
Formalising Design Patterns in Predicate Logic
Software Engineering and Formal Methods ’07

Dr Ian Bayley and Prof Hong Zhu
Oxford Brookes University

12th September 2007

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Design Patterns

What is the purpose of Design Patterns?

”to capture design experience in a form that people can use
effectively”
from G4 book (6th most cited)

How are Design Patterns specified?

Name
Intent
Motivating example
Class Diagram
C++ code

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Facade Design Pattern

what do the arrows and boxes actually mean?

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Related Work

Shi & Olson (PINOT) - 2006

Lano et al (VDM++) - 1996

Lauder and Kent (three layer approach) - 1998

Mapelsden et al (DPML) - 2002

Eden (LePUS) - 2002

Taibi (pre/post conds and temporal logic) - 2006

Mikkonen (temporal logic of actions) - 1998

Le Guennec (extend UML meta-model) - 2000

Mak et al (action semantics) - 2004

open problems include expressiveness and support for formal
reasoning

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Our Approach

formalise structure of class diagrams

using language GEBNF
G=Graphical

specify extraction functions

pattern is a sentence of predicate logic

classes ... exist such that ... and ... and ...

OCL can only be used either to augment class diagrams or at
meta-level to define the notion of class diagrams themselves

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Graphical EBNF

EBNF: repetitions are separate entities

Graphical models have several occurrences of same entity

eg nodes and edges (set of pairs of nodes)
eg classes and associations/generalisations

GEBNF is EBNF extended with references

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Definition in Graphical Extended BNF

ClassDiagram =

classes : Class+,

inters : Interface∗,

assocs : (Classifier ,Classifier)∗,

geners : (Classifier ,Classifier)∗,

deps : (Classifier ,Classifier)∗,

calls : (Operation,Operation)∗

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



First Order Predicate Logic On Diagrams

domain of quantifiers are variables from graphical model

classes and inters for the nodes
assocs, geners, deps, calls

extraction functions

eg isAbstract(C) tells whether a class C is abstract
defined as part of the GEBNF

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Specification of Facade Design Pattern

domain of quantifiers are variables from graphical model

classes and inters for the nodes
assocs, geners, deps, calls

extraction functions

eg isAbstract(C) tells whether a class C is abstract
defined as part of the GEBNF

there’s a subset of the classes ys such that any dependency
arrow to ys must either be from ys or Facade

∃ys ⊆ classes ∧ ∀C ∈ ys · ∀C ′ ∈ classes·

(C ′ 7→ C ) ∈ deps ⇒ C ′ ∈ ys ∨ C ′ = Facade

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Bridge Design Pattern

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Specification of Bridge Design Pattern I

Classes: Abstraction, Implementor ∈ classes

Associations: Abstraction 7→ Implementor ∈ assocs

Conditions:

1 Implementor is an interface:
Implementor ∈ inters

2 client dependencies are on Abstraction alone:
access({Abstraction}, {Implementor} ∪ subs(Abstraction)
∪subs(Implementor))

3 every operation in the subclasses of Abstraction call an
operation in Abstraction:
∀A ∈ subs(Abstraction) · ∀o ∈ opers(A) · ∃o ′ ∈
opers(Abstraction) · o 7→ o ′ ∈ calls

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Specification of Bridge Design Pattern II

4 every operation in Abstraction calls an operation in
Implementor :
∀o ∈ opers(Abstraction) · ∃o ′ ∈ opers(Implementor) · o 7→
o ′ ∈ calls

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Uses of Specification in Software Engineering

support software design

recognise design patterns at design stage
transformation of designs
understanding of design patterns

relationships between design patterns

specialisation
compatibility

deducing properties of design patterns

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Formal Recognition of Design Patterns I

Classes: AbstractFactory ∈ classes,
AbstractProducts ⊆ classes

Operations: creators ⊆ opers(AbstractFactory)

Conditions:

1 AbstractFactory is an interface:
AbstractFactory ∈ inters

2 every factory method is abstract:
∀o ∈ creators · isAbstract(o)

3 every class in AbstractProducts is abstract:
∀C ∈ AbstractProducts · isAbstract(C )

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Formal Recognition of Design Patterns II

4 For each abstract product, there is a unique factory method
creator of AbstractFactory that returns the product:

∀AP ∈ AbstractProducts·
∃!creator ∈ creators · returns(creator ,AP)

5 The different creation operations and the concrete products
are connected by a special one-one correspondence.

{o ∈ opers(AbstractFactory)·
{s ∈ subs(AbstractFactory) · red(o, s)}} 7→
{p ∈ AbstractProducts · subs(p)} ∈ iso(iso(returns))

xs 7→ ys ∈ iso(R) ≡
∀x ∈ xs · ∃!y ∈ ys · x 7→ y ∈ R ∧ ∀y ∈ ys · ∃!x ∈ xs · x 7→ y ∈ R

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Inferring Properties of Design Patterns I

Classes: AbstractClass ∈ classes

Operations: templateMethod ∈ opers(AbstractClass)

Conditions:

1 templateMethod calls an abstract operation of AbstractClass.

∃o ∈ opers(AbstractClass)·
(templateMethod 7→ o) ∈ calls ∧
isAbstract(o)

every abstract operation must be redefined in a subclass

so abstract operations called by templateMethod are redefined
in concrete subclasses.

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Specialisations of Design Patterns

modulo renaming, Interpreter can be seen to be a
specialisation of Composite

six conditions for both plus the following for Interpreter alone

#interpret.parameters = 1∧
∃p ∈ interpret.parameters ·
type(p) = Context

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic



Conclusion

Advantages

Easy to understand
Helps clarify concepts
Can explore alternative definitions
Facilitate reasoning about design patterns

Open problems and future work

Behavioural characteristics
Tool support

Dr Ian Bayley and Prof Hong Zhu Oxford Brookes University Formalising Design Patterns in Predicate Logic


