
 1

Cooperative Agent Approach to Quality Assurance and Testing Web Software

Hong Zhu
Dept. of Computing, Oxford Brookes University

Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk

Abstract
This paper applies Lehman’s theory of software

evolution to analyse the characteristics of web-based
applications and identifies the essences and incidents
that cause difficulties in developing high quality
web-based applications. It is argued that they belong to
Lehman’s E-type systems, hence satisfy Lehman’s eight
laws of software evolution. The uncertainties underly-
ing the development of web applications are analyzed
and their implications are discussed. In order to sup-
port sustainable long term evolution of such systems,
we proposed a cooperative multi-agent system ap-
proach to support both development and maintenance
activities. A prototype system with emphasis on testing
and quality assurance is reported.

The Web has become a distributed and hyperme-

dia software platform. It has stimulated many new ap-
plications [1]. However, developing web applications
are complex, difficult and expensive. As a consequence,
software quality suffers most. In this paper, we discuss
why testing web applications and quality assurance are
difficult and propose a cooperative agent approach to
overcome the problems.

1. Characteristics of Web Applications
The causes of difficulties in software development

can be essences or incidents [2]. Hence, it is desirable
to understand the essence and incident factors that af-
fect web application development.

1.1. Classification of software systems
According to Lehman [3], software systems can be

classified into three types according to what ‘correct-
ness’ means to the particular system. An S-type pro-
gram is required to satisfy a pre-stated specification.
For such a system, correctness is the absolute relation-
ship between the specification and the program. Many
safety critical applications belong to this type. A P-type
program is required to form an acceptable solution to a
stated problem in the real world. The correctness of a

P-type program is determined by the acceptability of
the solution to the stated problem. An E-type program
is required to solve a problem or implement an applica-
tion in a real-world domain which often has no clearly
stated specification. The correctness of such a system is
judged by the users. Obviously, many kinds of web
applications such as e-commerce, e-government,
e-science, etc., belong to the E-type.

1.2. Uncertainties underlying web applications
Different types of systems in Lehman’s classifica-

tion demonstrate different evolution processes because
they are affected by different types of uncertainties.

Generally speaking, there are three types of uncer-
tainties associated with software development [4].
Gödel-like uncertainty arises because software systems
are models. The representation of such a model and its
relationship to the real world is Gödel incomplete.
Consequently, the properties of a program cannot be
completely known. Heisenberg-type uncertainty results
from the processes of using the system, which inevita-
bly change the user’s perception and understanding of
the application. A common phenomenon in the devel-
opment of software systems is that the users are uncer-
tain about the requirements, but they often insist that
‘I’ll know it when I see it’ [5]. Uncertainties from this
source exhibit themselves in the form of changing re-
quirements. Pragmatic uncertainty is due to the human
participation in the development process. Software
development process is still a manual activity during
which errors are made and faults are introduced. Many
types of risks in software development are due to this
type of uncertainty. For example, the adaptation of a
new development method and the use of a new soft-
ware tool or programming language may introduce
uncertainty to the quality of the product and the devel-
opment process.

Although these sources of uncertainties are associ-
ated with all software development projects, their im-
pacts on web applications are much more serious. Be-
ing E-type systems, web applications are judged by
users’ acceptances for their correctness. Many web

 2

applications are novel to the majority of users. Users
are bound to change their perception and understanding
of the application. For example, many web-based
e-banking systems have been developed based on
knowledge about how people use banking facilities via
accesses to local branches of banks and via telephone
banking facilities. Assumptions are made about how
people’s habits and behaviours can be supported by
and adapted to online accesses through the Internet.
Once an e-banking system is implemented and put into
operation, the users’ understanding of e-banking sys-
tems and their way of banking started to change. New
requirements emerged as the results of using such sys-
tems. For example, many banks in UK have changed
their terms and conditions of opening and using bank
accounts in the past a few years to meet the needs of
online banking. Consequently, modifications of the
system must be made to meet users’ new requirements.
At the time of developing the first version of e-banking
systems, it was unpredictable what requirements would
emerge before actually implementing and using them.
The same can be said to the requirements to emerge in
the future. Since Heisenberg-type uncertainties always
play a significant role in the development of E-type
systems, it will continue to be a major uncertainty in
the development of web applications.

Gödel-like uncertainty also hampers the develop-
ment of high quality web applications. On one hand,
the development of a web application heavily depends
on the existence of an accurate model of the real world
as the basis of the design and implementation of the
system. On the other hand, there is few mature theory
and methods that helps developers to build a good
model of the system and environment of web applica-
tions. The complexity of web applications is inevitable
because they execute on distributed, hypermedia, het-
erogeneous computer platform. Moreover, they are
open to the environment, hence vulnerable to malicious
attacks. They are often depending on unreliable and
uncontrollable hardware and software resources; hence
they have to be fault tolerant and cooperative to other
systems, etc. Existing formalisms and semi-formal no-
tations, such as UML, become powerless to handle all
these issues at the same time. Although such uncertain-
ties may gradually diminish as research and technical
development progresses in the long term, there seems
no immediate solution but to integrate existing tech-
niques and research results.

Pragmatic uncertainty also contributes to the dif-
ficulties in the quality assurances and testing web ap-
plications. It is because web technology has been rap-
idly developed in the past a few years. A large number
of new techniques have emerged. It is predictable that
more web techniques in the laboratory will become
available for practical uses in the next a few years.

Moreover, in the past a few year, a large number of
persons have entered the IT profession. Many of them
have limited experience and training in software de-
velopment. These are the main sources of uncertainties
of the pragmatic type. Such causes of difficulties are
incidents rather than essences. For a long time, soft-
ware quality assurance as well as verification, valida-
tion and testing methods and techniques have been
developed to reduce the pragmatic uncertainty and to
minimize their impact on software development. Prin-
ciples proved to be effective for software testing and
quality assurance should be equally applicable to the
web applications. Existing methods, techniques and
tools can be adapted to the new web technology. Yet,
new methods and techniques must also be developed
for deal with the novel features of web applications.

1.3. Laws of evolution
How can we overcome the difficulties? Lehman

studied a number of systems that had survived in a long
process of evolution and proposed a set of laws of
E-type software systems [3], which is quoted in Table
1 below. In addition to Lehman’s laws, we also ob-
served a common phenomenon of web-based systems
in our investigation of web-based applications. That is,
in a web-based system, there are almost always com-
ponents developed using different methods, such as
code written in different languages and/or executing on
different platforms, data represented in different for-
mats, interfaces interacting with different (versions of)
external software systems using different protocols,
etc. This is called the law of diversity, which is also
listed in Table 1.

Lehman’s laws can be considered as a ‘survival
guide’ for the evolutionary development of E-type sys-
tems. Violating Lehman’s laws in the development of
an E-type system may well mean a death penalty. Here,
the death of a software system should be understood in
Peter Naur’ sense [6], that is, the state of death be-
comes visible when demands for modifications of the
program cannot be intelligently answered although the
program may continue to be used for execution and
provide useful results. These laws provide the clues for
how software development processes should be organ-
ized and how supporting tools should be constructed.
They imply the following high level requirements on
the quality assurance and testing activities in web ap-
plication development.

First, to develop a high quality E-type systems,
and web applications in particular, an evolutionarily
development strategy must be adopted. Moreover,
quality assurance and testing, verification and valida-
tion techniques must fit into this evolution process.

Second, to enable a long term sustainable evolu-
tionary development process, it is vital to prevent the

 3

system’s complexity increasing and quality declining
out of control. This requires constantly maintaining a
good knowledge about the system.

Third, it is essential to build feedback loops be-
tween the users and the developers. The developers
must commit a continuous effort to adapt the system to
meet users’ new requirements.

Finally, various testing, verification and validation
tools must be integrated into one environment to deal
with the diversity of the components and their execu-
tion platform and environment. The environments must
also be easily extended so that new tools can be inte-
grated in the future as new development techniques
emerge in the future.

Table 1 Laws of Software Evolution
Law Description
Continuing
Change

E-type systems must be continually adapted
else they become progressively less satisfac-
tory in use.

Increasing
Complexity

As an E-type system is evolved its complexity
increases unless work is done to maintain or
reduce it.

Self
Regulation

Global E-type system evolution processes are
self regulating.

Organiza-
tional
Stability

Unless feedback mechanisms are appropri-
ately adjusted, average effective global activ-
ity rate in an evolving E-type system tends to
remain constant over product lifetime.

Conserva-
tion of
familiarity

The incremental growth and long term growth
rate of E-type systems tend to decline.

Continuing
Growth

The functional capability of E-type systems
must be continually increased to maintain user
satisfaction over the system lifetime.

Declining
Quality

The quality of E-type systems will appear to
be declining unless they are rigorously
adapted, as required, to take into account
changes in the operational environment.

Feedback
System

E-type evolution processes are multi-level,
multi-loop, multi-agent feedback systems.

Diversity An E-type system contains components that
are developed and integrated into the system
using a diversity of techniques.

2. The Proposed Approach
To satisfy these requirements, we proposed a co-

operative agent approach to constructing quality as-
surance and testing environment for web applications
[7~9]. The basic ideas can be summarized as follows.

The software environment consists of the two
types of agents. Service agents provide various sup-
ports to the development of software systems in an
evolutionary strategy. They fulfil the functional re-
quirements of development and quality assurance and
testing, verification and validation functionalities.
Management agents manage service agents and re-
sponsible for the registration of agents’ capabilities,

task scheduling, and monitoring and recording agents’
states and the system’s behaviours. Each service agent
is specialized to perform a specific functional task and
deal with one representation format. They cooperate
with each other to fulfil more complicated tasks. Vari-
ous development and quality assurance techniques and
tools can thus be nicely integrated. Boundaries between
different representation formats and notations can be
bridged through cooperation between agents.

These agents co-exist with the application software
system throughout the application system’s whole
lifecycle to support the modifications of the system.
They monitor the evolution process and record the
modifications of the system and the rationales behind
the modifications. They extract, collect, store and
process the information about the application system
and its performance, and present such knowledge to
human beings or other software tools when requested.
They interact with the users and developers coopera-
tively. The environment grows with the application
system as new tools are integrated into the environment
to support the development and maintenance of new
components and as the knowledge about the system is
accumulated over the time. The relationship between
the tools and the system is similar to the relationship
between a tree and its natural environment where it is
growing, and a between a human and his/her social
environment that changes as the person is growing up.
Because of these features, we call such a software en-
vironment a growth environment. It significantly dif-
fers from software development environments and
run-time support environments such as middleware,
where evolution is not adequately supported.

In order to enable agents to cooperate effectively
with each other and with human users, they communi-
cate with each other through a flexible and collabora-
tion protocol and codify the contents of messages in an
ontology which represents knowledge about the appli-
cation domain and software engineering. The use of
ontology also enables high extendibility of the system
so that agents can be easily added into the system, re-
moved from the system, or upgraded by new versions.

3. Prototype System
To demonstrate the feasibility and capability of the

above proposed approach, we designed and imple-
mented a prototype growth environment for quality
assurance and testing web-based applications.

As shown in Figure 1, the environment consists of
a number of agents to fulfil testing related tasks for
web-based applications. These agents can be distrib-
uted to different computers of application servers, test
servers and clients. Table 2 briefly describes the agents
that have been implemented; see [8] for more details.

An ontology of software testing is developed and

 4

represented in XML for the communications between
agents [8,9,10]. The interaction protocol is developed
on the basis of speech-act. The use of ontology enables
agents to communicate with each other and with hu-
man users at a very high level of abstraction.

 Testing
Guidance

GWP

Application Server

WPI

WSS WSM

KB

TCG
Test Server

TCE

TO

KB

Client Computer

TA

 Tester
Feedback

 Testing
Command

Web
Info

Figure 1 System Structure

Table 2 Agents for testing web applications
Agent Functionality
GWP –
Get Web Page

Retrieve web pages from a web site.

WPI –
Web Page
Information

Analyse the source code of a web page, and
extract the page title, metadata, hyperlinks
and structural information from the code.

WSS -
Web Site
Structure

Analyse the hyperlink structure of a web
site, and generate a node-link-graph de-
scribing the structure.

TCG - Test
Case Generator

Generate test cases to test a web site ac-
cording to certain testing criteria.

TCE - Test
Case Executor

Execute the test cases, and generate execu-
tion results.

TO –
Test Oracle

Verify whether the testing results match a
given software specification.

TA - Testing
Assistant

Perform as user interface and guide human
testers in the process of testing.

WSM- Web
Site Monitor

Monitor the changes of web sites, and gen-
erate new testing tasks accordingly.

4. Conclusion
The application of Lehman’s theory of software

evolution to web-based applications shows that they
are by nature evolutionary and, hence, satisfy Leh-
man’s laws of evolution. The essence of web applica-
tions implies that supporting their sustainable long term
evolution should play the central role in developing
quality assurance and testing techniques and tools.
Therefore, two basic requirements of such a software
environment can be identified. First, the environment
should facilitate flexible integrations of tools for de-
veloping, maintaining and testing various kinds of
software artefacts in a variety of formats over a long
period of evolution. Second, it should enable effective
communications between human beings and the envi-

ronment so that the knowledge about the system and its
evolution process can be recorded, retrieved and effec-
tively used for future modification of the system. Our
solution to meet these requirements is a cooperative
multi-agent software growth environment. In this en-
vironment, various tools are implemented as coopera-
tive agents interacting with each other and with human
users at a high level of abstraction using ontology. We
have designed and implemented a prototype system for
testing web applications. Preliminary experiments with
the prototype have shown some promising results.

Acknowledgement. The project reported in the
paper is partly supported by Oxford Brookes Univer-
sity Research Bursary and China High Technology
Research Programme under grant 2002AA116070. The
author is grateful to Mr. Qingning Huo who designed
and implemented the prototype system reported in this
paper.
References

[1] Crowder, R., Wills, G., and Hall, W. Hypermedia infor-
mation management: A new paradigm. Proc. of 3rd Int Conf
on Management Innovation in Manufacture, July 1998,
329-334.

[2] Brooks, F. P. Jr, No silver bullet: essence and accidents of
software engineering, IEEE Computer, 1987, pp10~19.

[3] Lehman M. M. and Ramil, J. F. Rules and Tools for
Software Evolution Planning and Management. Annals of
Software Engineering, Special Issue on Software Manage-
ment, 11(1) 2001, 15-44.

[4] Lehman, M. M. Uncertainty in Computer Application.
C.ACM, 33(5), 1990, 584-586.

[5] Boehm, B. Requirements that Handle IKIWISI, COTS,
and Rapid Change. IEEE Computer, July 2000, 99-102.

[6] Naur, P. Programming as theory building, Computing: A
Human Activity. ACM Press, 1992, 37-48.

[7] Zhu, H., Greenwood, S., Huo, Q. and Zhang, Y., Towards
agent-oriented quality management of information systems,
Workshop Notes of 2nd International Bi-Conference Work-
shop on Agent-Oriented Information Systems at AAAI'2000,
Austin, USA, July 30, 2000, 57-64.

[8] Huo, Q., Zhu, H., and Greenwood, S., A Multi-Agent
Software Environment for Testing Web-based Applications,
Proc. of COMPSAC'03, Dallas, 2003, 210-215.

[9] Huo, Q., Zhu, H. and Greenwood, S. Using Ontology in
Agent-based Web Testing. Proc. of ICIIT’2002, Sept., 2002,
Beijing, China.

[10] Zhu, H. and Huo, Q., Developing A Software Testing
Ontology in UML for A Software Growth Environment of
Web-Based Applications, To appear in Software Evolution
with UML and XML, Hongji Yang (eds.), Idea Group Inc.

