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Abstract. One of the most appealing features of multiagent technology is its 
natural way to modularise a complex system in terms of multiple, interacting 
and autonomous components. As a natural extension of classes, castes 
introduced in the formal specification language SLAB provide a language 
facility that provides modularity in the formal specification of multiagent 
systems. A caste represents a set of agents of common structural and 
behavioural characteristics. A caste description defines the tasks that the agents 
of the caste are capable of, the rules that govern their behaviour, and the 
environment that they live in. The inheritance relationship between castes 
defines the sub-group relationship between the agents so that special 
capabilities and behaviours can be introduced. The instance relationship 
between an agent and a caste declares that an agent is a member of a caste. This 
paper discuses how the caste facility can be employed to specify multiagent 
systems so that the notion of roles, organisational structures of agent societies, 
communication and, collaboration protocols etc. can be naturally represented.   

1.  Introduction 

From software engineering point of view, one of the most appealing features of 
multiagent technology is its natural way to modularise a complex system in terms of 
multiple, interacting, autonomous components that have particular objectives to 
achieve [1]. Such modularity achievable by multiagent systems is much more 
powerful and natural than any kind of modularity that can be achieved by existing 
language facilities such as type, module and class. However, extant multiagent 
systems are mostly developed without a proper language facility that supports this. 
We believe that the lack of such a facility is one of the major factors hampering the 
wide-scale adoption of agent technology. In the formal specification language SLAB 
[2, 3], a facility called caste was introduced as a natural evolution of the notion of 
type in data type and the notion of class in object-oriented paradigm. In this paper, we 
further examine the uses of the caste facility in formal specification of multiagent 
systems.  

The remainder of the paper is organised as follows. Section 2 is an introduction to 
the notion of caste. Section 3 outlines syntax and semantics of the caste facility in the 
formal specification language SLAB. Section 4 discusses the uses of the caste facility 
in the formal specification of MAS by some examples. Section 5 is the conclusion of 
the paper.  



 

 

2.  The Notion of Caste  

This section first reviews our model of multiagent systems. Based on this model, we 
introduce the notion of castes and discuss its similarity and differences with the notion 
of classes in object-oriented paradigm.   

2.1.  A Model of Multiagent Systems 

In our model, agents are defined as encapsulations of data, operations and behaviours 
that situate in their designated environments. Here, data represents an agent's state. 
Operations are the actions that an agent can take. Behaviour is a collection of 
sequences of state changes and operations performed by the agent in the context of its 
environment. By encapsulation, we mean that an agent's state can only be changed by 
the agent itself, and an agent has its own rules that govern its behaviour. Each agent 
must also have its designated environment. Constructively, agents are active 
computational entities with a structure containing the following elements. 
• Agent name, which is the identity of the agent. 
• Environment, which consists of a set of agents that interact with the agent.  
• Visible state, which consists of a set of variables. The values of these variables are 

visible, but cannot be changed by other agents in the environment.   
• Visible actions, which are the atomic actions that the agent can take. Each action 

has a name and may have parameters. When the agent take such an action, it 
becomes an event visible by the agents in the environment.  

• Internal state: which consists of a set of variables and defines the structure of the 
internal state, such as the desires, beliefs and intentions of the agents in the BDI 
model [4, 5]. The values of visible and invisible states can be the first order or 
higher order, structural or scalar, symbolic or numeric, etc.  

• Internal actions: which are the internal actions that the agent can take. Other agents 
in the environment cannot tell if the agent takes such an action. Actions can have 
parameters, which may also have first order or higher order, structural or scalar, 
and symbolic or numeric values.  

• Behaviour rules: which determine the behaviour of the agent. They should cover 
the following aspects.  
− The applicability condition. The agent takes an action only when the 

environment and its own state are at the right condition, which is called the 
applicability condition of the action.   

− The effects of the action. An action may have effects on visible and/or internal 
parts of its own state. It is worthy noting that an agent cannot effect the state of 
any other agent or object.  

− None-deterministic and stochastic behaviour. An agent may have none-
deterministic and/or stochastic behaviour. If a number of actions are applicable, 
choices between the actions may be none-deterministic and/or may have a 
certain probabilistic distribution.  

Agents constructively defined above have a number of features. Firstly, they are 
autonomous. As Jennings [6] pointed out, autonomous means that agents 'have control 



 

 

both over their internal state and over their own behaviour'. In [7, 8], agents' 
autonomous behaviour was characterised by two features that an agent can say 'go' 
(the ability to initiate action without external invocation) and say 'no' (the ability to 
refuse or modify an external request). Our definition requires that agents have their 
own rules of behaviour. Hence, they are autonomous.   

Secondly, agents defined above are communicative and social. Communication 
plays a crucial role in multiagent systems. Agents must communicate with each other 
to collaborate, to negotiate and to compete with each other as well. By dividing an 
agent's states and actions into visible and invisible parts, we have given agents the 
capability of communication with each other. We human beings communicate with 
each other by taking actions. We speak, shout, sing, laugh, cry, and write to 
communicate. We even make gesture or other body languages to communicate. All 
these means of communication are 'visible' actions. We also utilise visible states to 
communicate. For example, the colour of traffic lights indicates whether you should 
cross the road. We show a smiling face to indicate we are happy and a sad face to 
indicate unhappy. These means of communication are based on visible states. 
However, taking a visible action or assigning values to visible state variables is only 
half of the communication process. The agent at the receiver side must observe the 
visible actions and/or read the values of the visible state in order to catch the signal 
sent out by the sender. The details of the protocols and meanings of such actions and 
state values are of premier importance in the development of multiagent systems. 
However, they are a matter of design decision and should left for software engineers 
to design and specify rather than pre-defined by the agent model or the language.  

Thirdly, our model emphasizes that agents are situated in their designated 
environments. The power of agent-based systems can best be demonstrated in a 
dynamic environment [9, 10]. Characteristics of agents can also be defined in terms of 
their relationship with the environment. For example, agents are considered as 'clearly 
identifiable problem solving entities with well-defined boundaries and interfaces'. 
They are 'situated (embedded) in a particular environment - they receive inputs related 
to the state of their environment through sensors and they act on the environment 
through effectors' [1]. Our model requires a explicitly and clearly specification of the 
boundary and interface between an agent and its environment as well as the effects of 
environment on the agent's behaviour. Usually, such an environment consists of a set 
of objects and agents, which include equipment, devices, human beings, software and 
hardware systems, etc. As argued in [2, 3] and briefly summarised below, all these 
can be considered as agents as defined above. Therefore, the environment of an agent 
consists of a set of agents.  

Fourthly, the definition implies that objects are special cases of agents in a 
degenerate form, while agents may be not objects. We consider objects as entities that 
have no control over their behaviours because an object has to execute a method 
whenever it receives a message that calls the method. The computational model of 
object-orientation defines the behaviour of all objects by the default rule of 'if receive 
a message, then execute the corresponding method'. Therefore, objects are agents with 
such a simple and uniform behaviour rule. With respect to the relationships with the 
environment, there are two key differences between objects and agents. First, agents 
are active in the sense they take initiative actions to effect the environment. In 
contrast, objects are passive, they are driven by the messages sent by the entities in 



 

 

the environment. Second, an agent selectively observes a part of the environment that 
it is interested in, while an object is open to the environment in the sense that an 
object executes a method no matter who sends the message. These highlight the 
difference in the degrees of encapsulation achieved by objects and agents. Generally 
speaking, encapsulation means to draw a boundary between the entity and its 
environment and to control the accesses across the boundary. In object-oriented 
languages, the boundary enhances the access to object's state via method calls so that 
the integrity of an object's state can be ensured. However, such a boundary is weak 
because all entities in the environment can send a message to the object and hence call 
the method. The object cannot refuse to execute the method. In contrast, agents are 
able to selectively respond to the actions and state changes of certain entities in the 
environment. In our definition, each agent can explicitly specify its own subset of 
entities in the environment that can influence its behaviour.   

Finally, our model is independent of any particular model or theory of agents. We 
believe that specific agent models can be naturally defined in our model. It is also 
independent of any particular agent communication language or protocol. A formal 
definition of the model can be found in [3].  

2.2 The Notion of Caste 

Existing language facilities provided by object-oriented languages cannot solve all the 
problems that software engineers face in developing agents [11]. New language 
facilities must be introduced to support agent-oriented software development. We 
believe that agent-orientation should be and can be a natural evolution of object-
orientation so that the so-called agent-oriented paradigm can be build on the bases of 
object-oriented paradigm. In particular, the notion of caste is a natural evolution of the 
key notion of class in object-oriented paradigm. However, there are a number of 
significant differences between classes and castes. The following discusses such 
similarities and differences. 

2.2.1 Structure 
In object-oriented languages, a class is considered as the set of objects of common 
structure and function. Objects are instances of classes. Similarly, we define a set of 
agents of same structural and behavioural characteristics as a caste, where the term 
caste is used to distinguish from classes in object-oriented languages. Agents are 
therefore instances of castes. The agents in a caste share a common subset of state 
structures and a common subset of visible and internal actions, and some common 
behaviour characteristics. Similar to class, a caste is a structural template of agents. 
Therefore, a caste should have the same structural elements as agent.  

For example, consider basketball players as agents. The environment of a 
basketball player in a game consists of the ball, the referee and other players in the 
game. The state of a player consists of a number of parameters, such as its position in 
the field, the speed and direction of movement, whether holding the ball, etc. These 
are the visible state of the agent. Of course, a player should also have invisible 
internal states, such as its plan and intention of actions, its energy level and skills, etc. 
The skills of a basketball player often represented by a number of statistics, such as 



 

 

field goal percentage, three-point field goal percentage, etc.  Another important state 
of a basketball player is the team that he/she plays for. In the real world, this state is 
made explicitly visible by requiring the players of a side to ware clothes of the same 
distinctive colour. A basketball player should also be able to take a number of basic 
actions, such as to move, to catch a ball, to pass the ball, to shoot, to dribble, to hold 
ball, etc. These are the visible actions a player is capable of. A good player should 
also follow certain basic strategies about when to pass ball and to whom, when to 
shoot, and how to take a good position in order to catch a rebound, how to steal, etc. 
These are some of its behaviour characteristics. Such structural and behavioural 
characteristics are common to all basketball player agents. In a system that simulate 
basketball games, we can define a caste with these characteristics and declare ten 
agents as instances of the caste. The following illustrates the caste structure by the 
example of basketball players.  
 
Caste Players 
 Environment:  
  Ball, All:Players, Referee: Referees; 
 Visible State  
  Team: string; 
  Position: Integer X Integer; 
  Direction: Real;  Speed: Real; 
  Holding_ball: boolean; 
  ... ; 
 Visible actions 
  Move(direction: real, speed: real); 
  Jump(direction, speed, upward: real); 
  Pass(direction, speed, upward: real); 
  Shoot(direction, speed, upward: real); 

  ... ; 
 Internal State  
  FieldGoalPeercentage: real; 
  ThreePointFieldGoalPercentage: real; 
   ...; 
 Internal action  
  ...;  
 Behaviour 
  If  HoldingBall  
   & No player within the distance of 4 feet  
   & Distance to the goal < 15 feet  
  Then shoot(d, s, u). 
  ... 
End Players

 
Obviously, a caste differs from a class in their structures. A caste contains two 

essential parts that are not included in a class, the description of environment and the 
description of behaviours. The dynamic semantics of castes is also different from 
class. Firstly, for a caste, the visibility of a state variable does not imply that other 
objects or agents can modify the value of the variable. Secondly, an action in a caste 
is visible does not imply that it can be invoked by all objects and agents in the system. 
Instead, it is only an event that can be observed by other entities. Only the agent can 
decide whether and when to take an action. For the basketball player example, only 
the agent (i.e. the player) can decide when to shoot and how to shoot. It would not be 
a basketball game if a player shoot whenever someone (including players of the 
opposite team) asked it to shoot. Finally, communications between the agents are in 
the direction opposite to message passing between objects and follow the so-called 
Hollywood principle: 'You don't call me. I call you'. For the basketball example, a 
player looks for a teammate to pass the ball, rather than waits for a team-mate's 
request of the ball.   

The example of basketball players shows that agents who play the same role and 
have the same structural and behavioural characteristics can be specified by a caste. If 
different roles require taking different actions or have different behaviour, separate 
castes should be defined for the roles. For example, referees of basketball games 



 

 

should be specified by a caste different from the players.  

2.2.2 Inheritance 
In a way similar to classes, inheritance relationships can be defined between castes. A 
sub-caste inherits the structure and behaviour characteristics from its super-castes. It 
may also have some additional state variables and actions, observe more in the 
environment and obey some additional behaviour rules if any. Some of the parameters 
of the super-castes may be instantiated in a sub-caste. The inheritance relationship 
between castes is slightly different from the inheritance relationship between classes. 
A sub-caste not only inherits the state and action descriptions of its super-castes, but 
also the environment and behaviour descriptions. However, a sub-caste cannot 
redefine the state variables, actions, environment or behaviour rules that it inherits.  

For example, the role of basketball players can be further divided into five 
positions: the inside post players, the left forward players, the right forward players, 
the left guard players and the right guard players. The behaviour of a basketball player 
is determined by his position. An inside post player will be responsible for rebounds 
and attacking from the inside. Therefore, an inside post player will take a position 
close to the goal. We, therefore, define inside post players as a sub-caste of basketball 
players with additional behaviour rules. Similarly, we can define the castes of left 
forwards, right forwards, left guards and right guards as sub-castes of the Players.  
 
Caste InsidePosts is Sub-Caste of Players 
 Behaviour  (* rules for inside post players *) 
  If one of the teammates controls the ball 
  Then take the position close to the goal; 
  ... 
End InsidePosts 
Caste LeftForwards is Sub-Caste of Players 
 Behaviour (* rules for left forward players *) 
 ...   
End LeftForwards  
Caste RightForwards is Sub-Caste of Players 

 Behaviour (*rules for right forward players*) 
 ...  
End RightForwards  
Caste LeftGuards is Sub-Caste of Players 
 Behaviour (* rules for left guard players *) 
 ...   
End LeftGuards  
Caste RightGuards is Sub-Caste of Players 
 Behaviour (* rules for right guard players *) 
 ... 
End RightGuards  

 
The InsidePosts caste defined above is logically equivalent to the following caste. 

However, caste InsidePosts2 defined below is not a sub-caste of Players while 
InsidePosts is.  
 
Caste InsidePosts2 
 Environment:  
  Ball, All:Players, Referee: Referees; 
 Visible State:  
  Team: string; 
  Position: Integer X Integer; 
  Direction: Real; Speed: Real; 
  Holding_ball: boolean; 
  ... ; 
 Visible actions: 
  Move(direction: real, speed: real); 

  Jump(direction, speed, upward: real); 
  Pass(direction, speed, upward: real); 
  Shoot(direction, speed, upward: real); 
  ... ; 
 Internal State:  
  FieldGoalPeercentage: real; 
  ThreePointFieldGoalPercentage: real; 
   ...; 
 Internal action:  
  ...;  
 Behaviour 



 

 

  If  HoldingBall  
   & No player within the distance of 4 feet  
   & Distance to the goal < 15 feet  
  Then shoot(d, s, u). 
  ... 

  (* rules for inside post players *) 
  If one of the teammates controls the ball 
  Then take the position close to the goal; 
  ... 
End InsidePosts   

 

2.2.3 Instance 
The relationship between agent and caste is also an instance relationship. When 

agent is declared as an instance of a caste, it automatically has the structural and 
behavioural features defined by the caste. The features of an individual agent can be 
obtained by initialisation of the parameters of the caste, such as the initial state of the 
agent. For example, Micheal Jordon was a basketball player for the team Bulls. The 
following declares such an agent as an instance of the caste Players. In addition to 
those structural and behavioural common features to all agents of a caste, an agent can 
also have additional properties of its own. For example, a basketball player may have 
his own style, which can be considered as additional behaviour characteristics. For 
instances, Jordon was good at shooting three point goals. Because of the uniqueness 
of his style, it is more natural to specify such a behaviour rule as a part of the agent's 
specification rather than to introduce a new caste. Therefore, we would have the 
following specification for the agent MJordan. 
  
 Agent MJordan: Players 
  Visible State  
   Team = 'Bulls'; 
  Internal State  
   FieldGoalPeercentage= 50; 
   ThreePointFieldGoalPercentage= 62; 

  Behaviour 
  If  HoldingBall  
   & No player within the distance of 6 feet  
   & Distance to the goal < 30 feet  
  Then shoot(d, s, u).  
 End MJordan 

 
This agent declaration is logically equivalent to the following declaration. 

However, the agent Mjordan2 does not belong to the caste Players.  
 
Agent Mjordan2 
 Environment:  
  Ball, All:Players, Referee: Referees; 
 Visible State  
  Team: string = 'Bulls'; 
  Position: Integer X Integer; 
  Direction: Real;  Speed: Real; 
  Holding_ball: boolean; 
  ... ; 
 Visible actions 
  Move(direction: real, speed: real); 
  Jump(direction, speed, upward: real); 
  Pass(direction, speed, upward: real); 
  Shoot(direction, speed, upward: real); 
  ... ; 
 Internal State  

  FieldGoalPeercentage: real = 50; 
  ThreePointFieldGoalPercentage: real =62; 
   ...; 
 Internal action  
  ...;  
 Behaviour 
  If  HoldingBall  
   & No player within the distance of 4 feet  
   & Distance to the goal < 15 feet  
  Then shoot(d, s, u). 
  If  HoldingBall  
   & No player within the distance of 6 feet  
   & Distance to the goal < 30 feet  
  Then shoot(d, s, u).  
  ... 
End Player



 

 

3. The SLAB Language 

This section briefly reviews the SLAB language. We demonstrate how the caste 
facility is combined with other language facilities to enhance their expressiveness.  

3.1 Agents and Castes 

The specification of a multiagent system in SLAB consists of a set of specifications of 
agents and castes. There is a most general caste, called AGENT, that all castes in 
SLAB are sub-caste of AGENT.  
 System ::= {Agent-description | caste-description}+  

The main body of a caste and agent specification in SLAB contains a structure 
description of its state and actions, a behaviour description and an environment 
description. The heads of caste and agent specifications give the name of caste or 
agent and their inherited castes. In a caste description, the clause 'Caste New_Caste <= 
Caste1, ..., Casten' specifies that New_Caste is a sub-caste of Caste1, ..., Casten. 
Similarly, in an agent description, the clause 'Agent New_agent <= Caste1, ..., Casten' 
specifies that the New-agent is an instance of the castes Caste1, ..., Casten. When no 
inherited caste is given, it is by default a sub-caste of the pre-defined caste AGENT. 
Every agent must be an instance of a caste. When caste name(s) are given in an agent 
specification, the agent is an instance of the castes; otherwise, the caste is by default 
AGENT. All the parameters in the specification of the caste must be instantiated in 
the specification of the agent. The following gives the syntax of castes and agents in 
EBNF. It can also be equivalently represented in graphic forms similar to the schema 
in Z [12]. 
 caste-description ::=::=::=::=  
  Caste name [ <= { caste-name / , } ; ]  
   [ instantiation ; ] 
   [ environment-description ; ]  
   [ structure-description ; ] 
   [ behavior-description ; ] 
  end name 
 agent-description ::= ::= ::= ::=  
  agent name [ : { caste-name / , } ]  
   [ instantiation ; ] 
   [ environment-description ; ] 
   [ structure-description ; ] 
   [ behavior-description ]  

end name 
The SLAB language requires an explicitly specification of the environment of an 

agent as a subset of the agents in the system that may influence its behaviour. The 
syntax for the description of environments is given below.  
 Environment-description ::=   
  ENVIRONMENT { (agent-name | All: caste-name  | variable : caste-name) / , }+ 
where an agent name indicates a specific agent in the system. 'All' means that all the 
agents of the caste have influence on its behaviour. As a template of agents, a caste 

Visible state-variables and actions  
Invisible state-variables and actions  

Behaviour-specification 

Name: castes (Instantiation) 

Environment 
description 

Visible state-variables and actions  

Invisible state-variables and actions  

Behaviour-specification  

Name <= castes (instantiation) 

Environment 
description 



 

 

may have parameters. The variables specified in the form of “identifier: class-name” in 
the environment description are parameters. Such an identifier can be used as an agent 
name in the behaviour description of the caste. When instantiated, it indicates a 
specific agent in the caste. The instantiation clause gives the details about how the 
parameters are instantiated.  
 Instantiation ::= { variable := agent-name / , }+  

In SLAB, the state space of an agent is described by a set of variables with 
keyword VAR. The set of actions is described by a set of identifiers with keyword 
ACTION. An action can have a number of parameters. An asterisk before the 
identifier indicates invisible variables and actions.  
 structure-description ::=::=::=::=    [ Var  {[ * ] identifier: type / ; }+ ] [Action { [*] action / ; }+] 
 action ::=::=::=::= identifier | identifier ( { [ parameter: ] type / , }+ ) 

In a caste and agent specification, the additional state variables and actions should 
not overlap with the state variables, action identifiers and parameter variables defined 
in the super-castes. Moreover, the castes that it inherits should have no common 
variables, no common action identifiers, and no common parameters. In other words, 
no re-definition of state variables and actions are allowed.  

3.2 Behaviour Rules 

In SLAB, the behaviour of an agent is specified by a set of rules.  
 Behaviour-rule ::=::=::=::= [ <rule-name> ]  pattern | [ prob] −> event, [Scenario] [where pre-cond] ; 

In a rule, the pattern describes the agent's previous behaviour. The scenario 
describes the situation in the environment. The where clause is the pre-condition of the 
action to be taken by the agent. The event is the action to be taken when the scenario 
occurs and the pre-condition is satisfied. The agent may have a non-deterministic 
behaviour. The prob is an expression that defines the probability for the agent to take 
the specified action. When the prob is omitted, it means that the probability is greater 
than 0 and less than 1.  

A scenario is a set of situations that might occur in the operation of a system. Here, 
in a multiagent system, we consider a scenario as a set of typical combinations of the 
behaviours of related agents in the system. SLAB's basic form of scenario description 
is pattern. Each pattern describes the behaviour of an agent in the environment by a 
sequence of observable state changes and observable actions. A pattern is written in 
the form of [p1, p2, ..., pn], where n≥0, and pi are events. Patterns can be combined 
together by logic connectives and quantifiers to describe global situations of the 
whole system. The syntax of patterns and scenarios is given below. Their meanings 
are given in Table 1.   
 pattern ::=::=::=::= [ { event [ || constraint ] / , } ] 
 event ::= [ time-stamp: ]  [ action ] [ ! state-assertion ]   
 action ::= ::= ::= ::= atomic-pattern [ ^ arithmetic-expression ] 
 atomic-pattern ::=::=::=::= $  | ~ | action-variable | action-identifier [ ( { arithmetic-expression } ) ]  
 time-stamp ::= arithmetic-expression  
 Scenario ::= Agent-Name : pattern | arithmetic-relation  
  | ∃ [ arithmetic-exp ] Agent-Var ∈ Caste-Name: Pattern | ∀ Agent-Var ∈ Caste-Name: Pattern  
  | Scenario & Scenario | Scenario ∨ Scenario | ~ Scenario  



 

 

where a constraint is a first order predicate. An arithmetic relation can contain an 
expression in the form of µAgent-var∈Caste.Pattern, whose value is the number of 
agents in the caste that whose behaviour matches the pattern.  

Table 1. Semantics of scenario descriptions 

Pattern/Scenario Meaning 

$ The wild card, it matches with all actions 

∼  The silence event 

Action  variable  It matches an action 

P^k A sequence of k events that match pattern  P 

Action (a1, ...ak) An action that takes place with parameters match (a1, a2, ...ak) 

! Predicate The state of the agent satisfies the predicate 

[p1,..., pn]  The previous sequence of events match the patterns p1, ..., pn  

A: P The situation when agent A's behaviour matches pattern P 

∀X∈C : P The situation when the behaviours of all agents in caste C match pattern P 

∃ [m]X∈C : P The situation when there are at least m agents in caste C whose behaviour 
matches pattern P where the default value of the optional expression m is 1 

µ X∈C: P The number of agents in caste C whose behaviour matches pattern P  

S1 & S2 The situation when both scenario S1 and scenario S2 are true 

S1 ∨ S2 The situation when either scenario S1 or scenario S2 or both are true 

¬ S The situation when scenario S is not true 

 
The following are some examples of scenarios.   
(1)   ∃ p∈Players: [shoot(x, y, z)]. 

It describes the situation that there is a player who is shooting.  
(2)   µ p∈Players: [ !position(x, y) || Is-Inside(x,y) ] = 3  

It describes the situation that there are 3 players inside the goal area.   
(3) MJ: [!position(x,y)] & ∀p∈Players: [!position(x', y') || Distance(<x,y>, <x', y'>) > 3 & p≠MJ ]  

It is the situation when all players are at a distance more than 3 feet from MJ.  
Obviously, without the caste facility, it is not possible to describe such scenarios.  

4. Uses of Castes in Formal Specification 

In [2, 3], we have shown how to use SLAB to specify personal assistants such as 
Mae's Maxims [13], reactive agents like ants, and speech act. This section further 
illustrates the uses of the caste facility in the specification of communication protocol 
and organisations of agent societies.    



 

 

4.1 Organisation of Agent Society 

Multiagent systems often divide agents into a number of groups and assign each 
group a specific role. Such a structure of multiagent system can be naturally specified 
by using the castes and the inheritance and instance relationships.  

For example, in section 2, we have seen how castes are used to specify the roles 
and the organisational structure of a basketball game simulation system. Fig. 1 below 
shows the inheritance and instance structure of the example. 

 
  
 
 
 
 
 
 
 
 
 
 

Fig. 1. Castes / agents structure of the basketball example 

4.2 A Simple Communication Protocol 

A typical example of common behaviour rules that all agents in a multiagent system 
follow is a communication protocol that defines how agents communicate with each 
other. Such rules can be specified in a caste and all other castes are then specified as 
its sub-caste.  

For example, the following castes specify a synchronised communication process 
between agents. If an agent want to send a message to another agent, it signals to the 
receiver, waits for the receiver to signal back, and then passes the message to the 
receiver. When an agent saw another agent's signal, it signals back and then receives 
the message. Here, we have two roles: the senders and the receivers. Each role is 
specified by one caste.  

A sender in the Senders caste has a visible state variable Signal, which indicates 
whether the sender want to send a message. The process of sending a message is 
defined by 3 rules. By the <Start sending> rule, the scenario to apply the rule requires 
that the receiver agent must be in the state of !SignalBack=off, where !pred means that 
the state of the agent must satisfy the predicate. An agent starts sending a message if 
its Intention is 'send' and its State is idle, i.e. the assertion !(Intention = 'send' & State=Idle) 
is true. The result of taking this action is that the state of the agent satisfies the 
predicate !(Signal = ON & State = Sending). In other words, it will set variable Signal to 
be ON and State to be Sending. Once this has been done, the agent can take a second 
action as specified by the <Send message> rule if the receiver's SignalBack turns into 
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ON. Similarly, the <Finish sending> rule defines the state change for the sender after 
sending a message.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The Receivers caste also has three rules, <Start receiving>, <Receiving message> and 
<Finish receiving>.  They define the process of state change for the receiver agent. An 
agent can be a sender and receiver at the same time. Hence, we define a caste 
Communicators that inherits both castes of Senders and Receivers as follows.  
 
 
 
 

Recievers 

S: Senders 

Var   SignalBack: {ON, OFF};   
Action Receive(AgentName,Message); 

Var  State: {Sending, Receiving, Idle} = Idle; 
   Intention: String; 
   Message: String; 

<Start Receiving>:  
 [!(Intention = 'Receive' & State = Idle)]  
  |−> ! (SignalBack = ON & State = Receiving), if S: [Signal = ON]; 
<Receive message>:  
 [!(State=Receiving & SignalBack = ON)]  
  |−> Receive(S, x)!(Message=X), if S:[Send(Myself, X) ! Signal = ON]; 
<Finish receiving>:  
 [ Receive(S, X) ! (State = Receiving & SignalBack = ON)]  
  |−>  !(Signal = OFF & State = Idle); 

Senders 

R: Receivers 

Var   Signal: {ON, OFF};  
Action Send(AgentName, Message);  

Var  State: {Sending, Receiving, Idle} = Idle; 
   Intention: String; 
   Message: String;  

<Start sending>:  
 [ !(Intention = 'send' & State = Idle)] |−> ! (Signal = ON & State = Sending),  
           if R: [!SignalBack = OFF]; 
<Send message>:   
 [ !(Signal = ON & State = Sending)] |−> Send(R, Message), 
            if R:[SignalBack = ON]; 
<Finish sending>:  
 [ Send(R, Message) ! (Signal = ON & State = Sending)]  
   |−> Signal = OFF & State = Idle; 

Communicators <= Senders, Receivers 



 

 

Agents that follow the same communication protocol can be declared as instances 
of the castes or their sub-castes. For example, the following specifies a system that 
consists of 3 agents, A, B and C. Here, agent A sends messages to agent B, and B 
passes the message to agent C. Notice that, the castes Senders, Receivers and 
Communicators do not specify when an agent will have the intention to send or receive 
a message. Therefore, additional behaviour rules are added to the specification of 
agent B so that it repeats the cycle of receiving a message from A, then passing it to 
agent C.  
 
 
 
 
 
 
 
 
 
 
 

This example shows that the caste and inheritance facilities provide a powerful 
vehicle to describe the normality of a society of agents. Multiple inheritances enable 
an agent to belong to more than one society and play more than one role in the system 
at the same time.  

5. Conclusion 

The SLAB language integrates a number of novel language facilities that intended to 
support the development of agent-based systems. Among these facilities, the notion of 
caste plays a crucial role. A caste represents a set of agents that have same capability 
of performing certain tasks and have same behaviour characteristics. Such common 
capability and behaviour can be the ability of speaking the same language, using the 
same ontology, following the same communication and collaboration protocols, and 
so on. Therefore, caste is a notion that generalises the notion of types in data type and 
the notion of classes in object-oriented paradigm. This notion is orthogonal to a 
number of notions proposed in agent-oriented methodology research, such as the 
notions of role, team, organisations, but it can be naturally used to implement these 
notions. A caste can be the set of agents playing the same role in the system. 
However, agents of the same caste can also play different roles especially when 
agents form teams dynamically and determines its role at run time. Using the caste 
facility, a number of other facilities can be defined. For example, the environment of 
an agent can be described as the agents of certain castes. A global scenario of a 
multiagent system can be described as the patterns of the behaviours of the agents of a 
certain caste. The example systems and features of agent-based systems specified in 
SLAB show that these facilities are powerful and generally applicable for agents in 
various models and theories.  

C: Receivers(S=B) 

A: Senders(R=B) B: Communicator(R=C, S=A) 

<Change intention to send>: 
 [!State = Receiving, !(Intention = 'Receive' & State = Idle) 
  |−> !(Intention = 'Send'); 
<Change intention to receive>: 
 [!State = Sending, !(Intention = 'Send' & State = Idle) 
  |−> !(Intention = 'Receive'); 

Intention = 'Receive'; State = Idle; 

Signal = Off;  SignalBack = Off; 



 

 

Our model of agents is closely related to the work by Lesperance, et al [14], which 
also focused on the actions of agents. However, there are two significant differences. 
First, they consider objects and agents are different types of entities. Consequently, 
they allow an agent to change the state of objects in the environment, while we only 
allow an agent to modify its own state. Second, the most important difference is, of 
course, there is no notion of caste or any similar facility in their system. The notion of 
agent groups has been used in a number of researches on the multi-modal logic of 
rationale agents, such as in Wooldridge's work [5], etc. However, such notion of 
groups of agents is significantly different from the notion of caste, because there is 
neither inheritance relationships between the groups, nor instance relationship 
between an agent and a group. The only relationship is the membership relationship. 
Any subset of agents can form a group regardless of their structure and behaviour 
characteristics. Many agent development systems are based on object-oriented 
programming. Hence, there is a natural form of castes as classes in OO paradigm, 
which is often called agent class. However, as argued in section 2, although agents 
can be regarded as evolved from objects and castes as evolved from classes, there are 
significant differences between agents and objects and between castes and classes. 
Therefore, the notion of caste deserves a new name.  

The use of scenarios and use cases in requirements analysis and specification has 
been an important part of object-oriented analysis; see e.g. [15]. However, because an 
object must respond in a uniform way to all messages that call a method, there is a 
huge gap between scenarios and requirements models. As an extension to object-
oriented methodology, a number of researchers have advanced proposals that employ 
scenarios in agent-oriented analysis and design [16, 17, 18]. In the design of SLAB, 
we recognised that scenarios can be more directly used to describe agent behaviour. 
The gap between scenarios and requirements models no longer exists in agent-based 
systems because the agent can controls its behaviour. Its responses can be different 
from scenario to scenario rather than have to be uniform to all messages that call a 
method. When the notion of scenario is combined with the caste facility, we obtained 
a much more powerful facility for the description of scenarios than any existing one. 

There are a number of problems related to the caste facility that need further 
investigation. For example, in SLAB an agent's membership of a caste is statically 
determined by agent description. Static membership has a number of advantages, 
especially its simplicity and easy to prove the properties of agents. A question is 
whether we need a dynamic membership facility in order to specify and implement 
dynamic team formation. An alternative approach to the problem of team formation is 
to define aggregate structures of agents and castes. Another design decision about the 
caste facility that we faced in the design of SLAB was whether we should allow re-
definitions of behaviour rules in the specification of sub-castes.  

Although the caste facility was first introduced as a specification facility, we 
believe that it can be easily adopted in an agent-oriented programming language for 
the implementation of multiagent systems. How to implement the facility is an 
important issue in the design and implementation of agent-oriented programming 
languages. It also deserves further research. 
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