Formalising Design Patterns in Predicate Logic

Software Engineering and Formal Methods '07

Dr lan Bayley and Prof Hong Zhu
Oxford Brookes University

12th September 2007

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Design Patterns

@ What is the purpose of Design Patterns?
e "to capture design experience in a form that people can use

effectively”
o from G4 book (6th most cited)

@ How are Design Patterns specified?
Name
Intent
Motivating example
Class Diagram
C++ code

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Facade Design Pattern

@ what do the arrows and boxes actually mean?

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Related Work

Shi & Olson (PINOT) - 2006

Lano et al (VDM++) - 1996

Lauder and Kent (three layer approach) - 1998
Mapelsden et al (DPML) - 2002

Eden (LePUS) - 2002

Taibi (pre/post conds and temporal logic) - 2006
Mikkonen (temporal logic of actions) - 1998

Le Guennec (extend UML meta-model) - 2000
Mak et al (action semantics) - 2004

@ open problems include expressiveness and support for formal
reasoning

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Our Approach

formalise structure of class diagrams

e using language GEBNF
o G=Graphical

specify extraction functions
pattern is a sentence of predicate logic
classes ... exist such that ... and ... and ...

OCL can only be used either to augment class diagrams or at
meta-level to define the notion of class diagrams themselves

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Graphical EBNF

o EBNF: repetitions are separate entities
@ Graphical models have several occurrences of same entity

e eg nodes and edges (set of pairs of nodes)
o eg classes and associations/generalisations

o GEBNF is EBNF extended with references

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Definition in Graphical Extended BNF

ClassDiagram =
classes : Class™,
inters : Interface™,

assocs : (Classifier, Classifier)*,

geners : (Classifier, Classifier)*,

deps : (Classifier, Classifier)*,

calls : (Operation, Operation)*

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

First Order Predicate Logic On Diagrams

@ domain of quantifiers are variables from graphical model
e classes and inters for the nodes
e assocs, geners, deps, calls

@ extraction functions

o eg isAbstract(C) tells whether a class C is abstract
o defined as part of the GEBNF

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Specification of Facade Design Pattern

@ domain of quantifiers are variables from graphical model

o classes and inters for the nodes
e assocs, geners, deps, calls

@ extraction functions

o eg isAbstract(C) tells whether a class C is abstract
o defined as part of the GEBNF

@ there's a subset of the classes ys such that any dependency
arrow to ys must either be from ys or Facade

Jys C classes A\VC € ys -VC' € classes-
(C'— C) € deps = C' € ysV C' = Facade

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Bridge Design Pattern

imp

Abstraction = [mplementor
Operation{} ¢ Operafiontmp()
imp-=Operationimpll;)\
ConcretelmplementorA ConcretelmplementorB
RefinedAbstraction
Operationimp() Operationtmp()

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Specification of Bridge Design Pattern |

Classes: Abstraction, Implementor € classes
Associations: Abstraction — Implementor € assocs

Conditions:

@ I/mplementor is an interface:
Implementor € inters

@ client dependencies are on Abstraction alone:
access({Abstraction}, {Implementor} U subs(Abstraction)
Usubs(Implementor))

© every operation in the subclasses of Abstraction call an
operation in Abstraction:
VA € subs(Abstraction) - Vo € opers(A) - 3o’ €
opers(Abstraction) - o — o' € calls

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Specification of Bridge Design Pattern |l

@ every operation in Abstraction calls an operation in
Implementor:
Vo € opers(Abstraction) - 3o’ € opers(Implementor) - 0 —
o' € calls

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Uses of Specification in Software Engineering

@ support software design

e recognise design patterns at design stage
e transformation of designs
e understanding of design patterns

o relationships between design patterns

@ specialisation
@ compatibility

@ deducing properties of design patterns

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Formal Recognition of Design Patterns |

Classes: AbstractFactory € classes,
AbstractProducts C classes

Operations: creators C opers(AbstractFactory)

Conditions:

@ AbstractFactory is an interface:
AbstractFactory € inters

@ every factory method is abstract:
Vo € creators - isAbstract(o)

© every class in AbstractProducts is abstract:
VC € AbstractProducts - isAbstract(C)

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Formal Recognition of Design Patterns II

@ For each abstract product, there is a unique factory method
creator of AbstractFactory that returns the product:

VAP € AbstractProducts-

Jlcreator € creators - returns(creator, AP)

© The different creation operations and the concrete products
are connected by a special one-one correspondence.

{0 € opers(AbstractFactory)-
{s € subs(AbstractFactory) - red(o,s)}} —
{p € AbstractProducts - subs(p)} € iso(iso(returns))

xs — ys € iso(R) =
Vxexs-Jyeys-x—yeRAVyeys-Ilxexs-x—yeR

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Inferring Properties of Design Patterns |

Classes: AbstractClass € classes
Operations: templateMethod € opers(AbstractClass)

Conditions:

© templateMethod calls an abstract operation of AbstractClass.

Jdo € opers(AbstractClass)-
(templateMethod — o) € calls N
isAbstract(0)

@ every abstract operation must be redefined in a subclass

@ so abstract operations called by templateMethod are redefined
in concrete subclasses.

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Specialisations of Design Patterns

@ modulo renaming, Interpreter can be seen to be a
specialisation of Composite

@ six conditions for both plus the following for Interpreter alone

#interpret.parameters = 1A
dp € interpret.parameters -

type(p) = Context

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

Conclusion

@ Advantages

e Easy to understand

e Helps clarify concepts

o Can explore alternative definitions

o Facilitate reasoning about design patterns
@ Open problems and future work

e Behavioural characteristics
e Tool support

Dr lan Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic

