
On the Composition of Design Patterns

Ian Bayley and Hong Zhu
School of Technology, Oxford Brookes University, Oxford OX33 1HX, UK

(ibayley ‖ hzhu)@brookes.ac.uk

Abstract

Design patterns are usually applied in a composed form
with each other. It is crucial to be able to formally rea-
son about how patterns can be composed and to prove the
properties of composed patterns. Based on our previous
work on formal specification of design patterns and formal
reasoning about their properties, this paper focuses on the
composition of design patterns. A notion of composition of
patterns with respect to overlaps is formally defined based
on two operations on design patterns, which are the spe-
cialisation of a pattern with constraints and the lifting of a
pattern with a subset of components as the key. The com-
position of design patterns is illustrated by the composition
of Composite, Strategy and Observer patterns. A case
study of the formalisation of the relationship between pat-
terns as suggested by GoF is also reported.

1 Introduction

Design patterns are codified reusable knowledge of so-
lutions to recurring design problems [9, 1]. In the past few
years, a large number of software design patterns have been
described, cataloged [9, 1] and included in software tools
[11, 16, 14]. While each design pattern is usually specified
separately, they are rarely used alone. They are almost al-
ways used together as a composition. A trivial form of com-
position is when they are used in different parts of a system
without overlaps. However, in most cases, there are over-
laps on the parts that design pattens are applied. Thus, this
paper is devoted to the composition where there are over-
laps.

In our previous work, we developed a technique for the
formal specification of design patterns in first order logic.
We have successfully specified all 23 design patterns in the
classic GoF book [9] on both structural features [2] and be-
havioral features [5]. A formal theory has been developed
for the uses of formal specifications in reasoning about de-
sign patterns [3]. In particular, we have investigated how to
prove that a concrete design represented in UML diagrams

conforms to a design pattern, how to deduce the properties
of a design pattern from the specification, and how to reason
about the relationship between design patterns. The notion
of pattern composition has also been defined and prelimi-
narily studied. This paper further develops the theory and
reports a case study.

The remainder of the paper is organized as follows. Sec-
tion 2 gives the background to the paper with a brief review
of our approach to the formalization of design patterns and
the reasoning about design patterns. Section 3 is the main
body of the paper. It defines the notions of overlaps and
composition with overlaps. Properties of such compositions
are formally proved. Section 4 illustrates the theory with the
example of the MV C pattern, which is the composition of
Composite, Strategy and Observer. A case study of the
relationships between pattern as suggested in GoF [9] is also
reported. Section 5 concludes the paper with a discussion
of related works and future work.

2 Background

This section briefly reviews our approach to the formal
specification of and to reasoning about design patterns in
order to give the background to the remainder of the paper.

Generally speaking, our approach is a meta-modeling
approach. Each pattern is a subset of the design models with
certain structural and behavioral features. Therefore, the
formal specification of patterns is a meta-modeling prob-
lem. As in [2, 5], our approach to meta-modeling is first
to define the domain of all models by an abstract syntax in
the meta-notation GEBNF [21], which stands for Graphic
Extension of BNF. It extends the traditional BNF notation
with a ‘reference’ facility to define the graphic structures
of diagrams. In addition, each syntactic element in a def-
inition of a language construct is assigned with an identi-
fier (called field name) so that a first-order language (FOL)
can be induced from the abstract syntax definition. Given a
formal definition of the domain of models, for each design
pattern, we then define a predicate in the induced first-order
language to constrain the models such that each model that
satisfies the predicate is an instance of the pattern.

In summary, a meta-model in our approach comprises an
abstract syntax in GEBNF plus a first-order predicate. The
following expands the specification of an example pattern
according to our approach.

2.1 The Domain of Models

In this subsection, we first review the meta-notation
GEBNF [21, 2] and then use it to define the domain of mod-
els for class diagrams and sequence diagrams.

2.1.1 GEBNF Notation

In GEBNF, the abstract syntax of a modeling language is
defined as a tuple 〈R, N, T, S〉, where N is a finite set of
non-terminal symbols such as ClassDiag, and T is a fi-
nite set of terminal symbols, such as String. Non-terminal
symbols represents the constructs of the modeling language.
Each terminal symbol represents a specific value that can
occur in a model, such as a string of characters that can oc-
cur in a class node as the name of a class. Furthermore,
R ∈ N is the root symbol and S is a finite set of production
rules of the form Y ::= Exp, where Y ∈ N and Exp can
be in one of the following two forms.

L1 : X1, L2 : X2, · · · , Ln : Xn

X1|X2| · · · |Xn

where L1, L2 , · · ·, Ln are field names, and X1, X2 , · · ·,
Xn are the fields. Each field can be in one of the following
forms: Y , Y ∗, Y +, [Y], Y , where Y ∈ N ∪ T .

The meaning of the meta-notation is given in Table 1.
Note that where an element is underlined, it is a reference
to an existing element on the diagram as opposed to the in-
troduction of a new element.

2.1.2 Meta-Model of UML Diagrams

For the sake of simplicity and to save space, a simpli-
fied meta-model of UML class and sequence diagrams
[17] is defined by removing some less commonly used at-
tributes and flattening the inheritance hierarchy between
meta-classes. The following is the definition in GEBNF.
More details can be found in [5].

ClassDiag ::= classes : Class+, assocs : Rel∗,
inherits : Rel∗, compag : Rel∗

Class ::= name : String,

[attrs : Property∗], [opers : Operation∗]
Operation ::= name : String, [params : Parameter∗],

[isAbstract : Bool], [isQuery : Bool],
[isLeaf : Bool], [isNew : Bool], [isStatic : Bool]

Parameter ::= [name : String], [type : Type],

[direction : ParaDirKind], [mult : Multiplicity]
ParaDirKind ::= “in” | “inout” | “out” | “return”
Multiplicity ::=

[lower : Natural], [upper : Natural|“ ∗ ”]
Property ::= name : String, type : Type,

[isStatic : Bool], [mult : Multiplicity]
Rel ::= [name : String], source : End, end : End

End ::= node : Class, [name : String],
[mult : Multiplicity]

Here, Natural denotes the type of natural numbers,
Bool the type of boolean values, and String the type of
character strings.

SequenceDiagram ::=
lifelines : Lifeline∗, msgs : Message∗,
ordering : (Message, Message)∗

Lifeline ::=
activations : Activation∗, isStatic : Bool,

className : String, [objectName : String]
Activation ::= start, finish : Event, others : Event∗

Message ::= send, receive : Event, sig : Operation

2.2 Induced First Order Language

As shown in [21], an abstract syntax in GEBNF induces
a first-order language for writing first-order predicates as
constraints on the models.

In a GEBNF definition, every field f : X of a term T
introduces a function f : T → X . Function application
is written x.f for function f and argument x. For exam-
ple, because opers : Operation∗ is a field of Class, then
C.opers denotes the set of operations in class C. When
there is just one class diagram or one sequence diagram,
functions on them are written without their arguments, as
classes, lifelines etc.

From functions induced from a GEBNF syntax, first-
order predicates can be defined as usual using relations and
operators on sets and basic data types and using logic con-
nectives and quantifiers. Further functions and relations can
be defined as usual in the first-order logic. For the sake of
readability, we will also use infix and prefix forms for de-
fined functions and relations. Thus, we also write the appli-
cation of function f to argument x with the more conven-
tional prefix notation f(x).

Let f be any formula in the first order language induced
from a given GEBNF definition of models, and m be any
valid model according to the GEBNF definition. The eval-
uation of the formula f on m in the context of an assign-
ment α of free variables occurred in f to elements in m
is defined as usual in the first order language, and we write

Table 1. Meanings of the GEBNF Notation
Notation Meaning Example Explanation
X1 | · · · | Xn Choice Actor | UseCase Either an actor node or a use case node.
L1 : X1, · · ·, Lk : Xk Fields Name : String,

Attr : Attribute∗,
Meth : Method∗

Three fields consists of a Name, a number of
Attributes and Methods

X∗ Repetition Diagram∗ N diagrams, where N ≥ 0.
X+ Non-nil repetition Diagram+ N diagrams, where N ≥ 1.
[X] Optional [Actor] Actor is optional.
X Reference ClassNode A reference to an existing class node in the model.

Evaα(f, m) to denote the value of the evaluation in the con-
text of α. A formula is called a predicate, if its value is a
truth value. In particular, if the evaluation of a ground pred-
icate (i.e. without free variables) on a model m results in
the value true, we say that the model m satisfies the pred-
icate f , and write m |= f . We will also write p
 q if we
can deduce formula q from p in the first order logic. By the
semantic consistency of first order languages, we have the
following proposition.
Proposition 1.
Let p and q be any given ground predicates on models in a
given domain D defined by a GEBNF definition. If p
 q,
we have that for all models m ∈ D, m |= p implies m |= q.
��

Here follows some functions and relations used in many
patterns. For the sake of space, their formal definitions are
omitted, but they can be found in [5].

We write C1
−→ C2, C1 −−� C2, and C1 −→ C2 for
the aggregate, inheritance and association relations between
classes C1 and C2, respectively.

Let C be a class. Then subs(C) denotes the set of con-
crete subclasses of C. C..op denote the redefinition of op
for class C. isAbstract(C) means class C is abstract.

Let m and m′ be messages. We write m < m′ for
(m, m′) ∈ ordering. We define fromAct(m) to be
the unique activation that m sends to, fromLL(m) to be
the unique lifeline that m is from, and fromClass(m)
to abbreviate fromLL(m).class. Similarly, we define
toAct(m), toLL(m) and toClass(m). trigs(m, m′)
means that message m starts (or “triggers”) an activation
that sends message m′. For all messages m and objects o,
hasReturnParam(m, o) is true if o is the return parame-
ter for m. If there is only one such o for a message m, we
write returns(m) = o.

For operations op and op′, calls(op, op′) means op calls
op′, and we promote this relation to classes. A much-used
predicate is callsHook, defined when an operation calls an-
other at the root of an inheritance hierarchy.

In the sequel, we define patterns only for design mod-
els that are well-formed and consistent with respect to a set

of constraints [21]. Such constraints can also be written in
the first order logic. Readers are referred to [5] for some
examples.

2.3 Formal specification of patterns

Both the structural and behavioural features of patterns
can be formally specified as predicates on diagrams in the
same way as consistency constraints. We have successfully
specified all 23 patterns in the GoF book [9]. Here, we only
give one example to illustrate the style and to give the back-
ground to the discussions on reasoning about design pat-
terns. More examples will be given later in the paper, but
without detailed explanations. The readers are referred to
[5] for more details and [4] for a complete list of all specifi-
cations of GoF patterns.

For each pattern, the formal specification consists of
three parts. The first part, entitled Components, declares a
set of variables, which are existentially quantified over the
scope of all predicates in the specification of the pattern.
In this way, it sets the background for the formulae by as-
serting the existence of certain components in the system
design. The second part, entitled Static Conditions, con-
sists of a number of predicates for the structural relations
between the components. Such predicates can be evaluated
using the information contained in the class diagram of a
design. The third part, entitled Dynamic Conditions, con-
sists of a number of predicates for the dynamic behaviour
of the system, using information in the sequence diagram
of a design, and sometimes in the class diagram too. In the
latter case, consistency between the diagrams is ensured by
the consistency constraints. Formally, we have the follow-
ing definition.

Definition 1 (Formal Specification of DPs)
A formal specification of a design pattern is a triple P =
〈V, Prs, P rd〉, where Prs and Prd are predicates on the
domain of UML class diagrams and sequence diagrams,
respectively, and V is a set of declarations of the vari-
ables that are free in the predicates Prs and Prd. Let
V = {v1 : T1, v2 : T2, · · · vn : Tn}. The semantics of the

Figure 1. Adapter pattern class diagram

specification is a ground predicate in the following form.

∃v1 : T1∃v2 : T2 · · · ∃vn : Tn.(Prs ∧ Prd) (1)

In the sequel, we write Spec(P) to denote the predicate
(1) above, V ars(P) for the set of variables declared in V ,
and Pred(P) for the predicate Prs ∧ Prd, Preds(P) for
Prs and Predd(P) for Prd.

For example, the following is the specification of the
Adapter design pattern. Here, we omit the text descriptions,
context and solutions to save space, but we include the dia-
grams shown in Figure 1 from the GoF book for the sake of
readability.
Specification 1 (Object Adapter Pattern)
Components
• Target, Adapter, Adaptee ∈ classes,
• requests ∈ Target.opers,
• specreqs ∈ Adaptee.opers

Static Conditions
• Adapter −−� Target, Adapter −→ Adaptee,
• CDR(Target)

Dynamic Conditions
• ∀o ∈ requests · ∃o′ ∈ specreqs · (calls(o, o′))

In Specification 1, CDR(C) stands for client depends on
root, where C is the root class. It means that if a message
is sent from a class that is not explicitly mentioned in the
pattern then the operation must be declared in the root class.
Formally,

CDR(C) ≡ ∀m ∈ msgs · (toClass(m) ∈ subs(C)
⇒ m.sig ∈ toClass(m).opers ∧
∃o ∈ C.opers · (toClass(m).o = m.sig))

The specification given above is for Object Adapter. The
Class Adapter pattern has the static condition Adapter −
−� Adaptee instead of Adapter −→ Adaptee. Moreover,
it is only the Adapter class that can send a message to
the Adaptee. Formally, ∀m ∈ msgs · (toClass(m) =
Adaptee ⇒ fromClass(m) = Adapter)

2.4 Reasoning about patterns

In the practical application of design patterns, it is de-
sirable to prove that a concrete design really conforms to a

design pattern. The following defines the notion of confor-
mance of a concrete design to a pattern.

Definition 2 (Conformance of a design to a pattern)
Let m be a model and P =< V, Prs, P rd > be a formal

specification of a design pattern. The model m conforms
to the design pattern as specified by P if and only if m |=
Spec(P). ��

The conformance of a model m to a pattern can be eas-
ily proved by finding an assignment α of variables in V to
elements in m and evaluating Pred(P) in the context of
the assignment α. If the evaluation results in true, then the
model satisfies the specification. An example of such proofs
can be found in [3].

The following theorem proves that such a proof of a
model’s conformance to a design pattern is valid. The
proofs of the theorems given in this section are omitted, but
can be found in [3].

Theorem 1 (Validity of conformance proofs)
Let m be a model and P = 〈V, Prs, P rd〉 be a specifi-
cation of a design pattern. The model m conforms to the
design pattern as specified by P if and only if there is an
assignment α from V ars(P) to the elements in m such that
Evaα(m, Pred(P)) = true. ��.

Given a formal specification of a pattern, we can infer the
properties of the systems that conform to the pattern in first
order logic. The following theorem proves that properties
deduced from the specification in the first order logic are
satisfied by all models of the pattern.

Theorem 2 (Validity of property proofs)
Let P be a formal specification of a design pattern.

Spec(P) ⇒ q implies that for all models m such that
m |= P we have that m |= q. ��

There are a number of different kinds of relationships be-
tween patterns. Many of the relationships can be defined as
logic relations and proved in first order logic. Specialisation
is such a relationship.

Definition 3 (Specialisation relation)
Let P and Q between design patterns. Pattern P is a spe-
cialisation of Q, written P ⇒ Q, if for all models m, it is
the case that m conforms to P implies that m also conforms
to Q. ��

The specialisation relation between two patterns can be
proved by inference in the first order logic that Spec(P) ⇒
Spec(Q). The following theorem states that such proofs are
valid.

Theorem 3 (Validity of proofs of specialisation relation)
Let P and Q be two design patterns. Spec(P) ⇒ Spec(Q)
implies that P ⇒ Q, i.e. P is a specialisation of Q. ��

3 Composition of design patterns

In this section, we will first define some operations on
design patterns, then use these operations to formally define
the compositions of design patterns.

3.1 Motivating examples

Before we give the formal definition of composition,
let’s first see a motivating example.
Specification 2 (Composite Pattern)
Components
• Component, Composite ∈ classes,
• Leafs ⊆ classes,
• ops ⊆ Component.opers

Static Conditions
• CDR(Component), allAbstract(ops)
• ∀l ∈ Leafs ·

(l −−� Component ∧ ¬(l
−→ Component))
• isInterface(Component),
• Composite −−� Component
• Composite
−→∗ Component

Dynamic Conditions
• ∃m ∈ messages ·

(toClass(m) = Composite ∧ m.sig ∈ ops ⇒
∃m′ ∈ messages · calls(m, m′) ∧ m′.sig = m.sig)

• ∃m ∈ messages ·
(toClass(m) ∈ Leafs ∧ m.sig ∈ ops ⇒
¬∃m′ ∈ messages·calls(m, m′)∧m′.sig = m.sig)

Consider the Composite and Adapter patterns formally
specified in Spec. 2 and 1. Suppose that in the design of a
system, we have one leaf class in the Composite pattern
and that this class is to be adapted using an Adapter pattern.
This specific use of two patterns is a composition of patterns
Composite and Adapter. To enable this composition to be
specified formally, first we need to specialize Composite
pattern so that it only contains one leaf component called
Leaf rather than in the general case where there is a non-
empty set Leafs of leaves. Let this specialised Composite
pattern be called Composite1. Moreover, we also need
to specify that the component leaf in Composite1 is the
adapted component in the Adapter pattern, i.e. the compo-
nent Leaf in Composite pattern is also the Target com-
ponent in Adapter. Finally, to make the result of composi-
tion generally useful, we will also rename the components
so that their roles can be understood from their names. For
example, we would like to name the component Leaf in
Composite1, which overlaps with the Target in Adapter,
to be the AdaptedLeaf . From the above analysis we can
see that we need the following operators on design patterns:
(a) specialisation of a pattern; (b) composition of pattern
with an overlap; (c) renaming the components in a pattern.

Before we formally define the operations and study their
properties, let’s see a slightly more complicated composi-
tion of design patterns.
Specification 3 (Composite1 Pattern)
Components
• Component, Composite, Leaf ∈ classes,
• ops ⊆ Component.opers

Static Conditions
• CDR(Component), allAbstract(ops)
• Leaf −−�Component, ¬(Leaf
−→ Component))
• isInterface(Component),
• Composite −−� Component
• Composite
−→∗ Component

Dynamic Conditions
• ∃m ∈ messages ·

(toClass(m) = Composite ∧ m.sig ∈ ops ⇒
∃m′ ∈ messages · calls(m, m′) ∧ m′.sig = m.sig)

• ∃m ∈ messages ·
(toClass(m) = Leaf ∧ m.sig ∈ ops ⇒
¬∃m′ ∈ messages·calls(m, m′)∧m′.sig = m.sig)

When we compose Composite with Adapter pattern,
we may want to adapt a number of leaf components in the
Composite patterns. Each of the adapted leaves may have a
different adapter. We can apply the above operations to de-
fine that there are two adapted leaves, three adapted leaves,
etc. However, we cannot define a single pattern that can be
applied to all these situations. To achieve this objective, we
need an operation on patterns such that the result of an ap-
plication of lifting on a pattern P is a pattern P ′ with the
following property: that a design model m conforms to P ′

if it contains at least one set of components that matches
pattern P . This operation is called Lift in the sequel.

3.2 Specialisation

Let’s start with the specialisation operation on patterns.

Definition 4 (Specialisation operation)
Let P be given pattern and c be a predicate defined on the
components of P , a specialisation of P . A specialisation by
imposing a constraint c, written as P [c], is the pattern ob-
tained from P by imposing the predicate c as an additional
condition of the pattern. Formally,
V ars(P [c]) = V ars(P), P red(P [c]) = (Pred(P) ∧ c) ��

The following theorem states that by applying a special-
isation operation [c] on a pattern P , the result is a pattern
that is indeed a specialisation of P .

Theorem 4 (Specialisation by constraints)
For all patterns P and valid predicates c, P [c] ⇒ P .
Proof. By Definition 4, we have that

Spec(P [c]) ≡ (Spec(P) ∧ c) ⇒ Spec(P).
By Theorem 3, we have that Spec(P [c]) ⇒ P . ��

Example 1 The pattern Composite1 can be formally de-
fined as follows.

Composite1 = Composite[Leafs = {Leaf}].
By inference in the first order logic, we can simplify

Composite1 to the specification in Spec. 3. ��

3.3 Lifting

Informally, the application of the lifting operation on a
pattern P results in a pattern P ′ such that a design model
m conforms to P ′ if it contains at least one set of compo-
nents that matches pattern P . We will write P ↑ to denote
the result of a lifting on P . So P ↑ is the pattern in whicha
model contains a variable number of instances of pattern
P . For example, Adapter ↑ is the pattern that the design
contains a number of Targets of adapted classes. For each
of them, the system has an Adapter class and an Adaptee
class configured as in the Adapter pattern. To indicate that
the classes Adaptees and Adapters are varying according
to the component Targets, we write Adapter ↑ Target.
In other words, the component Target in the lifted pat-
tern plays a role similar to the primary key in a relational
database. Formally, we define the lift operation as follows.

Definition 5 (Lift Operation)
Let P be a pattern and V ars(P) = {v1 : T1, v2 : T2,
· · · , vn : Tn}, n > 0 and Spec(P) = p(v1, v2, · · · , vn).
Let V = {v1, v2, · · · , vk}, 1 ≤ k < n, be a subset of the
variables of the pattern. The lift of P with V as the key,
written P ↑ V , is the pattern defined as follows.

V ars(P ↑ V) = {vs1 : ℘T1, vs2 : ℘T2, · · · , vsn : ℘Tn}
Pred(P ↑ V) = ∀v1 ∈ vs1 · ∀v2 ∈ vs2 · ∀vk ∈ vsk·

∃vk+1 ∈ vsk+1 · ∃vn ∈ vsn · p(v1, v2, ·, vn)
∧ (vs1 �= ∅) ∧ · · · ∧ (vsk �= ∅)

��

Example 2 For example, Adapter ↑ {Target} is the pat-
tern as follows.

V ars(Adapter ↑ {Target}) =
{Targets, Adapters, Adaptees ⊆ classes}

Pred(Adapter ↑ {Target}) =
∀Target ∈ Targets · ∃Adapter ∈ Adapter ·
∃Adaptee ∈ Adaptees · Spec(Adapter).

��

Theorem 5 (Lifting Operation)
For all patterns P and models m, we have m |= P if and
only if m |= (P ↑ V), where V is any non-empty subset of
V ars(P).

Proof. (⇒) Let m |= P . By definition 2, there is an as-
signment α such that Evaα(Pred(P), m) = true. Let
α(vi) = ai. We have that p(a1, a2, · · · , an) is true in model
m. Define α′(vsi) = {ai}, for i = 1, 2, · · · , n. We have
that, vsi �= ∅ for all i = 1, 2, · · ·k. It is also easy to see that
the following predicate is also true under assignment α′.

∀v1 ∈ vs1 · ∀v2 ∈ vs2 · ∀vk ∈ vsk ·
∃vk+1 ∈ vsk+1 · ∃vn ∈ vsn · p(v1, v2, ·, vn)

Therefore, we have that m |= P ↑ V .
(⇐) Let m |= P ↑ V . By definition 2, there is an assign-
ment α such that Evaα(Pred(P ↑ V), m) = true. Let
α(vsi) = Ai. We have that for all a1 ∈ A1, · · ·, ak ∈ Ak

the following predicate is true in model m.
∃vk+1 · ∃vn · p(a1, · · · , ak, vk+1, · · · , vn)
Let ak+1, · · · , an be the witness of vk+1, · · · , vn in the

above. Then, we have that p(a1, a2, · · · , an) is true in
model m. Define assignment α′(vi) = ai, i = 1, 2, · · · , n.
We have that Evaα′(p(v1, v2, · · · , vn), m) = true. That is,
m |= P . ��

3.4 Overlaps

Consider a situation in which a design model m con-
forms to two design patterns P and Q at the same
time. Thus, by the definition of conformance and Theo-
rem 1, we have that there is an assignment α1 such that
Evaα1(Pred(P), m)= true, and at the same time there is
an assignment α2 such that Evaα2(Pred(Q), m)= true.
An overlap between two assignments in the conformances
means that there is at least one element in model m involved
in both assignments α1 and α2. Such an involvement can be
in one of the following three cases.

Case 1: One to one overlap. In this situation, there is
one element in the model m assigned to a variable of pat-
tern P by α1 and at the same time the same element is also
assigned to a variable in pattern Q by α2. This element in
the design model m plays two roles; one for each of the
design patterns. In this case, we say the overlap is an one-
to-one overlap. Let v ∈ V ars(P) and v′ ∈ V ars(Q) be
the variables that are assigned to the same element in model
m. Therefore, the model m does not only conform to P and
Q (thus satisfy the condition Pred(P)∧Pred(Q)), but also
satisfies the condition that v = v′. We will also name the
new role that the overlap element plays in the composition,
say v′′. Therefore, we also have the equations that v′′ = v
and v′′ = v′ for the composition pattern. These equations
are called the overlap constraints.

Case 2: One to many overlap. In this situation, there is
an element in the model m assigned to a variable of pattern
P by α1, and at the same time there is a set E of elements
such that E is assigned to a variable v′ in pattern Q. In this
case, we say the overlap is an one-to-many overlap. Assume

that the variable v is of type T , e.g. the type Class. Then,
the variable v′ must be of type P T , e.g. a subset of classes.
Because variables v and v′ are of different types, we cannot
simply write the overlap constraints as equations. Instead,
we will lift the pattern P , thus variable v becomes variable
vs, which is of type P T . Assume that the new role that the
overlap part plays is called v′′. The overlap constraints are
v′′ = vs and v′′ ⊆ v′.

Case 3: Many to many overlap. In this case, there is an
element in the model m in a set E of elements assigned to
variable v in pattern P by α1, and at the same time it is in
another set E′ of elements that are assigned to variable v′

in pattern Q by α2. In this case, both variables must be of
the same type of PT . In this case, we say the overlap is
a many-to-many overlap. Assume that the new role of the
overlap part played in the composition pattern is called v′′.
Then, the overlap constraints are v′′ ⊆ v and v′′ ⊆ v′.

The following definition introduces a notation to repre-
sent various types of overlaps [3]. For the sake of simplicity,
we assume that V ars(P) ∩ V ars(Q) = ∅. This can al-
ways be achieved by systematically renaming the variables
in V ars(P) and their free occurrences in Pred(P).

Definition 6 (Overlaps)
Let P and Q be two patterns. We write vnew := (v :

P#v′ : Q) to denote an overlap between the component v
in pattern P with component v′ in pattern Q, and the over-
lapped part is named as vnew , where vnew �= V ars(P) ∪
V ars(Q). When there is no risk of confusion, we will omit
the names of patterns and write simply vnew := (v#v′).

An overlap vnew := (v#v′) is called an one-to-one
overlap and written vnew := v −−v′, if both v and v′ are
of type T . It is called a many-to-many overlap and writ-
ten vnew := v >−< v′, if both v and v′ are of type PT .
In both one-to-one and many-to-many overlaps, we say that
the variables v and v′ are equally ordered. The overlap is
called a many-to-one overlap and written vnew := v >−−v′

or vnew := v −−< v′, if v is of type PT and v′ is of type T ,
or vice versa. In this case, we say that v is higher ordered
in the overlap and v′ lower ordered.

Let o be a set of overlaps as defined above between pat-
tern P and Q. We write V arsP (o) to denote the subset of
variables in V ars(P) that occurred in o. We say that P
is lower ordered, if there is a variable in V arsP (o) that is
lower ordered. ��

We can now define composition with an overlap.

Definition 7 (Composition with an overlap) Let o be a set
of overlaps between pattern P and Q. The composition of
P and Q with overlap o, written P⊗oQ, is a pattern defined
as follows.

V ars(P ⊗o Q) =
V ars(P ′) ∪ V ars(Q′) ∪ NewV ars(o),

P red(P ⊗o Q) = Pred(P ′) ∧ Pred(Q′) ∧ OC(o).
Here U ′ = U ↑ V arsU (o) if U is lower ordered in o;
otherwise U ′ = U , U = P, Q. NewV ars(o) is the set
of new variables given in overlap o. Predicate OC(o) is
the conjunction of overlap constraints. Formally, let o =
{u1 := v1#v′1, · · ·, un := vn#v′n}.
OC(o) = OC(u1 := v1#v′1) ∧ · · · ∧ OC(un := vn#v′n)
OC(u := v#v′)

=

⎧⎪⎪⎨
⎪⎪⎩

(u = v ∧ u = v′), u := v −−v′;
(u ⊆ v ∧ u ⊆ v′ ∧ u �= ∅), u := v >−< v′;
(u ⊆ v ∧ u = vs′ ∧ u �= ∅), u := v >−− v′;
(u = vs ∧ u ⊆ v′ ∧ u �= ∅), u := v −−< v′;

��
In the above definition, variables vs and vs′ are the cor-

responding lifted variables of v and v′, respectively.

Example 3 Now, we return to the motivating example of
the composition of Composite1 and Adapter with the
overlap that the Leaf component in Composite1 is the
same as component Target in the Adapter pattern. We
name this overlapped component AdaptedLeaf in the re-
sult pattern of the composition. This overlap can be speci-
fied as AdaptedLeaf := Leaf#Target. It is an one-to-
one overlap. Let o1 be this overlap. Thus, the composition
with o1 is the pattern Comp1Adapter = Composite1 ⊗o1

Adapter. By Definition 7, we have that
V ars(Comp1Adapter) =

{Composite, Component, Leaf, Adapter,

Adaptee, Target, AdaptedLeaf}
Pred(Comp1Adapter) =

Pred(Composite) ∧ Pred(Adapter) ∧
(AdaptedLeaf = Target) ∧
(AdaptedLeaf = Leaf)

��
Example 4 For the composition of Adapter with
Composite (rather than Composite1), the overlap
o2 is TLeafs := Leafs#Target. This is a one-to-many
overlap with Target as the lower ordered variable.

Let CompAdapter = Composite ⊗o2 Adapter.
By Definition 7, we have that

V ars(CompAdapter) =
{Composite, Component ∈ classes,

Leafs, TLeafs, Adapters, Adaptees,

Targets ⊆ classes}
Pred(CompAdapter) =

(TLeafs ⊆ Leafs) ∧ (TLeafs = Adapters) ∧
Pred(Composite) ∧ (TLeafs �= ∅) ∧
∀Adapter ∈ Adapters · ∃Target ∈ Targets ·
∃Adaptee ∈ Adaptees · Pred(Adapter)

��

As one would expect, we have the following theorem about
composition as defined above.

Theorem 6 (Composition of Patterns)
Let P and Q be any given patterns and o any overlap be-
tween P and Q. For all models m, m |= P ⊗o Q implies
that m |= P and m |= Q.

Proof. Let o be any given overlap between patterns P
and Q. If P is lower ordered, by Definition 7, we have
that Pred(P ⊗o Q) ⇒ Pred(P ↑ V arsP (o)). There-
fore, by Theorem 3, we have that for all models m, m |=
Pred(P ⊗o Q) implies that m |= Pred(P ↑ V arsP (o)).
By Theorem 5, we have that for all models m, m |=
Pred(P ↑ V arsP (o)) if and only if m |= Pred(P). Thus,
we have that for all models m, m |= Pred(P ⊗oQ) implies
that m |= Pred(P).

Similarly, when P is not lower ordered, by Definition 7,
we have that Pred(P ⊗o Q) ⇒ Pred(P). By Theorem
3, we have that m |= Pred(P ⊗o Q) implies that m |=
Pred(P).

Therefore, in all cases, we have that for all models m,
m |= P ⊗o Q implies that m |= P . The same proof applies
to Q. Therefore the theorem is true. ��

4 Example and case study

This section illustrates how the notion of composition
with overlaps can be apply to define compositions of design
patterns and reports a case study on the expressiveness of
the composition operators defined in this paper.

4.1 Example: The MVC Pattern

As a more complicated example of pattern composition,
we now show that the MV C pattern can be formed by com-
posing Composite, Strategy and Observer patterns. The
specifications of Strategy and Observer are given below.
Specification 4 (Strategy Pattern)
Components:
• Context, Strategy ∈ classes,
• conInt ∈ Context.opers,
• algInt ∈ Strategy.opers

Static Conditions
• Context
−→ Strategy, isAbstract(algInt)

Dynamic Conditions
• callsHook(conInt, algInt)

We first compose Composite to Strategy with a many-
to-one overlap o3.

o3 = {ContextLeafs := Leafs >−− Context,

OpContext := operation −−conInt)}.

This lifts the variables Context and Strategy to sets
and introduces a new component ContextLeafs. This
yields the following pattern.

V ars(Composite ⊗o3 Strategy) =
{Composite, Component ∈ classes,

Leafs, Contexts, Strategies, ContextLeafs

⊆ classes}
Pred(Composite ⊗o3 Strategy) =

Pred(Composite) ∧
Pred(Strategy ↑ {Context}) ∧
(ContextLeafs ⊆ Contexts) ∧
(ContextLeafs �= ∅) ∧
(ContextLeafs ⊆ Leafs)

However, because of the lifting of the variable Strategy
to Strategies, the composition pattern has several
Strategy classes, each the root of a separate hierarchy.
This seems strange. In the Java API, the single class
ActionListener is used. So we shall assume for simplic-
ity that every class in the set Strategies is equal to a vari-
able Strategy. This can be formally expressed as a con-
straint on the composition of the patterns by a predicate
Strategies = {Strategy}, thus we have

Composite ⊗o3 Strategy[Strategies = {Strategy}]
It is easy to prove that it is equivalent to the following

pattern PV C by inference in the first order logic.

V ars(PV C) = {Leafs ⊆ classes, Composite,

Component, Context, Strategy ∈ classes}
Pred(PV C) = (Strategy ∈ Leafs)∧

Pred(Composite) ∧ Pred(Strategy)

Specification 5 (Observer Pattern)
Components:
• Subject, Observer ∈ classes,
• update ∈ opers(Observer)

Static Conditions
• Subject −→∗ Observer, ¬update.isLeaf ,
• ∀O ∈ subs(Observer).

(∃S ∈ subs(Subject) . O −→ S)
Dynamic Conditions
• ∃ms ∈ messages . ¬ms.sig.isQuery∧

toClass(ms) ∈ subs(Subject) ⇒
• ∃m ∈ messages · m.sig = notify∧

fromLL(m) = toLL(m) = toLL(ms)∧
• ∃mu, mg . mu.sig = update ∧ isQuery(mg.sig)
∧toLL(mu) = l ∧ calls(m, mu)∧

calls(mu, mg) ∧ toLL(mg) = toLL(ms)

Then, we further compose this to Observer with the fol-
lowing overlap o4.

o4 = {StrObs := Strategy −−Observer}
Let MV C = PV C ⊗o4 Observer. By definition, we

have that

V ars(MV C) = {Composite, Component,

Subject, Observer, StrObs ∈ classes,

Leafs, Contexts, Strategy, ContextLeafs

⊆ classes}
Pred(MV C) = Pred(Observer)∧

Pred(Composite) ∧ Pred(Strategy) ∧
(Strategy ∈ Leafs) ∧ StrObs = Strategy ∧
StrObs = Observer

This is exactly the MV C design pattern.

4.2 Case Study of GoF patterns

In [9], possible compositions of patterns were suggested
in the Related Patterns section of each pattern. Such discus-
sions were informal and little details were given. However,
having formally defined the notion of compositions of pat-
terns, we can now formalise all of these suggestions using
the notion of overlap.

For example, it is stated that an Abstract Factory can
create and configure a particular Bridge [9] (p161). This
suggests that the Abstract and Implementor components
in the Bridge pattern are the AbstractProducts in the
AbstractFactory pattern. Thus, the overlap is

o = {AbstractProduct >−− Abstraction,

AbstractProduct >−− Implementor}
By composing AbstractFactory pattern and Bridge

pattern with the overlap o, we can see that the Client’s
dependences on Abstract and Implementor components
in the Bridge pattern can be satisfied because of the con-
straints on AbstractProduct in the AbstractFactory pat-
tern. All other conditions relate AbstractProducts to the
other classes in the AbstractFactory pattern and so are not
relevant.

It is also suggested that Iterator can be used to imple-
ment the recursion in Composite pattern [9]. The overlap
is between the ConcreteAggregates in Aggregate pattern
and the Component in Composite pattern. In our formal
specification given in [4], ConcreteAggregate was implic-
itly referred to as subs(Aggregate). To enable composition
with overlaps be defined, we first apply the specialisation
operation to Iterator, i.e. define Iterator′ as follows.

Iterator[ConcreteAggregates = subs(Aggregate)]

Then, we compose Iterator′ to Composite with the
overlap ConcreteAggregates >−− Component.

Table 2 summarises the overlaps between GoF patterns,
where Command′ is defined in a similar way to Iterator′.

Details of these compositions and the proofs of their satisfi-
ability are omitted for the sake of space and will be reported
separately. Our case study demonstrated that our operations
on design patterns and our compositions of design patterns
are expressive and general enough to cover the suggested
compositions made in GoF book [9].

Table 2. Summary of Case Study
Patterns Overlap
Abstract Factory {AbsProducts >−−Abstr,
+ Bridge AbsProducts >−−Implem}
Composite + Decorator {Component−− Component,

Composite −− Decorator,
operation −− operation}

Component + Flyweight {Component −− Flyweight}
Iterator’ + Composite {ConcreteAggregates

>−−Component}
Visitor + Composite {Component −− Element}
Abstract Factory {AbstractFactory
+ Facade −− Facade}
Facade + Singleton {Facade −− Singleton}
State + Flyweight {State −− Flyweight}
Strategy + Flyweight {Strategy −− Flyweight}
Chain of Resp {Chain of Resp
+ Composite −− Composite}
Command + Composite {Command −− Component}
Memento + Command’ {Caretaker

−− ConcreteCommands}
Prototype + Command {Prototype −− Command}
Iterator {Iterator −− Product}
+ Factory Method
Iterator’ + Memento {ConcreteIterators

>−− Caretaker}
Mediator + Observer {Colleague −− Observer,

Mediator −− Subject}
State + Singleton {State −− Singleton}
State + Flyweight {State −− Flyweight}
Strategy + Flyweight {Strategy −− Flyweight}

5 Conclusion

In this paper, we further developed our method for the
formal specification of design patterns by adding a formal
definition of the composition of design patterns. The prop-
erties of compositions are proved. A case study of the rela-
tionships between design patterns as suggested by GoF [9]
is reported. As demonstrated in this paper, formal reasoning
about design patterns and their compositions can be natu-
rally supported by the formal deduction in first order logic,
which is well understood, and well supported by software
tools such as theorem provers.

There are a large number of papers published in the liter-
ature on formalisation of software design patterns. Existing

work can be classified into two categories. The first cat-
egory proposes special-purpose formal languages or semi-
formal graphic modeling languages in order to define pat-
terns rigorously [14, 6, 7]. The second category, to which
our work belongs, simply employs or adapts existing formal
or semi-formal languages [12, 18, 19, 15, 10, 13, 8, 20].

While each of these approaches are demonstrated with
examples, it remains an open question whether they can be
used to specify all design patterns. Our approach has been
proven to be expressive by the successful specification of
all 23 design patterns in the GoF catalog [2, 5].

In the existing work, few have attempted to facilitate for-
mal reasoning about design patterns even though formali-
sation is perceived to have the potential to support formal
reasoning. Generally speaking, for the works in the first
category summarized above, to support formal reasoning of
design patterns, a formal logic must be devised and its logic
properties, such as semantic consistency must be proven
and a special purpose formal reasoning tool must be devel-
oped. Thus, a great effort must be made before they can
become practically useful. For works in the second cate-
gory, those using the UML meta-modeling facility suffer
from the ambiguity and informal definition of UML. Even
the basic notion that a concrete design conforms to a pattern
has to be defined with great length [8]. Few works on for-
mal definition of pattern composition has been reported in
the literature. One such work is by Taibi [18]. He discussed
the composition of design patterns specified in the balanced
pattern specification language BPSL. His definition did not
handle the most complicated form of pattern composition
like the many-to-many kind of overlaps, however.

In comparison with existing works, the formal specifi-
cations of design patterns in our approach are natural and
easier to understand. Our approach is highly expressive. As
demonstrated in this paper, reasoning about design patterns
on various kinds of properties and relationship as well as
their compositions can be naturally supported by the well-
understood first order logic. Such reasoning can also be
supported by software tools such as first order logic theorem
provers. We are investigating the uses of theorem provers
for automated reasoning about design patterns based on the
theory developed in this paper.

References

[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns: Best
Practices and Design Strategies. Prentice Hall, 2nd edition,
June 2003.

[2] I. Bayley and H. Zhu. Formalising design patterns in pred-
icate logic. In 5th IEEE International Conference on Soft-
ware Engineering and Formal Methods, 2007.

[3] I. Bayley and H. Zhu. Formal reasoning about design pat-
terns. In 10th International Conference on Formal Engineer-
ing Methods (ICFEM 2008) (Submitted to), 2008.

[4] I. Bayley and H. Zhu. Specifying behavioural features of
design patterns. Technical Report TR-08-01, Department of
Computing, Oxford Brookes University, Oxford, UK, 2008.

[5] I. Bayley and H. Zhu. Specifying behavioural features of
design patterns in first order logic. In 32nd IEEE Interna-
tional Conference on Computer Software and Applications
(COMPSAC 2008), 2008.

[6] A. H. Eden. Formal specification of object-oriented design.
In International Conference on Multidisciplinary Design in
Engineering, Montreal, Canada, November 2001.

[7] A. H. Eden. A theory of object-oriented design. Information
Systems Frontiers, 4(4):379–391, 2002.

[8] R. B. France, D.-K. Kim, S. Ghosh, and E. Song. A uml-
based pattern specification technique. IEEE Trans. Softw.
Eng., 30(3):193–206, 2004.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[10] A. L. Guennec, G. Sunyé, and J.-M. Jézéquel. Precise mod-
eling of design patterns. In UML 2000 - The Unified Model-
ing Language. Advancing the Standard. Third International
Conference, York, UK, October 2000, Proceedings, volume
1939, pages 482–496. Springer, 2000.

[11] D. Hou and H. J. Hoover. Using SCL to specify and check
design intent in source code. IEEE Transactions on Software
Engineering, 32(6):404–423, June 2006.

[12] K. Lano, J. C. Bicarregui, and S. Goldsack. Formalising
design patterns. In BCS-FACS Northern Formal Methods
Workshop, Ilkley, UK, September 1996.

[13] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun. Precise
modeling of design patterns in uml. In 26th International
Conference on Software Engineering (ICSE’04), pages 252–
261, 2004.

[14] D. Mapelsden, J. Hosking, and J. Grundy. Design pat-
tern modelling and instantiation using dpml. In CRPIT
’02: Proceedings of the Fortieth International Conference
on Tools Pacific, pages 3–11. Australian Computer Society,
Inc., 2002.

[15] T. Mikkonen. Formalizing design patterns. In Proc. of
ICSE’98, Kyoto, Japan, pages 115–124. IEEE CS, April
1998.

[16] N. Nija Shi and R. Olsson. Reverse engineering of design
patterns from java source code. In Proc. of ASE’06, Tokyo,
Japan, pages 123–134, September 2006.

[17] OMG. Unified modeling language: Superstructure, version
2.0, formal/05-07-04.

[18] T. Taibi. Formalising design patterns composition. Software,
IEE Proceedings, 153(3):126–153, June 2006.

[19] T. Taibi, D. Check, and L. Ngo. Formal specification of de-
sign patterns-a balanced approach. Journal of Object Tech-
nology, 2(4), July-August 2003.

[20] U. Zdun and P. Avgeriou. Modelling architectural patterns
using architectural primitives. In 20th annual ACM SIG-
PLAN conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPLSA), San Diego,
California, pages 133–146, 2005.

[21] H. Zhu and L. Shan. Well-formedness, consistency and com-
pleteness of graphic models. In Proc. of UKSIM’06, Oxford,
UK, pages 47–53, April 2006.

