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Abstract

Algebraic testing is an automated software testing
method based on algebraic formal specifications. It tests if
a program correctly implements an algebraic specification
by checking if the equations of the specification are satis-
fied. One of the key techniques of algebraic testing is the
use of observation contexts as a test oracle so that the
comparison of values of structured data can be realised by
comparing values of simple data types. This leads to a
behavioural semantics of algebraic specifications and
divides sorts into observable and non-observable. To rep-
resent the structure of object-oriented programs and to
facilitate incremental integration testing, this paper extends
the notion of observable sorts by introducing a partial
ordering between sorts to represent the importation relation
between classes. In this framework, the validity of test
oracles is formally proved in final algebra semantics.

1. Introduction

Algebraic specification emerged in the 1970s as a formal
method for specifying abstract data types in an implemen-
tation-independent style; see, e.g. [1, 2]. In the past thirty
years, it has developed into an important formal software
development method [3, 4, 5]. The uses of algebraic speci-
fication in software testing can be back dated to early 1980s
[6]. Since then, significant progresses have been made in
the techniques that support automated software testing
using algebraic specification through a number of re-
searchers” work. However, it has not been thoroughly in-
vestigated in the literature on how algebraic specifications
should be written and understood as the input to automated
testing tools so that the power of algebraic testing can be
fully realised. In this paper, we approach this problem from
both the syntactic structures and the formal semantics of
algebraic specifications.

2. Related works and open problem

In early 1980s, Gonnon, McMullin and Hamlet devel-
oped a compiler based system called DAISTS to use alge-
braic specifications in testing abstract data types imple-
mented in procedural programming languages [6]. Their
basic idea was based on the observation that each term of a

given signature has two interpretations in the context of
software testing. First, a term represents a sequence of calls
to the operations specified in the algebraic specification.
These operations were usually implemented by procedures
and functions in procedural languages. When the variables
in a term were replaced by constants, the sequence of calls
represents a test execution of the program, where the con-
stants substituted for the variables constitute the test case.
Second, a term also represents a value, i.e. the result of the
execution. Therefore, checking whether an equation is
satisfied by an implementation on a test case meant to
execute the operation sequences of the terms on both sides
of the equation and then to compare the results. If the re-
sults are equivalent, the program is correct on this test case;
otherwise, the implementation had errors. The input to
DAISTS was written in a specifically designed language
called SIMPL-D. An input to DAISTS consists of a set of
algebraic axioms of an abstract data type and a set of test
cases, which were ground terms to be substituted into the
axioms to replace the variables in the axioms. The axioms
were used as test drivers that invoke the implemented
functions of the operators. Each axiom was tested on
manually scripted test cases and the results from both sides
of the axiom were compared by calling a TypeEquality
function according to the data type of the result. For basic
data types such as integer, DAISTS system used the pre-
defined equality functions as the TypeEquality function.
For user defined abstract data types, the TypeEquality
function was manually programmed.

In late 1980s, Gaudel et al. developed a theory and a
method of specification-based software testing [7, 81].
Among the most important contributions of Gaudel and her
colleague’s work was the use of observation contexts,
which enables automatic comparisons of structured values
without manually programming equality functions. The
basic idea of observation contexts was that, to compare the
equality of two structured values, a number of operations
could be applied on the structured values to generate sim-
pler values that can be compared effectively, such as values
in predefined data types. Such operations are called the
observation contexts in the behavioural theories of alge-
braic specifications; see e.g. [3]. In a theory of behavioural
algebraic specifications, sorts in an algebraic specification
can be divided into two disjoint types: observable sorts and
hidden sorts. Observable sorts represent those basic data



types on which the equivalence between values can be
effectively determined. Hidden sorts, or unobservable sorts,
represent structured data types or states of objects whose
values cannot be determined of equivalence effectively.
Another major contribution was the concept of test contexts,
which consists of a hypothesis about the software under test
and a set of test cases selected using a certain test criterion.
It enabled theoretical analysis of how a test case selection
criterion is related to the correctness of the software. A test
hypothesis explicitly expresses the condition under which a
program is correct if it passes the test on all the test cases
selected according to a certain criterion. In particular, they
defined exhaustive test set as all ground instances of the
axioms and claimed that a program is correct if it pass the
test on exhaustive test set. The most appealing feature of
Gaudel’s approach is that formal specifications can be used
to automatically generate test cases as well as test oracles to
determine if the program produces correct output. It can
achieve a high degree of test automation.

Algebraic testing received much attention since 1990s in
the context of class testing of object-oriented programs. In
early 1990s, Frankl and Doong studied the effectiveness of
testing object-oriented programs based on algebraic speci-
fications [9, 10]. They adopted a notation of representation
of algebraic specifications that are suitable for ob-
ject-oriented implementation and developed an algebraic
specification language called LOBAS and a tool called
ASTOQOT. They conducted case studies to assess the prac-
tical usability of Gaudel’s method and technique. They
pointed out that the exhaustive test set of Gaudel’s method
is inadequate to rule out undesirable implementations. One
of their most important contributions to the method is the
extension of test cases to include negative test cases, which
consists of two terms that are supposed to generate
non-equivalent results. There are two implicit fundamental
assumptions underlying Frankl and Doong’s algorithm of
test case generation, as pointed out by Chen, Tse and Chen
[11] recently. Given an algebraic specification and a com-
plete implementation of the specification, let u be any
ground term and ®(u) denote the object produced by the
method sequence corresponding to u.

Assumption 1. If u and v are equivalent in the specification,
but the objects ©O(u) and O(v) are observably
non-equivalent, then the implementation is incorrect.

Assumption 2. If ¥ and v are not equivalent in the specifi-
cation, but ®(u) and ®@(v) are observably equivalent objects,
then the implementation is incorrect.

Frankl and Doong defined the equivalence relation be-
tween two ground terms as the transformability from one
term into another by using the axioms as rewriting rules,
provided that the specification is canonical.

These assumptions are the bases of error detection for
algebraic testing. However, Chen, Tse and Chen pointed out

that the assumptions are not always true and Frankl and
Doong’s algorithm for generating negative test cases was
incorrect [11]. They further developed the theory and
method of automatic derivation of test oracles based on
observation contexts [11, 12]. They introduced the concept
of observable equivalence relation between terms in a
specification. They suggested the replacement of the above
assumptions with the following two criteria to define what a
correct implement meant.

Equivalence Criterion: For all ground terms « and v,  and
v are observationally equivalent in the specification implies
that objects O(«) and ®(v) are observationally equivalent.

Non-equivalence Criterion: For all ground terms « and v,
u and v are observationally non-equivalent in the specifi-
cation implies that objects ®(«) and ®(v) are observation-
ally non-equivalent.

Chen, Tse and Chen proved that the equivalence crite-
rion is equivalent to the assumption 1, and observational
equivalence is weaker than normal equivalence in general.
They also gave a counterexample to show that the
non-equivalence criterion is not equivalent to assumption 2.
A question remains open that under what condition obser-
vational equivalence is the same as the normal equivalence
relation.

The use of the above criteria to replace Frankl and
Doong’s assumptions is actually moving from classical
initial semantics of algebraic specifications to behavioural
semantics. Chen, Tse and Chen’s work indicates that how to
understand the semantics of algebraic specifications is vital
to software testing, especially to the validity of test oracles.
More precisely, whether a test oracle is valid depends on the
semantics of the algebraic specification. The question that
what is a correct implementation of a formal specification
has been a central problem in the research on formal
specifications, especially in the research on algebraic
specifications; see e.g. [13] for a survey. Guadel and her
colleagues explicitly referred to Hennicker’s work [14] on
the observational implementation of algebraic specifica-
tions [7, 8,15].

Generally speaking, a behavioural specification consists
of a pair (SP, Obs), where SP is a formal specification and
Obs describes what is observable in SP. There are a number
of different approaches to the description of Obs. The first
approach, and perhaps the most common approach, is to
distinguish a subset of the sorts in SP as observable and
others are considered as not observable (or hidden sort), e.g.
[16,3]. This is the approach that Guadel and her colleagues
have used as well as other existing work on algebraic test-
ing. However, distinction between observable sorts from
non-observable sorts was considered as inadequate. Hence,
Hennicker used a predicate Obsg(x) on each sort S to de-
scribe a subset of the values of the sort S are observable [14].
In [17], Obs was defined as a subset of terms so that terms



in Obs is considered as observable computations. To study
behaviour specification in an institute independent frame-
work, Sannella and Tarlecki used another approach and
defined Obs as a set of formulae [18]. This is the most
general form of behavioural specification. Similar to clas-
sical theories of algebraic specifications, the notion of im-
plementation of a behavioural specification can be consid-
ered as a model (or a set of models) with certain specific
properties that satisfies the axioms of the algebraic speci-
fication. That is, algebra 4 behaviourally satisfies an axiom
with respect to a given set of observations iff it satisfies all
its observable consequences. Given an equation e: V.X. ,=t,,
the observable consequences of e in the algebra A are all the
equations c[o(t)] = c[ o(t,)] for all contexts ¢ and substitu-
tions o:X—Ts, such that c[o(t)] and c[o(t;)] denote ob-
servable values in 4. As pointed out in [13], there are subtle
differences between the different approaches to the defini-
tions of what are observable and some may lead to difficult
semantic problems. In the past a few years, researchers in
the area of algebraic specifications focus on the problems
about how to define the semantics of behavioural specifi-
cations and the logic for the uses of such specifications in
reasoning about software properties; see e.g. [19, 20].

A common weakness of algebraic testing techniques is
that software is tested in a ‘big bang’ approach, i.e. all
classes of a system is tested all together without employing
any incremental integration strategy. This seriously limited
the practical usability of the testing method. This paper
addresses this problem by proposing an approach to the
organisation of algebraic specifications to match the struc-
tures of object-oriented software systems. Equations in an
algebraic specification are divided into groups that each
group represents a class in object-oriented system. A partial
ordering between sorts is introduced to represent the im-
portation relationship between classes. This partial ordering
generalises the notion of observable sorts and supports
incremental integration testing.

The remainder of the paper is organised as follows.
Section 3 defines algebraic specification with partial or-
dering between sorts. Section 4 proves that the validity of
observation contexts in such structured algebraic specifi-
cation within final algebra semantics. Section 5 is the con-
clusion of the paper and discusses future works.

3. Structuring algebraic specifications

An object-oriented program usually consists of a number
of classes. A class cannot be executed in isolation without
'importing' its supporting classes, which may be a types of
the class’ attributes or parameters of the methods, the result
value of a method, or a class of a local variable used to
implement a method. Obviously, such importing/supporting
relationship is a pre-order. At the lowest level, there are a
number of pre-defined classes, such as those of basic data
types like Boolean, Integer and Real. The most important

property of such importing/supporting relationship is that
the importing class does not modify the semantics of the
supporting classes. This is the property that distinguishes
the relationship from inheritance. In software testing prac-
tices, the import relationship forms the bases of defining
integration strategies, which include top-down and bot-
tom-up strategies. It enables the reduction of the complex-
ity of integration of complicated software systems through
incremental integration. Notice that, partial ordering be-
tween sorts has been investigated to represent the concepts
of inheritance and subtypes. Such partial ordering is sig-
nificantly different from what is introduced in this paper.

By considering sorts as data types that are implemented
by classes, one would expect that an algebraic specification
is decomposed into units of similar relationship. Indeed,
modern algebraic specification languages such as CafeOBJ
and OBJ3 provide modular structure to group equations
into modules. In addition to classic enrichment or extension
operations on modules [4, 5], these languages also provide
a protected importation operation on modules. A module of
algebraic specification enriches or extends other module(s)
to compose modules together and to build a new module on
the base of existing modules. The semantics of such an
extension is to put all the sorts, operations and their axioms
together. One module that extends another may have addi-
tional operations and/or axioms defined for the sorts that
are already defined in existing modules. Therefore, en-
richment may change the semantics of existing modules. It
is more like the inheritance relationship between classes. In
contrast, protected importation operation protects the se-
mantics of imported module unchanged in the new module.
This resembles the importation relationship between
classes. To use this protected importation facility more
effectively in object-oriented software development, we
further suggest that each module in the specification should
consist of one main sort that represents the values of the
objects of the class and a number of supporting sorts pro-
tectively imported from other modules. The axioms of the
module should not modify the semantics of the supporting
sorts that are defined in protectively imported modules. In
testing a class, only the axioms for the main sort need test
rather than the axioms of supporting sorts. At the lowest
level of this protective importation hierarchy are basic
modules that are directly implemented by basic classes of
programming language. We assume that a basic class is
correctly implemented by the system, and correctly selected
for the specification module whose main sort corresponds
to the class. Such basic classes must be testable, i.e. ob-
servable, in the following sense.

Definition 3.1 (Observable sort)

In an algebraic specification <X, £E>, a sort s is called an
observable sort, if there is an operation == : sxs—Bool
such that for all ground terms rand 7 of sort s,

E|l-((r=7)=true) & E|-(=7)



where ¥ is a signature, which consists of a set S of sorts and
a finite family <X,,,> of disjoint finite sets indexed by §"xS.
¥, 1s the set of operator symbols of type <w, s>. An al-
gebra 4 is a correct implementation of an observable sort s,
if for all ground terms 7and 7 of sort s,

A= (=7) < A=((r=7)=true) ©

The distinction between main sorts from supporting ones
does not only decide which axioms are to be checked, but
also plays a significant role in the derivation of test oracles.
For the sake of space, subsequently, we use ‘importation’
for ‘protected importation’.

Definition 3.2 (Importation relation on sorts)

The import relation is a pre-order < on the set S of sorts
that satisfies the following conditions
(1) For all sorts seX, s is an observable sort, if there is no
sort s'<s;
(2) For all sorts s, s’€X, s'<s and s is an observable sort
imply that s’ is also an observable sort.

We say that sort s, is a sort that supports sort s;, or s,
imports sy, if s, < s, . We also say that s, directly supports s,

if ~3s"eZ.(s'<s"As"<s).O

Having defined the notion of supporting sorts, classifi-
cation of operators in a canonical algebraic specification
can be formally defined as follows.

Definition 3.3 (Creator, constructor, transformer, and ob-
server)

An operator o : wix...x w,—> c is called a creator of sort
¢, if for all i=1, 2, ..., n, w#c and w, < c . In particular,

when n=0, o : — c is a constant creator of sort c.

An operator o : wix...x w,—> ¢ is called a constructor of
sort ¢, if there is at least one ie {1, 2, ..., n}, such that w=c,
and forall i=1, 2, ..., n, w=c or w, < ¢, and the operator o

can appear in at least one normal form of ground terms.

An operator o: wyx...x w,— c is called a transformer of
sort ¢, if there is at least one ie {1, 2, ..., n}, such that w=c,
and forall i=1, 2, ..., n, w=c or w, < c, and the operator o

cannot appear in any normal form of ground terms.
An operator o: wix...x w,— s is called a observer of
sortc, ifforalli=1,2, ..., n, w=c or w, < c, there is at least

oneie{l,2,..., n}, such that w=c, s#cand s <c. O

Here, we also use the LOBAS notation, i.e. w; = ¢ for an
operator to be a constructor, transformer, or observer to
indicate that the first operand is the state of the object. We
will assume that the specifications are canonical in the
sequel.

An operator in a canonical algebraic specification is ei-
ther a creator, or a constructor, or a transformer, or an ob-
server. It can only be one of these types. The axioms of an
algebraic specification should also preserve the pre-order of

‘support’ relation by satisfying the following conditions.
(3) For all s and s’€X, s'<s and s’ directly supports s,
there is an observer o of sort s such that o: w;x...x w,— s’;
(4) For all conditional equations ( z=7', if 7, =1/
Aent, =1,), foralli=1,.., k s, <s ors;is observable,
where s; is the sort of 7; and 7, s is the sort of rand 7.

Definition 3.4 (Well structured specification)

A canonical specification <Z, E> is well structured with
respect to an importation relation < on the sorts, if it sat-
isfies properties (1) ~ (4). o

Example 1. Consider the following algebraic specification
of natural number queues.
Spec QUEUE;
Protected Import Nat from NAT, Bool from BOOL,;
Sort: Queue;
Operators:
Create: —> Queue;
_.Put(): Queue x Nat — Queue;
_.Front: Queue —> Nat;
_.Get:  Queue —> Queus;
_.Is-Empty: Queue —> Bool;
_.Length:  Queue —> Nat;
Axioms: Var Q: Queue, N, M: Nat;
Create.Length = 0;
Q.Put(N).Length = Q.Length+1;
Q.Put(N).Front =N
Create.ls-Empty = True;
Q.Put(N).Is-Empty = False;
Create.Put(N).Get = Create;
Q.Put(N).Put(M).Get = Q.Put(N).Get.Put(M);
End QUEUE;
Spec NAT;
Protected Import Bool from BOOL;
Sort: Nat;
Operators:
0: —> Nat;
_+1: Nat — Nat;
_==_:Nat x Nat — Bool;
_>_: Nat—> Bool;
Axioms: ... (* Details are omitted *)
End NAT;
Spec BOOL,;
Sort: Bool;
Operators:
True: —> Bool;
False: —> Bool;
_==_: Bool x Bool —> Bool;
... (* Details are omitted for the sake of space *)
End BOOL.

The specification contains three modules. Each module
only defines one sort, which can be implemented by one
class. The module QUEUE contains equations that define



the operations on natural number queues. It imports sort
Nat from module NAT and Bool from module BOOL,
which contain the axioms of natural numbers and Boolean
values, respectively. NAT also imports sort Bool from
module BOOL for its axioms. Therefore, a pre-order on
sorts can be defined as follows: Bool < Nat < Queue.
Assume that the sort Nat is implemented by a pre-defined
class Cardinal and there is an operation for test equivalence
between two cardinal values. Nat is, then, an observable
sort. Similarly, we assume Bool is an observable sort.
length(x), is_empty(x) and front(x) are observers of
Queue. With proper equations, we can see that Put is a
constructor and Get is a transformer of the sort Queue.
Create is a creator of queue. Since there are only three
sorts in the specification of natural number queues and sort
Nat and Bool support Queue, it is easy to see that the
specification of queues is well structured. o

Let <Z,E> be an algebraic specification, and a Z-algebra
A be an implementation of the specification. We assume
that the specification is well structured and < is the im-
portation relation between the sorts. The following defini-
tion adapts the concept of observable context sequences
introduced in [11].

Definition 3.5 (Observable context)

A context C[...] of a sort ¢ is a term C with one occur-
rence of a special variable o of sort c. The value of a term ¢
of sort ¢ in the context of C[...], written as C[{], is the term
obtained by substitute 7 in to the special variable o. An
observable context oc of sort ¢ is a context of sort ¢ and the
sort of the term oc[...] is s < ¢ . To be consistent with our
notation for operators, we write _.oc: c—s to denote such an
observable context oc][ ].

An observable context sequence of a sort ¢ is the se-
quential composition _.ocj.oc;. ....oc, of a sequence of
observable contexts ocy, ocs, ..., oc, , where _.oc;: c—>s,
_.oc;: si—>s;, for all i =2,....n . An observable context
sequence is primitive, if the s, is an observable sort. O

In other words, an observable context oc of sort ¢ is ei-
ther an observer of the sort ¢, or a context whose top-most
operator is an observer of the sort c. The general form of an
observable context oc is as follows:

CACDSC ) fi()0bS(.0)

where fi, ..., f; are constructors or transformers of sort s. and

obs is an observer of sort ¢, fi(...), ..., i (...) are ground terms.

A primitive observable context produces a value in an ob-
servable sort.

Example 2. For the operators on queues given in Example
1, the following terms are observable contexts of sort
Queue: length( o ), front( o ), is_empty( o ),
front(get“(o)), length(get*(o)) and is_empty(get‘(o)),
forallk=1,2,..., 0

It is worth noting that there are usually an infinite

number of different observation contexts for a given alge-
braic specification. Obviously, for a well structured system,
we have the following property.

Lemma 3.1 In a well structured system, we have that:
(1) For any sort ¢, all observable context sequences of sort ¢
are of finite length.

(2) For all observable context sequences ocs, ocs can be
extended to a primitive observable context sequence.
Proof. 1t follows the facts that the set of sorts is finite and

the support relation is a pre-order on the sorts. o

Existing algebraic testing methods use primitive
observation contexts for testing all equations [7~12]. This
may cause repeated checking the equivalences of a large
number of values of observable sorts. The importation
relationship can be used to o avoid such situations by de-
ploying a top-down strategy of test case generation. The
following is an algorithm that illustrates how a top-down
strategy can be implemented to generate positive test cases.

Algorithm (Generation of positive test cases)

INPUT:

* Spec: a well structured algebraic specification, with a set
S of n sorts and an importation relation < on S.

* CC: S x Spec —Context : a criterion for the generation of
observable contexts. For all sorts seS, CC(s, Spec) is a
finite set of observable contexts of sort s.

* TC: S x Spec —>P(Term x Term) : a test criterion for the
generation of test cases. For all sorts seS, TC(s, Spec) is a
finite set of test cases. Each test case consists of two
ground terms of sort s.

VARIABLES:

e T, i=1,2, ..., n: To store the set of test cases of sort s;;

* C,,i=1,2,...,n: To store the set of observable contexts of
sort s;.

OUTPUT:

* T: A set of observable test cases generated from Spec that
satisfy 7C and CC.

BEGIN

Step 1. (* Topologic sorting of sorts into descending order*)

Generate a sequence <sy, s, ..., 5,> that contains all sorts
in S and for all s;, s; €S, s, < s, implies that j<i;

Step 2. (* Initialisation *)

T=;
FOR i:=1 TO n DO T;:=J;

Step 3. (* Generate observable contexts C; for sort s; using

context generation criterion CC *)

FOR i:=1 TO n DO C;:= CC(s;, Spec) ;
Step 4. (* Generate observable test cases for all sorts *)
FOR i:=1 TO n DO
BEGIN (* Apply test case generation criterion 7C to
Spec for sort s; *)

T;:=T; v TC(s;, Spec);

IF sort s; is not observable

THEN (* Apply observable contexts *)



FOR all C[...] €C;and all (u, v)eT; DO
T, = T, U{(Clul, CD)},
where sort(Cl[...]) =s;
END;
END;
Step 5. (* Collect observable test cases *)
FOR i:=1 TO n DO
IF s, is observable THEN T:=T U T; ;
Step 6. Output(T);
END. o

In the above algorithm, duplicated test cases are auto-
matically deleted because of set union operation.

4. Validation of test oracles in final algebra

Chen, Tse and Chen [11] noticed that it is possible that
the equivalence of two ground terms u; and u, cannot be
proved in equational logic from the axioms while the dif-
ference between the two terms cannot be detected by ob-
servation contexts. They gave an example of such situation.
This raised the validity question of the observable context
test oracle. This section proves that test oracles based on
observable contexts are valid in final algebra semantics.

4.1 Observable equivalence

Definition 4.1 (Observational equivalence of terms) [11]
Given a canonical specification <X, E>, two ground

Y-terms u; and u, are said to be observational equivalent

(denoted by "t~y t2') if and only if the following condition

is satisfied.

(1) The normal forms of #; and u, are identical, if the sort s

of u; and u, is observable; otherwise,

(2) for all observation contexts oc of sort s, u;.oc and uy.oc

are observationally equivalent. O

The following two lemmas are from Chen, Tse, et al.
Their proofs can be found in [11].

Lemma 4.1 Given a canonical specification <X, E>.

(1) Two ground Z-terms u, and u, of an observable sort s are
observationally equivalent, if and only if their normal forms
are identical.

(2) Two ground X-terms u; and u, of a non-observable sort s
are observationally equivalent, if and only if for all primi-
tive observable context sequence ocs, the normal forms of
uy.ocs and u,.ocs are identical. O

Lemma 4.2 (Subsume relationship theorem)

Given a canonical specification <X, £>, for all ground
terms 7 and 7 of same sort, we have that £|—7=17 implies
that 7~ 7. O

Notice that, the converse of Lemma 4.2 is not always
true. The example of bank account specification given in
[11] is a counter-example of the converse of Lemma 4.2.

4.2 Characteristic theorem

Chen, Tse and Chen’s Subsume Relation Theorem
(Lemma 4.2) states that observational equivalence is not
always the same as the equivalence relation in the initial
algebra. We now prove that observational equivalence is the
same as the normal equivalence relation in the final algebra.

Lemma 4.3 The relation ~ is an equivalence relation on
the set Wy of ground X-terms.

Proof. The statement follows Lemma 4.1. The proof is
straightforward. o

Theorem 4.1 (Congruence theorem of observationally
equivalence)

For a well structured canonical specification <X, E>, the
observational equivalence relation ~g,s is congruent with
the operations in the specification <X, E>,

Proof. We only need to prove that for all context C[ ], #1 ~gps
u, implies that Clu;] ~gps Clus].

If the context (T ] itself is a primitive observable context
sequence, then by Definition 4.1, we have that C[u,] and
Clu,] have identical normal form. Being a primitive ob-
servable context sequence, the sort of CJ...] is observable.
By Definition 4.1, we have that Clu;] ~gbs Cluz].

If the context C[ ] is not a primitive observable context
sequence, by the definition of well structured systems, the
context can be extended to primitive observable context
sequences ocs. For all such primitive sequences ocs,
Clu,].ocs can be written in the form of u;.C.ocs. By Lemma
4.1, since u; ~gps Uz , the normal form of u;.C.ocs is identical
to the normal form of u,.C.ocs. By Lemma 4.1, we have that
ul.C ~obs Mz.c. That is C[ul] ~obs C[Mz] [m]

From the proof of Theorem 4.1, it is easy to see the at-
tribute equivalent relation ~,, defined in [11] is not con-
gruent to the operations in specification <X, £>, because the
context C[...] can be a constructor rather than an observer.

Definition 4.2 (E-congruence)
A congruence ~ on algebra 4 is said to be an
E-congruence, if for each conditional equation in E,
r=7",if (r; =) A.n (7, =77)

and for all assignments ¢ in the algebra 4, we have that
[], ~[=1,.if [ ], ~[=], A nlmed, ~ (=, -

Theorem 4.2 (E-congruence theorem)

Given any well structured specification <X, E>, the ob-
servational equivalence relation ~y, defined on ground
terms is E-congruence.

Proof. We prove by structured induction on the sort s of the
terms 7and 7 in the equation
r=7",if (1, =t A.A (7, =7})

Let s; be the sort of the terms 7; and 7’; in the above

equation. Let x be any ground substitution.



(1) If the sort s is observable, by Definition 3.4, foralli =1,
2, ..., k, s; is observable. By Lemma 4.1, u(z,)~,, u(z')
SE|- u(r) = p(r)) . Thus, E|- u(r) = u(z') . Since s is
observable, we have that u(z) ~,, u(zr").

(2) Suppose that for all sorts s’ that s'< s or s’ is observ-

able, we have that for all terms 7; and 7, of sort s,
u(t) ~ . () =>E|-u(r,) = u(r,) . Then, we have that

ﬂ(z—l) ~obs /U(T]’) AN /U(Tk) obs /I(T,z) =
E|-u(r)=w(t) AnAE|—u(r,) = pu(z)).
Therefore, we have that E|— u(z) = u(z") in equational

logic. Hence, by Lemma 4.2, u(r)~,, u#(z"). ©

Corollary of Theorem 4.2.

Given a well structured canonical specification <X, E>

and its final algebra B, for all ground terms zand 7', 7~gps 7
imply that B|==7".
Proof. Let B be the final algebra of all <X, E>-algebras. By
the property of final algebra [21], we have that, for all
E-congruence relation ~ on Wy which is not a unit algebra, 7
~ 7 imply that Bj=7=7". The statement immediately follows
the fact that ~. is an E-congruence and not unit as proved
in Theorem 4.2. o

Theorem 4.3 (Characteristic theorem)

The term algebra Wg/~ is the final E-algebra.
Proof. Let <X, E> be a well structured canonical specifica-
tion. Let B be the final algebra of <Z, E>.

By the corollary of Theorem 4.2, 7~ 7 implies Bj=7=7.

The following proves that for all ground terms 7 and 7,
Bl=r=7 implies that 7~ 7. Let 7, 7 e Wy, and B|=r=7.
(1) If the sort s is observable, by Definition 3.1, we have
that Bj=7=1 if and only if E|-7=7". Since the specification is
canonical, the normal forms of rand 7 are identical.

(2) If the sort s is not observable, the statement Bj=7=7 is
equivalent to the statement that 7], =[z'], . Let _.w be

any primitive observable context sequence. We have that
[T]]B.[W]]B =|IT']]B.[[W]]B . Thus, [T.W]]B= [[T’.W]]B , or
equivalently, Bj= z.w=7.w. Since the sort of the terms z.w
and 7.w are observable, by (1) above, we have that z.w and
7.w have identical normal forms.

By Lemma 4.1, in both cases, we have that 7~ 7. O

4.3 Testing final algebras

To understand how observational equivalence can be
applied to testing final algebras, we need to know if two
observationally equivalent terms will be observationally
equivalent objects.

Definition 4.3 (Observably equivalent objects)
Two objects a; and a, of sort s are observably equivalent,
written a,~qs az, if they satisfy the following conditions.

(1) a; == a,, if s is an observable sort;
(2) for all observable contexts oc of the sort s, aj.oc =gps
a,.oc, if s is not an observable sort. O

Let 7 and 7 be any given ground terms. The validity
requirements require that, first, [z.0c] | o [7'.0c] ,» for
all observable context oc, if the semantics of the algebraic
specification <X, E> requires that a correct implementation
Al==7. Second, for some observable context oc,
[z.oc], #,, [7'0c], , if the semantics of the algebraic

specification <X, E> requires that a correct implementation
Al= z#7. The following theorem formally proves these
properties for final algebra semantics.

Theorem 4.4 (Validity theorem)

Let <X, E> be a well structured canonical specification.
An algebra 4 of the specification is the final algebra, im-
plies that 4 satisfies the following conditions.

(1) Equivalence criterion: For all ground terms 7 and 7,
T~gps T implies that 7], ~,, , [2'],:

(2) Non-equivalence criterion: For all ground terms 7 and
7', 0t (7 ~s 7) implies that 7], #,, , [7'],:

Proof. We only need to prove that 4 is the final algebra

implies that for all ground terms 7 and 7, 7~y 7 <

[]:T:[]A N obs, 4 [T']]A'

Note that, first, 4 is isomorphic to Ws/~qs. Let @ be the
isomorphism between them. Second, for all ground terms 7,
[z], =6(z].), where []. is the equivalence class of 7

under the relation ~u,. For all ground terms 7 and 7°, we
have that 7~y 7 < [7]=[7]. © A[7].) = 4[7].) &
[[z']]A :[T']]A S AF =7 = [T]]A X b [[r’]]A. Thus, 7~

7= [7], = [7 1,
To prove that 7], =, , [¢']= 7~obs 7, consider the

sort s of the terms zand 7. If s is observable, by Definition
3.1 and Definition 4.3, we have that [z], =, , [']= 4=

=7". By Definition 3.1 and Definition 4.1, we have that
T~os T - If the sort s is not observable, by Definition 4.3,
[7], =ups.s [7'] implies that that for all primitive observ-

able context sequences w, A|= .w = 7".w. Since the sort of
the terms z.w and 7".w is observable, we have that E£|- z.w =
7.w. By Definition 4.1, we have that 7~ 7. m]

This theorem formally proves that the observation con-
text oracle satisfies the validity requirements A for the final
algebra semantics. It states that to test a final algebra im-
plementation 4 against a well structured canonical speci-
fication <X, E>, we need to check for all ground terms 7and
7 of the same sort so that we can conclude that 4 is a correct
implementation, if the following conditions are true.

(1) if 7~qs 7’ is required by the specification, the test oracle



reports that 7], =, , [7']

e
(2) if 7 + s T is required by the specification, the test
oracle reports that 7] #,, , [7'],

How to check these conditions has been discussed in
[9~11]. This paper proves that the conclusions one can draw
are only valid in final algebra semantics.

5. Conclusion

In this paper, we extended the notion of observable sorts
by introducing a pre-order relation between sorts and or-
ganising algebraic specifications by dividing equations into
groups to match the importation relationship between
classes. We proved that in this framework test oracles based
on observation contexts satisfy the validity requirements
for correct implementations of well-structured canonical
algebraic specifications if and only if the semantics of the
specification is the final algebra. Otherwise, the validity
requirement is not necessarily satisfied.

For future research, we believe that the theories of ob-
servational algebraic specifications can be applied to a
wider range of software systems such as concurrent systems,
because concurrency and non-determinism can be treated in
behavioural theories naturally [3]. We are also investigating
the relationship between the theories of behavioural alge-
braic specifications and a more general theory of behav-
ioural observation in software testing developed inde-
pendently in our previous work [22, 23, 24]. Our general
theory of software testing considers each testing methods
consists of two components: a test adequacy criterion and a
behaviour observation scheme. Mathematical structures of
observable phenomena are investigated. A set of axioms of
the properties of observation schemes have been proposed.
It is worthy noting that the selection of a set of observable
contexts plays a crucial role in algebraic testing. This ac-
tually corresponds to the determination of an observation
scheme in our general theory of testing [22~24].
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