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Abstract 
Algebraic testing is an automated software testing 

method based on algebraic formal specifications. It tests if 
a program correctly implements an algebraic specification 
by checking if the equations of the specification are satis-
fied. One of the key techniques of algebraic testing is the 
use of observation contexts as a test oracle so that the 
comparison of values of structured data can be realised by 
comparing values of simple data types. This leads to a 
behavioural semantics of algebraic specifications and 
divides sorts into observable and non-observable. To rep-
resent the structure of object-oriented programs and to 
facilitate incremental integration testing, this paper extends 
the notion of observable sorts by introducing a partial 
ordering between sorts to represent the importation relation 
between classes. In this framework, the validity of test 
oracles is formally proved in final algebra semantics.  

1. Introduction 

Algebraic specification emerged in the 1970s as a formal 
method for specifying abstract data types in an implemen-
tation-independent style; see, e.g. [1, 2]. In the past thirty 
years, it has developed into an important formal software 
development method [3, 4, 5]. The uses of algebraic speci-
fication in software testing can be back dated to early 1980s 
[6]. Since then, significant progresses have been made in 
the techniques that support automated software testing 
using algebraic specification through a number of re-
searchers’ work. However, it has not been thoroughly in-
vestigated in the literature on how algebraic specifications 
should be written and understood as the input to automated 
testing tools so that the power of algebraic testing can be 
fully realised. In this paper, we approach this problem from 
both the syntactic structures and the formal semantics of 
algebraic specifications. 

2. Related works and open problem 

In early 1980s, Gonnon, McMullin and Hamlet devel-
oped a compiler based system called DAISTS to use alge-
braic specifications in testing abstract data types imple-
mented in procedural programming languages [6]. Their 
basic idea was based on the observation that each term of a 

given signature has two interpretations in the context of 
software testing. First, a term represents a sequence of calls 
to the operations specified in the algebraic specification. 
These operations were usually implemented by procedures 
and functions in procedural languages. When the variables 
in a term were replaced by constants, the sequence of calls 
represents a test execution of the program, where the con-
stants substituted for the variables constitute the test case. 
Second, a term also represents a value, i.e. the result of the 
execution. Therefore, checking whether an equation is 
satisfied by an implementation on a test case meant to 
execute the operation sequences of the terms on both sides 
of the equation and then to compare the results. If the re-
sults are equivalent, the program is correct on this test case; 
otherwise, the implementation had errors. The input to 
DAISTS was written in a specifically designed language 
called SIMPL-D. An input to DAISTS consists of a set of 
algebraic axioms of an abstract data type and a set of test 
cases, which were ground terms to be substituted into the 
axioms to replace the variables in the axioms. The axioms 
were used as test drivers that invoke the implemented 
functions of the operators. Each axiom was tested on 
manually scripted test cases and the results from both sides 
of the axiom were compared by calling a TypeEquality 
function according to the data type of the result. For basic 
data types such as integer, DAISTS system used the pre-
defined equality functions as the TypeEquality function. 
For user defined abstract data types, the TypeEquality 
function was manually programmed.  

In late 1980s, Gaudel et al. developed a theory and a 
method of specification-based software testing [ 7 , 8 ]. 
Among the most important contributions of Gaudel and her 
colleague’s work was the use of observation contexts, 
which enables automatic comparisons of structured values 
without manually programming equality functions. The 
basic idea of observation contexts was that, to compare the 
equality of two structured values, a number of operations 
could be applied on the structured values to generate sim-
pler values that can be compared effectively, such as values 
in predefined data types. Such operations are called the 
observation contexts in the behavioural theories of alge-
braic specifications; see e.g. [3]. In a theory of behavioural 
algebraic specifications, sorts in an algebraic specification 
can be divided into two disjoint types: observable sorts and 
hidden sorts. Observable sorts represent those basic data 



 

 

types on which the equivalence between values can be 
effectively determined. Hidden sorts, or unobservable sorts, 
represent structured data types or states of objects whose 
values cannot be determined of equivalence effectively. 
Another major contribution was the concept of test contexts, 
which consists of a hypothesis about the software under test 
and a set of test cases selected using a certain test criterion. 
It enabled theoretical analysis of how a test case selection 
criterion is related to the correctness of the software. A test 
hypothesis explicitly expresses the condition under which a 
program is correct if it passes the test on all the test cases 
selected according to a certain criterion. In particular, they 
defined exhaustive test set as all ground instances of the 
axioms and claimed that a program is correct if it pass the 
test on exhaustive test set. The most appealing feature of 
Gaudel’s approach is that formal specifications can be used 
to automatically generate test cases as well as test oracles to 
determine if the program produces correct output. It can 
achieve a high degree of test automation.  

Algebraic testing received much attention since 1990s in 
the context of class testing of object-oriented programs. In 
early 1990s, Frankl and Doong studied the effectiveness of 
testing object-oriented programs based on algebraic speci-
fications [9, 10]. They adopted a notation of representation 
of algebraic specifications that are suitable for ob-
ject-oriented implementation and developed an algebraic 
specification language called LOBAS and a tool called 
ASTOOT. They conducted case studies to assess the prac-
tical usability of Gaudel’s method and technique. They 
pointed out that the exhaustive test set of Gaudel’s method 
is inadequate to rule out undesirable implementations. One 
of their most important contributions to the method is the 
extension of test cases to include negative test cases, which 
consists of two terms that are supposed to generate 
non-equivalent results. There are two implicit fundamental 
assumptions underlying Frankl and Doong’s algorithm of 
test case generation, as pointed out by Chen, Tse and Chen 
[11] recently. Given an algebraic specification and a com-
plete implementation of the specification, let u be any 
ground term and Θ(u) denote the object produced by the 
method sequence corresponding to u.  

Assumption 1. If u and v are equivalent in the specification, 
but the objects Θ(u) and Θ(v) are observably 
non-equivalent, then the implementation is incorrect.  

Assumption 2. If u and v are not equivalent in the specifi-
cation, but Θ(u) and Θ(v) are observably equivalent objects, 
then the implementation is incorrect. 

Frankl and Doong defined the equivalence relation be-
tween two ground terms as the transformability from one 
term into another by using the axioms as rewriting rules, 
provided that the specification is canonical.  

These assumptions are the bases of error detection for 
algebraic testing. However, Chen, Tse and Chen pointed out 

that the assumptions are not always true and Frankl and 
Doong’s algorithm for generating negative test cases was 
incorrect [11]. They further developed the theory and 
method of automatic derivation of test oracles based on 
observation contexts [11, 12]. They introduced the concept 
of observable equivalence relation between terms in a 
specification. They suggested the replacement of the above 
assumptions with the following two criteria to define what a 
correct implement meant.  

Equivalence Criterion: For all ground terms u and v, u and 
v are observationally equivalent in the specification implies 
that objects Θ(u) and Θ(v) are observationally equivalent. 

Non-equivalence Criterion: For all ground terms u and v, 
u and v are observationally non-equivalent in the specifi-
cation implies that objects Θ(u) and Θ(v) are observation-
ally non-equivalent. 

Chen, Tse and Chen proved that the equivalence crite-
rion is equivalent to the assumption 1, and observational 
equivalence is weaker than normal equivalence in general. 
They also gave a counterexample to show that the 
non-equivalence criterion is not equivalent to assumption 2. 
A question remains open that under what condition obser-
vational equivalence is the same as the normal equivalence 
relation.  

The use of the above criteria to replace Frankl and 
Doong’s assumptions is actually moving from classical 
initial semantics of algebraic specifications to behavioural 
semantics. Chen, Tse and Chen’s work indicates that how to 
understand the semantics of algebraic specifications is vital 
to software testing, especially to the validity of test oracles. 
More precisely, whether a test oracle is valid depends on the 
semantics of the algebraic specification. The question that 
what is a correct implementation of a formal specification 
has been a central problem in the research on formal 
specifications, especially in the research on algebraic 
specifications; see e.g. [13] for a survey. Guadel and her 
colleagues explicitly referred to Hennicker’s work [14] on 
the observational implementation of algebraic specifica-
tions [7, 8,15].  

Generally speaking, a behavioural specification consists 
of a pair (SP, Obs), where SP is a formal specification and 
Obs describes what is observable in SP. There are a number 
of different approaches to the description of Obs. The first 
approach, and perhaps the most common approach, is to 
distinguish a subset of the sorts in SP as observable and 
others are considered as not observable (or hidden sort), e.g. 
[16,3]. This is the approach that Guadel and her colleagues 
have used as well as other existing work on algebraic test-
ing. However, distinction between observable sorts from 
non-observable sorts was considered as inadequate. Hence, 
Hennicker used a predicate ObsS(x) on each sort S to de-
scribe a subset of the values of the sort S are observable [14]. 
In [17], Obs was defined as a subset of terms so that terms 



 

 

in Obs is considered as observable computations. To study 
behaviour specification in an institute independent frame-
work, Sannella and Tarlecki used another approach and 
defined Obs as a set of formulae [18]. This is the most 
general form of behavioural specification. Similar to clas-
sical theories of algebraic specifications, the notion of im-
plementation of a behavioural specification can be consid-
ered as a model (or a set of models) with certain specific 
properties that satisfies the axioms of the algebraic speci-
fication. That is, algebra A behaviourally satisfies an axiom 
with respect to a given set of observations iff it satisfies all 
its observable consequences. Given an equation e: ∀X. t1=t2, 
the observable consequences of e in the algebra A are all the 
equations c[σ(t1)] = c[σ(t2)] for all contexts c and substitu-
tions σ:X→TΣ, such that c[σ(t1)] and c[σ(t2)] denote ob-
servable values in A. As pointed out in [13], there are subtle 
differences between the different approaches to the defini-
tions of what are observable and some may lead to difficult 
semantic problems. In the past a few years, researchers in 
the area of algebraic specifications focus on the problems 
about how to define the semantics of behavioural specifi-
cations and the logic for the uses of such specifications in 
reasoning about software properties; see e.g. [19, 20].  

A common weakness of algebraic testing techniques is 
that software is tested in a ‘big bang’ approach, i.e. all 
classes of a system is tested all together without employing 
any incremental integration strategy. This seriously limited 
the practical usability of the testing method. This paper 
addresses this problem by proposing an approach to the 
organisation of algebraic specifications to match the struc-
tures of object-oriented software systems. Equations in an 
algebraic specification are divided into groups that each 
group represents a class in object-oriented system. A partial 
ordering between sorts is introduced to represent the im-
portation relationship between classes. This partial ordering 
generalises the notion of observable sorts and supports 
incremental integration testing.  

The remainder of the paper is organised as follows. 
Section 3 defines algebraic specification with partial or-
dering between sorts. Section 4 proves that the validity of 
observation contexts in such structured algebraic specifi-
cation within final algebra semantics. Section 5 is the con-
clusion of the paper and discusses future works.  

3. Structuring algebraic specifications  

An object-oriented program usually consists of a number 
of classes. A class cannot be executed in isolation without 
'importing' its supporting classes, which may be a types of  
the class’ attributes or parameters of the methods, the result 
value of a method, or a class of a local variable used to 
implement a method. Obviously, such importing/supporting 
relationship is a pre-order. At the lowest level, there are a 
number of pre-defined classes, such as those of basic data 
types like Boolean, Integer and Real. The most important 

property of such importing/supporting relationship is that 
the importing class does not modify the semantics of the 
supporting classes. This is the property that distinguishes 
the relationship from inheritance. In software testing prac-
tices, the import relationship forms the bases of defining 
integration strategies, which include top-down and bot-
tom-up strategies. It enables the reduction of the complex-
ity of integration of complicated software systems through 
incremental integration. Notice that, partial ordering be-
tween sorts has been investigated to represent the concepts 
of inheritance and subtypes. Such partial ordering is sig-
nificantly different from what is introduced in this paper. 

By considering sorts as data types that are implemented 
by classes, one would expect that an algebraic specification 
is decomposed into units of similar relationship. Indeed, 
modern algebraic specification languages such as CafeOBJ 
and OBJ3 provide modular structure to group equations 
into modules. In addition to classic enrichment or extension 
operations on modules [4, 5], these languages also provide 
a protected importation operation on modules. A module of 
algebraic specification enriches or extends other module(s) 
to compose modules together and to build a new module on 
the base of existing modules. The semantics of such an 
extension is to put all the sorts, operations and their axioms 
together. One module that extends another may have addi-
tional operations and/or axioms defined for the sorts that 
are already defined in existing modules. Therefore, en-
richment may change the semantics of existing modules. It 
is more like the inheritance relationship between classes. In 
contrast, protected importation operation protects the se-
mantics of imported module unchanged in the new module. 
This resembles the importation relationship between 
classes. To use this protected importation facility more 
effectively in object-oriented software development, we 
further suggest that each module in the specification should 
consist of one main sort that represents the values of the 
objects of the class and a number of supporting sorts pro-
tectively imported from other modules. The axioms of the 
module should not modify the semantics of the supporting 
sorts that are defined in protectively imported modules. In 
testing a class, only the axioms for the main sort need test 
rather than the axioms of supporting sorts. At the lowest 
level of this protective importation hierarchy are basic 
modules that are directly implemented by basic classes of 
programming language. We assume that a basic class is 
correctly implemented by the system, and correctly selected 
for the specification module whose main sort corresponds 
to the class. Such basic classes must be testable, i.e. ob-
servable, in the following sense.  

Definition 3.1 (Observable sort) 
In an algebraic specification <Σ, E>, a sort s is called an 

observable sort, if there is an operation _ == _ : s×s→Bool 
such that for all ground terms τ and τ’ of sort s, 

E |−( (τ == τ’) = true)    ⇔    E |− ( τ=τ’ ) 



 

 

where Σ is a signature, which consists of a set S of sorts and 
a finite family <Σw,s> of disjoint finite sets indexed by S*×S. 
Σw,s is the set of operator symbols of type <w, s>.  An al-
gebra A is a correct implementation of an observable sort s, 
if for all ground terms τ and τ’ of sort s, 

A |= (τ=τ’)     ⇔     A|= ( (τ == τ’) = true)   ,  

The distinction between main sorts from supporting ones 
does not only decide which axioms are to be checked, but 
also plays a significant role in the derivation of test oracles. 
For the sake of space, subsequently, we use ‘importation’ 
for ‘protected importation’.  

Definition 3.2 (Importation relation on sorts) 
The import relation is a pre-order ≺  on the set S of sorts 

that satisfies the following conditions 
(1) For all sorts s∈Σ, s is an observable sort, if there is no 
sort 's s≺ ; 
(2) For all sorts s, s’∈Σ, 's s≺  and s is an observable sort 
imply that s’ is also an observable sort.  

We say that sort s1 is a sort that supports sort s2, or s2 
imports s1, if 1 2s s≺ . We also say that s1 directly supports s2 
if " .( ' " " )s s s s s¬∃ ∈ Σ ∧≺ ≺ .,  

Having defined the notion of supporting sorts, classifi-
cation of operators in a canonical algebraic specification 
can be formally defined as follows.  

Definition 3.3 (Creator, constructor, transformer, and ob-
server) 

An operator σ : w1×…× wn→ c is called a creator of sort 
c, if for all i=1, 2, …, n, wi≠c and iw c≺ . In particular, 
when n=0, σ : → c is a constant creator of sort c.  

An operator σ : w1×…× wn→ c is called a constructor of 
sort c, if there is at least one i∈{1, 2, …, n}, such that wi=c, 
and for all i=1, 2, …, n, wi=c or iw c≺ , and the operator σ  
can appear in at least one normal form of ground terms.  

An operator σ : w1×…× wn→ c is called a transformer of 
sort c, if there is at least one i∈{1, 2, …, n}, such that wi=c, 
and for all i=1, 2, …, n, wi=c or iw c≺ , and the operator σ  
cannot appear in any normal form of ground terms.  

An operator σ : w1×…× wn→ s is called a observer of 
sort c, if for all i=1, 2, …, n, wi=c or iw c≺ , there is at least 
one i∈{1, 2,…, n}, such that wi=c, s≠c and s c≺ . ,  

Here, we also use the LOBAS notation, i.e. w1 = c for an 
operator to be a constructor, transformer, or observer to 
indicate that the first operand is the state of the object. We 
will assume that the specifications are canonical in the 
sequel.  

An operator in a canonical algebraic specification is ei-
ther a creator, or a constructor, or a transformer, or an ob-
server. It can only be one of these types. The axioms of an 
algebraic specification should also preserve the pre-order of 

‘support’ relation by satisfying the following conditions. 
(3) For all s and s’∈Σ, 's s≺  and s’ directly supports s, 
there is an observer σ of sort s such that σ : w1×…× wn→ s’; 
(4) For all conditional equations ( 'τ τ= , if 1 1τ τ ′=  

... k kτ τ ′∧ ∧ = ), for all i = 1,..., k, is s≺  or si is observable, 
where si is the sort of τi and τi', s is the sort of τ and τ'.   

Definition 3.4 (Well structured specification) 
A canonical specification <Σ, E> is well structured with 

respect to an importation relation ≺  on the sorts, if it sat-
isfies properties (1) ~ (4). ,   

Example 1. Consider the following algebraic specification 
of natural number queues.  
Spec QUEUE; 
 Protected Import Nat from NAT, Bool from BOOL; 
 Sort: Queue; 
 Operators: 
  Create:   −> Queue; 
  _.Put(_): Queue x Nat −> Queue; 
  _.Front:  Queue  −> Nat; 
  _.Get:  Queue  −> Queue;  
  _.Is-Empty:  Queue −> Bool; 
  _.Length:  Queue −> Nat;  
 Axioms:  Var Q: Queue, N, M: Nat; 
  Create.Length = 0; 
  Q.Put(N).Length = Q.Length+1; 
  Q.Put(N).Front = N 
  Create.Is-Empty = True; 
  Q.Put(N).Is-Empty = False; 
  Create.Put(N).Get = Create; 
  Q.Put(N).Put(M).Get = Q.Put(N).Get.Put(M); 
End QUEUE; 
Spec NAT; 
 Protected Import Bool from BOOL; 
 Sort: Nat; 
 Operators:  
  0:   −> Nat; 
  _+1:  Nat −> Nat; 
  _==_: Nat x Nat  −> Bool; 
  _>_:  Nat −> Bool; 
 Axioms: … (* Details are omitted *) 
End NAT; 
Spec BOOL; 
 Sort: Bool; 
 Operators:  
  True :  −> Bool; 
  False:  −> Bool; 
  _==_:  Bool x Bool −> Bool;  
  … (* Details are omitted for the sake of space *) 
End BOOL. 

The specification contains three modules. Each module 
only defines one sort, which can be implemented by one 
class. The module QUEUE contains equations that define 



 

 

the operations on natural number queues. It imports sort 
Nat from module NAT and Bool from module BOOL, 
which contain the axioms of natural numbers and Boolean 
values, respectively. NAT also imports sort Bool from 
module BOOL for its axioms. Therefore, a pre-order on 
sorts can be defined as follows: Bool ≺ Nat ≺ Queue. 
Assume that the sort Nat is implemented by a pre-defined 
class Cardinal and there is an operation for test equivalence 
between two cardinal values. Nat is, then, an observable 
sort. Similarly, we assume Bool is an observable sort. 
length(x), is_empty(x) and front(x) are observers of 
Queue. With proper equations, we can see that Put is a 
constructor and Get is a transformer of the sort Queue. 
Create is a creator of queue. Since there are only three 
sorts in the specification of natural number queues and sort 
Nat and Bool support Queue, it is easy to see that the 
specification of queues is well structured. ,  

Let <Σ,E> be an algebraic specification, and a Σ-algebra 
A be an implementation of the specification. We assume 
that the specification is well structured and ≺  is the im-
portation relation between the sorts. The following defini-
tion adapts the concept of observable context sequences 
introduced in [11].   

Definition 3.5 (Observable context) 
A context C[…] of a sort c is a term C with one occur-

rence of a special variable ,  of sort c. The value of a term t 
of sort c in the context of C[…], written as C[t], is the term 
obtained by substitute t in to the special variable , . An 
observable context oc of sort c is a context of sort c and the 
sort of the term oc[…] is s c≺ . To be consistent with our 
notation for operators, we write _.oc: c→s to denote such an 
observable context oc[ ].  

An observable context sequence of a sort c is the se-
quential composition _.oc1.oc2. ….ocn of a sequence of 
observable contexts oc1, oc2, …, ocn , where _.oc1: c→s1, 
_.oci: si−1→si, for all i =2,…,n . An observable context 
sequence is primitive, if the sn is an observable sort. ,  

In other words, an observable context oc of sort c is ei-
ther an observer of the sort c, or a context whose top-most 
operator is an observer of the sort c. The general form of an 
observable context oc is as follows: 

_.f1(...).f2(...).....fk(...).obs(...) 
where f1, ..., fk are constructors or transformers of sort sc and 
obs is an observer of sort c, f1(...), ..., fk (...) are ground terms. 
A primitive observable context produces a value in an ob-
servable sort.  

Example 2. For the operators on queues given in Example 
1, the following terms are observable contexts of sort 
Queue: length( , ), front( , ), is_empty( , ), 
front(getk(, )), length(getk(, )) and is_empty(getk(, )), 
for all k =1, 2, …, ,  

It is worth noting that there are usually an infinite 

number of different observation contexts for a given alge-
braic specification. Obviously, for a well structured system, 
we have the following property. 

Lemma 3.1 In a well structured system, we have that: 
(1) For any sort c, all observable context sequences of sort c 

are of finite length.  
(2) For all observable context sequences ocs, ocs can be 

extended to a primitive observable context sequence.  
Proof. It follows the facts that the set of sorts is finite and 
the support relation is a pre-order on the sorts. ,  

Existing algebraic testing methods use primitive 
observation contexts for testing all equations [7~12]. This 
may cause repeated checking the equivalences of a large 
number of values of observable sorts. The importation 
relationship can be used to o avoid such situations by de-
ploying a top-down strategy of test case generation. The 
following is an algorithm that illustrates how a top-down 
strategy can be implemented to generate positive test cases.  

Algorithm (Generation of positive test cases) 
INPUT:  
 Spec: a well structured algebraic specification, with a set 
S of n sorts and an importation relation ≺  on S.  
 CC: S × Spec →Context : a criterion for the generation of 
observable contexts. For all sorts s∈S, CC(s, Spec) is a 
finite set of observable contexts of sort s.  
 TC: S × Spec →P(Term × Term) : a test criterion for the 
generation of test cases. For all sorts s∈S, TC(s, Spec) is a 
finite set of test cases. Each test case consists of two 
ground terms of sort s.  

VARIABLES:  
 Ti, i=1, 2, …, n : To store the set of test cases of sort si;  
 Ci, i=1, 2, …, n : To store the set of observable contexts of 
sort si. 

OUTPUT:  
 T: A set of observable test cases generated from Spec that 
satisfy TC and CC.  

BEGIN 
Step 1. (* Topologic sorting of sorts into descending order*) 

Generate a sequence <s1, s2, …, sn> that contains all sorts 
in S and for all si, sj ∈S, i js s≺  implies that j<i; 
Step 2. (* Initialisation *) 

T := ∅; 
FOR i:=1 TO n DO Ti:=∅;   

Step 3. (* Generate observable contexts Ci for sort si using 
context generation criterion CC *)  

FOR i:=1 TO n DO Ci:= CC(si, Spec) ; 
Step 4. (* Generate observable test cases for all sorts *) 
 FOR i:=1 TO n DO   
     BEGIN (* Apply test case generation criterion TC to  
     Spec for sort si  *) 
   Ti := Ti ∪ TC(si, Spec);  
   IF sort si is not observable  
   THEN (* Apply observable contexts *) 



 

 

    FOR all C[…] ∈Ci and all (u, v)∈Ti DO  
     Tj := Tj ∪{(C[u], C[v])},  
    where sort(C[…]) = sj  
   END; 
    END; 
Step 5. (* Collect observable test cases *) 
 FOR i:=1 TO n DO 
  IF si is observable THEN T:=T ∪ Ti ;  
Step 6. Output(T); 
END. ,  

In the above algorithm, duplicated test cases are auto-
matically deleted because of set union operation.  

4. Validation of test oracles in final algebra 

Chen, Tse and Chen [11] noticed that it is possible that 
the equivalence of two ground terms u1 and u2 cannot be 
proved in equational logic from the axioms while the dif-
ference between the two terms cannot be detected by ob-
servation contexts. They gave an example of such situation. 
This raised the validity question of the observable context 
test oracle. This section proves that test oracles based on 
observable contexts are valid in final algebra semantics.  

4.1 Observable equivalence 

Definition 4.1 (Observational equivalence of terms) [11] 
Given a canonical specification <Σ, E>, two ground 

Σ-terms u1 and u2 are said to be observational equivalent 
(denoted by 'u1~obs u2') if and only if the following condition 
is satisfied. 
(1) The normal forms of u1 and u2 are identical, if the sort s 
of u1 and u2 is observable; otherwise,  
(2) for all observation contexts oc of sort s, u1.oc and u2.oc 
are observationally equivalent.   ,  

The following two lemmas are from Chen, Tse, et al. 
Their proofs can be found in [11]. 

Lemma 4.1 Given a canonical specification <Σ, E>.  
(1) Two ground Σ-terms u1 and u2 of an observable sort s are 
observationally equivalent, if and only if their normal forms 
are identical.  
(2) Two ground Σ-terms u1 and u2 of a non-observable sort s 
are observationally equivalent, if and only if for all primi-
tive observable context sequence ocs, the normal forms of 
u1.ocs and u2.ocs are identical. ,  

Lemma 4.2 (Subsume relationship theorem)  
Given a canonical specification <Σ, E>, for all ground 

terms τ and τ' of same sort, we have that E|−τ=τ' implies 
that τ ~obs τ'. ,  

Notice that, the converse of Lemma 4.2 is not always 
true. The example of bank account specification given in 
[11] is a counter-example of the converse of Lemma 4.2.  

4.2 Characteristic theorem  

Chen, Tse and Chen’s Subsume Relation Theorem 
(Lemma 4.2) states that observational equivalence is not 
always the same as the equivalence relation in the initial 
algebra. We now prove that observational equivalence is the 
same as the normal equivalence relation in the final algebra.  

Lemma 4.3 The relation ~obs is an equivalence relation on 
the set WΣ of ground Σ-terms.  
Proof. The statement follows Lemma 4.1. The proof is 
straightforward. ,  

Theorem 4.1 (Congruence theorem of observationally 
equivalence) 

For a well structured canonical specification <Σ, E>, the 
observational equivalence relation ~obs is congruent with 
the operations in the specification <Σ, E>.  

Proof. We only need to prove that for all context C[ ], u1 ~obs 
u2 implies that C[u1] ~obs C[u2].  

If the context C[ ] itself is a primitive observable context 
sequence, then by Definition 4.1, we have that C[u1] and 
C[u2] have identical normal form. Being a primitive ob-
servable context sequence, the sort of C[...] is observable. 
By Definition 4.1, we have that C[u1] ~obs C[u2].  

If the context C[ ] is not a primitive observable context 
sequence, by the definition of well structured systems, the 
context can be extended to primitive observable context 
sequences ocs. For all such primitive sequences ocs, 
C[u1].ocs can be written in the form of u1.C.ocs. By Lemma 
4.1, since u1 ~obs u2 , the normal form of u1.C.ocs is identical 
to the normal form of u2.C.ocs. By Lemma 4.1, we have that 
u1.C ~obs u2.C. That is C[u1] ~obs C[u2]. ,  

From the proof of Theorem 4.1, it is easy to see the at-
tribute equivalent relation ~att defined in [11] is not con-
gruent to the operations in specification <Σ, E>, because the 
context C[...] can be a constructor rather than an observer.  

Definition 4.2 (E-congruence) 
A congruence ~ on algebra A is said to be an 

E-congruence, if for each conditional equation in E,  
 'τ τ= , if 1 1( ) ... ( )k kτ τ τ τ′ ′= ∧ ∧ =  

and for all assignments ϕ in the algebra A, we have that  
a b a b~ '

ϕ ϕ
τ τ , if a b a b a b a b1 1~ ... ~k kϕ ϕ ϕ ϕ

τ τ τ τ′ ′∧ ∧ .  

Theorem 4.2 (E-congruence theorem) 
Given any well structured specification <Σ, E>, the ob-

servational equivalence relation ~obs defined on ground 
terms is E-congruence.  
Proof. We prove by structured induction on the sort s of the 
terms τ and τ’ in the equation 

 'τ τ= , if 1 1( ) ... ( )k kτ τ τ τ′ ′= ∧ ∧ =  
Let si be the sort of the terms τi and τ’i in the above 

equation. Let µ be any ground substitution.  



 

 

(1) If the sort s is observable, by Definition 3.4, for all i = 1, 
2, …, k, si is observable. By Lemma 4.1, ( ) ~ ( ' )i obs iµ τ µ τ  
⇔E|− ( ) ( )i iµ τ µ τ ′= . Thus, E|− ( ) ( )µ τ µ τ ′= . Since s is 
observable, we have that ( ) ~ ( ')obsµ τ µ τ . 
(2) Suppose that for all sorts s’ that 's s≺  or s’ is observ-
able, we have that for all terms τ1 and τ2 of sort s’, 

1 2( ) ~ ( )obsµ τ µ τ ⇒E|− 1 2( ) ( )µ τ µ τ= . Then, we have that  

1 1( ) ~ ( ) ... ( ) ~ ( )obs k obs kµ τ µ τ µ τ µ τ′ ′∧ ∧  ⇒ 

1 1| ( ) ( )E µ τ µ τ ′− = ... | ( ) ( )k kE µ τ µ τ ′∧ ∧ − = . 
Therefore, we have that E|− ( ) ( )µ τ µ τ ′=  in equational 
logic. Hence, by Lemma 4.2, ( ) ~ ( ')obsµ τ µ τ .   ,  

Corollary of Theorem 4.2.  
Given a well structured canonical specification <Σ, E> 

and its final algebra B, for all ground terms τ and τ', τ ~obs τ' 
imply that B|=τ=τ'.  
Proof. Let B be the final algebra of all <Σ, E>-algebras. By 
the property of final algebra [21], we have that, for all 
E-congruence relation ~ on WΣ which is not a unit algebra, τ 
~ τ' imply that B|=τ=τ'. The statement immediately follows 
the fact that ~obs is an E-congruence and not unit as proved 
in Theorem 4.2. ,  

Theorem 4.3 (Characteristic theorem) 
The term algebra WΣ/~obs is the final E-algebra. 

Proof. Let <Σ, E> be a well structured canonical specifica-
tion. Let B be the final algebra of <Σ, E>.  

By the corollary of Theorem 4.2, τ ~obs τ' implies B|=τ=τ'. 
The following proves that for all ground terms τ and τ', 
B|=τ=τ' implies that τ ~obs τ'. Let τ , τ' ∈WΣ,s and B|=τ=τ'.  
(1) If the sort s is observable, by Definition 3.1, we have 
that B|=τ=τ' if and only if E|−τ=τ'. Since the specification is 
canonical, the normal forms of τ and τ' are identical.  
(2) If the sort s is not observable, the statement B|=τ=τ' is 
equivalent to the statement that a b a b'B B

τ τ= . Let _.w be 
any primitive observable context sequence. We have that 
a b a b a b a b. ' .

B B B B
w wτ τ= . Thus,  a b.

B
wτ ＝  a b'.

B
wτ , or 

equivalently, B|= τ.w=τ'.w. Since the sort of the terms τ.w 
and τ'.w are observable, by (1) above, we have that τ.w and 
τ'.w have identical normal forms.  

By Lemma 4.1, in both cases, we have that τ ~obs τ'. ,  

4.3 Testing final algebras 

To understand how observational equivalence can be 
applied to testing final algebras, we need to know if two 
observationally equivalent terms will be observationally 
equivalent objects.  

Definition 4.3 (Observably equivalent objects) 
Two objects a1 and a2 of sort s are observably equivalent, 

written a1≈obs a2, if they satisfy the following conditions. 

(1) a1 == a2, if s is an observable sort;  
(2) for all observable contexts oc of the sort s, a1.oc ≈obs 

a2.oc, if s is not an observable sort. ,  

Let τ and τ' be any given ground terms. The validity 
requirements require that, first, a b a b. '.obsA A

oc ocτ τ≈ , for 
all observable context oc, if the semantics of the algebraic 
specification <Σ, E> requires that a correct implementation 
A|=τ=τ'. Second, for some observable context oc, 
a b a b. '.obsA A

oc ocτ τ≈/ , if the semantics of the algebraic 
specification <Σ, E> requires that a correct implementation 
A|= τ≠τ'. The following theorem formally proves these 
properties for final algebra semantics. 

Theorem 4.4 (Validity theorem)  
Let <Σ, E> be a well structured canonical specification. 

An algebra A of the specification is the final algebra, im-
plies that A satisfies the following conditions. 
(1) Equivalence criterion: For all ground terms τ and τ’, 

τ ~obs τ’ implies that a b a b, 'obs AA A
τ τ≈ ; 

(2) Non-equivalence criterion: For all ground terms τ and 
τ’, not (τ ∼obs τ’) implies that a b a b, 'obs AA A

τ τ≈/ ; 
Proof.  We only need to prove that A is the final algebra 
implies that for all ground terms τ and τ’, τ ~obs τ’ ⇔ 
a b a b, 'obs AA A
τ τ≈ .  

Note that, first, A is isomorphic to WΣ/~obs. Let θ be the 
isomorphism between them. Second, for all ground terms τ, 
a b ~([ ] )

A
τ θ τ= , where [τ]~ is the equivalence class of τ 

under the relation ~obs. For all ground terms τ and τ’, we 
have that τ ~obs τ’ ⇔ [τ]~=[τ’]~ ⇔ θ([τ]~) = θ([τ’]~) ⇔ 
a b a b'A A
τ τ= ⇔ A|= τ=τ’ ⇒ a b a b, 'obs AA A

τ τ≈ . Thus, τ ~obs 

τ’ ⇒ a b a b, 'obs AA A
τ τ≈ .  

To prove that a b a b, 'obs AA
τ τ≈ ⇒ τ ~obs τ’, consider the 

sort s of the terms τ and τ’. If s is observable, by Definition 
3.1 and Definition 4.3, we have that a b a b, 'obs AA

τ τ≈ ⇒ A|= 
τ=τ’. By Definition 3.1 and Definition 4.1, we have that 
τ ~obs τ’. If the sort s is not observable, by Definition 4.3, 
a b a b, 'obs AA
τ τ≈ implies that that for all primitive observ-

able context sequences w, A|= τ.w = τ’.w. Since the sort of 
the terms τ.w and τ’.w is observable, we have that E|− τ.w = 
τ’.w. By Definition 4.1, we have that τ ~obs τ’.   ,  

This theorem formally proves that the observation con-
text oracle satisfies the validity requirements A for the final 
algebra semantics. It states that to test a final algebra im-
plementation A against a well structured canonical speci-
fication <Σ, E>, we need to check for all ground terms τ and 
τ’ of the same sort so that we can conclude that A is a correct 
implementation, if the following conditions are true. 
(1) if τ ~obs τ’ is required by the specification, the test oracle 



 

 

reports that a b a b, 'obs AA A
τ τ≈ ; 

(2) if τ /∼ obs τ’ is required by the specification, the test 
oracle reports that a b a b, 'obs AA A

τ τ≈/ .  
How to check these conditions has been discussed in 

[9~11]. This paper proves that the conclusions one can draw 
are only valid in final algebra semantics.  

5. Conclusion 

In this paper, we extended the notion of observable sorts 
by introducing a pre-order relation between sorts and or-
ganising algebraic specifications by dividing equations into 
groups to match the importation relationship between 
classes. We proved that in this framework test oracles based 
on observation contexts satisfy the validity requirements 
for correct implementations of well-structured canonical 
algebraic specifications if and only if the semantics of the 
specification is the final algebra. Otherwise, the validity 
requirement is not necessarily satisfied.  

For future research, we believe that the theories of ob-
servational algebraic specifications can be applied to a 
wider range of software systems such as concurrent systems, 
because concurrency and non-determinism can be treated in 
behavioural theories naturally [3]. We are also investigating 
the relationship between the theories of behavioural alge-
braic specifications and a more general theory of behav-
ioural observation in software testing developed inde-
pendently in our previous work [22, 23, 24]. Our general 
theory of software testing considers each testing methods 
consists of two components: a test adequacy criterion and a 
behaviour observation scheme. Mathematical structures of 
observable phenomena are investigated. A set of axioms of 
the properties of observation schemes have been proposed. 
It is worthy noting that the selection of a set of observable 
contexts plays a crucial role in algebraic testing. This ac-
tually corresponds to the determination of an observation 
scheme in our general theory of testing [22~24].  
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