A Framework for Service-Oriented Testing of Web Services

Hong Zhu
Department of Computing, Oxford Brookes University, Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk

Abstract

Testing Web Services (WS) application systems is
difficult and expensive. It imposes great challenges to
existing testing methods, techniques and tools. This
paper analyses the problems in testing WS applications
and proposes a service oriented framework to solve the
problems. It enables collaborations between various
parties involved in the development of WS applications
via service request and service providing. It also en-
ables special testing services to be provided as WS to
perform testing tasks on behalf of their customers. The
key technical issues of the approach are discussed.

1 Introduction

The recent years has seen a rapid growth of the de-
velopment of Web Services (WS) technology. In com-
parison with other distributed computing techniques
such as CORBA, Java RMI and DCOM, WS offers
more flexibility and looser coupling so that it is more
suitable for internet computing [1]. It is characterised
by the dominant of program-to-program interactions
[2]. In view of the infrastructure of WS becoming per-
vasive, a new paradigm of service-oriented computing
is emerging. As Stal pointed out [3], it is fundamen-
tally different from the others. The components of WS
applications, such as service providers, are autonomous,
active and persistent computational entities that control
their own resources and their own behaviours. They
have social ability and collaborate with each other
through dynamic discovery and invocation of services.
It is widely recognised that WS technologies will pro-
foundly change the ways that computer systems and
software are developed and used [4]. However, the
current infrastructure and standards of WS do not sup-
port adequate testing of WS applications.

One of the key features of service-oriented com-
puting is that a requester’s search for service providers,
and an invocation and delivery of a service can all be
determined at run-time. To enable such dynamic com-
position of services, standards have been developed for
service registration, service enquiry and retrieval, ser-
vice request and delivery. The stack of standards of
WS includes WSDL for service description and publi-
cation [5], UDDI for service registration and retrieval
[6], and SOAP for service invocation and delivery [7].
More advanced standards were also being developed to

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006 IEEE

enable collaborations between service providers and
requesters. For example, BPELAWS uses notions of
business process and workflow models. OWL-S is
based on ontology for the description of semantics of
services. Methodologies for developing WS have also
been proposed; e.g. [8].

Despite of the active research on WS technology,
few works have also been reported in the literature for
testing WS and quality assurance of WS applications.
For example, in [9], metamorphic testing methods are
applied to testing WS applications. In [10, 11, 12],
multiple WS applications that provide the same ser-
vices are regarded as a multiple version system to en-
able the comparison of testing results. These methods
test services as black-boxes. Other testing methods
have also proposed to test specific aspects of WS ap-
plications, such as testing the XML schema [13, 14],
and by modifying the data passing between the ser-
vices [15], etc. While these works are important and
make positive contributions to the quality assurance of
WS applications, the main difficulties in testing WS
applications are yet to be addressed.

In this paper, we first analyse the impact of the
novel features of service-orientation on software test-
ing and identify the requirements on infrastructural
support to testing WS applications. We then propose an
approach to the solution, which also takes the advan-
tages of service-oriented architectures by regarding
software testing as services. Finally, based on our pre-
vious work on software testing ontology, we discuss
the key technical issues that must be addressed to fa-
cilitate the solution.

2 The Challenges

To analyze the challenges of WS technology to
software testing, let’s consider the following scenario
of a typical e-commence application.

2.1 A typical scenario

Suppose that a fictitious car insurance broker CIB
is developing a web-based system that provides a com-
plete service of car insurance. In particular, the end
users should be able to submit car insurance require-
ments and get quotes from various insurers that the car
insurance broker CIB is connected to, and then select
one insurer to insure the car. To do so, the broker will
take information from the user of the car, its usages,

IEE I-'

COMPUTER
SOCIETY

and the payment. It will also check the validity of
user’s payment information, pass the payment to the
selected insurer as well as take commissions from the
insurer or the user. Although the car insurance broker’s
software system may have a user interface to enable
the end users’ interactive uses, the system also has a
WS interface to enable other programs to connect to it
as its service requesters. Assume that CIB uses the WS
of its bank B to check its customer’s credit, validate
their payments, and to perform financial transactions.
Its binding to the bank’s WS can be static and stable, if
the company does not change its bank so frequently.
As insurance is an active business domain, new insur-
ance providers may emerge and existing ones may
leave the market from time to time. It is desirable to
bind the broker’s software dynamically to multiple
insurance providers to ensure that the business is com-
petitive on the market. The structure of the system is

GUI CIB’s service

Interface requester

Bank B's | g CIB’s . WS
Services | Services P Registry

v N

;
Insurance A;'s Insurance A,’s
Services Services

Insurance A¢’s
Services

Figure 1. Structure of CIB Application

illustrated by the following diagram.

The developer of the broker CIB’s services must
test not only its own code, but also the integration of its
own code with the WS systems of the insurers, and the
bank. Both of these two testing tasks have its new fea-
tures that challenge the current software testing tech-
niques and methods of their capabilities and effective-
ness. The following discusses the similarities and dif-
ferences between such a testing and the corresponding
testing tasks in the development of traditional software
systems.

2.2 Testing Own Side Services

The testing of a service by its own developers has
similarity with the testing of software components.
Many existing work on software component testing can
be applied or adapted to take special consideration of
the WS standard into consideration. Such WS special
issues include the following.

e The stateless feature of HTTP protocol;

e XML encoding of the data passing between ser-
vices as in SOAP standard,;

e Confirmation of implementation to the descrip-
tions of the WS as published in WSDL for the syn-
tax of the services, or any other standards such as
workflow specification in BPEL4WS and semantic

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006 IEEE

specification in an ontology description language

such as OWL-S.

In addition to these issues, the testing must take the
following situations into consideration.

A. Dealing with abnormal behaviours

Because of the stateless feature of HTTP protocol,
the system must keep track of the progresses of all its
requesters’ transactions, especially when it consists of
complicated workflows. Because the requesters of the
service are autonomous, a requester may stop coopera-
tion in the middle of a transaction for many reasons,
such as intentional quit, network failure, or failures of
requester’s software system due to fault. Such abnor-
mal behaviours of service requesters cannot be ruled
out by the design and implementation of the services.
Thus, burdens are on the testers to ensure that the sys-
tem handles such behaviours properly.

B. Dealing with unexpected usages

As all web-based applications, load balance is es-
sential. Therefore, load testing is necessary for testing
WS. Such testing must take various usages of the sys-
tem into consideration in order to obtain realistic test
results. However, the knowledge of the usage of a WS
may not be available during the design and implemen-
tation of the system.

C. Dealing with incomplete systems

Services may be significantly different from soft-
ware components because components are mostly self-
contained with well-defined interfaces. However, a
service may have to rely on other services to perform
its functionality properly. For example, the insurance
broker CIB may provide a service to its customers that
compares the prices of a number of insurance providers
and makes suggestions based on the cheapest quote.
This service cannot be in function without requesting
the services provided by insurers. Therefore, it can be
hard to separate the testing of the own services from
the integration testing, especially when it involves
complicated workflows. For example, for the develop-
ers of the CIB WS, it could be too costly and time con-
suming to build a test harness and stubs of the other
services to enable the adequate testing of CIB’s own
services, especially when they involve a large number
of different service providers using different techniques
in their implementation of the services. In the worst
case, because the insurers’ WS are dynamically bound
to the broker’s services, the knowledge of their format
and semantics can only be based on assumptions and
standards. Adequate testing has to be postponed to
integration testing when the binding actually happens.

IEE I-'

COMPUTER
SOCIETY

2.3 Testing of Service Composition

While the integration testing in service composi-
tion has similarity to component integration, the differ-
ence between them is dominant and causes significant
difficulties to apply existing testing techniques. It has
become the technology bottleneck that hampers the
wide spread of WS.

A number of software integration testing methods
and techniques have been developed in the past dec-
ades of research and practices of software testing. In
particular, various strategies of integration has been
developed and investigated, such as top-down, bottom-
up and hybrid integration strategies. These strategies
and corresponding techniques aim at effective observa-
tions of the interfaces between parts of software sys-
tems through the development and uses of test drivers,
component stubs and test harnesses as well as special
purpose software instrumentation. A condition for
applying such techniques is that the tester has access to
the source code of the parts to be integrated. This con-
dition is no longer valid in testing WS. A similar prob-
lem has been investigated in testing component-based
systems, where source code is not always available, too
[16, 17, 18]. However, testing service composition is
even more difficult for the following reasons.

A. Lack of software artifacts

Testers not only have no access to the source code
of the services provided by the other parties, but also
have no control over the executable code, which typi-
cally runs on the service providers’ computers over the
Internet. For statically bound services, it is possible for
the testers to write test harnesses based on the stan-
dards and the published description of the provided
services. This could be costly and error-prone because
the correctness of the stubs that represents the services
could not be ensured. Techniques that automatically
derive stubs from source code are not applicable.
Automatic instrumentation of original source code or
executable code to enable observation of the correct-
ness of the data passing between the interfaces is also
not applicable. For dynamic bound services, human
involvement in the integration becomes completely
impossible. Two possible solutions to this problem are:
(a) automatic derive test harness from WS descriptions;
(b) the service provider not only provides the function-
ality of the service, but also provide the service of test-
ing and make the test stubs and drivers available for
dynamic integration.

B. Lack of control over test executions

As mentioned earlier, services are typically located
on a computer on the Internet that testers have no con-
trol over its execution. An invocation of the service as

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006 IEEE

a test must be distinguished from a real request of the
service. It is not imaginable if the tester of CIB WS
actually purchases hundreds and thousands of car in-
surances to cover the combinations of various condi-
tions and makers of cars with various conditions of the
owners of the cars in testing his software. In many
situations the results of executing a software system on
a test case must be removed to set the system back to a
normal state in order to carry out further test. Such
controls of the software systems under test are neces-
sary. The situation could become much more compli-
cated when a WS is simultaneously tested by many
service requesters. The only solution to this problem is
that the service provider must provide a mechanism
and the service that enable service requesters control
the testing executions of the service. However, cur-
rently there is no support to such mechanisms in W3C
standards of WS.

C. Lack of means of observation on system behaviour

It has been recognized for a long time that black-
box testing alone is not adequate to ensure the correct-
ness of software systems; see e.g. [19]. The observa-
tion of internal behaviour of a software system is nec-
essary to achieve adequate testing. A consequence of
unavailability of documentation and source and execu-
table code of a service is that a tester cannot observe
the internal behaviours of the services. There are also
two possible solutions to this problem. One is that the
service provider also provides a mechanism and the
services to the outside tester to observe its software’s
internal behaviour in order to achieve the test adequacy
that a service requester requires. However, for many
reasons, service providers are unwilling to provide the
internal information of their software to the public. The
second solution is that instead of provide such a
mechanism and service to the public, it can open its
document, source code as well as other software arti-
facts that are necessary for testing to some trusted test
service providers. These test service providers access
the internal information of the service on behalf of the
service request while keep the internal information
confident. The service requesters only know the test
results, which is actually what they want.

The analysis above naturally leads to a service-
oriented framework to solve the problems in testing
WS. The next sections further discuss the framework.

3 Architecture

In the proposed approach, a WS should be accom-
panied by a testing service. In the sequel, the services
of the original functionality are called functional ser-
vices, while the services to enable test the functional
services are called festing services. Such testing ser-

IEE I-'

COMPUTER
SOCIETY

vices can be either provided by the same vendor of the
functional services, or by a third party. In addition to
such accompany testing services, testing tool vendors
and companies of specialized in software testing can
also have independent testing services to perform vari-
ous kinds of test tasks, such as to generate test cases, to
measure test adequacy, to extract various types of dia-
grams from source code or design and specification
documents, etc. Figure 2 illustrates the structure of

service oriented testing by the CIB example.
Tester Ty Test Broker Tester T,
F-Services F-Services F-Services
Tester T4 Test Broker Tester T,
T-Services T-Services T-Services
GUI CIB’s service
Interface requester

Bank B’s ¢

F-Services -
CIB’s F-Services WS Regis-|

) &
Bank B's CIB’s T-Services > try
/ v N

T-Services
v

Insurance A¢’s
F-Services

Insurance A¢’s
T-Services

Insurance A;’s
F-Services

Insurance A,’s
F-Services

Insurance A;’s
T-Services

Insurance A,’s

T-Services

Figure 2. Illustration of Service Oriented Testing
In Figure 2, the F-Services are the functional ser-
vices provided by the WS. T-Services are the corre-
sponding testing services. They provide testing ser-
vices through a control mechanism, an observation
mechanism, and necessary documents with certain
access control. The T, and T, Tester F-Services pro-
vide services to perform various testing tasks on behalf
of its customers. Its T-Services provides the facility to
test its own services as all other T-Services. They may
be invoked by other F-Services when dynamic service
binding requires a testing of an F-Service, or invoked
by a developer during integration testing of statically
bound services. A special tester service is test broker,
which searches for testers who are capable of perform-
ing certain testing tasks when requested by a customer

according to tester services registered to the registry.

4 Automating Test Services

The key technique issues that the proposed ap-
proach must address in order to enable automated
online test of WS include the following.

(a) How a testing service should be described, pub-
lished and registered at WS registry with machine
understandable encoding;

(b) How a testing service can be retrieved automati-
cally so that testing dynamically bound services
can be performed automatically;

(c) How a testing service can be invoked by both a

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006 IEEE

human tester and a program to dynamically dis-
cover a service and then test it before bind to it.

(d) How testing results can be summarized and re-
ported in the forms that are suitable for both hu-
man beings to read and machine to understand.
These issues can be resolved by utilization of a

software testing ontology [20, 21].

4.1 Ontology of software testing

Generally speaking, ontology defines the basic
terms and relations comprising the vocabulary of a
topic area as well as the rules for combining them to
define extensions to the vocabulary [22]. It is widely
recognised that ontology can be used where domain
knowledge specification is useful. It is one of the main
approaches to provide machine understandable descrip-
tions of the semantics of WS.

Our ontology of software testing is called STOWS,
which stands for Software Testing Ontology for WS. It
is based on taxonomy of test concepts.

The concepts related to software testing are di-
vided into two groups: the basic concepts and com-
pound concepts. The basic concepts include context,
activity, method, artefact, and environment. Based on
these basics concepts, compound concepts were de-
fined, which include fester, capability and test task.

For each basic concept, there may be a number of
sub-concepts. For example, a testing activity can be the
generation of test cases, the verification of test results,
the measurement of test adequacy, etc. A basic concept
may also be characterized by a number of properties,
which are the parameters of the concept. For example,
a software artefact is determined by (a) its format, such
as HTML file, JavaScript, (b) its type, such as a pro-
gram, or a test suite, (c) its creation and revision his-
tory, such as who and when created the artefact, and
who and when revised it, and the version number of the
artefact, etc. (d) the location that the artefact is stored,
and (e) the data, i.e. the contents, of the artefact.

Relationships between concepts play a significant
role in the management of testing activities. They are a
very important part of the knowledge of software test-
ing. They must be stored in a knowledge-base as basic
facts. This type of knowledge includes the following.

o Subsumption relation between testing methods
Compatibility between artefacts’ formats
Enhancement relation between environments
Inclusion relation between test activities

Temporal ordering between test activities

Based on these basic concepts and relations, more
complicated entities, concepts and relations can be
defined to provide direct support to service oriented
software testing.

IEE I-'

COMPUTER
SOCIETY

4.2 Registration of testing services

To register a WS that provides services of software
testing, it is necessary to specify the semantics of the
services in detail in addition to the syntax format in
WSDL. Such a registration must provide the identity of
the service provider and its capability of performing
certain test tasks.

A tester refers to a particular party who carries out
a testing activity. A tester can be a human being, a
software system, which includes WS and software
agents, etc., or a team, which consists of one or more
testers. Its structure in UML is given in Figure 3.

[I]
[Human][Software |[Team

Figure 3. The Concept of Testers

The following is an example of a tester which is a
software system that provides a WS. Its capability and
description in WSDL are given in files at the URLs.
<TESTER TESTER TYPE="SOFTWARE"

TESTER NAME="TestWs"

TESTER CAPABILITY=

URL:"“//cms.Brookes.ac.uk/STONEWS/TWSC. txt”

TESTER WSDL=

URL:"“//cms.Brookes.ac.uk/STONEWS/WSDL. txt”
</TESTER>

An important attribute of tester is capability that

describes what a tester can do. It is defined in Figure 4.

Capability Artefact

A

0
Capability Data |

l.

<<enumeration>>
Capability Data Type
Input
Output

[Activity |
0-1
[Context

[Method | |
| 01
| [Environment |

Figure 4. The Compound Concept of Capability

The capability of a provider of test services, or
more generally a tester, is determined by the activities
that a tester can perform together with the context to
perform the activity, the testing method used, the envi-
ronment to perform the testing, the required resources
(i.e. the input) and the output that the tester can gener-
ate.

4.3 Request of a testing service

A request of a testing service contains a specific
specification of a testing task, which is defined as a
compound concept in the STOWS ontology. It speci-
fies a testing activity and related information about
how the activity is required to be performed, such as

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006 IEEE

the context, the testing method to be used, the envi-
ronment in which the activity must be carried out, the
available resources and the expected outcomes. It can
be represented by the following UML class diagram.

[\
1o
[Activity | [Method | | Task Data |
o1l |0+
[Contet][Environment |

I

<<enumeration>>

Task Data Type
Input
Output

Figure 5. The Compound Concept of Task
The following is an example of testing task that
requires generating test cases according to the node
coverage criterion for the HTML pages at the URL
http://www.brookes.ac.uk.

<TASK>
<CONTEXT CONTEXT_TYPE="SYSTEM TEST" />
<ACTIVITY
ACTIVITY TYPE="TEST_CASE_GENERATION" />
<METHOD

METHOD_NAME="NODE_ COVERAGE_ TESTING" />
<TASK DATA TASK DATA TYPE="INPUT">
<ARTEFACT
ARTEFACT_TYPE="OBJECT_ UNDER TEST"
ARTEFACT_FORMAT="HTML" >
<ARTEFACT_LOCATION>
http://www.brookes.ac.uk
</ARTEFACT_LOCATION>
</ARTEFACT>
</TASK_DATA>
</TASK>

4.4 Query and retrieval of testing services

A provided testing service can be more powerful
than a required task. The query and retrieval of suitable
service providers cannot be just simple syntax match-
ing. It is crucial to the success of the proposed ap-
proach to facilitate the reasoning about the matching
between test tasks and service provider’s capabilities.
The STOWS ontology defines three relations to sup-
port this. Figure 6 shows the structures of these
compound relations.

¥ — C Matches _T T2
Capability | ——————>| Task

L ey = > Task |
C ! *|71_Contains

i IsMorePowerful !
1

1
MorePowerful
Figure 6. Compound Relations

The relation MorePowerful is defined between two
capabilities. Informally, MorePowerful(c,, c;) means
that a tester has capability ¢; implies that the tester can
do all the tasks that can be done by a tester who has
capability c;. In UML, the MorePowerful relation is an

IHTCE:?

COMPUTER
SOCIETY

association class; see Figure 6 for its structure. The
MorePowerful relation is also a partial ordering.

The relation Contain is defined between two tasks.
Informally, Contain(t,, ;) means that accomplishing
task # implies accomplishing task #,. Similar to the
relation MorePowerful on capabilities, the Contains
relation is also an association class and can be similarly
represented in UML; see Figure 6. It is also a partial
ordering.

In the search for a testing service provider that is
capable of performing a testing task, a broker agent
must answer the question whether the task matches the
capability of the service provider. For example, assume
that a service is registered as capable of generating
statement coverage test cases for Java Applets and a
test task is requested for structural testing a Java App-
let. The broker agent needs to infer that the agent is
capable of fulfilling the task. Therefore, we define the
Matches relation between a capability and a task.
Match(c, f) means that a tester with capability ¢ can
fulfil the task ¢. The following properties of the rela-
tions form the foundation of the inferences that the
broker agent requires in the assignment of testing tasks.
Proposition.

(1) Ve, ca€ Capability, Vte Task,
MorePowerful(c, c;) A Match(c,, t) = Match(cy, t).
(2) Vce Capability, V', t,e Task,
Contain(t,, t,) A Match(c, t\) = Match(c, t,).

5 Conclusion

This paper proposed a service oriented framework
to testing WS applications. The utilization of software
testing ontology STOWS is discussed to register test-
ing services with semantics about the capability of the
services, to request testing service with semantic speci-
fication of the testing task, and to query and retrieve
testing services to match the capability of services to
the requested test tasks. There are many more technical
issues yet to be addressed. We are investigating the
encoding of the ontology in OWL-S and case studies.

We recognize that the proposed approach to testing
WS applications not only imposes technical challenges,
but also social challenges for the approach to be
adopted by IT industry and software testing tool ven-
dors. We are seeking for collaborations from the indus-
try and academia for taking the challenges and push the
approach forward.

References

[1] Lau, C. and Ryman, A. Developing XML Web services
with WebSphere studio application developer, IBM Sys-
tems Journal, Vol. 41, No.2, 2002, pp178-197.

[2] Gottschalk, K. et al. Introduction to web services archi-
tecture, IBM Systems Journal, Vol.41. No.2, ppl170-177.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006 IEEE

[3] Stal, M. Web Services: beyond component-based comput-
ing, C. ACM, Vol.45, No.10, 2002, pp71-76.

[4] Singh, M. and Huhns, M., Service-Oriented Computing:
Semantics, Process, Agents, Wiley, 2005.

[5]1 W3C, Web Services Description Language (WSDL) Ver-
sion 2.0 Specifications: Part 0: Primer, Part 1: Core
Language, Part 2: Adjuncts.

[6] UDDI.org, UDDI Version 3 Specification.

[71 W3C, SOAP Version 1.2, Part 0: Primer, Part I:
Messaging Framework, Part 2: Adjuncts, June 2003.

[8] Zhu, H. and Shan, L., Agent-Oriented Modelling and
Specification of Web Services, Proc. of WORDS’05,
IEEE CS, 2005, pp152-159.

[9] Chan, W. K., Cheung, S. C., and Leung, K. R. P. H. To-
wards a Metamorphic Testing Methodology for Service-
Oriented Software Applications, Proc. of the 5th Annual
International Conference on Quality Software (QSIC
2005), IEEE CS, 2005.

[10] Tsai, W. T., Chen, Y., Cao, Z. Bai, X., Hung, H., and
Paul, R., Testing Web services using progressive group
testing, Proceedings of Advanced Workshop on Content
Computing (AWCC 2004), LNCS 3309, Springer-Verlag,
Berlin, Heideberg, 2004, pp314-322.

[11] Tsai, W. T., Chen, Y., Paul, R., Huang, H., Zhou, X,
and Wei, X., Adaptive Testing, Oracle Generation, and
Test Case Ranking for Web Services, Proc. of COMP-
SAC 2005, IEEE Computer Society, 2005, pp101-106.

[12] N. Looker, M. Munro, and J. Xu, WS-FIT: A Tool for
Dependability Analysis of Web Services, Ist Workshop
on Quality Assurance and Testing of Web-Based Applica-
tions, in Proc. of COMPSAC 2004, Hong Kong, 2004.

[13] Emer, M.P., Vergilio, S. R., Jino, M., A Testing Ap-
proach for XML Schemas, Proc. of COMPSAC 2005 -
QATWBA 2005, July, 2005.

[14] Li, J.B., Miller, J., Testing the Semantics of W3C XML
Schema.Proc. of COMPSAC-QATWBA 2005, July, 2005.

[15] Offutt, J., Xu, W., Generating test cases for Web ser-
vices using data perturbation, Workshop on Testing,
Analysis and Verification of Web Services, SIGSOFT
Software Engineering Notes, Vol. 29, No.5, 2004.

[16] Sami Beydeda and Volker Gruhn (ed.), Testing Com-
mercial-Off-The-Shelf ~ Components and Systems,
Springer, 2005.

[17] Zhu, H. and He, X., An Observational Theory of Inte-
gration Testing for Component-Based Software Devel-
opment, Proc. of IEEE 25th International Conference on
Computer Software and applications (COMPSAC’2001),
8-12 October 2001, Chicago, Illinois.

[18] Zhu, H. and He, X., A Methodology of Component
Integration Testing, in [16], 2005, pp239-269.

[19] Goodenough, J.B. & Gerhart, S.L., Toward a theory of
test data selection, /EEE TSE, Vol.SE 3, June 1975.

[20] Zhu, H., Huo, Q.,, Greenwood, S., A Multi-Agent Soft-
ware Environment for Testing Web-based Applications,
Proc. of IEEE COMPSAC'03, Nov. 2003. pp210-215.

[21] Zhu, H. and Huo, Q., Developing A Software Testing
Ontology in UML for A Software Growth Environment
of Web-Based Applications, Chapter IX of Software Evo-
lution with UML and XML, Hongji Yang (ed.), IDEA
Group Inc. 2005, pp263-295.

[22] Uschold, M. & Gruninger M., Ontologies: Principles,
Methods, and Applications. Knowledge Engineering Re-
view, vol. 11, No.2, 1996, pp93-155.

IEE |-:

COMPUTER
SOCIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

