
An Experiment with Algebraic Specifications of
Software Components

Hong Zhu
Department of Computing and Electronics

Oxford Brookes University
Oxford OX33 1HX, UK

E-mail: hzhu@brookes.ac.uk

Bo Yu
Department of Computer Science & Technology

National University of Defense Technology
Changsha, China

Email: hnaxdsjk@163.com

Abstract – A long lasting myth of formal methods is that they
are difficult to learn and expensive to apply. This paper
reports a controlled experiment to test if this myth is true or
false in the context of writing algebraic formal specifications.
The experiment shows that writing algebraic specifications for
software components can be learnt by ordinary university
students. It does not heavily depend on mathematical
knowledge and skills. Moreover, it is not time consuming to
write algebraic specifications for software components.

Keywords–Formal methods; Algebraic specification; Software
components; Learnability; Cost and expense.

I. INTRODUCTION

Algebraic specification was first proposed in 1970s as
an approach to the implementation independent definition
of abstract data types [1]. In the past three decades,
significant progress in the research on algebraic
specifications has been made towards a mature formal
method [2]. In particular, the approach has advanced in the
following areas.

• Theoretical foundation. The recent development of
hidden algebra [3] and co-algebra [4] approaches
enable the formal development of state-based, object-
oriented and component based software and it is
applicable to nondeterministic distributed concurrent
systems.

• Language and tool support. A number of formal
specification languages and their supporting tools have
been developed. For example, OBJ3 [5], CafeOBJ [6]
CASL [7] and CoCasl [8] are among the most well-
known languages.

• Applications. In addition to formal reasoning and
proving properties, algebraic specifications can also be
used as the basis for software testing and reverse
engineering. When applied to software testing, a high
degree of test automation can be achieved by
automatically generating test cases and checking the
correctness of program output. It can be applied to data
types in procedural languages [9, 10], classes in object-

oriented systems [11 , 12 , 13 , 14 , 15] and software
components [16,17]. In reverse engineering, algebraic
axioms at a high level of abstraction with good
readability can be automatically derived from program
source code [18, 19].

However, the algebraic approach has not been widely
adopted by the industry. In general, it is widely perceived
that formal methods are difficult to learn and expensive to
apply [20]. Such myths regarding formal methods were first
identified more than 25 years ago [21, 22]. They still
abound despite a significant number of success stories of
industrial applications of formal methods [23 , 24], as
Bowen and Hinchey observed [25]. In the past 20 years,
based on case studies and success stories, formal methodists
have argued in vain that these myths are not true. They have
failed to convince the rest of the world, especially the
software engineering community and IT industry. Therefore,
we believe it is necessary to employ software engineering
research methods, e.g. controlled experiments, to found out
whether such myths are true or false.

This paper reports such an experiment with focus on the
following myths of formal methods. They are tested in the
context of writing algebraic specifications.

− Myth 1: Dependence on mathematical skills. Writing
algebraic formal specifications is a job for the well-
trained mathematicians. It requires good mathematical
skills.

− Myth 2: Time consuming and expensive. Writing
algebraic specifications is a complicated and time
consuming task.

− Myth 3: Unlearnability. Writing algebraic specifi-
cations is hard to learn. It needs training and practices.

The paper is organized as follows. Section II describes
the design of the experiment. Section III analyses the data
of the experiment. Section IV draws conclusions from the
findings of the experiment, points out their practical
implications and limitations, and discusses the potential
threats to their validity and the direction for future work.

II. DESIGN OF THE EXPERIMENT

This section presents the design of the experiment.

A. Subjects

Our experiment was conducted with year-three
university students of computer science and technology,
who have not learned formal methods before the experiment.
Therefore, they are suitable for testing how hard it is to
learn writing algebraic specifications.

These students had taken three mathematics courses and
three programming courses in the previous semesters before
the experiment. The mathematics courses were Advanced
University Mathematics (Part A and B) and Discrete
Mathematics. The programming related courses were C++
Programming, Java Programming and Data Structures.
These courses were compulsory courses for all students of
the BSc. Degree course of Computer Science and
Technology. They were taught following the standard
syllabuses set by the Ministry of Education of China.

Thirty five students participated in the experiment.
Those students who failed on any of the mathematics and
programming courses were eliminated from the experiment.
Figure 1 shows the distributions of student capabilities in
terms of their average examination scores in mathematics
courses, programming courses and the average scores of all
courses. It is worth noting that in the marking scheme, a
score in the range 90%-100% is grade A, in 80-89% is

grade B+, 70-79% is B, 60-69% is grade C, and it is grade F
(fail) if the score is below 60%. The numbers of students in
each grade are also given in the figure. As shown in the
figure, the scores evenly spread from lower 60s to 90s.
TABLE I gives the statistical data of student capabilities in
terms of the average and standard deviation of mathematics
courses, programming courses and all courses. It is worth
noting that the cohort of students who participated in the
experiment is not highly capable because their average
scores are of grade B. They represent the ordinary
university students who major in computer science and
technology.

TABLE I. STATISTIC DATA OF STUDENT CAPABILITY

 Mathematics
Courses

Programming
Courses

All
Courses

Average 76.44 74.59 75.51

Std Deviation 9.67 7.34 7.83

B. Process of the experiment

The experiment was conducted as a part of a course on
software engineering. Four consecutive lessons within three
weeks were devoted to teaching and testing students’
attainments of algebraic formal specifications. Students’
performances in the experiment were counted as 10% of the
assessment of the course. Thus, the students have taken the
experiments seriously. The process of the experiment
consists of the following steps.

(1) In the lesson preceding the experiment, the students
were given an introduction to the general concepts of
formal methods.

(2) At the first lesson of the experiment, the students were
first introduced to algebraic specification in general and
the CASOCC specification language in particular.
CASOCC is a formal specification language based on
the theory of hidden algebra and designed for
supporting automated testing of software components
[16, 17]. An example formal specification, which is a
specification of the stack data structure, was illustrated
in the lesson. In the second half of the lesson, the
students were assigned a class test to write
independently an algebraic specification of the first
class test problem using the CASOCC language.
Please see TABLE II for the class test problem.

(3) At the second lesson, a sample answer to the class test
question of the previous lesson was discussed at the
class, and then a second class test question was
assigned to the students to attempt at the class
independently.

(4) At the third lesson, the sample answer to the second
class test was presented and then the students were
assigned to the third class test.

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Student ID

Av
er
ag

e
Ma

rk

Mathematics

Programming

All

5

7

11

12

1

6

18

10

1

9

12

13

0

2

4

6

8

10

12

14

16

18

20

A B+ B C
Grade

N
u
m
b
e
r

o
f

S
t
u
d
e
n
t
s

Math
Prg
All

Figure 1. Distribution of Students’ Capabilities

(5) At the fourth lesson, the sample answer to the previous
class test is presented and the final class test was
assigned to the students.

For each class test, students’ work was assessed
according to the quality of their answers. Because the
quality of an algebraic specification depends on two factors,
i.e. correctness and completeness, the following marking
scheme is used to assess students’ work.

− Correctness of the answer: 50%. This is assessed
according to the correctness of the signature and
axioms in the student’s work. For each axiom with a
minor syntax error that can be detected by CASCAT
tool, the mark is reduced by 20%, while axioms with
semantic errors were given no marks.

− Completeness of the axiom system: 50%. This is
assessed according to the coverage of the operators by
the axioms. The coverage of each operator was given
an equal number of marks.

In the experiment, the students were given no time limit
to complete the class tests. But, they were asked to hand in
their work as soon as possible. The length of time that each
student took to complete a class test was recorded.

It is worth noting that before they started to work on a
class test question, the students were briefed about the
function and the interface of the component. Therefore, the
length of time taken to write the algebraic specification
excludes the length of time to understand the components.

C. Sample problems

As stated above, four different software components
were selected for the students to specify as the class test
problems. The first three components were of similar
complexity. They were typical examples of software
components and came from the tutorial of J2EE [27]. By the
end of the third lesson, it became clear that the majority of
students had attained the knowledge and skills taught in the
classes. Thus, the fourth class test problem was selected to
be significantly harder than the first three in order to test
whether the students were capable of applying the
knowledge and skill to more complicated problems. This
class test problem was selected from classic algebraic
specification textbooks. It has also been studied by
researchers in the investigation of deriving algebraic
specification from Java source code [19]. More information
about the class test questions is given in TABLE II.

TABLE II. SOFTWARE COMPONENTS USED IN THE CLASS TESTS

Test Component Source #Operators
1 Complex numbers Java Textbook [26] 13
2 Bank account J2EE Tutorial [27] 12
3 Gangster database J2EE Tutorial [27] 16
4 Linked Lists Textbooks, also [19] 8

III. RESULTS AND MAIN FINDINGS

This section analyses the main results of the experiment
against the myths regarding algebraic specifications.

A. How easy is it to learn to write algebraic specifications?

The students participated in the experiment as a learning
experience. We observed that there is a clear performance
improvement from the first class test to the third as shown
in the statistical data about the average scores for each class
test given in Figure 2. In particular, the average scores
increased monotonically from class test 1 to 3. The average
score of the final class test is slightly lower than class test 3.
This is because the question is significantly harder than the
questions for the first three class tests.

62.89

10.83

91.41

10.96

96.68

6.88

96.13

5.13

87.12

4.73

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

A
v
e
r
a
g
e

S
c
o
r
e

(

%

)

Exp1 Exp2 Exp3 Exp4 Average

Experiments

Average

StDev

Figure 2. Changes of Scores over Tests

Further evidence of the learnability of algebraic
specification is in the distribution of student scores in class
tests as shown in Figure 3.

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Student

S
c
o
r
e

Exp1

Exp2

Exp3

Exp4

Average

Figure 3. Distributions of Scores

In Figure 3, the distribution of the scores of each class
test is shown in one line. It is clear that the line of class test
1 is below the line of class test 2, which in turn is below the
line of class test 3. In other words, the distributions of
scores improve monotonically from test 1 to 3. The
distribution of scores of the final class test is not completely
above the line of class test 3. However, they are very close
to each other although the question of test 4 is much harder.

TABLE III gives the number of students in different
grades in various class tests. Column 6 of the table also

gives the number of students in different grades according
to their average marks of all 4 class tests. It shows that the
majority of students (33 out of 35, i.e. 92.3%) reached grade
A in the final class test while all students passed the test. In
fact, the average score of the final test is 96.13% with a
standard deviation of 5.13%. This is a significant
improvement in the average score in comparison with
62.89% of the first class test.

TABLE III NUMBERS OF STUDENTS IN VARIOUS GRADES

Grade Test 1 Test 2 Test 3 Final Test Avg of All Tests

A 1 25 31 33 8
B+ 0 4 2 0 23

B 3 5 2 2 4

C 20 0 0 0 0

F 11 1 0 0 0

Therefore, we can conclude that the students easily
attained the knowledge and skill of writing algebraic
specification in just a few lessons.

B. How expensive is it to write an algebraic specification
for a software component?

Is writing algebraic specification an expensive task? To
answer this question, we investigated how long it took a
student to write an algebraic specification for a software
component.

In the experiment, the cohort of students not only
performed very well in terms of the scores, but also in terms
of the lengths of time that they took to complete the test
questions. As shown in Figure 4, the average lengths of
time that students took to complete the class test questions
decreased monotonically from class test 1 to 3, in which the
problems are of the similar complexity. The average length
of time of class test 4 is only slightly longer than the third
although the question is significantly harder.

34.17

3.45

30.66

4.18

28.63

3.96

31.74

4.19

31.30

2.16

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00
A
v
e
r
a
g
e

T
i
m
e

(

M
i
n
u
t
e
s

)

Exp1 Exp2 Exp3 Exp4 Avergae

Experiments

Average

StDev

Figure 4. Changes of Average Lengths of Time over Tests

Figure 5 gives the details about the distribution of the
lengths of time that students took to complete class tests. As
shown in Figure 5, the line for the lengths of time of class
test 1 is above the line for class test 2, which is in turn
above the line for class test 3. In other words, the

distributions of the lengths of time also improve
monotonically from class test 1 to 3. In the final class test,
the average length of time was 31.74 minutes with a
standard deviation of 4.19 minutes.

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Student

T
i
m
e

(

M
i
n
u
t
e

)

Exp1

Exp2

Exp3

Exp4

Avergae

Figure 5. Distributions of Lengths of Time

The experiment data show that on average a student
took about half an hour to complete the writing of an
algebraic specification for a typical software component.

C. Does writing algebraic specification need good
mathematical skills?

To analyze to what extent writing algebraic
specifications depends on mathematical knowledge and
skills, we calculated the correlation coefficients between
students’ performances in class tests and their performances
in mathematics courses and compared the correlation
coefficients with those between programming courses and
the average scores of all courses. The results are shown in
TABLE IV.

TABLE IV CORRELATION COEFFICIENTS

Length of

Time
StDev of Lengths

of Time Score StDev of
Scores

Mathematics
Courses -0.44 0.34 0.10 -0.10

Programming
Courses -0.52 0.41 0.46 -0.44

All Courses -0.52 0.40 0.28 -0.27

As shown in TABLE IV, the correlation coefficients
between the average scores of mathematics courses and
average scores of class tests on algebraic specification is
only 0.10. When the absolute value of a correlation
coefficient is close to 1, there is a strong correlation
between the random variables. Otherwise, when the
absolute value of the coefficient is close to 0, there is no
correlation between them. Therefore, since the coefficient is
very close to 0, the experiment data show almost no
correlation between the average score of mathematics
courses and the performance in writing algebraic
specifications. They are almost independent.

The correlation coefficient between the average score of
mathematics courses and the average lengths of time for the

students to complete specifications is much greater, which
is -0.44. This means there is some dependence between the
average score of mathematics and the average length of time
for the student to complete the specifications. The higher
score is, the less time used. However, the absolute value of
the coefficient is less than 0.5, thus the dependence between
these two random variables is not conclusive.

When these correlation coefficients are compared with
the correlation coefficients of programming courses and all
courses, it becomes clear that the link between students’
average scores of programming courses and their
performances in class tests is stronger than the links
between students’ average scores of mathematics courses
and their performances in class tests.

The following statistical analysis of the data provides
further evidence to support the statement on the link
between programming capabilities to algebraic specification.
We divided the students into the following four groups and
calculated their scores in class tests.

− Group 1 (P>M: More capable of programming than
mathematics): A student falls into this group if his/her
average score of programming courses is higher than
his/her average score of mathematics courses by at least
5 marks. There are 6 students in this group.

− Group 2 (P<M: More capable in mathematics than
programming): A student is in this group if his/her
average score of mathematics courses is higher than
his/her average score of programming courses by at
least 5 marks. There are 13 students in the experiment
who belong to this group.

− Group 3 (P~M High: Equally capable of programming
and mathematics): A student is regarded as of equal
capability of programming and mathematics if the
difference between his/her average scores of
programming courses and mathematics courses is
within 5 marks. These students are further divided into
two groups from the median according to their average
scores of all courses. Group 3 consists of those have
higher average scores of all courses. There are 8
students in this group. They all have an average score
above 70.

− Group 4 (P~M Low: Equally incapable of
programming and mathematics): This group consists of
students of equal capability of programming and
mathematics, but their overall average scores are lower
than those in group 3. There are also 8 students in this
group. They all have an average score below 70.

The statistical data for each group is given in TABLE V.
For Group 1 (P>M), although the average score of all
courses is lower than that of Group 2 (P<M), the average
score of class tests is observably higher that group 2.

Moreover, for Group 2 (M>P), the average score of class
tests is the lowest among all four groups, even lower than
Group 4, whose capabilities of both programming and
mathematics are the poorest.

TABLE V. STATISTICS OF THE PERFORMANCES OF GROUPS

Avg.
Math

Avg.
Prog

Avg.
All

Avg.
Score

Avg. Final
Score #Stds

P>M 69.78 77.44 73.61 90.82 96.91 6

P<M 84.31 74.92 79.62 85.44 95.97 13

P~M (High) 77.50 77.83 77.67 87.23 96.46 8

P~M (Low) 67.58 68.67 68.13 85.49 95.50 8

Therefore, the students’ performances in class tests are
more closely related to their programming capability than to
mathematics knowledge and skills. If a student is more
capable of programming, he/she performs better in the class
tests on algebraic specification.

It is worth noting that the above statistical analysis is on
the average score of all class tests. Therefore, the link
between students’ performances in class tests and
programming capability should be interpreted as their
capability to learn algebraic specification rather than their
final attainment. In Section A, we have shown that there is
little difference in the final attainments for the cohort of
students. It is also worth noting that even for the
relationship between programming capability and class test
performance, the link is not strong since the absolute values
of the correlation coefficients are in the range from 0.41 to
0.52.

D. Is writing algebraic formal specifications a job only for
the most capable?

Having shown that writing algebraic specifications is
less dependent on mathematical knowledge and skills than
on programming capability, a question still remains to be
answered. That is, is writing algebraic formal specifications
a job only for the most capable?

To answer this question we look into the details about
how students perform in class tests in the context of their
programming capabilities. Figure 7 shows the distributions
of the averages of class test scores and the average length of
times taken to complete the tests over all 35 students when
the students are indexed by their average scores of
programming courses. The curves in the figures are the 3rd
order polynomial fittings. The polynomial functions of the
fitting curves for average scores and lengths of time are
given below in equation (1) and (2), respectively.

 y= 0.0025x3 - 0.5693x2 + 43.888x - 1039.1 (1)

 y = 0.0001x3 - 0.0264x2 + 1.757x - 2.6809 (2)

Equation (1) shows that the relationship between

y = 0.0025x
3
 - 0.5693x

2
 + 43.888x - 1039.1

R2 = 0.376

75.00

80.00

85.00

90.00

95.00

100.00

60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00 100.00

Programming Score

A
v
e
r
a
g
e

S
c
o
r
e
s

(

%

)

(a) Class Test Scores vs Programming Capability

y = 0.0001x3 - 0.0264x2 + 1.757x - 2.6809
R2 = 0.2771

27.00

29.00

31.00

33.00

35.00

37.00

60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00 100.00

Programming Score

A
v
e
r
g

a
e

T
i
m
e

(

M
i
n

u
t
e
s

)

(b) Lengths of Time vs Programming Capabilities
Figure 6. Dependence on Prg Capability during Training

average score and programming capability is essentially a
second order polynomial function since the coefficient of
the 3rd order term is negligible. Equation (2) shows that the
average length of time depends on programming capability
more or less linearly because the coefficients of the 2nd and
3rd order are negligible.

From the above statistical analysis one might draw a
conclusion that writing algebraic specification must be the
job of the most capable programmers. However, there is a
potential bias in the above analysis because the average
scores and average lengths of time contain the results of the
first and second class tests. Thus, they do not reflect the
situation after the students completed their training.
Therefore, we should look into the distributions of the
scores and lengths of time in the final class test, which
reflect their performance when finishing the learning
process.

Figure 6 (a) and (b) show the distributions of students’
performance in the final class test in terms of the scores and
lengths of time, respectively, where the students are indexed
by their average scores of programming courses. The trend
line shown in Figure 6(a) is mostly linear and almost
constant. Its 2nd order polynomial fitting function is give
below.

 y = −0.0002x2 − 0.0148x + 98.405 (3)

The trend line shown in Figure 6(b) is also mostly linear,

but not constant. Its polynomial fitting function is:

 y = 0.0017x2 − 0.4558x + 56.043 (4)

Therefore, after taking three lessons and class tests, the
students are capable of writing algebraic specifications of
almost equal quality, but the most capable ones took slightly
less time. From this point of view, writing algebraic
specifications can be a job for any well trained software
developer rather than just for the few most capable ones.

IV. CONCLUSION

We now discuss what conclusions can be drawn from
the experiment, their implications and limitations, and the
potential threats to the validity of such conclusions. Further
work will also be identified in the discussion.

A. General conclusions

From the experiment data, we can draw the following
general conclusions.

Statement 1 (Learnability)

Writing algebraic specification is learnable for ordinary
software developers.

This statement is supported by our experiment with
university students of computer science and technology.
The cohort of students who participated in the experiment
had capabilities range from grade C to grade A in studying
their university courses. In the experiment, all of them

y = 0.0004x3 - 0.0914x2 + 6.9118x - 75.523
R2 = 0.0082

75.00

80.00

85.00

90.00

95.00

100.00

60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00 100.00

Programming Score

F
i
n

a
l

S
c
o
r
e

(

%

)

(a) Final class test score vs programming capability

y = 0.0017x2 - 0.4558x + 56.043
R2 = 0.112

20

25

30

35

40

45

60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00 100.00

Programming Capability

T
i
m
e

(
M
i
n
u
t
e
s

)

(b) Lengths of time in final test vs programming capability
Figure 7. Dependence on Prg Capability after Training

passed the class tests and 32 out of 35 students got grade A
in the final class test. The conclusion generalizes the finding
of the experiment on the ground that if ordinary students
can learn writing algebraic specifications, then everybody
of similar or better background than these students can, too.
In particular, software developers graduating with a
computer science degree should have a background at least
the same as the students if not any better.

Statement 2 (Independence of mathematical skills)

The knowledge and skill of programming is more
important than mathematics when writing algebraic
specifications of software components.

This statement is supported by the statistical analysis of
the correlation between the students’ performance in the
class tests and mathematics and programming subjects. The
correlation coefficients between the average score of
programming courses and class test scores is greater than
the correlation coefficients between the average score of
mathematics courses and class test scores. Moreover,
statistical data also show that students who are more
capable of programming than mathematics outperformed
those students who are better in mathematics than
programming. This means that students who are good at
programming learn algebraic specification easier and
quicker.

The conclusion generalizes the findings of the
experiment on the grounds that the software components
used in the experiment are typical in software development
practices. This may not be true for developing software
components that heavily depend on mathematical
knowledge.

Statement 3 (Cost efficiency)

Writing algebraic specifications can be as cost efficient
as programming in high level programming languages.

The evidence that supports this statement is that in the
experiment, students took about half an hour on average to
write a good specification of a software component. The
standard deviation of the lengths of time taken to write an
algebraic specification was about 4 minutes. The length of
time taken to write an algebraic specification for a
component was comparable to coding in high level
programming languages if not shorter. The conclusion
generalizes the findings of the experiment on the grounds
that with the accumulation of experience, a software
developer can write algebraic specifications more and more
efficiently. Thus, if a student is efficient, then an
experienced developer can be at least equally efficient.

Statement 4 (Equality in performance)

Writing algebraic specification can be a skill of every
well trained software developer. Although their efficiency in

writing algebraic specifications depends on their
capabilities, there should be no significant difference in
quality.

This statement is supported by the statistical data of
student performance in the final class test. The data show
little difference in the scores of their work and the lengths
of time they took to complete the class test. The relationship
between length of time and the student’s capability is linear,
while the relationship between the score and capability is
almost constant. In other words, once a software developer
is trained to be able to write algebraic specifications, he/she
should be able to produce equally good quality output and
take almost the same amount of time as his/her colleagues.
Thus, writing algebraic specification can be a job of any
ordinary software developer. This conclusion generalizes
the findings of the experiment on the grounds that the
sample subjects who participated in the experiment are
representative.

B. Implications and Limitations

The existence of a formal specification is the
precondition of formal software development. Much work
has been reported in the literature on the development of
automated or semi-automated software tools to support
formal methods, such as model checkers, theorem provers,
interpreters of executable formal specifications, automated
testing tools, etc. All these tools require a formal
specification as an input. Although to some extend formal
specifications can be derived semi-automatically from semi-
formal graphical models (see, for example, [28]), formal
specifications still need to be written manually by software
developers. Our experiment demonstrates that writing
formal algebraic specifications is practical in the sense that
it is learnable for ordinary software developers. It is also
cost efficient and the output can be of high quality.

We recognized two particular practical implications.
First, the way that we teach students in the experiment is
effective. The students learned writing algebraic
specifications via trial-and-error and improved their
attainments quickly. This can be a good approach to
teaching formal methods.

Second, in the experiment, we taught students to write
algebraic specifications of software components with a
behavioural approach. The experiment shows that it is a
practical approach. A particular usage of such algebraic
specifications is to test software components automatically
[16, 17].

It is worth noting that there are also a number of
limitations of the conclusions stated in the previous
subsection.

First, the conclusions are only applicable to writing
algebraic formal specifications. They do not necessarily

imply that writing formal specifications in other formalisms
has the same properties. Further research is necessary to
investigate whether the same claim can be made to other
formalisms such as Z, Petri-nets, process algebras like CSP,
CCS and π-calculus, and labelled transition systems in
general. A notable advantage of algebraic specification is
that the syntax and semantics of the specification language
are simple and easy to understand. They use few
mathematics symbols.

Second, the fact that writing formal specification is
learnable does not necessarily imply that reasoning about
software properties, proving software correctness using
formal specifications and deriving program code from
specifications are equally learnable. These activities may
well require much deeper understanding of the theories of
formal methods and the semantics of formal specification
languages. They may also rely on skills of using software
tools that support formal methods.

Finally, it is also worth noting that all the students who
participated in the experiments had passed their courses on
mathematics. Our experiment result does not mean that
students who had not learned mathematics courses at all
would perform equally well. Further experiments should be
conducted to find out whether mathematics courses have an
effect.

C. Potential Threats to the Validity

In [29], the threats to the validity of experiments and the
conclusions drawn from the findings were classified into
four types. We now discuss the applicability of these threats
and how we deal with them in our experiments. We also
identify future work in which the threats can be better dealt
with.

1) Conclusion Validity. Conclusion validity is concerned
with the correctness of the conclusions drawn from the
experiment data. The threats to the conclusion validity may
come from the following sources.

− Low statistical power: We used 35 subjects in the
experiment, which is a reasonably large number. To
improve the statistical power, we can use more students
and repeat the experiment in the future.

− Reliability of measures: Two measurements of
student’s performance in the experiment are used: the
assessment scores and the length of time to complete
the test. The time taken by the students to complete the
tests is measured to the accuracy of minutes. We
believe it is unnecessary to be measured to the unit of
seconds so that random errors are reduced. The
marking of student class tests is conducted
systematically following a pre-set marking scheme as in
all university examinations. Although the method
suffers from subjective judgment of students’ work,

potential systematic bias were carefully dealt with and
the students were given fair marks by strictly following
a predefined marking scheme. This is the only practical
method that is affordable to us for an experiment of
such number of students and the number of class tests.
If more resource is available, a more objective
measurement of the quality of student works or simply
more markers could be used. This can be improved in
future work.

− Random irrelevancies in experimental setting: We have
identified the following main factors that may affect the
outcome of the experiment: the subjects’ background
and experiences in studying and using formal methods,
the students’ knowledge and skill in mathematics and
programming, the students’ capability of learning in
general, the sample components used in class tests.
Data on all of these factors have been collected and
taken into consideration in the statistical analysis. Other
minor factors may have affect on the outcome, such as
the classroom environment in which the tests took
place, the date and time of the class tests, etc. Although
classroom environment differs from office environment
in which real software development takes place, there
should be no significant impact on the students’
performance because the classroom is an environment
that students are familiar with.

− Random heterogeneity of subjects: The students who
took part in the experiment were from an ordinary
university with an even distribution of capability. None
of them had been exposed to formal methods at all
before the experiment. The subjects were therefore
highly homogenous and representative. This threat is
not present in the experiment.

2) Internal validity. Internal validity is concerned with the
possible internal properties of the subjects that may affect
the validity of the observed phenomena in the experiment.
The applicable threats of this type are as follows.

− Statistical regression: This threat does not exist in our
experiment because the conclusions drawn from the
experiment do not depend on the manner in which the
subjects were grouped. All the students completed their
class tests individually and independently.

− Ambiguity about direction of causal influence: This
threat does not exist in the experiment because the
causal relationships have been clearly stated without
ambiguity.

3) Construct Validity. Construct validity is concerned with
the validity of generalizing the result of the experiment to
the concept or the theory beyond the experiment. The
potential threats are discussed as follows.

− Inadequate preoperational explication of constructs:

This threat does not exist because the experiment was
carefully designed and clearly defined before the
operation.

− Mono-operation bias: This threat was dealt with by
using a fairly large number of subjects. A future work
to improve in dealing with this threat is to repeat the
experiment with students from different universities
and of different year.

− Mono-method bias: This threat exists because the
experiment used only one method of teaching and
testing student’s learning performance and attainment.
However, the approach has a very important advantage.
That is, the test scores are highly comparable and thus
statistical analysis techniques are applicable. For future
work, different methods could be applied to inter-check
the validity of the conclusions.

4) External Validity. External validity is concerned with the
external conditions in which the experiment is conducted.
These conditions may restrict the generalization of the
conclusion from the experiment condition to the real world
situation. The factors that may threat the validity of this
experiment are the sample problems used in the experiment
as the class test problems and the selection of subjects,
which are university students. Three of the sample problems
were selected from tutorial of J2EE technology. The tutorial
was written with professional software developers as the
target readers. The final sample problem was selected from
traditional textbook on algebraic specification and it is more
difficult than the other three. To further improve the validity
of the experiment, sample problems could be selected from
real components from the industry. Moreover, professional
software engineers could be used as the subjects.

In summary, the potential threats to the validity of the
experiments have been dealt with properly in the design and
conduct of the experiment. Where potential threats exist,
caution has been paid to draw conservative conclusions
with explicit statements of their limitations. Further research
has also been identified according to the remaining threats.

ACKNOWLEDGEMENT

The authors would like to thank the students who
participated in the experiment. They are from the
Department of Computer Science of The Swan College of
The Central South University of Forestry and Technology
in China. The authors also thank our colleague Dr. Rachel
Harrison of Oxford Brookes University for her invaluable
comments on a draft of the paper.

REFERENCES

[1] J. A. Goguen, et al. ”Initial Algebra Semantics and
Continuous Algebras”, Journal of ACM, vol. 24, no.1, 1997,
pp68 – 95.

[2] D. Sannella and A. Tarlecki, “Algebraic methods for

specification and formal development of programs”, ACM
Computing Surveys, vol.31, No.3es, Article 10, Sept. 1999.

[3] J. Goguen, and G. Malcolm, “A Hidden Agenda”,
Theoretical Computer Science, vol. 245, no. 1, 2000, pp55-
101.

[4] J. M. Rutten, “Universal coalgebra: a theory of systems,”
Theoretical Computer Science, vol. 249, no. 1, 2000, pp. 3–
80.

[5] J. Goguen, et al., Introducing OBJ3. Technical Report SRI-
CSL-88-9, SRI International, USA, 1988.

[6] K. Futatsugi and A. Nakagawa, “An Overview of CAFE
Specification Environment -- An Algebraic Approach for
Creating, Verifying, and Maintaining Formal Specifications
over Networks”, Proc. of ICFEM’97, Nov, 1997.

[7] M. Bidoit, D. Sannella, and A. Tarlecki, “Architectural
Specifications in CASL” Formal Aspects of Computing, vol.
13, 2002, pp252-273.

[8] T. Mossakowski, L. Schroder, M. Roggenbach and H.
Reichel, “Algebraic-coalgebraic specification in CoCasl,” J.
Log. Algebr. Program., vol. 67, no. 1-2, pp. 146–197, 2006.

[9] J. Gonnon, P.McMullin, and R. Hamlet, “Data-Abstraction
Implementation, Specification and Testing”, ACM TOPLAS
vol. 3, no. 3, 1981, pp211-223.

[10] G. Bernot, M. C. Gaudel and B. Marre, “Software Testing
based on Formal Specifications: a Theory and a Tool”,
Software Engineering Journal, Nov. 1991, pp387- 405.

[11] K. Doong and P. Frankl, “The ASTOOT Approach to
Testing Object-Oriented Programs”, ACM TOSEM vol.3,
no.2, 1994, pp101-130.

[12] M. Hughes and D. Stotts, “Daistish: Systematic Algebraic
Testing for OO Programs in the Presence of Side-Effects”,
Proc. of ISSTA’96, 1996, pp53-61.

[13] H. Y. Chen, T. H. Tse, and T. Y. Chen, “TACCLE: a
Methodology for Object-Oriented Software Testing at the
Class and Cluster Levels”, ACM TSEM, vol. 10, no.1 2001,
pp56-109.

[14] H. Y. Chen, et al. “In black and White: an Integrated
Approach to Class-Level Testing of Object-Oriented
Programs”, ACM TSEM, vol. 7, no. 3, 1998, pp250-295.

[15] H. Zhu, “A Note on Test Oracles and Semantics of Algebraic
Specifications”, Proc. of QSIC'03, 2003, pp91-99.

[16] L. Kong, H. Zhu, and B. Zhou, “Automated Testing EJB
Components Based on Algebraic Specifications”, Proc. of
COMPSAC’07, Vol. 2, pp717-722.

[17] B. Yu, L. Kong, Y.Zhang, and H. Zhu, “Testing Java
Components Based on Algebraic Specifications”, Proc. of
ICST’08, April 2008, pp190-199.

[18] J. Henkel, C. Reichenbach, and A. Diwan, “Developing and
debugging algebraic specifications for Java classes”, ACM
Trans. Softw. Eng. Methodol, vol. 17, no. 3, 2008.

[19] J. Henkel, C. Reichenbach and A. Diwan, “Discovering
Documentation for Java Container Classes”, IEEE Trans.
Software Eng., vol. 33, no. 8, 2007, pp526-543.

[20] M. Hinchey, M. Jackson, P. Cousot, B. Cook, J. Bowen, and
T. Margaria, “Software engineering and formal methods”,
C. ACM, vol. 51, no. 9, Sept. 2008, pp54-59. DOI=
http://doi.acm.org/10.1145/1378727.1378742

[21] A. Hall, “Seven Myths of Formal Methods”, IEEE Softw,
vol.7, no.5, Sept. 1990, pp11-19.

[22] J. P. Bowen and M. G. Hinchey, “ Seven More Myths of

Formal Methods”, IEEE Softw. vol. 12, no.4, Jul. 1995,
pp34-41.

[23] M. G. Hinchey, and J. P. Bowen, (eds.). Applications of
Formal Methods, Prentice Hall and Englewood Cliffs, 1995.

[24] M. G. Hinchey, and J. P. Bowen (eds.), Industrial-Strength
Formal Methods in Practice, Springer-Verlag FACIT Series,
London, 1999.

[25] J. P. Bowen, and M. G. Hinchey, “Ten commandments
revisited: a ten-year perspective on the industrial application
of formal methods”, In Proc. of the 10th international
Workshop on Formal Methods For industrial Critical
Systems (FMICS '05), Lisbon, Portugal, Sept. 05 - 06, 2005,
pp 8-16.

[26] C. Zhou, “Programming Numerical Algorithms in Java”,
Publishing House of Electronics Industry, China. (In
Chinese), 2007.

[27] S. Bodoff, et al.. The J2EE Tutorial, 2nd Edt., Pearson 2004.
[28] L. Jin and H. Zhu, “Automatic generation of formal

specification from requirements definition”, Proc. of IEEE
1st International Conference on Formal Engineering
Methods (ICFEM’97), Hiroshima, Japan, Nov. 1997, pp243-
251.

[29] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B.Regnell,
and A. Wesslen, Experimentation in software engineering:
an introduction, Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

