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Abstract. Emergent behaviour (EB) is a common phe-
nomenon in multi-agent systems (MAS) where autono-
mous agents perform certain actions with only limited 
access to local information and make decisions individu-
ally, while the whole system demonstrates properties and 
behaviours that have strong global features. Because of 
the huge gap between individual agents’ properties and 
behaviours and those of the whole system, specifying and 
reasoning about EBs are difficult. In this paper, we pro-
pose a framework to the specification of and reasoning 
about EBs based on our previous work on the SLABS 
language for the formal specification of MAS. We investi-
gate the uses of the scenario specification in SLABS for 
the definition of EBs of MAS and study the properties of 
scenario inclusion, scenario transition and scenario up-
date. The uses of these properties in the proofs of MAS’ 
EBs are illustrated by an example.  
 

1. Motivation 
In the development of software for service-oriented 

and Grid computing, it is essential but difficult to under-
stand how the system as a whole will behave while its 
components behave autonomously. On the other hand the 
specification and design of each individual component 
must take into consideration of the state and behaviour of 
the whole system, which is the environment that individ-
ual components execute in and operate on. There is a wide 
gap between individual components’ properties and be-
haviours and the whole system’s properties and behav-
iours. This is known as the emergent behaviour (EB) 
problem; c.f. [1]. This paper proposes a formal system to 
facilitate the specification of and reasoning about systems 
that consist of multiple autonomous agents.  

EB is a common phenomenon in multi-agent systems 
(MAS), such as in the Amalthaea system for web informa-
tion retrieval and filtering [2], the ecosystem for resource 
allocation in a distributed environment [3], as well as in 
e-commerce (such as online auctions), simulation (such as 
ant colony optimisation), and many other application areas. 
Therefore, understanding EBs and facilitating the specifi-
cation of and reasoning about EBs of MAS are very im-
portant to the development of MAS.  

In the past few years, intensive research on EB of 
MAS has been done in artificial intelligence. Various 
mathematical models of specific types of MAS in particu-

lar application areas have been developed and studied, e.g. 
[3]. Formal logics of belief, desire and intension of intel-
ligent agents were proposed, c.f. [4]. Formal specification 
of agent in Z notation was also investigated [5]. In our 
previous work, a formal specification language SLABS 
was proposed for engineering MAS [6, 7]. It has also be 
used in formal specification of evolutionary MAS [8]. 
However, we are still lack of a general formal logic sys-
tem for specifying and reasoning about the EBs of MAS. 
This paper reports our work on such a logic system based 
on SLABS and the notion of scenarios.  

The remainder of the paper is organised as follows. 
Section 2 briefly review the formal specification language 
SLABS. Section 3 studies the properties of scenarios and 
illustrates its uses in the specification of and reasoning 
about EBs. Section 4 concludes the paper with a discus-
sion of further work.  

2. Specification of MAS in SLABS 

2.1. The specification language SLABS 
SLABS stands for Specification Language for 

Agent-Based Systems [6,7]. A novel concept introduced 
by in SLABS is the notion of caste, which is a natural 
evolution of the OO concept of class. The agents in a 
MAS are classified by a partially ordered set of castes. 
Castes are the templates of agents which defines a set of 
structure, behaviour and environment features. An agent 
can join into or quit from a caste at run-time. Case studies 
have shown that caste can play a significant role in the 
development of MAS [9]. 

The specification of a MAS in SLABS consists of a set 
of specifications of castes in the following form.  
Caste C <= C1, …, Ck; 
 ENVIRONMENT EC1, …, ECw; 
  VAR    *v1:T1, …, *vm:Tm; u1:S1, …, ul:Sl; 
  ACTION *A1(p1,1, …, p1,n1), …, *As(ps,1,…, ps,ns);  
      B1(q1,1,…, q1,m1), …, Bt(qt,1,…, qt,mt); 
  RULES  R1, R2, …, Rh 
End C; 

The clause 'C <= C1, ..., Ck' specifies that caste C in-
herits the structures, behaviours and environments of 
castes C1, ..., Ck. We write tA C∈ to denote that agent A 
belongs to caste C at time t.  

The state space of an agent is described by a set of 
variables with keyword VAR. The set of actions is de-
scribed by a set of identifiers with keyword ACTION. An 
action can have a number of parameters. An asterisk be-
fore the identifier indicates invisible variables and actions.  
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In SLABS, an agent’s environment can be explicitly 
specified by clauses in the following forms to define a 
subset of the agents in the system that may affect its be-
haviour. (a) ‘agent name’ indicates a specific agent in the 
system; (b) 'All: caste-name' means all the agents of the 
caste; (c) “identifier: class-name” is a variable that any agent 
in the caste can be assigned to.  

Agents’ behaviours are defined by transition rules in 
the following form.  
Behaviour-rule ::= [<rule-name>] pattern|[ prob]−>event,  

[If Scenario] [where pre-cond]; 
where the pattern describes the pattern of the agent's pre-
vious behaviour. The scenario describes the situation in the 
environment. The event is the action to be taken when the 
scenario happens and the pre-condition is true, which is 
given in the where-clause. An agent may have a 
non-deterministic behaviour if multiple rules are applica-
ble. The expression prob defines the probability for the 
agent to take the specified action on the scenario. It can be 
omitted so that the choices are non-deterministic. 

A pattern describes the behaviour of an agent by a se-
quence of observable state changes and observable actions. 
It is written in the form of [p1, p2, ..., pn] where n≥0. Table 
1 gives its formats and meanings.  

Table 1. Meanings of the patterns 
Pattern Meaning 

$ The wild card, which matches with all actions 
τ Silence 
X  Action variable, which matches an action 

Act (a1, ...ak) 
An action Act that takes place with parameters 
match (a1, ...ak) 

[p1,..., pn]  The previous sequence of events match the pat-
terns p1, ..., pn  

A scenario is a combination of a set of agents’ behav-
iours and states that describe a global situation in the op-
eration of the system. Table 2 gives the format and seman-
tics of scenario descriptions in SLABS.  

Table 2. Semantics of scenario descriptions 
Scenario Meaning 
Predicate The state of the agents satisfies the predicate 

A=B    
(or A≠B) 

The identifiers A and B refer to the same (or dif-
ferent) agent 

A∈C Agent A is in the caste C 
A:P Agent A's behaviour matches pattern P 

∀X∈C.Sc The scenario Sc[X/A] is true for all agents A in 
caste C.  

∃[m]X∈C.Sc 
There are m agents in caste C such that Sc[X/A] is 
true, where the default value of the optional ex-
pression m is 1. 

S1 & S2 Both scenario S1 and scenario S2 are true 
S1 ∨ S2 Either scenario S1 or S2 or both are true 

¬ S Scenario S is not true 
The following expressions can also occur in a scenario 

as a part of a predicate.  
• Set relation expressions in the form of {X∈Caste | X : 

Pattern}, which is the set of agents whose behaviour 
matches the pattern;  

Arithmetic relations may contain an expression in the 
form of (a) A.V, which refers to the variable V of agent A, 
(b) µX∈C.Sc, which is the number of agents A in caste C 
such that Sc[X/A] is true, where Sc is a scenario. 

The following is an examples of scenarios. It describes 
the situation that there are more agents in the caste Voter 
who vote Bush, vote(Bush), than those in the caste who 
vote for other candidates other than Bush.  
 µX(Voter.X:[ vote(Bush) ] >(X( (Voter.X:[vote(Y)] & 
Y(Bush)  

Agents behave in real-time concurrently and autono-
mously. A time index set T can be a subset of real numbers 
[t0, ∞), i.e. T={t | t∈R & t ≥ t0}.  

A run r of a MAS is a mapping from time t to the set 

, ,
1

i i

n

A t A t
i

S
=

× Σ∏ , Where ,A tS and ,A tΣ  are agent A’s state 

space and the set of actions at time t. The behaviour of a 
MAS is defined by the set R of possible runs. For any 
given run r, the restriction of r(t) on , ,A t A tS × Σ written as 

( )Ar t , is a run of agent A in the context of r. We also write 
RA ={rA | r∈R}.  

We assume that a MAS has the following properties. (a) 
Actions are instantaneous. (b) An agent may be silent τ 
(i.e. take no action) at a time moment t. (c) Any two ac-
tions taken by an agent must be separated by a none-zero 
period of silence. Consequently, an agent can take at most 
a countable number of non-silent actions in its lifetime.  

The global state Sg of the system at any time moment t 

belongs to the set , ,
1

i i

n

A t A t
i

S
=

× Σ∏ . However, each agent A 

can only view the externally visible states and actions of 
the agents in its environment. In other words, an agent A 
can only view a part of Sg in the space

,

, ,
A t

V V
X t X t

X Evn

S
∈

× Σ∏ , 

where EnvA,t denotes the set of agents that are in A’s envi-
ronment at time t, SX,t

V and∑X,t
V denote the visible part of 

agent X’s state and action at time t. The history of a run r 
up to time t, written as r↓t, is a mapping that is the restric-
tion of r to the subset { }x t x T≤ ∈ of T.  

Let A be any given agent in a MAS. Let c1, ..., cn , ... 
∈ { }A τΣ − be the sequence of non-silent actions taken by 
agent A in a run r and t1, t2, ..., tn, ...∈T are the times of the 
actions, i.e. ( )C

A i ir t c=  for all i =1, 2, ..., n, .... At a time 
moment t∈T, we say that cn is agent A's current action, and 
cn+1 the next action, if 1n nt t t +≤ < . Let si be the state of 
agent A at time ti, we write Current(rA↓t)=<tn, sn, cn> , 
Next(rA↓t)=<tn+1, sn+1, cn+1>,  and Events(rA↓t)=<<t1, s1, 
c1>, ..., <tn, sn, cn>>.  

Let Sc be a scenario. We write : |A r t Sc↓ =  to denote 
that from agent A's point of view, the scenario Sc occurs at 
time moment t in a run r. When taking a global view, we 
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omit the viewer and write r t Sc↓ = . A formal definition 
of the notation can be found in [6]. 

The following define what meant by a correct imple-
mentation of a specification in SLABS. Let S be a formal 
specification in SLABS, M a MAS, and RULEA the set of 
behaviour rules specified in S for A. 
Definition 1.  

Agent A in M always follows a set R of rules, iff in all 
runs r of M, ∀t∈T.∃<Sc |→e; p>∈R. (A:r↓t|=(Sc & p) 
⇒Next(rA↓t)=e), and we write A/M|= R. A MAS M always 
follows S, iff for all A in M, A always follows RULEA,t. 
Formally, ∀A∈M.( A/M|= RULEA,t), we write M|=AS. � 

Informally, at any time in a run of a MAS, an agent A 
that always follows a set R of behaviour rules will 
non-deterministically select one rule ρ from the applicable 
subset of R and then apply ρ, if the subset of applicable 
rules is non-empty.  

It is worth noting that, the definition above gives the 
freedom to the agents to do anything that they like when 
there is no applicable rules. This enables the verification 
and validation of a MAS against a ‘partial’ specification of 
its behaviour. Such partial specifications are of particular 
importance in collaborative software development such as 
in service-oriented computing [10, 11]. The following 
definition still gives agents this freedom, but prevent them 
from taking actions unexpected.  
Definition 2. 

Let W be a subset of the actions that agent A can take. 
We say that A always strictly follows a set R of behaviour 
rules for actions in W, and write A/M |=S(W)R , if A always 
follows R and ∀t∈T.∀r∈M, rA

C(t)=e∈W ⇒ ∃t’∈T. 
∃<Sc|→e; p>∈R.(r↓t’|=(Sc&p) & Next(rA↓t’)=(t, e).  

A MAS M strictly follows S, written as M|=SS, if and 
only if for all A in M, A always strictly follows RULEA for 
all actions specified in S. � 
Definition 3.  

Agent A in M faithfully follows a set R of rules, written 
as A:r↓t |=F R, iff for all runs r and time moments t, (<Sc 
|→e; p>∈R &A:r↓t |=(Sc & p) implies that there is a run r’ 
of M such that for all u≤ t∈T.(r’(u)=r(u)) and 
Next(r’A↓t)=e.  

A MAS M faithfully follows S, written as M|=FS, if and 
only if for all A in M, A faithfully follows RULEA. � 
Definition 4. (Correctness of implementation) 

A MAS M is a correct implementation of specification 
S, written as M|=S, iff M always follows S strictly and 
faithfully. Formally, M|=S ⇔ M|=AS & M|=SS & M|=FS. � 

2.2. Example: Autonomous sorting 
In this subsection, we give an example of the formal 

specification of MAS. It is a simplified version of the 
sorting program in [12]. The original program can be 
found at URL http://diet-agents.sourceforge.net.   
Example 1. (SortingSpec) 

In this MAS, the agents can introduce one to another 

by passing through the identity of an agent that it knows.  
CASTE Sociable; 
  ENVIRONMENT ALL: Sociable; 
  ACTION Introduce( Sociable /*to whom*/ , Sociable /*of whom*/ ); 
END. 

Social agents are further divided into two sub-castes: 
Linker and Mediator. Each linker carries a value and can 
link to two other agents through channels Higher and 
Lower. Mediators only introduce agents to each other. An 
EB of the system may occur if each linker only connects 
through the Higher channel to an agent that carries a 
greater value and connects through the Lower channel to 
an agent that carries a less value. When all linkers are 
connected, the values carried by them are sorted. The me-
diator agents take random actions to introduce Linker 
agents to each other, which triggers the Linker agents to 
change their connections.  
CASTE Linker <= Sociable; 
  ENVIRONMENT Higher, Lower: Linker; All: Mediator; 
  VAR *Value: INTEGER; 
  BEGIN 
    <I--Initialisation> <>  |→ Lower:= NIL; Higher:= NIL; 
    <IH--Introduced to a better higher friend> 
       [$]  |→ Higher:=Ag; IF ∃X∈ Sociable.X:[Introduce(Self, Ag)],  
             WHERE Ag.Value > Self.Value & ((Higher = NIL) ∨ 

 (Higher ≠ NIL & Higher.Value > Ag.Value)) 
    <IL--Introduced to a better lower friend>  
       [$]  |→ Lower:=Ag; IF ∃X∈ Sociable.X:[Introduce(Self, Ag)]  
             WHERE Ag.Value < Self.Value & (Lower = NIL) ∨ 

 ((Lower ≠ NIL)& (Lower.Value < Ag.Value))) 
END Linker; 
CASTE Mediator <= Sociable; 
BEGIN [$]  |→ Introduce(A, B); WHERE A ∈ Linker & B ∈ Linker 
END Mediator.   � 

An execution of a system that correctly implements 
SortingSpec will evolve into the state shown in Figure 1. 

 
 
 

 
Figure 1. The emergent state of the MAS 

This emergent state can be formally expressed in 
SLABS by the following scenario Fully-Linked.  
Fully-Linked =  ∃[1]A∈Linker.(A.Higher=NIL)  

& ∃[1]A∈Linker.(A.Lower=NIL) 
& ∀A∈Linker.(A.Higher≠NIL⇒∃B∈Linker.(A.Higher=B& B.Lower=A)) 
& ∀A∈Linker.(A.Lower≠NIL)⇒∃B∈Linker.(A.Lower=B & B.Higher=A) 

The statement that in a run M of a multi-agent 
autonomous sorting system M that satisfies the above 
specification SortingSpec of autonomous sorting is in the 
scenario of Fully-Linked at time moment t can be formally 
expressed as M↓t |= Fully-Linked.  

Let F1={A∈Linker | A.Lower=NIL}, and  
Fn+1={A∈Linker | ∃B∈Fn.(A.Lower=B & B.Higher=A)}.  

When this statement is true, the system has that the 
following property.  
M↓t|=Fully-Linked⇒M↓t |=∀i∈{1,…,||Linker||}.(||Fi||=1) 

Assume that the system is in the Fully-Linked scenario. 

A1A2 A3 An

HigherHigher
…

Higher
NIL 

Lower Lower
NIL 

Higher 

Lower 

Higher 

Lower Lower
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Let Ai ∈Fi. The values carried by agents A1, A2, …, An are 
in the ascending order. This can be formally expressed by 
the following statement.  

∀i∈{1,…,||Linker||−1}.(Ai.Value<Ai+1.Value). 
Another very important property of the system is that 

in any run of a MAS that strictly follows SortingSpec, it 
will eventually come to the scenario of Fully-Linked. In 
general, let M be any given MAS and Sc be a given sce-
nario. We write M Sc to denote that ∀M∈M.∃t∈T. (M↓t 
|=Sc). The EB of autonomous sorting can then be formally 
expressed by the statement (S1) below.   

M|=SortingSpec ⇒ M Fully-Linked  (S1) 
Note that, without the strictness condition, a linker 

may update its Higher/Lower channels without following 
the behaviour rules. Hence, it may connect to any agents 
regardless the value carried by them.  

If the MAS strictly follows SortingSpec, it will not 
only eventually come to the state of Fully-Linked, but also 
stay in the state although mediators are still making intro-
ductions to the linker agents. This is the convergence 
property of the MAS. In general, we write M↓@ |=Sc to 
denote that ∃t∈T.(∀t’∈T.(t’≥t⇒M↓t’|=Sc), and M  Sc to 
denote that ∀M∈M.( M↓@ |=Sc). Therefore, we have that 

M|=SortingSpec ⇒ M Fully-Linked.  (S2) 
In the next section, we will discuss how to prove the 

above statements.  

3. Reasoning about emergent behaviours 
To enable the formal reasoning about MAS’ behav-

iours, we define two relations on scenarios and an opera-
tor on scenarios and study their properties. For the sake of 
space, we will omit the proofs in the paper.  

3.1. Scenario inclusion relation 
One of the basic relation between scenarios is the in-

clusion relation ⇒. Informally, Sc1⇒Sc2 means that, if the 
system is in scenario Sc1, it is also in scenario Sc2. 
Definition 5. (Scenario inclusion) 

A scenario Sc1 implies scenario Sc2 in a MAS M, writ-
ten M |= Sc1⇒Sc2, if and only if for all runs M and at all 
time moments t∈T, M↓t|=Sc1 implies that M↓t|=Sc2. � 

The inclusion relation has the following properties.  
Lemma 1. For all agents A, and patterns [P1, P2,…Pn], we 
have that for all M,   
(1) M|= A:[P1, P2,…Pn] ⇒ A:[P2,…Pn]; 
(2) M|= A:[P1, …, Pn] ⇒ A:[P’1, …, P’n], if for all 

i=1,2,…,n, Pi=P’i or Pi=$. � 
Lemma 2.  
(1) For all predicates pred1 and pred2 defined on the state 

space of a MAS M, M |= pred1⇒pred2, if pred1⇒pred2 
is true in first order predicate logic. 

(2) For scenarios S1 and S2, we have that for all M, M |= 
S1⇒S2, if 1 2

ˆ ˆS S⇒ , where ˆ
iS  is obtained from Si, 

i=1, 2, by replacing patterns with propositions. � 
By the above lemmas, we can see that ⇒ is just the 

logic connective implication if patterns are considered as 
propositions.  
Example 2.  

Consider the MAS specified in section 2.2. Suppose 
that a Linker agent A is connected to agent B through the 
Higher channel and A is introduced to agent C, which car-
ries a value greater than the value carried by A but less 
than the value carried by B. This situation can be formally 
expressed as follows.  
Better-Higher-Introduced  

= (A.Higher=B) & ∃X∈Sociable.(X:[Introduce(A,C)]  
& (C.Value < B.Value) & (C.Value > A.Value)) 

Intuitively, according to Linker’s specification, the IH 
behaviour rule should be enabled. By Lemma 2, we can 
formally prove that  
(1) Better-Higher-Introduced implies the scenario of the 

IH rule, i.e. Better-Higher-Introduced ⇒ 
∃X∈Sociable.(X:[Introduce(A,C)]) 

(2) Better-Higher-Introduced implies that the precondi-
tion of the IH rule is true, i.e. Better-Higher-Introduced 
⇒ C.Value > A.Value & ((A.Higher = NIL) ∨ (A.Higher ≠ 
NIL & A.Higher.Value > C.Value)) � 

3.2. Scenario update 
In Example 2, we have shown that agent A in scenario 

Better-Higher-Introduced can apply the behaviour rule IH. 
When the rule is applied, agent A’s Higher channel will be 
updated so that it connects to C. Consequently, the system 
will be in a different scenario. We will write Sc^(A:E) to 
denote the scenario after agent A taking an action E in the 
scenario Sc. The following definition formally defines this 
operator.  
Definition 6. (Scenario update) 

Let Sc be any given scenario, A an agent, and E an ac-
tion that can be taken by agent A. We define Sc^(A:E) to 
be the scenario that for all run r of the system r↓tn+1 |= 
Sc^(A:E) if and only if r↓t|=Sc and Next(rA↓t)=<tn+1, sn+1, 
cn+1> and E=<sn+1, cn+1>. � 

The operator ^ has the following properties.  
Lemma 3. For all scenarios S, S1, S2, agents A and B, and 
actions E, we have the following properties of the ^ op-
erator. 
(1) M |= (S1&S2)^(A:E) ⇔ S1^(A:E) & S2^(A:E) 
(2) M |= (S1 or S2)^(A:E) ⇔ S1^(A:E) or S2^(A:E) 
(3) M |= A:[P1, P2,…Pn]^(A:E) ⇔ A:[P1, P2,…Pn, E] 
(4)M|=B:[P1,…Pn]^(A:E)⇔(B:[P1,…Pn])&(A:[E]),if A≠B. 
(5) M |= (∀x∈C.S)^(A:E) ⇔ (∀x∈C.S)& (A:[E]), if A∉C.  
(6) M |= (∀x∈C.S)^(A:E)  

⇔ (∀x∈C.(x≠A⇒S))& (S[x/A]^A:E), if A∈C.  
(7) M|=(∃x∈C.S)^(A:E)⇔ (∃x∈C.S)& (A:[E]), if A∉C.  
(8) M |= (∃x∈C.S)^(A:E)  

⇔ (∃x∈C.( x≠A & S) or (S[x/A]^(A: E), if A∈C,  
where S[x/A] is obtained by replacing free occurrences of 
the variable x systematically with A. � 
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Lemma 4. Let Pred be any predicate on the state of a 
MAS M, A any agent in M, and E an action that A can 
take. We have that M |= Pred^(A:E) ⇔ s.p.c(Pred), where 
s.p.c(Pred, A, E) is the strongest post-condition of Pred 
w.r.t. to A’s action E. �   
Example 3. For example, consider the autonomous sort-
ing system. 
(1) The strongest post condition of the predicate (C.Value 

> B.Value) with respect to agent A’s action Higher:=C 
is that (C.Value > B.Value) & (A.Higher=C).  

(2) The strongest post condition of the predicate 
(A.Higher=B) w.r.t. to the action Higher:=C is 
(A.Higher=C). �  

Example 4.  
Continuing Example 2, we can see that after agent A’s 

application of the IH rule, the system will be in the sce-
nario that A is in the state Better-Higher-Introduced^ 
(A:Higher:=C). By the properties of ^ operator and ⇒, we 
can derive that Better-Higher-Introduced^(A:Higher:=C) ⇒ 
(A.Higher=C). �   

3.3. Scenario transition 
Having proved that after agent A applies the behaviour 

rule IH in the scenario Better-Higher-Introduced, the sys-
tem will be in the scenario A.Higher=C, we would like to 
formally express that there is a relationship between these 
two scenarios. The following definition defines a relation 
→ on scenarios such that S1→S2 means the system in a 
state in scenario S1 can evolve into a state in scenario S2.  
Definition 7. (Scenario transition) 

Let S1 and S2 be two scenarios of a MAS M. We say 
that S1 can lead to S2 in the system M and write M 
|=S1→S2 if and only if there is a run M of the system M 
and time moments t1 < t2 ∈T, we have that M↓t1 |= S1 and 
M↓t2 |= S2. � 

The relation → has the following properties.  
Lemma 5. Let S, S1, S2, S3 be scenarios of a MAS. 
(1) M |=S1→S2 and M |=S2→S3 imply that M |=S1→S3; 
(2) M |=S1⇒S2 and M |=S2→S3 imply that M |=S1→S3; 
(3) M|=S1→S2 and M|=S2⇒S3 imply that M|=S1→S3. � 
Lemma 6.  

If an agent A in a MAS follows behaviour rule <S|→ E; 
P>, for all assignments α, α(S&P) → α((S&P)^(A:E)). �  
Example 5. 

Let α be an assignment such that α(Ag)=C and 
α(Self)=A. Let 
IH-Premise = α((∃X∈ Sociable.(X : [Introduce(Self, Ag)])) 
 (Ag.Value>Self.Value & ((Higher = NIL)  

∨ (Higher ≠ NIL & Higher.Value > Ag.Value))))  
By Example 2, Better-Higher-Introduced ⇒ IH-Premise.  
Let IH-Result =α((∃X∈ Sociable.(X : [Introduce(Self, Ag)]))  
 & (Ag.Value>Self.Value & ((Higher=NIL) 

∨ (Higher≠NIL&Higher.Value>Ag.Value)))^ (A: Higher:=Ag)) 
By Example 4, IH-Result ⇒ A.Higher=C. By Lemma 

6, IH-Premise → IH-Result → (A.Higher=C). � 
By the properties of the scenario transitions, we can 

prove the reachability of a scenario in a MAS.   
Example 6. (Reachability)  

Consider the autonomous sorting MAS. We now prove 
that it can lead to the scenario of Fully-Linked. The fol-
lowing is an outline of the proof. 
(1) Assume that there are N>0 Linker agents, K>0 Media-

tor agents, and Linker agents Ai.Value<Ai+1.Value, 
i=1, …, N−1. Initially the system is in the scenario that 
no agents are linked to each other. That is, 
Initial-State =∀X∈Linker.(X.Lower=NIL& X.Higher=NIL) 

(2) From the initial state, assume that mediator agents 
introduce agents Ai and Ai+1 to each other in the order 
that i=1,2, …, N−1. Although this is probably not to 
happen when the mediators selects the introduction ac-
tion at random, but this is still possible.  

(3) Then, we can prove that Linkedk→Linkedk+1 for all 
k=0,1, …, N, where Linkedk is depicted in Figure 2. 

 
 
 
 
 

 
Figure 2. The scenario Linkedk 

(4) Finally, notice that LinkedN = Fully-Linked. By Lemma 
5(2), we have Initial-State → Fully-Linked.  
Therefore, we can prove that autonomous sorting algo-

rithm can reach the Fully-Linked state. � 

3.4. Example: Autonomous sorting 
Now, let’s prove that a correct implementation will 

always evolve into the Fully-Linked state. Moreover, once 
reached this state, it will stay in the state.  

For each Linker agent Ai, i=1,2, …, n, in an autono-
mous sorting system M, we define scenario Ai-H-LinksToj 
and Ai-H-NotLinked as follows. 

Ai-H-LinkedToj⇔(Ai.Higher=A j), 
Ai-H-NotLinked⇔Ai.Higher=NIL. 

If M|=SortingSpec, we can prove that in any run r of 
the system M, at all time moment t, r↓t|=Ai-H-LinkedToj 
implies that i<j. Otherwise, assume that at time moment t, 
we have that i≥j. Then, there must be a time moment t’ 
such that agent Ai assigned the value Aj to its Higher vari-
able. Since M strictly follows the behaviour rules for 
Linker agents, Ai’s assignment of Aj to its Higher variable 
must have been followed the behaviour rule IH. Therefore, 
we have that Ai.Value<Aj.Value. Thus, i<j. This is contra-
diction to the assumption. Consequently, agent Ai must be 
in one of the scenarios Ai-H-NotLinked and 
Ai-H-LinkedToj, where j = i+1, i+2,…, n. The set of sce-
narios is called complete. It is also orthogonal in the sense 
that at any time at most one of them can be true.  

Similar to Example 6, we can prove that for all i, j and 
k, i< j < k, and i, j, k=1,2,…, n, Ai-H-LinksTok→ 
Ai-H-LinksToj and Ai-H-NotLinked → Ai-H-LinksToj. That 
is, we have the following state transition diagram for 

A1 A2 Ak 
Higher Higher

……

Lower Lower

NIL 

NIL 

An

Higher

NIL 

Lower 

NIL 

Ak+1 

NIL 

Lower
NIL 

Higher 

Lower

Higher



H. Zhu, Formal Reasoning of Emergent Behaviour (to appear in Proc. of SEKE’05) 21/04/2005 

 ~ 6 ~ 

agent Ai, where node labeled with k represents scenario 
Ai-H-LinkedTok and node labeled with ∞ represents the 
scenario Ai-H-NotLinked.  

  
 
 
 
 

Figure 3. State transition diagram for Linker agent Ai 
From this diagram, it is easy to see that Linker agent Ai 

will eventually evolve to the state in scenario 
Ai-H-LinkedTo(i+1).  

Similarly, we can prove that for each Linker agent Ai, 
the following set of scenarios is complete and orthogonal.  

Ai-L-LinkedToj⇔(Ai.Lower=A j), j=1, 2, …, i−1. 
Ai-L-NotLinked⇔Ai.Lower=NIL. 

Moreover, we have the following transitions between 
the scenarios. For all i>j>k =1,2,…, n,   

Ai-L-LinksTok→ Ai-L-LinksToj and  
Ai-L-NotLinked → Ai-H-LinksToj. 

Therefore, the Linker agent Ai will also eventually 
evolve into the state in scenario Ai-L-LinkedTo(i−1).  

Notice that, Fully-Linked ⇔ ∀i∈(1,…,n−1). 
Ai-H-LinkedTo(i+1) & ∀i∈(2,…,n). Ai-L-LinkedTo(i−1) & 
A1-L-NotLinked & An-H-NotLinked.  

Therefore, we proved that a correct implementation M 
of the specification SortingSpec will eventually evolve 
into the Fully-Linked state, i.e. statement (S1) is true.  

Because both sets L-LinksTo and H-LinksTo of scenar-
ios are complete and there is no state transition from the 
state of Ai-H-LinkedTo(i+1) or Ai-L-LinkedTo(i−1), the system 
will stay in the Fully-Linked state when it achieves it. 
Thus, statement (S2) is true.  

It is worthy noting that, the following two scenarios 
have the same properties of the Fully-Linked scenario.  
Fully-H-Linked =  

∀i∈(1,…,n−1). Ai-H-LinkedTo(i+1) & An-H-NotLinked, 
Fully-L-Linked =  

∀i∈(2,…,n). Ai-L-LinkedTo(i−1) & A1-L-NotLinked. 
We can prove the following statements.  
M|=SortingSpec ⇒ M Fully-H-Linked, (S1.H) 
M|=SortingSpec ⇒ M Fully-H-Linked, (S2.H) 
∀t∈T. (M↓t|= Fully-H-Linked  

⇒∀i∈{1,…,||Linker||−1}.(Ai.Value<Ai+1.Value)). 
The similar statements hold for Fully-L-Linked sce-

nario. Therefore, they can also be considered as the emer-
gent states of autonomous sorting. The following formally 
state relationships between these three emergent states.  

Fully-Linked ⇒ Fully-H-Linked, 
Fully-Linked ⇒ Fully-L-Linked.  
An interesting property of the emergent states 

Fully-H-Linked and Fully-L-Linked is that the system still 
dynamically change it state and perform actions when it is 
in such a scenario. This is the dynamic feature of EB.  

4. Conclusion 
In this paper, we presented a framework to specify and 

prove the EBs of MAS. The method is illustrated by an 
example of autonomous sorting. The concept of scenario 
plays the central role in the method. Based on the formal 
semantics of the specification language SLABS, we inves-
tigated the properties of the scenario inclusion relation ⇒, 
the scenario transition relation → and the update operator 
^ on scenarios. We are further studying the properties of 
scenarios, such as complete and orthogonal systems of 
scenarios. Our preliminary study shows that the concept of 
scenarios is expressive and suitable for the study of EBs. 
We are also investigating how the concepts proposed in 
this paper are related to existing formalisms in software 
specification and proof, such as Hoare logic, process al-
gebra, temporal logic, and modal logics, etc.  
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