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Design Patterns

@ What is the purpose of Design Patterns?
e "to capture design experience in a form that people can use

effectively”
o from G4 book (6th most cited)

@ How are Design Patterns specified?
Name
Intent
Motivating example
Class Diagram
C++ code
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Facade Design Pattern

@ what do the arrows and boxes actually mean?
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Related Work

Shi & Olson (PINOT) - 2006

Lano et al (VDM++) - 1996

Lauder and Kent (three layer approach) - 1998
Mapelsden et al (DPML) - 2002

Eden (LePUS) - 2002

Taibi (pre/post conds and temporal logic) - 2006
Mikkonen (temporal logic of actions) - 1998

Le Guennec (extend UML meta-model) - 2000
Mak et al (action semantics) - 2004

@ open problems include expressiveness and support for formal
reasoning
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Our Approach

formalise structure of class diagrams

e using language GEBNF
o G=Graphical

specify extraction functions
pattern is a sentence of predicate logic
classes ... exist such that ... and ... and ...

OCL can only be used either to augment class diagrams or at
meta-level to define the notion of class diagrams themselves
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Graphical EBNF

o EBNF: repetitions are separate entities
@ Graphical models have several occurrences of same entity

e eg nodes and edges (set of pairs of nodes)
o eg classes and associations/generalisations

o GEBNF is EBNF extended with references
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Definition in Graphical Extended BNF

ClassDiagram =
classes : Class™,
inters : Interface™,

assocs : ( Classifier, Classifier)*,

geners : (Classifier, Classifier)*,

deps : (Classifier, Classifier)*,

calls : (Operation, Operation)*
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First Order Predicate Logic On Diagrams

@ domain of quantifiers are variables from graphical model
e classes and inters for the nodes
e assocs, geners, deps, calls

@ extraction functions

o eg isAbstract(C) tells whether a class C is abstract
o defined as part of the GEBNF
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Specification of Facade Design Pattern

@ domain of quantifiers are variables from graphical model

o classes and inters for the nodes
e assocs, geners, deps, calls

@ extraction functions

o eg isAbstract(C) tells whether a class C is abstract
o defined as part of the GEBNF

@ there's a subset of the classes ys such that any dependency
arrow to ys must either be from ys or Facade

Jys C classes A\VC € ys -VC' € classes-
(C'— C) € deps = C' € ysV C' = Facade
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Bridge Design Pattern

imp

Abstraction = [mplementor
Operation{} ¢ Operafiontmp()
imp-=Operationimpll; )\
ConcretelmplementorA ConcretelmplementorB
RefinedAbstraction
Operationimp() Operationtmp()
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Specification of Bridge Design Pattern |

Classes: Abstraction, Implementor € classes
Associations: Abstraction — Implementor € assocs

Conditions:

@ I/mplementor is an interface:
Implementor € inters

@ client dependencies are on Abstraction alone:
access({Abstraction}, {Implementor} U subs(Abstraction)
Usubs(Implementor))

© every operation in the subclasses of Abstraction call an
operation in Abstraction:
VA € subs(Abstraction) - Vo € opers(A) - 3o’ €
opers(Abstraction) - o — o' € calls
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Specification of Bridge Design Pattern |l

@ every operation in Abstraction calls an operation in
Implementor:
Vo € opers(Abstraction) - 3o’ € opers(Implementor) - 0 —
o' € calls
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Uses of Specification in Software Engineering

@ support software design

e recognise design patterns at design stage
e transformation of designs
e understanding of design patterns

o relationships between design patterns

@ specialisation
@ compatibility

@ deducing properties of design patterns
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Formal Recognition of Design Patterns |

Classes: AbstractFactory € classes,
AbstractProducts C classes

Operations: creators C opers(AbstractFactory)

Conditions:

@ AbstractFactory is an interface:
AbstractFactory € inters

@ every factory method is abstract:
Vo € creators - isAbstract(o)

© every class in AbstractProducts is abstract:
VC € AbstractProducts - isAbstract(C)
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Formal Recognition of Design Patterns II

@ For each abstract product, there is a unique factory method
creator of AbstractFactory that returns the product:

VAP € AbstractProducts-

Jlcreator € creators - returns(creator, AP)

© The different creation operations and the concrete products
are connected by a special one-one correspondence.

{0 € opers(AbstractFactory)-
{s € subs(AbstractFactory) - red(o,s)}} —
{p € AbstractProducts - subs(p)} € iso(iso(returns))

xs — ys € iso(R) =
Vxexs-Jyeys-x—yeRAVyeys-Ilxexs-x—yeR
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Inferring Properties of Design Patterns |

Classes: AbstractClass € classes
Operations: templateMethod € opers(AbstractClass)

Conditions:

© templateMethod calls an abstract operation of AbstractClass.

Jdo € opers(AbstractClass)-
(templateMethod — o) € calls N
isAbstract(0)

@ every abstract operation must be redefined in a subclass

@ so abstract operations called by templateMethod are redefined
in concrete subclasses.
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Specialisations of Design Patterns

@ modulo renaming, Interpreter can be seen to be a
specialisation of Composite

@ six conditions for both plus the following for Interpreter alone

#interpret.parameters = 1A
dp € interpret.parameters -

type(p) = Context
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Conclusion

@ Advantages

e Easy to understand

e Helps clarify concepts

o Can explore alternative definitions

o Facilitate reasoning about design patterns
@ Open problems and future work

e Behavioural characteristics
e Tool support
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