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Abstract. HASARD stands for Hazard Analysis of Software ARchitectural 
Designs. It is a model-based method for the analysis of software quality as 
entailed in software architectural designs. In this method, quality hazards are 
systematically explored and their causes and effects are identified. The results of 
hazard analysis are then transformed into a graphical quality model of the system 
under assessment. Queries about quality related properties of the system can be 
answered automatically through a set of algorithms with the quality model as the 
input. Such queries include: (1) the relationships between various quality 
attributes as manifested in the particular design, (2) the design decisions critical to 
a given quality concern, (3) the impacts of a given design decision to quality 
attributes, (4) trade-off points in the design that balancing conflict quality 
concerns, etc. The chapter will present a prototype tool called SQUARE to 
support the whole process of HASARD analysis. It will also report a case study 
with a real software system to demonstrate the feasibility and usability of the 
HASARD method. 

1 Introduction 

An extraordinarily powerful means of software engineering is architecture 
analysis, which enables the early prediction of a system's quality at design stage. 
As Bass, Clement and Kazman (1998; 2012) pointed out, “without them, we would 
be reduced to building systems by choosing various structures, implementing the 



system, measuring the system's quality, and all along the way hoping for the best". 
This chapter presents such a method for analysing software architectural designs 
to predict their quality.  

1.1 Motivation 

Software architecture is a structural model of software system at a very high level 
of abstraction. In this structural model, a software system is represented as a 
collection of components interconnected through connectors (Shaw & Garlan, 
1996), (Bass, Clements, & Kazman, 1998), (Bosch, 2000), (Hofmeister, Nord, & 
Soni, 2000), (Taylor, Medvidovic, & Dashofy, 2010). Being at a high level of 
abstraction, the implementation details of the components and the connectors are 
hidden whereas the focus is on their characteristic features and/or the assigned 
functionality. For a given software system, a number of architectural models can 
be constructed to represent different views of the system in order to achieve 
different engineering purposes.  

For example, to demonstrate that a system correctly satisfies its functional 
requirements, a conceptual view depicts the system in terms of how functions are 
decomposed and assigned to conceptual components, and how these components 
are controlled and interact with each other through conceptual connectors. In order 
to provide instructions for further detailed design and implementation, a module 
view focuses on how the functionality of the system is mapped to the 
implementation environment, such as how the system uses the facilities and 
resources in the underlying software platform. It depicts software structures in 
terms of software modules and characterises them with implementation related 
features. In order to facilitate the construction, integration, installation and testing 
of the system, a code view describes how the source code that implements the 
system is organised. To assist organisational management of the development 
process, a development view depicts a software system in terms of a repository of 
software artefacts that are created, modified and managed by the programmers, 
maintainers, testers, etc. In order to understand the dynamic behaviour of a 
system, a behaviour view (or execution view) describes the system's execution in 
terms of its runtime platform elements, concurrency, communication and the 
physical resources used, etc.  

One of the most important engineering purposes of software architecture is to 
predict the system's quality. To achieve this purpose, a quality view manifests the 
architectural design decisions made specifically to address quality requirements 
(Bass, Clements, & Kazman, 2012). Usually, a quality view builds on top of a 
conceptual view with the relevant elements characterized by properties that are 
either directly or indirectly related to quality attributes. Such properties are 
referred to as quality-carrying properties in the sequel. However, how to use such 
a quality view to predict software quality remains an open problem. This is the 
subject of this chapter.  



1.2 Related Works and Open Problems 

The approach reported in this chapter is model-driven: that is, we will first 
construct a quality model based on the architectural design, then to infer the 
quality of the system based on the model. In this section, we review the current 
state of art in the related areas and discuss the open problems.  

1.2.1 Software Quality Models 

Software quality is one of the most elusive concepts (Kitchenham & Pfleeger, 
1996). A great amount of effort has been made since 1970s to define software 
quality models in order to understand the concept, to measure software systems' 
quality and to guide software development activities in order to improve software 
quality (Deissenboeck et al., 2009).  

A software quality model defines a set of properties that are relevant to 
software quality and the relationships between them. Such a relationship can be 
either quantitative or qualitative. The former is the subject of research on software 
metrics. The latter is widely used in the literature on software quality models and 
often combined with metrics for the evaluation of software quality.  

Existing qualitative software quality models fall into two types: hierarchical 
models and relational models.  

A hierarchical model defines a set of aspects of software quality, then 
decomposes each aspect into a number of factors, which are in turn decomposed 
into a number of attributes, and further decomposed into several metrics, etc. In 
this way, the abstract notion of software quality is characterized by a set of quality 
related properties, which are organized into a hierarchical structure to express the 
positive relationships between them. Some properties are more abstract thus at a 
higher level of the hierarchical structure. Some are more concrete, even directly 
measurable in a quantitative way, thus at a lower level of the hierarchy. The lower 
level properties have a positive contribution to the parent property. Here, a 
positive relationship from property A to B in a hierarchical model means that 
improving a software system's quality on property A implies an improvement of 
its quality on property B. Typical examples of such hierarchical models include 
McCall model (1977), Boehm model (1978), ISO model (1992; 2012), Dromey 
model (1995), Bansiya-Davis model of OO software (2002), Goeb-Lochmann 
model for service-oriented systems (2011), Franke-Kowalewski-Weise model for 
mobile software (2012), etc. One of the main weaknesses of such models is that 
they are incapable of expressing negative relations between quality attributes.  

A relational model overcomes this problem by defining a number of 
stereotypes of relationships between quality attributes, such as positive, negative 
and neutral relations. Typically, a positive relation between two quality attributes 
indicates that a software system that is good on one attribute will also be good on 
the other. A negative relation means that a software system is good on one 



attribute implies that it is inevitably bad on the other. A neutral relation means that 
the attributes are not logically interrelated. Typical examples of relational quality 
models include Perry Model (1991) and Gillies Model (1992; 1997). There are 
also a number of such quality models of information systems (Zhang, 2005). Such 
models have significantly improved our understanding of software quality.   

Both hierarchical and relational quality models can help software developers to 
improve software quality by providing guidelines to software development 
activities, such as in the elicitation of quality requirements. However, as 
Deissenboeck et al. (2009) pointed out, despite successes and standardization 
efforts, quality models do not live up to expectation and disappointed 
practitioners. In particular, they fail to take software structures into account 
(Dromey, 1995, 1996). Moreover, they are incapable of dealing with complicated 
relationships between quality attributes that are difficult to be stereotyped. They 
provide little help to the design of software systems, especially the architectural 
design. These problems will be addressed in this chapter by proposing a new 
quality modelling approach, that is, graphic quality modelling.  

1.2.2 Quality Analysis of Software Architecture 

Two types of quality analysis activities are often performed at software design 
stage: quality assessment and evaluation and quality exploration.  

•  Quality assessment and evaluation aims at evaluating software architecture 
with regard to a set of well-defined criteria and in a set of well defined usages 
or scenarios. It assesses the software to determine whether the design meets the 
given design goals. 

•  Quality exploration intends to explore the architecture in order to discover 
problems in a design, where the problems are normally unknown and there are 
no fixed criteria and/or usage scenarios.  

Each of these types of quality analysis has its own uses in software 
development. The former has its value in software validation and verification 
against known users' quality requirements, while the latter manifests its 
importance to software engineers by discovering and predicting unintended side-
effects of design decisions. This is particularly important for software that has 
large user bases and long lifespan such as systems software, utility software, etc., 
where usages are complicated and may change significantly in the future.  

In the past decade, a significant progress has been made in the research on the 
quality analysis of software architectures. A number of methods have been 
advanced in the literature to evaluate and assess the quality of software 
architectural designs. The existing architecture quality analysis techniques and 
methods can be classified into two types: scenario-based, and model-based.  

• Scenario-based methods examine software architecture in the context of a set 
of scenarios, although the ways that scenarios are elicited and used vary. 



Among the most well-known scenario-based methods are SAAM (Bass, 
Clements, & Kazman, 1998, 2012; Kazman et al., 1996), ATAM (Clements, 
Kazman, & Klein, 2002), etc.; see (Dobrica & Niemela, 2002) for a survey, and 
(Babar & Gorton, 2004) for a comparison of them. They have been applied to 
the evaluation and assessment of architectural designs on various quality 
attributes, such as modifiability (Kazman et al., 1996; Kazman et al., 1994), 
usability (Folmer & Bosch, 2005), security (Alkussayer & Allen, 2010), etc. 
They have a number of advantages, including the examination of software 
behaviour in real situations, reduction of complexity of analysis through 
focusing on typical scenarios, etc. Each method is suitable for one specific 
quality attribute/factor. They are applicable to the evaluation and assessment 
type of quality analysis. However, there are difficulties to build an overall 
picture of the system's quality especially when there are intensive and 
complicated interactions between scenarios. The elicitation of a complete and 
representative set of scenarios is by no means a trial task, which currently still 
replies on brainstorming. The result of quality analysis heavily depends on the 
selection of the most representative scenarios as reported in practices, e.g. 
(Kostelijk, 2005). It was also perceived as complicated and expensive to use in 
industrial context (Woods, 2012). 

• Model-based methods start the analysis of software architecture with the 
construction of a model of the software system and then systematically deduce 
the quality based on the model. Typical examples of such quality analysis 
techniques are used in performance evaluation, reliability estimation and 
security analysis. Such methods are good at exploring the unknown quality 
problems in a design. However, each of them aims at a single quality attribute, 
too.  

Therefore, it is highly desirable to develop a method that enables software 
engineers to systematically explore software architecture in order to discover and 
predict quality problems, especially when multiple quality attributes are involved.  

1.2.3 Hazard Analysis Methods and Techniques 

For constructing quality models, we will adapt existing system hazard analysis 
methods and techniques that are widely used for safety engineering.  

Hazard analysis techniques have been widely used in the development and 
deployment of safety critical systems. Originally, hazard analysis aims at 
systematically identifying, assessing and controlling hazards before a new work 
process, piece of equipment, or other activity is initiated. In such a context, a 
hazard is a situation in which there is actual or potential danger to people or to the 
environment. Associated with each hazard is a risk, which is the product of the 
likelihood of the event occurring and its consequences. Once the hazards are 
identified and analysed, safety requirements can be specified for each component. 
Risks can be avoided or reduced ultimately through technical design, management 



and organizational means. Consequently, the safety of the system is improved 
(Leveson, 1995; Neumann, 1995; Storey, 1996).  

Here, we adapt the methods of hazard analysis and extend the concept of 
hazard in order to cover all quality aspects besides safety. In our context, the word 
hazard has its widest meaning, which means any situation that may cause harm as 
designed or due to a deviation from the design decision. The more likely a hazard 
occurs and more serious is the consequences of the hazard, the higher risk, and 
thus the more important the corresponding quality attribute is with the system in 
question.   

There are a number of hazard analysis techniques available in the literature of 
safety engineering. These techniques fall into two types: (a) hazard identification 
techniques and methods and (b) cause-effect analysis techniques and methods. 
The former aims at discovering hazards systematically while the later arms at 
finding out the causes and consequences of the hazards.  

One of the most effective hazard identification technique is HAZOP (MoD, 
2000), which has been adapted to the analysis of software safety. In order to deal 
with a wider range of quality attributes rather than just safety, in this chapter we 
will extend the method and interpret the technique in a wider context.  

A typical example of cause-effect analysis techniques is the FMEA technique, 
which stands for Failure Modes and Effects Analysis. It is a mature and well-
defined safety analysis technique. Its engineering principle and process are similar 
to what software engineers are familiar with. It progressively selects the individual 
components or functions within a system and investigates their possible modes of 
failure. It then considers possible causes for each failure mode and assesses their 
likely consequences. In the original FMEA, the effects of the failure of a 
component are first determined for the unit itself, and then for the complete 
system. Possible remedial actions are also suggested. It requires engineers to 
identify the potential failure modes, and to link each failure mode to their possible 
causes and the consequences. This process is also adapted with some minor 
changes in order to make it closer to what software engineers familiar with and 
more suitable for software engineering.  

1.3 Overview of the Proposed Approach 

This chapter presents a model-based method for exploratory quality analysis of 
software architecture. It aims at systematically analysing an architectural design 
through building a quality model for the system under scrutiny. The method 
consists of the following technical elements.  

• A graphical quality modelling notation. In this graphical notation, detailed and 
complex relationships between quality attributes and/or design decisions can be 
represented in the context of a given architecture design. 



• A software hazard analysis method. It identifies the potential hazards in the 
development, operation and maintenance of the software and the causes and 
effects of such hazards.  

• A quality model construction technique. It transforms software hazard analysis 
results into a software quality model represented in the graphic notation.  

• A set of algorithms for automatically analysing quality models. They are 
applied in order to identify critical quality issues, trade-off design decision 
points, the impacts of a design decision and the factors that influence a quality 
attribute, etc.  

• A software tool. It supports the software hazard analysis process and the 
construction of graphic quality model, and implements quality analysis 
algorithms.  

The proposed quality analysis process is illustrated in Figure 1, which consists 
of the following activities.  

• Hazard identification: it identifies the potential quality hazards of the software 
system as the consequences of the software architectural design decisions. The 
result is a list of quality hazards.  

• Hazard cause-consequence analysis: it recognises the cause-consequence 
relationships between software quality hazards and design decisions. The result 
is the causal relations between hazards. It may also result in additional hazards 
added into the list of hazards.  

• Hazard classification: it associates each identified hazard to a quality attribute 
or a quality-carrying property that the hazard is concerned with. The result is a 
set of classified design hazards.  

• Quality model assembling: it transforms the results of the above steps into a 
graphic quality model represented in the graphic quality modelling notation.  

• Quality concern analysis: it analyses the graphic quality model constructed 
through the above steps to infer quality concerns of the whole system, such as 
to find the critical design decisions that affect certain quality attributes, to 
recognise the trade-off points for certain conflict quality attributes, to discover 
the consequences of a design decision on various quality attributes, etc.  

\includegraphics{Figures/Fig01-ProcessModel} 



 
Figure 1. Process of Model-Based Quality Analysis 

1.4 Organisation of the Chapter 

The remainder of the chapter is organized as follows.  
Section 2 is devoted to the hazard analysis of software systems. It is an 

adaptation and extension of the hazard analysis methods and techniques of system 
engineering.  

Section 3 proposes the diagrammatic notations for graphical modelling of 
software quality and the technique for constructing such models from the results 
of hazard analysis of software architecture.  

Section 4 presents the algorithms for the derivation of system quality features 
from graphic quality models.  



Section 5 describes a software tool called SQUARE that supports the whole 
process of HASARD analysis and implements the quality analysis algorithms.  

Section 6 reports a case study with the method and the tool.  
Section 7 concludes the chapter with a comparison with related work and a 

discussion of future work.  

2 Hazard Analysis of Software Architectural Designs 

This section introduces the software hazard analysis method. It takes an 
architectural model of a software system as input. It systematically explores 
observable quality related phenomena of the system and then to establish the 
causal relationships between the phenomena. Here, a phenomenon is a property or 
event that is observable and concrete in the development, operation, maintenance 
and evolution of the software system. The process consists of two phases: the first 
is the identification of design hazards. The second is the discovery of causal 
relationships between such hazards and design decisions. The following 
subsections present each of these phases.  

2.1 Identification of Design Hazards 

The process of hazard analysis starts with the identification of hazards. In systems 
engineering disciplines, one of the most effective methods of hazard identification 
is the so called Hazard and Operability Studies (or HAZOP for short) (MoD, 
2000). The method relies on asking and answering questions of what-if nature.  

For example, in the analysis of a design of a chemical reactor, a typical what-if 
question is: What would happen if temperature in the reaction container is higher 
than the designed range? An answer to this question could be: "The reactor will 
explode". Consequently, the engineer will identify that controlling the temperature 
is a critical issue in the design of the reactor.  

Similarly, such what-if questions are effective to identify quality issues in a 
software architectural design. For example, one may ask the what-if question: 
"What would happen if the authentication of the user is not checked before 
granting an access to the database?" An answer could be: "The integrity of the 
database will be broken". In such a way, the importance of authentication to 
system security can be identified.  

The effectiveness of HAZOP method heavily depends on systematically asking 
such what-if questions. In HAZOP technique, this is achieved by designing and 
applying a set of guide words to cover all aspects of the design in question.  

For example, "more" and "less" are typical examples of guide words that are 
applicable to a quantitative attribute in the design of a system. Applying such a 
guide word to a quantitative attribute prompts the engineer to ask the what-if 



questions that what will happen if the actual value of the quantitative attribute is 
more than the designed value, or less than the designed value. For instance, 
suppose that a design decision of a chemical reactor is that "the temperature of the 
reaction container is to be controlled in the range of 650oC ±10oC". The what-if 
questions corresponding to these two guide words are: 

•  "More": What will happen if the temperature of the reactor container is higher 
than 650oC + 10oC? 

•  "Less": What will happen if the temperature of the reactor container is lower 
than 650oC − 10oC? 

The same method can be applied to the identification of software hazards.  
For example, the guide word No can be applied to a type of data produced by a 

component in the software system under analysis. In such a context, it means no 
data is produced by the component. In hazard identification, the analyst will ask 
the what-if question that “what would happen if the data is not produced by the 
component?” 

Worth note: first, each guide word may be applied to more than one type of 
design features and architectural design decisions. Its meaning depends on the 
type of design decisions and the context in the system. For example, the same 
guide word "No" can also be applied to an architectural component. In such a 
context, it means that the component is not contained in the system. For example, 
a dynamic link library is not available when the system is initialised at run-time. A 
what-if question can be asked to identify the consequences of missing such a 
component.  

Second, not all what-if questions will lead to a hazard. However, systematically 
asking all such what-if questions reduces the chance of omitting serious hazards 
during hazard identification.  

In order to identify hazards hidden in a software architectural design, we have 
developed a set of guide words for software engineers to systematically develop a 
collection of what-if questions. They are applied to the elements in an 
architectural design, where a design element can be a property or function 
assigned to a component and/or a connector, the component or connector itself, 
the configuration of the system, etc. If a deviation from the design is credible, the 
corresponding behaviour of the element is considered as a potential hazard. Then, 
its causes, effects and recommendations of the further investigation are 
documented. Table 1 lists the guide words for analysing software architectural 
designs.  

Table 1. Guide Words for Software Hazard Identification 

Guide Applicable Attribute Interpretations 
No  Data or control signals  No data or control signals are exchanged through a 

connector 
    No data or control signals produced by a component 
    No data or control signals received from input 



 Property or function of a 
component or connector  

The component (or connector) does not have the designed 
property (or function) 

 Component or connector  The system does not contain the component (or 
connector) 

More  Quantitative parameters of a 
component, connector or the 
whole system  

The value of the parameter is too large 

Less  Quantitative parameters of a 
component, connector or the 
whole system  

The value of the parameter is too small 

As well  
as  

Event or activity  The intended event (or activity) occurs, but another event 
(or activity) also occurs in addition to this. For example, 
redundant data are sent to the designated receiver in 
addition to intended value. 

   Data are sent to the designated receiver as well as an 
unintended receiver 

 Property or function of a 
component or connector  

In addition to the intended property (or function), the 
component (or connector) also has other additional 
properties (or functions) 

 Component or connector  In addition to the intended component (or connector), the 
system contains other components and connectors 

Part of  Structured data  Only a part of the data produced, stored or received 
 Structured events  Only a part of the events happened 
Reverse  Direction of information 

flow  
The information flows in the opposite direction 

 Event  The opposite event happened 
Other 
than  

Data or control signals  Incorrect data or control signals produced 

 Quantitative and qualitative 
parameters  

The parameter has a value different from the designed 
one 

 Property or function of a 
component, connector or the 
whole system  

The component (or connector, or the whole system) has a 
property (or function) different from the designed one 

 Component or connector  The component (connector) is replaced by another kind of 
component (or connector). For example, a session bean is 
used instead of an entity bean 

Early  Periodical events  The event happened earlier than expected 
Late  Periodical events  The event happened later than expected 
Before  Temporal orders between 

events  
Two events happened in a different temporal order as 
designed 

 
For example, consider the Internet connection between the client and server in 

a web-based application. As shown in Table 2, by applying these guide words, we 
can identify all of the most well-known hazards of web-based applications related 
to internet connection. 



Table 2. Example of HAZOP analysis: The Application of Guide Words to Identify the Hazards 
of the Internet Connection between Client and Server 

Guide Hazard Causes Consequences 
No  The internet connection passes 

no messages between the 
client and server.  

Physically disconnected; 
Traffic jam; Software failure; 
Network server is down.  

Client cannot 
communicate with the 
server. 

More  More messages are delivered 
to the server than what the 
clients sent out, e.g. duplicated 
messages.  

Hacker's attack; Heavy traffic 
on the Internet caused 
resending packages.  

System clash; Overload 
on the server.  

Less  Fewer messages are delivered 
than what the server (or the 
client) sent out, i.e. lost 
messages.  

Discontinued Internet 
connection; Heavy traffic on 
the Internet; Software failure.  

Incomplete transactions; 
System crash; Damage 
the data integrity of the 
server (and/or client).  

As well 
as  

Messages are delivered to 
other destinations in addition 
to the designated receiver.  

Hacker's attack; Software 
failure.  

Leak of sensitive 
information.  

Part of  Only a part of the packets of a 
message is delivered to the 
destination client (or server).  

Discontinued Internet 
connection; Heavy traffic on 
the Internet; Software failure.  

Software failure; 
Production of incorrect 
computation results if 
incompleteness is not 
detected. 

Other 
than  

A message not from the client 
(or the server) is passed to the 
server (or client).  

Hacker's attack; Other 
software system's failure  

System failure; Damage 
the integrity of the data 
and the program.  

Other 
than  

The message is in a different 
format.  

The client (or the server) is 
modified; Fault in the 
software.  

System failure.  

 
HAZOP study requires the analyst identifying not only the hazards, but also 

their effects and causes. Table 2 also shows the possible causes and the 
consequences of each hazard. Such analysis is preliminary, but indicates which 
hazard is important and deserves further investigation in cause-consequence 
analysis.  

2.2 Cause-Consequence Analysis 

The cause-consequence analysis of hazards aims at deepening the 
understanding of the hazards. For example, consider the hazard more messages 
are delivered to the server than what the clients sent out in Table 2. There are 
several possible causes of the hazard, which include that (a) the traffic on the 
Internet results in duplicated packages being generated, (b) a malicious source 
generates false request messages on purpose, etc. A direct consequence of a large 
number of false request messages is a high workload on the server. This, in turn, 



could lead to (a) a poor performance of the system, even (b) the clash of the 
system. Consequently, the clients cannot get the requested services responsively. 
In the above analysis, we can see a sequence of hazardous phenomena or events is 
identified as a cause-effect chain.  

The cause-consequence analysis can be performed in the backward or forward 
direction, or a combination of both. Forward analysis is from a hazard to search 
for potential effects, i.e. the consequences. Backward analysis starts with a hazard 
to search for its causes.  

In forward analysis, the consequences of a hazard are identified and added into 
the list of identified hazards until the consequence is terminal. A hazard is 
terminal if it does not affect any other component of the system or does not cause 
any other hazards/failures. In many cases, we consider a hazard as terminal simply 
because we are not interested in its further consequence. For example, the 
phenomenon that a user cannot find required information could be considered as 
terminal, if we are not interested in what would happen afterwards. However, in 
certain context, what happens afterwards may become a serious problem. For 
example, suppose that the system store patients' medical records. The situation 
that a doctor cannot find a patient's record may lead to serious consequences in the 
treatment of the patient. 

In backward analysis, the causes of a hazard are identified and added into the 
list of identified hazards until the hazard is primitive. A hazard is primitive if its 
causes cannot be further identified without additional knowledge of the system. A 
hazard can also be considered as primitive if we are not interested in its causes. 
For example, in most cases a broken link in a HTML file can be considered as 
primitive. However, in a different context, we may well be interested in its causes 
and want to find out why the hyperlink is broken.  

The cause-consequence relationships between hazards can be recorded in a 
form as the results of cause-consequence analysis. They are used for the 
construction of a graphic quality model at the next step. Figure 2 shows the 
structure of the form with some examples of the hazards associated to web-based 
applications.  

 
\includegraphics{Figures/Fig02-CauseConsequenceForm} 



 
Figure 2. Cause-Consequence Analysis Form 

Most hazards should have already been identified in the initial hazard 
identification step. However, some new hazards may still be discovered in cause-
consequence analysis. These new hazards are then added into the hazard list and 
assigned with a unique identification number.  

3 Graphical Modelling of Software Quality 

In this section, we present the graphic notation for modelling software quality and 
the process of constructing such quality models based on hazard analysis.  

3.1 Graphic Notation of Quality Models 

As shown in Figure 3, our proposed diagrammatic representation of quality 
models is a directed graph, which consists of two principal elements: the nodes 
and links. Each node contains three basic elements:  

1. a design element in the architectural design;  
2. a quality-carrying properties of the design element; and  
3. an observable phenomenon of the property.  



where a design element can be a component, a connector, or any design decision. 
An observable phenomenon could be a positive indicator of the quality carrying 
property or a negative indicator. When it is a negative indicator, the property is 
marked with the symbol ''−". The positive indicator is omitted and it is the default.  

It is worth noting that although there may be more than one observable 
phenomenon that reveals a quality-carrying property for a design element, each 
node can only have one such phenomenon. This is to enable different causal 
relationships between phenomena to be easily represented without transforming 
the graphic model, and to enable the causal relationships to be validated 
separately.  

The links are directed arcs between the nodes. Each link must contain an 
impact factor, which can be either positive or negative. A positive link from node 
A to node B means that the occurrence of the phenomenon of node A implies the 
occurrence of the phenomenon on node B. A negative link means that the 
occurrence of the phenomenon of node A prevents the occurrence of the 
phenomenon on node B. When a link has a negative impact, the arc is marked with 
the symbol ''−" on the arrow. It is omitted when the impact factor is positive, and 
it is the default.  

Each link can also contain an optional annotation for the reasons why the two 
nodes are related. This enables manual validation of the model.  

 
\includegraphics{Figures/Fig03-GraphicalNotation} 
 

 
Figure  3. Graphic Notation of Quality Models 

Figure 4 shows a fragment of a quality model of web-based information 
systems. This fragment of a quality model shows that the usability of a web-based 
system is related to the correctness of the HTML files, the load and performance 
of the server, the sizes of HTML files, the compatibility of client-side platform, 
and the availability of the online helps. It described in detail how these properties 
are related to each other and affect whether the user can find the required 
information.  

 
\includegraphics{Figures/Fig04-ExampleOfQualityModel} 



 
Figure 4. Example of Quality Model 

For example, if the sizes of HTML files are large as shown in node a of Figure 
4, the Web Server will need a long time to transmit a file from the server side to 
the client side. This results in Web Server's long response time as link b and node 
c shown. When the response time is longer than the time-out setting, the browser 
will regard the requested file as unavailable. This implies that the required 
information cannot be found, which is a negative phenomenon of the system's 
usability. This is depicted in Figure 4 by link d and node e. Therefore, using this 
quality model, we can infer that to achieve a good usability, the software designer 
should make each web page in a reasonable size to avoid excessive response time.  

Similarly, Figure 4 also shows how the compatibility of the client side (node f) 
and the broken links in the HTML files (node h) will affect the usability of the 
system through links g and k, and so on.  

It is worth noting that, the links between the nodes must be understood as the 
implications of one phenomenon to another, rather than simply the relationship 
between two quality attributes. For example, a collection of large sized HTML 
files may contain fewer hyperlinks between them than a collection of smaller 
sized files that contain the same information. This makes the navigation between 



the files easier, which is a positive observable phenomenon of the navigability of 
the HTML files (node i). Consequently, the user may feel easier to find required 
information, which is a positive phenomenon of system's usability (node j). 
Therefore, the property that the HTML files are of large sizes is positively related 
to the usability of the system. On the other hand, as discussed above, large sized 
HTML files will increase the response time and in extreme cases it may cause 
poor usability. Such complexity cannot be represented in a quality model that only 
relates two abstract quality attributes as in hierarchical and relational models.  

3.2 Construction of Quality Model 

The construction of a quality model takes the information charted in the cause-
consequence analysis form as input. Each hazard in the chart forms a node with 
the component and phenomenon as specified in the form. Each row in the chart 
forms a link from the node that represents the cause to the node that represents the 
hazard. The explanation column of the row forms the reason of the link. For 
example, from the first row in Figure 2, the nodes and link in Figure 5 are 
generated.  

 
\includegraphics{Figures/Fig05-DeriveQualityModel} 

 
Figure 5. Example of Deriving Quality Model from Hazard Analysis 

The nodes and links represent the hazards and their causal relationships are 
thus assembled together to form a diagram. However, such a diagram generated 
from a hazard analysis chart may be incomplete. The property slots of the nodes 
need to be filled in. In some cases, the quality-carrying property is the same as the 
property that the guide word is applied to. Otherwise, the observable phenomenon 
is compared with the definitions of a set of quality attributes and quality-carrying 
properties. The property that a phenomenon demonstrates is, then, identified; 
otherwise, a new attribute or property is recognized. This property is filled into the 
slot of the node.  

For example, ``An HTML file contains a broken hyperlink" is a correctness 
issue of the HTML file, thus the quality attribute of the hazard is correctness. 
``Server is down" is a problem of the reliability of the server, or more precisely, 
availability. ``User cannot find required information" is associated to the usability 
of the system. Therefore, from the hazard causal relationships given in Figure 2, 
we can derive the quality model shown in Figure 6. 

  



\includegraphics{Figures/Fig06-SmallExampleQualitModel} 
 

 
Figure 6. The Quality Model Derived from Figure 2.  

4 Reasoning about Software Quality 

In this section, we discuss various tasks of quality analysis at software design 
stage and how they can be supported by automated tools. The algorithms for such 
tool support are presented.  

4.1 Contribution Factors of a Quality Attribute 

In the analysis of a software architectural design, we often want to know how a 
quality issue is addressed. We want to know which components, connectors or the 
properties of the configuration are related to the quality issue and how they 
collectively provide the solution to meet quality requirements. The contribution 
factors of a quality attribute is a set of properties of the components and/or 
connectors or other design decisions such as the configuration of the architecture 
that affect the quality issue according to the design.  

For example, consider the quality model given in Figure 4. We can derive the 
sub-graph shown in Figure 7 for the contribution factors of a server's 
responsiveness.  

 
\includegraphics{Figures/Fig07-ContributionFactors} 



 
Figure 7. Factors Contributing to Server's Responsiveness. 

This quality analysis task can be automatically performed by using the 
following algorithm. Note that, given a link L from node A to node B in a quality 
model, we say that node A is the tail of the link L and B is the head of L.  

  
ALGORITHM	
  	
  A1	
  
	
  	
   INPUT:	
  
	
  	
   	
   QualityModel	
  (*	
  which	
  is	
  <	
  NodeList,	
  LinkList	
  >	
  *);	
  	
  
	
  	
   	
   Component;	
  (*	
  the	
  name	
  of	
  the	
  component	
  *)	
  
	
  	
   	
   QualityAttribute;	
  (*	
  the	
  quality	
  attribute	
  *)	
  
	
  	
   OUTPUT:	
  
	
  	
   	
   RelatedNodeList;	
  	
  
	
  	
   	
   RelatedLinkList;	
  
	
  	
   BEGIN	
  
	
  	
   	
   RelatedNodeList	
  :=	
  {	
  };	
  
	
  	
   	
   RelatedLinkList	
  :=	
  {	
  };	
  
	
  	
   	
   FOR	
  each	
  node	
  N	
  in	
  NodeList	
  DO	
  
	
  	
   	
   	
   IF	
  (N's	
  component	
  name	
  ==Component)	
  AND	
  (N's	
  property	
  ==QualityAttribute)	
  
	
  	
   	
   	
   THEN	
  add	
  N	
  into	
  RelatedNodeList;	
  
	
  	
   	
   END_FOR;	
  
	
  	
   	
   REPEAT	
  	
  
	
  	
   	
   	
   FOR	
  each	
  link	
  L	
  in	
  LinkList	
  DO	
  
	
  	
   	
   	
   	
   IF	
  (L's	
  head	
  is	
  in	
  RelatedNodeList)	
  AND	
  (L's	
  head	
  is	
  not	
  equal	
  to	
  L's	
  tail)?	
  
	
  	
   	
   	
   	
   THEN	
  
	
  	
   	
   	
   	
   	
   IF	
  L	
  is	
  not	
  in	
  RelatedLinkList	
  	
  
	
  	
   	
   	
   	
   	
   THEN	
  Add	
  link	
  L	
  to	
  RelatedLinkList;	
  
	
   	
   	
   	
   	
   IF	
  L's	
  tail	
  is	
  not	
  in	
  RelatedNodeList	
  	
  
	
  	
   	
   	
   	
   	
   THEN	
  Add	
  L's	
  tail	
  to	
  RelatedNodeList;	
  
	
  	
   	
   	
   	
   END_IF	
  
	
  	
   	
   	
   END_FOR;	
  
	
  	
   	
   UNTIL	
  no	
  more	
  element	
  is	
  added	
  into	
  RelatedLinkList	
  or	
  RelatedNodeList;	
  
	
  	
   	
   OUTPUT	
  RelatedLinkList	
  and	
  RelatedNodeList;	
  
	
   END	
  
END_ALGORITHM.	
  	
  



 
Informally, Algorithm A1 searches for all the nodes and the links in the quality 

model that link to the nodes containing the component and its quality attribute that 
the user is interested in.  

4.2 Impacts of Design Decisions 

Another frequently asked question in the analysis of a software architectural 
design is ``what are the consequences of a design decision?" In such cases, we 
need to find out what are the quality attributes that are affected by the design 
decision. Such information can also be derived from a well constructed quality 
model.  

For example, consider the quality model depicted in Figure 4. We can obtain 
the sub-graph shown in Figure 8 that represents the impacts of the quality-carrying 
property of HTML file's size on other quality attributes. It shows that the size of 
HTML files affects the navigability and responsiveness of the system, which in 
turn affects the usability of the whole system. 

 
\includegraphics{Figures/Fig08-ImpactOfHazard} 
 

 



Figure 8. Example of the Impacts of a Design Decision on System Quality.  

This analysis task can be automated by using the following algorithm.  
  

ALGORITHM	
  A2	
  
	
  	
   INPUT:	
  
	
  	
   	
   QualityModel	
  (*	
  which	
  is	
  <	
  NodeList,	
  LinkList	
  >	
  *);	
  	
  
	
  	
   	
   Component	
  (*	
  the	
  name	
  of	
  the	
  component	
  *),	
  
	
  	
   	
   QualityAttribute	
  (*	
  the	
  property	
  of	
  the	
  component	
  *),	
  
	
  	
   OUTPUT:	
  
	
  	
   	
   EffectedNodeList;	
  
	
  	
   	
   EffectedLinkList;	
  
	
  	
   BEGIN	
  
	
  	
   	
   EffectedNodeList	
  :=	
  {	
  };	
  
	
  	
   	
   FOR	
  each	
  node	
  N	
  in	
  NodeList	
  DO	
  
	
  	
   	
   	
   IF	
  (N's	
  component	
  name	
  ==Component)	
  AND	
  (N's	
  property==	
  QualityAttribute)	
  
	
  	
   	
   	
   THEN	
  add	
  N	
  into	
  EffectedNodeList;	
  
	
  	
   	
   END_FOR;	
  
	
  	
   	
   EffectedLinkList	
  :=	
  {	
  };	
  
	
  	
   	
   REPEAT	
  	
  
	
  	
   	
   	
   FOR	
  each	
  link	
  L	
  in	
  LinkList	
  DO	
  
	
  	
   	
   	
   	
   IF	
  (L's	
  tail	
  is	
  in	
  EffectedNodeList)	
  AND	
  (L's	
  head	
  is	
  not	
  equal	
  to	
  L's	
  tail)?	
  
	
  	
   	
   	
   	
   THEN	
  
	
  	
   	
   	
   	
   	
   IF	
  L	
  is	
  not	
  in	
  EffectedLinkList	
  THEN	
  Add	
  link	
  L	
  to	
  EffectedLinkList;	
  
	
  	
   	
   	
   	
   	
   IF	
  L's	
  head	
  is	
  not	
  in	
  EffectedNodeList	
  	
  
	
   	
   	
   	
   	
   THEN	
  Add	
  L's	
  head	
  to	
  EffectedNodeList;	
  
	
  	
   	
   	
   	
   END_IF	
  
	
  	
   	
   	
   END_FOR;	
  
	
  	
   	
   UNTIL	
  no	
  more	
  element	
  is	
  added	
  into	
  EffectedLinkList	
  	
  or	
  EffectedNodeList;	
  
	
  	
   	
   OUTPUT	
  EffectedLinkList	
  and	
  EffectedNodeList;	
  
	
   END	
  
END_ALGORITHM.	
  	
  

 
Informally, Algorithm A2 searches for the subset of nodes and links in the 

quality model to which the node(s) with user interested component and quality are 
directly or indirectly linked.  

4.3 Quality Risks 

A design decision may have positive as well as negative effects on a quality 
attribute. The negative effects may impose quality risks to the system. Therefore, 
it is often desirable to know what are the quality risks. This can also be derived 
from a quality model.  



A negative effect of a design decision can be recognised by searching for the 
links and nodes in the quality model that have a negative effect on the quality 
attribute. Such a negative effect could be in one of the following two forms.  

First, there is a negative indicator in a node while there is a positive influence 
factor on the link. In this case, if the phenomenon of the node is observed, the 
quality will be worse on that attribute.  

Second, there is a negative influence factor on the link while there is a positive 
indicator on the node. In this case, the phenomenon that indicates a better value of 
the quality attribute will be prohibited to happen.  

For example, in the quality model depicted in Figure 4, there is a link from the 
node HTML files with the property of large size to the node Web Server with a 
property of responsiveness. There is a positive influence factor marked on the link 
between the large size of HTML file and the phenomenon of long response time. 
This is because that the larger the HTML file size is, the longer the response time 
will be. Because the phenomenon of long response time is a negative indicator on 
usability, a large file size has a negative effect on usability. Therefore, a design 
decision of large file size is a risk to the quality attribute of responsiveness. The 
further effects of a quality risk can be identified and analysed. In certain cases, a 
negative effect, i.e. a quality risk, is not the consequence of a single design 
decision. Instead, it can be the consequence of a number of design decisions. In 
that case, all the causes must be identified so that a better design can be made. 
These causes can also be automatically derived from graphic quality models using 
the following algorithm. 
	
  
ALGORITHM	
  A3	
  
	
  	
   INPUT:	
  
	
  	
   	
   QualityModel	
  (*	
  which	
  is	
  <	
  NodeList,	
  LinkList	
  >	
  *).	
  
	
  	
   OUTPUT:	
  
	
  	
   	
   RelatedNodeList;	
  
	
  	
   	
   RelatedLinkList;	
  
	
  	
   BEGIN	
  
	
  	
   	
   RelatedNodeList	
  :=	
  {	
  };	
  
	
  	
   	
   RelatedLinkList	
  :=	
  {	
  };	
  
	
  	
   	
   FOR	
  each	
  node	
  N	
  in	
  NodeList	
  DO	
  
	
  	
   	
   	
   IF	
  (N's	
  influence	
  indicator	
  is	
  negative)	
  	
  
	
  	
   	
   	
   THEN	
  add	
  N	
  into	
  RelatedNodeList;	
  
	
  	
   	
   END_FOR;	
  
	
  	
   	
   FOR	
  each	
  link	
  L	
  in	
  LinkList	
  DO	
  
	
  	
   	
   	
   IF	
  (L's	
  influence	
  factor	
  is	
  negative)	
  AND	
  (The	
  indicator	
  of	
  L's	
  head	
  is	
  positive)	
  
	
  	
   	
   	
   THEN	
  add	
  L	
  into	
  RelatedLinkList	
  
	
  	
   	
   END_FOT;	
  
	
  	
   	
   OUTPUT	
  RelatedNodeList,	
  RelatedLinkList;	
  
	
   END	
  
END_ALGORITHM.	
  

 



Informally, Algorithm A3 searches for all nodes that have negative phenomena 
of quality attributes and implications that prevent positive quality phenomena.  

4.4 Relationships between Quality Issues 

An important question to be answered in quality analysis is the interrelationship 
between two quality issues. For example, how a server's performance is related to 
the system's usability? Answers to such questions can be found from the quality 
model by searching for all paths from a node that represents one quality issue to 
the nodes that represents the other quality issue. The algorithm for this purpose is 
given below.  

  
ALGORITHM	
  A4	
  
	
  	
   INPUT:	
  	
  
	
  	
   	
   QualityModel	
  (*	
  which	
  is	
  <	
  NodeList,	
  LinkList	
  >	
  *),	
  
	
  	
   	
   Component1	
  (*	
  the	
  name	
  of	
  the	
  first	
  component	
  *),	
  
	
  	
   	
   Component2	
  (*	
  the	
  name	
  of	
  the	
  second	
  component	
  *),	
  
	
  	
   	
   QualityAttribute1	
  (*	
  the	
  first	
  quality	
  attribute	
  *),	
  
	
  	
   	
   QualityAttribute2	
  (*	
  the	
  second	
  quality	
  attribute	
  *),	
  
	
  	
   OUTPUT:	
  	
  
	
  	
   	
   RelatedNodeList;	
  
	
  	
   	
   RelatedLinkList;	
  
	
  	
   BEGIN	
  
	
  	
   	
   RelatedNodeList	
  :=	
  {	
  };	
  
	
  	
   	
   RelatedLinkList	
  :=	
  {	
  };	
  
	
  	
   	
   Node1	
  :=	
  NULL;	
  
	
  	
   	
   Node2	
  :=	
  NULL;	
  
	
  	
   	
   TemptNodeList	
  :=	
  {	
  };	
  
	
  	
   	
   TemptNode	
  :=	
  NULL;	
  
	
  	
   	
   FOR	
  each	
  node	
  N	
  in	
  NodeList	
  DO	
  
	
  	
   	
   	
   IF	
  	
   (N's	
  component	
  name	
  ==	
  Component1)	
  	
  
	
   	
   	
   	
   AND	
  (N's	
  property	
  ==	
  QualityAttribute1)	
  
	
  	
   	
   	
   THEN	
  Node1=N;	
  
	
  	
   	
   	
   ELSE	
  IF	
  	
  (N's	
  component	
  name	
  ==	
  Component2)	
  	
  
	
  	
   	
   	
   	
   	
   AND	
  (N's	
  property	
  ==	
  QualityAttribute2)	
  
	
  	
   	
   	
   THEN	
  Node2	
  :=	
  N	
  
	
  	
   	
   	
   END_IF;	
  
	
  	
   	
   END_FOR;	
  
	
  	
   	
   Add	
  Node1	
  to	
  TemptNodeList;	
  
	
  	
   	
   CurrentNode	
  :=	
  Node1;	
  
	
  	
   	
   Search(CurrentNode,	
  Node1,	
  Node2,	
  QualityModel,	
  	
  
	
  	
   	
   	
   	
   TemptNodeList,	
  RelatedLinkList,	
  RelatedNodeList);	
  
	
  	
   	
   OUTPUT	
  RelatedLinkList	
  and	
  RelatedNodeList;	
  



	
   END	
  
	
  END_ALGORITHM.	
  	
  
	
  

In Algorithm A4, the following function of depth first search is used.  
	
  
FUNCTION	
  Search	
  (Component,	
  Component1,	
  Component2,	
  QualityModel,	
  	
  
	
   	
   	
   	
   	
   CurrentNodeList,	
  ResultLinkList,	
  ResultNodeList)	
  	
  
(*	
  Depth-­‐First	
  Search	
  *)	
  
	
   	
  BEGIN	
  
	
  	
   	
   TemptNode=NULL;	
  
	
   	
   	
  FOR	
  each	
  link	
  L	
  in	
  LinkList	
  that	
  	
  L's	
  head	
  ==	
  Component	
  DO	
  
	
  	
   	
   	
   Add	
  L's	
  tail	
  to	
  CurrentNodeList;	
  
	
   	
   	
   IF	
  L's	
  tail	
  ==	
  Component2	
  
	
  	
   	
   	
   THEN	
  (*	
  Find	
  a	
  path	
  and	
  record	
  it*)	
  
	
  	
   	
   	
   	
   TemptNode	
  :=	
  L's	
  tail;	
  
	
  	
   	
   	
   	
   REPEAT	
  	
  
	
  	
   	
   	
   	
   	
   Add	
  TemptNode	
  to	
  ResultNodeList;	
  
	
  	
   	
   	
   	
   	
   TemptNode	
  :=	
  TemptNode's	
  previous	
  node	
  of	
  CurrentNodeList;	
  
	
  	
   	
   	
   	
   	
   Add	
  link	
  TemptL(	
  whose	
  head	
  ==	
  TemptNode's	
  Next	
  node	
  of	
  	
  
	
  	
   	
   	
   	
   	
   	
   CurrentNodeList	
  	
  AND	
  whose	
  tail	
  ==	
  TemptNode)	
  	
  
	
  	
   	
   	
   	
   	
   	
   to	
  ResultLinklist;	
  
	
  	
   	
   	
   	
   UNTILL	
  TemptNode	
  ==	
  Component1;	
  
	
  	
   	
   	
   	
   Remove	
  L's	
  tail	
  From	
  CurrentNodeList;	
  
	
  	
   	
   	
   ELSE	
  (*	
  Depth	
  first	
  *)	
  
	
  	
   	
   	
   	
   Search	
  (L's	
  tail,	
  Component1,	
  Component2,	
  QualityModel,	
  
	
  	
   	
   	
   	
   	
   	
   CurrentNodeList,	
  ResultLinkList,	
  ResultNodeList);	
  
	
  	
   	
   	
   END_IF	
  
	
   	
   	
  END_FOR;	
  
	
   	
   	
  remove	
  Component	
  from	
  TemptList;	
  
	
   END_FUNCTION	
  
 

Informally, Algorithm A4 uses a depth-first search algorithm to search for a 
sub-graph of the quality model that contains all paths between two input nodes.   

4.5 Trade-Off Points  

In many situations, a quality risk cannot be resolved without compromising on 
another or a number of other quality issues because these quality issues are 
conflicting with each other. In such cases, a trade-off between the quality 
attributes must be made and a balance between them must be achieved through 
appropriate design decisions.   

For example, consider the quality model depicted in Figure 4. The size of 
HTML files positively affects the navigability of the hypertext network, but 



negatively affects responsiveness of the web server. Therefore, navigability is in 
conflict with responsiveness. A trade-off between them must be made so that 
responsiveness is within a tolerable range while navigability is also acceptable. 
Such a trade-off occurs in the form of deciding on a suitable size of HTML file. In 
other words, HTML file size is a trade-off point.   

From this example, we can see that a trade-off point is a node in the quality 
model that has a negative effect to one or more quality attributes and at the same 
time it has positive effects on one or more other quality attributes. Trade-off 
points can also be derived from quality models automatically. The algorithm is 
given below.  

 
ALGORITHM	
  A5	
  
	
  	
   INPUT:	
  
	
  	
   	
   QualityModel	
  (*	
  which	
  is	
  <	
  NodeList,	
  LinkList	
  >*);	
  	
  
	
   	
  OUTPUT:	
  
	
  	
   	
   RelatedNodeList	
  (*	
  the	
  set	
  of	
  trade-­‐off	
  points	
  *);	
  
	
  	
   BEGIN	
  
	
  	
   	
   RelatedNodeList	
  :=	
  {	
  };	
  
	
  	
   	
   TemptNodeList	
  :=	
  result	
  from	
  calling	
  A3;	
  
	
  	
   	
   FOR	
  each	
  node	
  N	
  in	
  TemptNodeList	
  DO	
  
	
  	
   	
   	
   FOR	
  each	
  link	
  L	
  in	
  LinkList	
  AND	
  (	
  L's	
  head	
  ==	
  N	
  OR	
  L's	
  tail	
  ==N)	
  DO	
  
	
  	
   	
   	
   	
   IF	
  (	
  L's	
  head	
  !=	
  N	
  AND	
  (L's	
  head's	
  indicator	
  ==	
  L's	
  influence	
  factor))	
  
	
  	
   	
   	
   	
   THEN	
  Add	
  L's	
  head	
  to	
  RelatedNodeList;	
  
	
  	
   	
   	
   	
   IF	
  (L's	
  tail	
  !=	
  N	
  AND	
  (L's	
  tail's	
  indicator	
  ==	
  L's	
  influence	
  factor))	
  
	
  	
   	
   	
   	
   THEN	
  Add	
  L's	
  tail	
  to	
  RelatedNodeList;	
  
	
  	
   	
   	
   END_FOR	
  
	
  	
   	
   END_FOR	
  
	
  	
   	
   OUTPUT	
  RelatedNodeList;	
  
	
   END	
  
END_ALGORITHM	
  

 
Informally, Algorithm A5 first searches for those nodes of negative quality by 

employing Algorithm A3. Then for each of such nodes of negative quality, search 
for the nodes that links to this node of negative quality as well as a node of 
positive quality.   

5 Support Tool SQUARE 

To support the construction of quality model and the quality analysis of software 
architectural designs using HASARD method, we have developed a software tool 
called SQUARE, which stand for Software QUality and ARchitecture modeling 
Environment. It provides the following functions. 



• Modelling software architecture in the visual notation proposed by Bass, 
Clement and Kazman (1998); 

• Analysing software architecture models using HASARD method; 
• Constructing software quality models in the graphical notation; and 
• Reasoning about the system's quality using the quality model.  

As shown in Figure 9, the SQUARE tool consists of the following components. 
  

\includegraphics{Figures/Fig09-SQUAREStructure} 
 

 
Figure 9. Architecture of SQAURE 

• The Architecture Model Editor supports software architecture modelling 
through an interactive graphical user interface and represents software 
architectural models in the Software Architecture Visual Notation proposed by 
Bass, Clements, and Kazman in (1998). Figure 10 shows the graphic user 
interface of the architectural modelling tool.  

  
\includegraphics{Figures/Fig10-SAModelingInterface} 



 
Figure 10. Interface of Software Architectural Modelling 

• The Hazard Analysis Tools help the developers to analyse software architecture 
using HASARD method. It records the analysis results and automatically 
transforms them into the graphic representation of quality models. It consists of 
three tools. The hazard identification tool helps the users to apply guide words 
to various attributes of components/connectors in software architecture models 
so that hazards are systematically identified. The cause-consequence analysis 
tool helps the user to identify the causal relationships between the hazards. The 
quality model generation tool automatically transforms the results of hazard 
analysis into a quality model in graphical notation. Figure 11 shows the 
interfaces of the hazard analysis tools.  

 
\includegraphics{Figures/Fig11-CauseEffectToolGUI} 



 
Figure 11. Graphic User Interface of the Cause-Consequence Analysis Tool. 

• The Quality Model Editor provides an interactive graphical user interface to the 
users for the display and modification of software quality models.   

• The Quality Model Analysis Tools automatically recognize and identify the 
quality features of the software designs from a quality models when invoked by 
the user. The results of the analysis are also displayed as a diagram in the 
graphical notation of software quality models.   

• The Model Repository stores the information about the architecture and quality 
models as well as the quality analysis results to enable them to be managed 
within a project and reused across different development projects.  

• The Project Manager provides a graphic user interface to software engineers 
for managing the artefacts used and generated in the quality analysis process 
through accesses to the Model Repository.  

6 Case Study 

A case study has been conducted with a real e-commerce application to evaluate 
the usability of the approach. This section reports the main results of the case 
study.  



6.1 Research Questions 

The research question addressed in this case study is to test whether the proposed 
method and the supporting tools are practically applicable. This research question 
is decomposed into the following sub-questions: 

• Can a quality model be constructed for a real-world software system with 
acceptable effort? 

• How complex will a quality model be for a real software system? 
• Can the quality model for such a real software system adequately cover the 

quality issues that a developer would be interested in? 
• Can the automated quality analysis technique and the support tools derive the 

right quality predictions from the quality model?  
• How well will the predictions of quality problems by the HASARD method 

match the real situation?   

6.2 The Object System 

The object of the case study is an e-commerce system for online trading of 
medicine. The system is operated by the Medicine Trading Regulation Authority 
of the Hunan Province, P. R. China, to supply medicines to all state-owned 
hospitals in the province. Its main functions include (a) customer relationship 
management, (b) product catalogue management, (c) online trade management, 
(d) online auction of medicine supply bids, (e) order tracking and management, (f) 
advertisement release, (g) a search engine for medicine information, and so on. 
The system was implemented in the J2EE technology.   

The system includes the following functional components. 

• Management Component: it supports the management activities, including the 
management of information release, trading centres, users' membership, 
manufacture membership, permission of trade and/or production of medicine, 
and log information of online activities. 

• Content Management: it manages information contents stored, processed and 
displayed by the system, such as medicine catalogues, prices, geographical 
information, and sales information, etc. 

• Online trading: it provides an interface and facilities for online trading 
activities and the links to other information contents such as catalogue, 
products information, and contract templates.  

• Public Relationship: it maintains the public relationship between the 
organisation and its various types of customers, including sending out 
invitations to the public to bid on auctions, and so on. 

• Order tracking: it provides the interface and facilities to track the business 
process of each deal. 



• Communication Management: it provides the secure communications facilities 
for sending messages, and manages the mails sent and received by the system.  

• Report generation: it answers queries from managers about various statistical 
data of the online trading and generates financial reports.  

The case study was conducted after the object system was released and in 
operation for more than 1 year. However, the problems in the operation of the 
system were not revealed to the analysts involved in the case study before the 
predictions of the system's problems were made. This enables us to see how well 
the result of quality analysis matches the reality.  

6.3 Process of the Case Study 

The case study consists of the following activities.  

• Construction of the architectural model of the system through reverse 
engineering. The system's design and implementation were fairly well 
documented. The accesses to the chief developers were available. The design 
documents as well as parts of the source code were reviewed. An architectural 
model of the system was constructed, which was reviewed by some of the chief 
developers of the system for approval of its accuracy. Figure 12 shows a part of 
the architectural model for the user management sub-system.  

\includegraphics{Figures/Fig12-CaseStudySA} 

 
Figure 12. The architecture of the Case Study System 



• Application of HASARD method and construction of quality model. The 
architectural model of the system was then analysed using the HASARD 
method. The quality hazards of the system were identified. The cause-
consequence relationships between the hazards were recognised. The 
information was then transformed into a quality model in the graphical 
notation. The quality model contains 70 nodes and 64 links between the nodes. 
For the sake of space, the details of the quality model are omitted in this paper. 

• Analysis of the quality model. The quality model developed in the previous step 
was analysed by applying the SQUARE analysis tools to identify quality risks, 
quality trade-off points, and to derive the impacts of design decision on certain 
quality attributes and the contribution factors to certain quality attributes. More 
details are given in the next subsection.  

• Validation of analysis results. The results obtained from quality analysis of the 
system were fed back to the developers of the e-commerce system. A workshop 
was run to validate whether the outcomes of the quality analysis matches the 
reality in the development and operation of the system. It was found that all our 
findings were consistent with what has observed in the operation of the system. 
Some of the phenomena observed in the operation of the system were first time 
satisfactorily explained through the architecture and quality models of the 
system. Based on the analysis results, a number of specific suggestions on the 
improvement of the system's architecture were made. Some of them were taken 
by the development team in the development of the new release of the system. 
Some would result in major changes of system's architecture and regrettably 
cannot be implemented within the budget of the new releases.  

The following provides some details of the main findings of the case study to 
illustrate the kinds of quality issues that the method can discover and the kinds of 
analysis activities that the automated tools can support. Some sensitive issues 
related to the privacy of the system are carefully removed because the main 
purpose here is to validate our quality analysis method and tool.   

6.4 Main Results of Quality Analysis 

In the case study, we discovered a number of quality issues of the system. The 
following are some examples of the discovered quality issues.   

• Critical quality attributes. One observation made during the operation of the 
system is that the some users complained that they cannot find desired 
information. In the case study, we analysed the causes of the problem by 
finding the factors that affect the system's usability. The tool generated a sub-
diagram that contains 35 nodes out of the 70 nodes in the quality model. This 
means that most components affect usability of the system. Consequently, we 
concluded that usability is a very sensitive quality issue in the design of the 



system. The generated sub-diagram provided detailed information about how 
properties of various components affect the usability of the whole system. Our 
case study provided useful guides to the developers for how to enhance the 
usability.  

• Contribution factors of a quality attribute. Intuitively, the server's availability 
is of particular importance to a number of other quality attributes. To find out 
what are the factors that affect server's availability, we applied the tool and 
generated the sub-diagram shown in Figure 13. The diagram shows that the 
factors that affect this quality attribute include hardware reliability, software 
reliability, power supply, system security, and maintenance. Therefore, we can 
conclude that necessary measures must be adopted to prevent hackers from 
attacking the server, to ensure a reliable power supply and the stability of 
server's hardware and software system to avoid the server crashes, and to 
implement tools to enable online maintenance in order to reduce the time that 
the system has to be shut down for maintenance tasks.  

\includegraphics{Figures/Fig13-CaseStudyQAResult1} 

 
Figure 13. Example 1 of QA Results in the Case Study: factors affecting server's availability 

• Relationships between two quality attributes. Our quality model can help us to 
understand the relationships between quality attributes. For example, the 
quality model demonstrated that usability of the client side is affected by 
performance of the web server. So we must consider carefully about the 
system's hardware configuration and the deployment of software components 
onto the hardware cluster to balance the communication and computation 
workload according to the operation profiles. 

• Quality trade-off points. In the case study, quality trade-off points were also 
identified. For example, we found that the size of HTML files is a trade-off 
point. Because when the size is large, it has two different impacts on other 
quality attributes. One side, the HTML files of large sizes will make users find 
necessary information through fewer clicks. On the other side, the HTML files 



of large sizes also make the response time longer. Both of these are related to 
the usability of the system, but one has positive impact while the other is 
negative. Therefore, it is a trade-off point. Another trade-off point identified in 
the case study is the granularity of session beans. A small-sized session bean 
can only implement relatively simpler functions in comparison to larger sized 
session beans. Therefore, to complete a task, smaller session beans need to 
invoke more methods of other beans. This results in more execution time to 
complete a task. Consequently, the performance of the whole system declines 
due to the time spent on creating instances of session beans. On the other hand, 
if session beans are of a larger size, to serve the same number of clients, more 
memory will be consumed. Therefore, the granularity of session beans is a 
trade-off point between the response time of the system and the consumption of 
the memory space.  

• Impacts of a design decision. As discussed in the previous sections, the impacts 
of a design decision can be easily identified by using our quality model. In the 
case study we derived a large amount of such information. For example, if the 
component of internet has heavy traffic, the usability and performance of the 
whole system will be affected.  

• Key quality issues. In the analysis of the impact of a quality attribute, quality 
risk points and critical quality issues can be recognised if the quality attribute 
has significant impacts on a wide range of other quality attributes. For example, 
in the case study, we found that the impacts of database's performance are 
extensive as shown in the sub-diagram in Figure 14, which is created by the 
SQUARE tool. It has the impact on a wide range of issues ranging from 
business layer to presentation layer. So it is necessary to take some measures to 
avoid vicious attack and to ensure the stability of hardware and software of the 
database server.  

\includegraphics{Figures/Fig14-CaseStudyQAResult2} 
 

 
Figure 14. Example 2 of QA Analysis in the Case Study: Impact of Database Failure 

6.5 Conclusions of the Case Study 

From the findings of the case study, we answer the research questions asked in 
Subsection 6.1 as follows.  



• Can a quality model be constructed for a real-world software system with 
acceptable effort?  

In the case study, a quality model was successfully constructed by applying the 
HASARD method with the assistance of the automated tool SQUARE. Two 
persons (one PhD student and one MSc student of Computer Science) worked on 
this quality model construction task. It took them 1 month, including the reverse 
engineering effort. These two analysts are familiar with the method and the uses 
of the tools before they started the case study. We can draw the conclusion that 
quality models for such real-work software can be constructed with reasonable 
efforts.  

It is worth noting that the reverse engineering including the construction of the 
architectural model of the system takes about half of the time. It lays a foundation 
for the construction of the quality model. It is necessary to have a good 
understanding of the design of the system and to have good domain knowledge of 
the application. Hazard analysis of a design heavily depends on such knowledge 
as well as the knowledge about how the software system operates.  

• How complex a quality model will be for a real world software system? 

The quality model of the system consists of 70 nodes, which is the largest and 
the most complicated quality model that we have ever seen in the literature. 
However, we found that the model is readable and its validity was validated by the 
developers of the system by checking the validity of the information contained in 
each node and link. It is worth noting that we believe that a quality model of such 
a scale cannot be constructed without a structured method. Our HASRAD method 
is capable of handling such a complexity and scale due to the structured approach 
based on hazard analysis techniques and the tool support.  

• Can the quality model for such a real world software system adequately cover 
the quality issues that a developer would be interested in? 

Our case study found that the quality model adequately covered all quality 
attributes in existing quality models. Quantitative analysis of the quality issues 
were not covered because the original requirements and design document do not 
contain such information. Whether the proposed method can deal with quality 
issues quantitatively remains an open question that is not tested by the case study. 
It is one of the main limitation of the case study.  

• Can the automated quality analysis technique and the support tool derive the 
right quality concerns from the quality model?  

As reported in the previous subsection, the tool SQUARE was used to derive 
the quality concerns for each type of the quality concerns discussed in Section 4 
and produced meaningful output. The use of SQUARE tool to derive quality 
concerns after the construction of the quality model took little effort, much less 
than 1 week by two analysts. For each query input to the tool, SQUARE responses 



within 1 second. The main time that the analysts spent on is reading and 
interpreting the output.  

• How well the predictions of quality problems by the HASARD method match 
the real situation?  

The main findings reported in the previous subsection in the quality analysis of 
the system were all checked by the developers of the system. All these findings 
were confirmed and agreed by the development team who are also responsible for 
the maintenance of the e-commerce system. Note that the quality problems of the 
system in the operation were unknown to the analysts before the predictions were 
made. Therefore, we can conclude from the case study, the predictions made by 
analysing the quality model by employing our method were correct.  

During the validation workshop of the case study, the development team were 
also asked if they have any quality problem observed in the operation of the 
system that were not predicted by the analysts. They answer was negative. 
Therefore, we can conclude that the predictions were also precise in the sense 
there were no serious issue missed in the quality analysis.     

7 Conclusion 

In this section, we conclude the chapter with a comparison of our approach with 
the related work and a discussion of the limitations and open problems that 
deserve further research.  

7.1 Comparison with Related Work 

The work reported in this chapter is related to three groups of research: (a) 
software quality models, (b) hazard analysis methods and techniques, and (c) 
software architecture evaluation and assessment. The following subsections 
compare our approach to the related work in these three areas, respectively.  

7.1.1 Software Quality Models 

The development of software quality models can be back dated to 1970s such as 
Boehm model (1978) and McCall model (1977). Research on traditional quality 
models has been carried out in more recent years. Al-qutaish (2010) studied 5 
hierarchical quality models, which are the McCall model, Boehm model, Dromey 
model, FURPS model (Grady, 1992) and ISO 9126 model. He compared the 
structure as well as the coverage of quality attributes in these models. Kayed et al. 
(2009) applied ontology extraction and analysis techniques to the definitions of 



software product quality attributes. They studied 67 most commonly discussed 
software product quality attributes and concluded that ``there is a lack of 
consensus on the concepts and terminologies used in this field".  

The weaknesses of such quality models discussed in Section 1.2 have been 
addressed successfully in our graphical quality modelling approach. In particular, 
graphic quality models take full uses of the knowledge of the system's structure, 
where a node in the quality model associates an architectural design element, 
including the components, connectors and configuration features, with an 
observable phenomenon of its quality carrying property. The complicated 
relationships between various quality attributes can be represented by multiple 
links between the nodes. Our case study shows that such a quality modelling 
approach can represent complicated quality models of real software system 
adequately.  

In this paper, we demonstrated our graphical quality models as qualitative 
models. How to combine our graphical model with quantitative metrics is an 
interesting topic for further research. However, we believe that it should not be a 
major problem to include quantitative information in our graphic quality models. 
How to obtain and use such quantitative data in the analysis of software 
architecture is the key problem to be solved.  

A closely related work on software quality modelling is the so-called activity-
based approach proposed by Deissenboeck et al. (2007). In the activity-based 
approach, quality models are constructed based on two notions: the facts and the 
activities. A fact is a property of an entity in the system under consideration. It is 
represented in the form of [entity | attribute]. For example, the fact that "a class C 
is complex" can be represented as [ C | Complex]. An activity is an action that can 
be performed on or with the support of the system under consideration. Typical 
examples of activities are "attacking the system" related to system's security, 
"modifying the code of a class" related to the modifiability, etc. In this approach, 
the quality of the system is manifested by how facts affect activities, where the 
impact of a fact on an activity can be either positive or negative depending on 
whether the fact contributes to the action positively or negatively. Therefore, the 
elements of a quality model are represented in the form of  

[entity | attribute] 
!  |!

[activity]. 

A model can therefore be depicted in the form of a two dimensional matrix 
where the entity-attribute pairs are the rows and the activities are the columns, the 
impacts are the cells in the matrix. The activity-based quality modelling approach 
was first proposed by Deissenboeck et al. (2007) for the quality of maintainability. 
It is generalised by Wagner and Deissenboeck (2007) and Lochmann and Goeb 
(2011), applied to security by Luckey et al. (2010), to usability by Winter et al. 
(2008), to service-oriented architecture by Goeb and Lochmann (2011), and 
combined with Bayesian network to assess and predict software quality by 
Wagner  (2010). In 2011, Deissenboeck and Wagner et al. (2011; 2012) reported a 



tool called Quamoco that supports the construction of such quality models. An 
evaluating of the Quamoco meta-model and the tool was reported in (Klas, 
Lampasona, & Munch, 2011).  

Both activity-based approach (and its extensions) and our approach are 
concerned with the properties of entities in a software system. However, we 
further include phenomena as an important part of quality models. The main 
difference between the activity-based approach and our approach is that we 
emphasise the relationships between quality carrying properties while activity-
based approach is concerned with how such properties affect the actions to be 
performed on the system. Thus, the complicated relationships between the quality 
attributes cannot be modelled in the activity-based approaches. More importantly, 
our method covers the model construction process and automated analysis of the 
models, while their work does not.  

7.1.2 Hazard Analysis 

Our software hazard analysis method is an adaptation of existing system hazard 
analysis methods and techniques for safety engineering (Leveson, 1995; 
Neumann, 1995; Storey, 1996).  

In particular, we extended the concept of hazard in order to cover all quality 
factors besides safety in the construction of quality models of software systems. In 
our context, the word hazard has its widest meaning, which means any situation 
that may cause harm as designed or due to a deviation from the design decision.   

One of the most effective hazard identification technique is HAZOP (MoD, 
2000), which has already been adapted to analysis of software safety. Here, we 
further extended it for a wider range of software quality by re-defining the guide 
words.  

From software engineering point of view, the original FMEA method has a 
number of weaknesses when applied to software systems. First, the original 
FMEA chart is ambiguous about which component causes the failure. However, it 
is important to clearly identify the component that causes the failure in order to 
enable the construction of a quality model of the software. Therefore, we modify 
the format of FMEA chart to include information about the component that causes 
the failure. Note that, by the word component we meant both software 
architectural components and connectors.   

Our second modification to FMEA is that the indirect effects of a failure mode 
are not charted. There are two reasons for indirect effect not to be charted. First, 
we found that for a complicated software system, the indirect effects such as those 
at system level may not be so clear when a component fails. Second, information 
about indirect effects are redundant because they will be analysed subsequently as 
the effect of other failures. The system level effects of a component failure will 
eventually emerge from such a chain of cause-effect.   

Our third modification to FMEA is that we also included an explanation 
column in the chart so that the reasons why a failure mode causes another can be 



provided. This is for the purpose to enable the validation of the analysis results. 
Such reasons are usually obvious in physical systems, but we find that they are 
less obvious sometimes for software systems.   

Finally, in addition to what hazard analysis techniques and method do, our 
approach also links the results of hazard analysis to quality attributes. In 
particular, each cause of a failure mode indicates a quality attribute that the 
developers are usually concerned with. The corresponding consequences of the 
failure mode indicate what quality attributes that the users are usually most 
concerned with. Note that, both causes and consequences of a failure mode are 
stated as observable phenomena of the system. The abstract quality attributes that 
a phenomenon manifested must be identified. Consequently, the relationships 
between the quality attributes or quality-carrying properties can be established 
through such concrete phenomena. This enables engineers to reason about quality 
at a high level of abstraction.  

7.1.3 Evaluation and Assessment of Software Architecture 

In the past decade, a significant progress has been made in the research on the 
analysis of software architectures. A number of methods have been advanced in 
the literature to evaluate and assess the quality of software architectural designs. 
Among the most well-known are SAAM (Kazman et al., 1996) and ATAM 
(Clements, Kazman, & Klein, 2002), etc.; see (Dobrica & Niemela, 2002) for a 
survey.  

Existing scenario-based methods are for the assessment and evaluation of 
software quality as exhibited in architectural design. They examine software 
architectures in the context of a set of scenarios, although the ways that scenarios 
are elicited and used vary. The set of scenarios serves as the criteria or benchmark 
of the assessment and evaluation. A remarkable advantage of such methods is that 
the examination of software behaviour can be performed in realistic situations. 
Moreover, the complexity of analysis can be reduced through focusing on typical 
scenarios, etc. However, it is difficult to build an overall picture of the system's 
quality especially when there are intensive and complicated interactions between 
scenarios. The elicitation of a complete and representative set of scenarios is by no 
means a trivial task, which is currently still a brainstorming and negotiation 
process. The result of quality analysis may heavily depend on the selection of 
scenarios as reported in practical experiences (Kostelijk, 2005).  

Existing model-based techniques focus on one single quality attribute, such as 
performance and reliability, etc., rather than relationships between various quality 
attributes. Moreover, they are mostly quantitative models.  

Our method is fundamentally different from these existing works.  



7.2 Limitations and Future work 

The work reported in this chapter has some limitations and there are a number of 
open problems deserve further studies.  

First, the quality models exemplified in this chapter are qualitative. We believe 
that the quality models can be extended to include quantitative data. For example, 
a phenomenon may occur with certain probability and the impact of one 
phenomenon on another can also be quantitative as in quantitative hazard analysis 
in systems engineering. The key open problem for quantitative quality modelling 
and quality analysis is how to use such quantitative data to predict software 
quality. This deserves further research and will significantly improve power of 
quality analysis of software architectures.  

Second, architectural designs can be represented in two different approaches: 
(a) in the form of an architectural model, or (b) as a set of design decisions (Jansen 
& Bosch, 2005; Shahin, Liang, & Khayyambashi, 2009). The case study was 
carried out with an architectural model. Further investigation could be conducted 
to see how the approach can be adapted to analysis architecture represented in the 
form of a set of design decisions.  

Another problem that is worthy investigating is to combine the activity-based 
approach with our approach. It will be interesting to see how hazard analysis can 
be applied to a software process model to derive the activities. Deriving activities 
related to a quality issue is a problem that has not been solved in the existing work 
of the activity based approach.  

Moreover, the automation techniques can only be applied once a quality model 
is constructed. The quality model construction process depends on: (a) the 
knowledge of analysts; and (a) good definition/specification of the architecture. 
This model construction process is a structure process, but still a manual activity. 
Further tool support to this process is worth further investigating.  

It is also worth further investigating to integrate existing architectural analysis 
methods and techniques with the approach presented in this chapter. For example, 
a hazard can be considered as a scenario. Can scenario-based approach be adapted 
and integrated with our approach? For example, can scenario identification and 
specification be used to replace hazard analysis? Or, on the other hand, can hazard 
analysis be used to replace scenario identification in scenario-based techniques? 
Hazard analysis techniques have the advantages of being a structured and 
systematic process, while scenarios are concrete and easy to understand.  

Finally, when quality analysis of software architectural design is performed in 
the context of software evolution, it is of great importance to study how the 
method presented in this chapter applies when the system is restructured, re-
engineered, or integrated to another system. The particular research questions that 
deserve further investigation include: Can quality models be incrementally 
modified? Can analysis algorithms be revised to be an incremental algorithm? etc.  
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