled as follows [28]:

Lego LU mipsns) _ g fows ,(1_ p) (10)
T(fmax) — mips(f) f
where f quantifies the intensity level of off-chip workload, d is the relative performance
slowdown, T(f) is the execution-time of a workload at CPU frequency f, mips(f) is the
average MIPS rate for CPU frequency fand f,,, is the peak CPU frequency. They used a
regression method over equation (10) and derived £ as a function of MIPS rates history of
last intervals and CPU frequencies as equation (11).

sy 5 )
2 sy

p= (11)
) fmax 1 2
Z’(Ti )
* o S
f —max[fmm,l+5/ﬁj (12)

Using (10) and (11), we can see that the desired CPU frequency f* can be calculated from
equation (12). Given as a parameter the acceptable relative performance slowdown 39,
their MIPS-based run-time processor DVFS scheduler used PMC to monitor processor
MIPS rates and to dynamically compute the desired CPU frequency.

Malkowski et al. [67] took advantage of the memory-bound phase to select CPU
frequencies. Their scheme relied on the fact that the lowest level cache misses are good
indicators of whether an execution phase is memory-bound. An execution is divided into a
sequence of windows. Each window contains a fixed number of clock cycles. At the end
of each window, its phase characteristics are determined. They used an L3 (outermost)
cache miss rate of 0.4 as the threshold to detect memory-bound phases. Above this
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threshold, the new CPU frequency f,.,, is calculated as follows [67].

Instructions _executed _in _current _window

new — fold X

: . : —‘X 100 (13)
Instructions _executed _in _last _window x100
If the phase is not memory-bound, then the CPU runs at peak frequency.

Ge et al. [29] combined MIPS and cache miss rate to detect phase boundedness.
Their scheme is close to the work of Hsu et al. [28] discussed in the previous subsection.
They also decomposed the workload into on-chip and off-chip workloads, but then they
further decomposed the off-chip workload into memory accesses Wy, [/O accesses wy,
and system idle wyparts. They used the memory data access events (lowest cache misses)
to describe w,,.,, and the statistic data provided by Linux pseudo-file /proc/stat to describe
w;, and wy. The first value of CPU intensiveness x (equivalent to £ in [28]) is calculated
from the statistic data and the predicted valuer x’ of the next interval is decided by

k' =1-DK' +k; (14)
The smooth factor A was set as 0.5 in their experiments. The desired CPU frequency is
also decided by equation (12).

Freeh et al. [68] also detected phases using memory-boundness. Their execution
phases are recognized by two steps. In the first step, the program is divided into blocks
using two rules.

Rule 1: Any message passing interface (MPI) [69] operation demarcates the block
boundary.
Rule 2: If the memory pressure changes abruptly, a block boundary occurs at this change.

They intercepted MPI calls to implement the first rule and used operations per miss
(OPM) as the measure of memory pressure. This measure is larger the lower the OPM.

In the second step, the blocks are merged into phases. Two adjacent blocks are
merged if the pressure they put on memory is within same threshold. Freeh et al.
developed an efficient algorithm to assign appropriate CPU frequencies to the phase.

These approaches determine whether or not the CPU bounds the performance of the
whole system by using information about CPU activities, such as CPU utilization, MIPS
or cache failure rate. They are effective for phases where off-chip operations blocks CPU
performance. However, in some situations, the CPU performance is not a bound on the
performance of the whole system. For example, the CPU could be in busy loop waiting
for other events and it need not run at peak frequency. The above techniques cannot detect
such a situation so they would miss the opportunity to save energy.

B. Communication phase analysis

Communication-boundedness happens when one node must wait for another to finish

communication, either because the device is slower or because the node has been given

more work to do. Techniques have been developed to recognize such situations and take
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action to save energy. This section will survey such techniques.
B.1. Communication intensive region analysis

A communication phase is a period in the execution of an application that is
communication intensive but not CPU intensive. In [70], Lim ef al. developed a technique
to recognize communication phases online and then apply CPU DVEFS to save energy. The
technique intercepts and records the sequences of MPI calls during the execution of a
program. A segment of program code is recognised as a reducible region if there are high
concentrated MPI calls (e.g. calls 1-3 in Figure 3) or if an MPI call is long enough (e.g.
call 5 in Figure 3). When the recognized reducible region is entered again, it sets the
processor to run at an appropriate lower frequency to save energy with negligible
performance degradation. Lim et al. used the micro-operations/microsecond (OPS) metric
to judge the dependence of performance on the CPU in these reducible regions and
developed a table to map OPS to CPU frequency that will minimize the energy
consumption measured by ED [22].

reducible_

—"" regions

InmE

3 | 5
Figure 3: An example trace of an MPI program. The calls 1-3 form a reducible region of multiple calls

MPI ecall ‘ ‘
1 :

time

close to each other. The call 5 is a reducible region of a long call. The call 4 and call 6 are not in
reducible communication region because they are neither close enough nor long enough [70].
B.2. Inter-node imbalance analysis

HPC applications are usually parallel programs. When the computational load is not
well balanced across the nodes, a node that arrives earlier at a synchronization point must
wait for the other slower nodes. Such a situation may occur repeatedly if the code is in a
loop. Thus, it is possible and worthwhile to shift the faster node to a lower frequency to
conserve power without significant performance loss.

Kappiah et al. [71] developed a tool called Jitter to recognize slack moments in
performance due to the inter-node imbalance and to use DVFS for power reduction. Jitter
calculates a node’s slack as the wait time in an iteration divided by the length of the
iteration. A node’s net slack is computed as the difference between its own slack and the
minimum slack of the nodes. In contrast to Lim, et al., Jitter adjusts CPU frequency
evolutionally rather than predetermining it in advance. In particular, Jitter reduces a
node’s CPU frequency, if its net slack satisfies the following condition.

net _slack > Sed, (15)
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where § is a user-defined constant, which was 10-20% in their experiments, and d, is an
adaptive factor. Whenever a node reduces frequency, it also increase d, using the formula
dg=d, *bias. In their experiment, bias = 2 and initially d, = 1. Jitter increases a node’s

CPU frequency, if its net slack satisfies the following condition:

net _slack <aeS/u, (16)

where u, plays the same role as d,, and o is the stabilizing factor, which must be less than
1. In their experiment, o= 0.5. Their experiments show that Jitter is effective for scientific
computations that contain large numbers of iterative loops.

In [72], Rountree et al. divided the execution of an application into a number of tasks.
Each task is an execution segment on a single processor between the completions of two
successive MPI communication calls. Each task is further decomposed into a computation
portion and a communication portion, and a directed acyclic graph is constructed to
analyse the execution of parallel programs. A critical path (CP) is the longest path from
the source to the sink node in the graph. When a processor executes a task on the critical
path, it will not wait for data to arrive during the task. Otherwise, a slack may occur,
which is the blocked time during MPI communication calls. Thus, the processor can be
slowed to remove the slack without affecting the overall execution time. Rountree et al.
developed a system called Adagio to collect statistical data on task execution slacks,
compute the desired frequency and represents the results in a hash table. The first instance
of a task always executes at peak frequency. When the task executes again, an appropriate
frequency can be found in the hash table. In their experiment, Adagio provided total
system energy savings of up to 20% with a less than 1% increase in execution time.

6.2. Job Allocation Approaches

The priciples of power conservation through task allocation developed for clusters
can also be applied to HPC. However, the technical solutions employed successfully in
data centers, such as load concentration [21] and Muse [20], are ineffective for
supercomputers because their workload characteristics and performance demands are
different. In the section, we focus on inter-node system-wide job allocation for HPC.
Intra-node task scheduling for power conservation is beyond the scope of this paper, and
is thus omitted.

SLURM [73] is a popular resource management and job scheduling system for
supercomputers. It is employed by about 1000 systems including more than 30% of the
systems in the TOP500. It also provides a power management facility for idle nodes. A
node that remains idle for a period of time can be placed in a lower power state and then
restored to the normal state once a new job is assigned. To avoid an instantaneous surge in

power demand due to the number of active nodes being rapidly changed, SLURM can
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power nodes up or down gradually. However, it does not provide any power management
policy. The user decides after how much idle time the lower power state should be entered,
the target power states to be in, and the maximum number of nodes that can change state
per minute. SLURM’s power management facility is useful, but little research has been
conducted on how to use it effectively, especially on how to allocate tasks to nodes to
enable power conservation.

Most supercomputers now have heterogeneous architectures [2,74] and this
introduces new challenges to system-wide job allocation. In heterogeneous architectures,
the system power model becomes much more complicated because the power
consumption patterns, power state spaces, and power management mechanisms are
different. So are the computation capabilities and the roles of the different nodes. A
system-wide power management technique must take all of these differences into
consideration.

Zong et al. [75] focused energy-efficient parallel application allocation for
heterogeneous architectures. They defined four types of difference in a heterogeneous
system as follows. First, different nodes may have different preferences for each task so a
node running faster for one type of task may not run faster for other types of tasks.
Secondly, a task may have different execution times on different nodes. Thirdly,
communication rates depend on the corresponding interconnection networks. Finally, the
power consumed by each node and each networking device may be different. Their job
allocation algorithm for heterogeneous systems, called energy efficient task duplication
schedule (EETDS), assigns parallel tasks to the nodes in two phases: a grouping phase
and and allocation phase. During the grouping phase, EETDS group tasks based on their
relevance to each other, i.e. whether they are in the same critical path. All the tasks in a
group are allocated to the same computing node in order to reduce communication
overheads. In the process of grouping, task are duplicated and sent to multiple computing
nodes if performance can thereby be further improved. During the allocation phase, the
groups are allocated to heterogeneous nodes in an energy efficient way. The phase
estimates the energy consumption of all groups on different candidate nodes and generates
an allocation solution with minimized total energy consumption of the whole system. In
their experiments, they set three different environments using four types of processors to
simulate computing node heterogeneity, network heterogeneity and different
communication to computation ratio. Their experiments showed that EETD can
significantly reduce energy consumption up to 47.1% with only a negligible degradation

in performance.
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7. Power Management in Virtual Environment

Virtual machine (VM) technology was first introduced in the 1960s. It has grown in
popularity during recent years. As shown in Figure 4 below, VM technologies allow
multiple guest virtual machines to share common physical hardware resources [76, 77,
78]. It enables the division of computer resources into multiple isolated execution

environments, which can be used as thought it was a real machine, from the user’s view

point.
WM VM VM VE VE
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Figure 4: Illustration of the different architectures of virtualization. Virtualization may be implemented in
different layer.

In Figure 4, the virtualization layer is the software responsible for hosting and
managing the virtual machines, and is also called the virtual machine monitor (VMM).
VM technologies can be classified into one of three categories according to the layer
in which the VMM resides.
+ Hosted architecture virtualization (Figure 4.a). The hosted architecture
installs and runs the VMM as an application on top of an operating system.
A typical example is VMware Workstation [78]. Because all accesses to the
hardware must go through the host OS, the performance overhead of the
hosted architecture is significant and this method is not suitable for high
performance systems.

4+ Hypervisor-based virtualization (Figure 4.b). The VMM, known as a hypervisor,
is installed on top of bare hardware. Typical examples of hypervisor-based virtual
machines are Xen [79]] and VMware ESX [78]. Because the hypervisor accesses

the hardware resources directly, it is more efficient than the hosted architecture.
#+ OS-level virtualization (Figure 4.c), also known as container-based virtualization.
It implements the virtualization at the OS system call/ABI layer. Multiple
isolated virtual environments (VE, also known as container, VPS, etc.) are
enabled within a single operating system kernel. Typical OS-level VMs include
Solaris Zones/Containers [80], Linux VServer [81], OpenVZ [82] and HPVZ
[83]. Because applications in VE use the operating system's normal system call
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interface, OS-level virtualization imposes little or no performance overhead.

With hardware support and the development of virtualization technologies, the
performance overhead of virtualization has become negligible in many scenarios [83, 84].
Hypervisor-based and OS-level VM have been employed successfully in high
performance systems [82, 83, 84, 85, 86, 87, 88].

The employment of virtual machines sheds a new light on power management for
high performance systems. For example, live task migration is needed for workload
consolidation in HPC. However, traditional process migration suffers from a residual
dependency problem. That is, a part of the process has to be left on the source or an
intermediate node in order to achieve network transparency, e.g. in order to forward
subsequent messages to the target node [89]. VM migration provides a promising solution
for conquering this problem, thus enabling better power management [90]. For example,
Stoess et al. [91] developed a multi-tiered infrastructure, which enables intra-node virtual
CPU (vCPU) migration and inter-node live VM migration for workload consolidation and
thermal balancing. To enable power-aware VM migration, Verma et al. [92, 93]
investigated job allocation for HPC.

However, the introduction of virtualization imposes new challenges to traditional
power management techniques, though solutions are starting to emerge. Although
OS-level virtualization has been employed successfully by HPC, there is no work, to our
knowledge, on power management based on OS-level virtualization. Instead, existing
works on VM-based power management are all based on hypervisor-based virtualization.

As discussed above, power management techniques choose the appropriate state by
relying on knowledge about the phases of the applications and/or workload on the whole
system. As Stoess et al. pointed out [94], in a virtual machine environment, these
techniques cannot easily be applied either to the individual VM system or at the
hypervisor level. In particular, if the power management technique is applied at VM level,
each guest operating system only knows the state of the application(s) or the workload on
its own VM, not on the other VMs that share the hardware resources. If one VM changes
the state of the hardware based on information about its own local applications and/or
workload, then it is inevitable that this will have adverse effects on other VMs. Power
management techniques cannot be applied only at the hypervisor level because the
hypervisor has insufficient knowledge about the applications, although the hypervisor can
control the hardware states just as a traditional OS can.

Stoess et al.’s solution [94] supports power management at both host-level and
guest-level as shown in Figure 5.
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Figure 5: Two-level power management architecture. The host-level subsystem enforces energy
constraint on each guest. Guest OS performs its own guest-level energy management [94].

The host-level subsystem enforces system-wide energy conservation between VMs.
It measures power consumption by the VMs and it regulates the allocation of physical
devices in a coarse-grained manner to ensure that each VM does not consume more than a
given power allotment. A power-aware guest OS then redistributes the VM-wide power
allotment based on its fine-grained application-level knowledge.

In [95], Nathuji et al. also addressed power management problems with virtual
machines for distributed systems. They introduced the notion of soft power states, which
are virtualized versions of the hardware power states. The virtualization of power states is
transparent to the VM, and so the guest OS manages the soft power with traditional
techniques. Based on Xen hypervisor [79], they developed a coordinated power
management system for distributed environment, called VirtualPower, shown as Figure 6.
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Figure 6: VirutalPower Management Architecture. The VPM channels deliver power management
actions from guest OS to PM-L. PM-L regulates the hardware based on its local rules and the
coordination from PM-G [95].

VirtualPower maps virtualized soft states to hardware states through virtual power
management (VPM) channels, which reside in the hypervisor. These VPM channels
deliver power management actions from the guest OS to the hypervisor as updates to soft
states, and respond as if the hardware had taken the actions. These requests for soft power
state changes are interpreted by local power management policies (PM-L), which regulate
the hardware based on its local rules and on coordination from global policies (PM-G).
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Based on information about nodes, ranks and cluster, PM-G makes global power
management decisions, such as VM remapping or migration. However, PM-G is a
centralized scheme, and it is not applicable to large scale systems.

8. Summary

It is widely recognized that power management is crucial in high performance
systems. Compared with battery-operated systems, the power management of high
performance systems presents new problems so new solutions have emerged in recent
years in the literature. Table 1 summarizes these techniques.

In this paper, we surveyed the metrics used for evaluating the effectiveness of power
management, and how metrics are chosen in various scenarios. Power consumption
profiling is a key technique for developing power models. PMC-based profiling is a
promising solution but it is limited by the amount of events which can be defined by the
processor PMC. Device monitoring techniques monitor and record the behaviors of the
devices by drivers. They can provide a useful supplement to PMC. Building a complete
and accurate power model for the whole system should combine the techniques of the
PMC and device driver.

The effectiveness of heuristics-based power management techniques relies heavily
on predicting the future workload. When the real execution behaviors do not match the
prediction, the techniques will seem dubious. Guaranteeing correctness and effectiveness
is a challenge. Control-theoretic techniques provide a meaningful hint for future
development [62, 63, 96]. For large-scale high performance systems, a trade-off must be
made between power management accuracy and effectiveness, on the one hand, and
acceptable overheads and costs, on the other. Distributed or multi-level techniques may be
viable solutions.

For clusters, power management takes place both on single nodes and on the cluster
as a whole. There are some promising cluster-wide power management solutions based on
workload redistribution. Examples include load concentration [21] and Freon [41]. The
reconfiguration mechanism that redistributes the forthcoming request is efficient for
interactive transaction processing in commercial clusters. Power-driven workloads
migration across nodes and dynamic system reconfiguration are also viable solutions to
cluster-wide power management. However, heterogeneity is a new challenge for
cluster-wide power management.

Virtual machine technologies can provide a new solution and they have been
employed successfully in high performance systems. They shed a new light on power

management by providing new mechanisms for power consumption migration through
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virtual machine migration. However, the introduction of virtualization imposes new
challenges to traditional power management techniques, and novel solutions have started
to emerge for hypervisor-based virtual machines. Supercomputers in the scientific parallel
community tend to employ OS-level virtualization. This offers the opportunity to manage
a large number of processes in parallel applications by grouping them in the granularity of
the VE. However, no work on power management with OS-level virtualization has been
reported in the literature as far as we know.

Another recent novelity is the problems related to autonomic computer system and
how to apply self-organization techniques, such as multi-agent systems, to power

management [97].
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Table 1 summary of power management techniques for high performance systems

Technique/ Tool Constraints Mechanism Profiling Applicable
Concerned Systems
Load Concentration | Acceptable Node on/off Homogenous
[21] performance clusters
Muse [20] SLA Node on/off Analyt}cal Homogenous
modeling clusters
SLA Node on/off, Analytical Homogenous
Chan et al. [56] CPU DVFS modeling cluster
SLA Node on/off, Analytical Multi-tiers
Horvath et al. CPU DVFS, modeling clusters
[57,58] Multiple sleep
states
Heath ef al.[40] Power/Throughput Node on/off Analyt}cal Heterogeneous
modeling clusters
PDC[11] Disk bandwidth Multi-speed disk | Simulation Disk arrays
MAID [17] Request time Spin-down/up Simulation Disk arrays
DIV [18] Redundancy, Disk active or Analytical Disk arrays with
Throughput standby modeling redundancy
SLA, Power budget CPU DVFS Simulation, Homogenous
Ranganathan et al. .
[59] Online clusters
measurement
Power budget, CPU DVFS, Analytical Homogenous
Minimum service level | Device on/off modeling clusters with
Femal et al. [61] .
non-uniform
workload
Power budget CPU DVFS Analytical Homogenous
MIMO [62] modeling, Online | clusters
measurement
Mercury and Freon | Temperature threshold, | Node on/off Analytical Heterogeneous
[41] Utilization threshold modeling clusters
Cooling cost, Node on/off, Analytical Homogenous
Moore et al. [64] Temperature threshold CRAC supply modeling data centers
temperature
Hsu ef al. [28] Relative performance CPU DVFS AnalyFical HPC
slowdown modeling
Ge et al [29] Relative performance CPU DVFS Analﬁical HPC
slowdown modeling
Frech et al.[68] (Energy saving) / (time | CPU DVFS Online HPC
delay) measurement
Lim et al. [70] E*D CPU DVFS HPC
Jitter [71] Net slack CPU DVFS HPC
Slack CPU DVFS Analytical HPC
Adagio [72] modeling, Online
measurement
SLURM [73] HPC
EETDS [75] Performance, Energy Node on/off Analyt.ical Heterogeneous
modeling HPC
Power budget, Node on/off Analytical Virtualized
pMapper [92, 93] Performance, modeling heterogeneous
Migration cost HPC
Failure rate, CPU throttling, PMC-based, Hypervisor-
Stoess ef al. [94] Temper.ature Disk active/idle Analyt}cal based' virtual
constraints, Power modeling machines
budget, QoS
SLA, Power budget, DVES, Node Virtualized
VirtualPower [95] Power/ Performance on/sleep/off heterogeneous
HPC
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