H. Zhu, Formal Reasoning of Emergent Behaviour (to appear in Proc. of SEKE’05)

21/04/2005

Formal Reasoning about Emergent Behaviours of Multi-Agent Systems

Hong Zhu

Department of Computing, School of Technology, Oxford Brookes University,
Wheatley Campus, Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

Abstract. Emergent behaviour (EB) is a common phe-
nomenon in multi-agent systems (MAS) where autono-
mous agents perform certain actions with only limited
access to local information and make decisions individu-
ally, while the whole system demonstrates properties and
behaviours that have strong global features. Because of
the huge gap between individual agents’ properties and
behaviours and those of the whole system, specifying and
reasoning about EBs are difficult. In this paper, we pro-
pose a framework to the specification of and reasoning
about EBs based on our previous work on the SLABS
language for the formal specification of MAS. We investi-
gate the uses of the scenario specification in SLABS for
the definition of EBs of MAS and study the properties of
scenario inclusion, scenario transition and scenario up-
date. The uses of these properties in the proofs of MAS’
EBs are illustrated by an example.

1. Motivation

In the development of software for service-oriented
and Grid computing, it is essential but difficult to under-
stand how the system as a whole will behave while its
components behave autonomously. On the other hand the
specification and design of each individual component
must take into consideration of the state and behaviour of
the whole system, which is the environment that individ-
ual components execute in and operate on. There is a wide
gap between individual components’ properties and be-
haviours and the whole system’s properties and behav-
iours. This is known as the emergent behaviour (EB)
problem; c.f. [1]. This paper proposes a formal system to
facilitate the specification of and reasoning about systems
that consist of multiple autonomous agents.

EB is a common phenomenon in multi-agent systems
(MAS), such as in the Amalthaea system for web informa-
tion retrieval and filtering [2], the ecosystem for resource
allocation in a distributed environment [3], as well as in
e-commerce (such as online auctions), simulation (such as
ant colony optimisation), and many other application areas.
Therefore, understanding EBs and facilitating the specifi-
cation of and reasoning about EBs of MAS are very im-
portant to the development of MAS.

In the past few years, intensive research on EB of
MAS has been done in artificial intelligence. Various
mathematical models of specific types of MAS in particu-

lar application areas have been developed and studied, e.g.
[3]. Formal logics of belief, desire and intension of intel-
ligent agents were proposed, c.f. [4]. Formal specification
of agent in Z notation was also investigated [5]. In our
previous work, a formal specification language SLABS
was proposed for engineering MAS [6, 7]. It has also be
used in formal specification of evolutionary MAS [8].
However, we are still lack of a general formal logic sys-
tem for specifying and reasoning about the EBs of MAS.
This paper reports our work on such a logic system based
on SLABS and the notion of scenarios.

The remainder of the paper is organised as follows.
Section 2 briefly review the formal specification language
SLABS. Section 3 studies the properties of scenarios and
illustrates its uses in the specification of and reasoning
about EBs. Section 4 concludes the paper with a discus-
sion of further work.

2. Specification of MAS in SLABS

2.1. The specification language SLABS

SLABS stands for Specification Language for
Agent-Based Systems [6,7]. A novel concept introduced
by in SLABS is the notion of caste, which is a natural
evolution of the OO concept of class. The agents in a
MAS are classified by a partially ordered set of castes.
Castes are the templates of agents which defines a set of
structure, behaviour and environment features. An agent
can join into or quit from a caste at run-time. Case studies
have shown that caste can play a significant role in the
development of MAS [9].

The specification of a MAS in SLABS consists of a set

of specifications of castes in the following form.
Caste C<=Cy, ..., Cy
ENVIRONMENT EC;, ..., ECy;
VAR *Va:Tay oo, Vi Ty U42 Sy, ..., ULS);
ACTION *A1(P1,1, ey P1,n1), sy *As(ps,1 ----- ps,ns);

Bi(q145.--, G1.m1)s - BdQe1,- -, Qemi);
RULES Ry, Ry, ..., Ry
End C;

The clause 'C <= C,, ..., C;' specifies that caste C in-
herits the structures, behaviours and environments of
castes Cy, ..., C,. We write A€, C to denote that agent A4

belongs to caste C at time ¢.

The state space of an agent is described by a set of
variables with keyword VAR. The set of actions is de-
scribed by a set of identifiers with keyword ACTION. An
action can have a number of parameters. An asterisk be-
fore the identifier indicates invisible variables and actions.

H. Zhu, Formal Reasoning of Emergent Behaviour (to appear in Proc. of SEKE’05)

21/04/2005

In SLABS, an agent’s environment can be explicitly
specified by clauses in the following forms to define a
subset of the agents in the system that may affect its be-
haviour. (a) ‘agent name’ indicates a specific agent in the
system; (b) 'All: caste-name' means all the agents of the
caste; (c) “identifier: class-name” is a variable that any agent
in the caste can be assigned to.

Agents’ behaviours are defined by transition rules in
the following form.

Behaviour-rule ::= [<rule-name>] pattern|[prob]—>event,
[/f Scenario] [where pre-cond];

where the pattern describes the pattern of the agent's pre-
vious behaviour. The scenario describes the situation in the
environment. The event is the action to be taken when the
scenario happens and the pre-condition is true, which is
given in the where-clause. An agent may have a
non-deterministic behaviour if multiple rules are applica-
ble. The expression prob defines the probability for the
agent to take the specified action on the scenario. It can be
omitted so that the choices are non-deterministic.

A pattern describes the behaviour of an agent by a se-

quence of observable state changes and observable actions.

It is written in the form of [py, py, ...
1 gives its formats and meanings.
Table 1. Meanings of the patterns

, Pn] where n>0. Table

Pattern Meaning
$ The wild card, which matches with all actions
T Silence
X Action variable, which matches an action

Act (ay, ..ap) An action Act that takes place with parameters
match (ay, ...a;)
p 1 The previous sequence of events match the pat-
Ireess P terns py, ..., Pn

A scenario is a combination of a set of agents’ behav-
iours and states that describe a global situation in the op-
eration of the system. Table 2 gives the format and seman-
tics of scenario descriptions in SLABS.

Table 2. Semantics of scenario descriptions
Scenario Meaning

Predicate | The state of the agents satisfies the predicate

A=B The identifiers 4 and B refer to the same (or dif-
(or A#B) |ferent) agent

AeC |Agent 4 is in the caste C
A:P Agent A's behaviour matches pattern P

The scenario Sc[X/A4] is true for all agents 4 in

VXeC.Sc caste C.

There are m agents in caste C such that Sc[X/A4] is
JmXeC.Sc|true, where the default value of the optional ex-
pression m is 1.

S; & S, |Both scenario S} and scenario S, are true
S, v S, |Either scenario S; or S, or both are true
) Scenario S is not true

The following expressions can also occur in a scenario
as a part of a predicate.
e Set relation expressions in the form of {XeCaste | X :

Pattern}, which is the set of agents whose behaviour
matches the pattern;

Arithmetic relations may contain an expression in the
form of (a) 4.V, which refers to the variable J of agent 4,
(b) xXeC.Sc, which is the number of agents 4 in caste C
such that Sc[X/A4] is true, where Sc is a scenario.

The following is an examples of scenarios. It describes
the situation that there are more agents in the caste Voter
who vote Bush, vote(Bush), than those in the caste who
vote for other candidates other than Bush.

uX(Voter.X:[vote(Bush)] >(X((Voter.X:[vote(Y)] &
Y (Bush)

Agents behave in real-time concurrently and autono-
mously. A time index set 7 can be a subset of real numbers
[to, OO), ie. T:{t | teR& t> f()}.

A run r of a MAS is a mapping from time ¢ to the set

115,.%%,,, Where S, and £, are agent A’s state

space and the set of actions at time ¢. The behaviour of a
MAS is defined by the set R of possible runs. For any
given run r, the restriction of #(¢) on §,, xX, written as
r,(t), is a run of agent A in the context of . We also write
RA :{VA | VER}.

We assume that a MAS has the following properties. (a)
Actions are instantaneous. (b) An agent may be silent 7
(i.e. take no action) at a time moment ¢. (c) Any two ac-
tions taken by an agent must be separated by a none-zero
period of silence. Consequently, an agent can take at most
a countable number of non-silent actions in its lifetime.

The global state S, of the system at any time moment ¢

belongs to the set|[S,,xZ,, . However, each agent 4

i=1
can only view the externally visible states and actions of
the agents in its environment. In other words, an agent 4
can only view a part of S, in the space [] Sy, xZ},,
XeEvn,,
where Env,, denotes the set of agents that are in 4’s envi-
ronment at time #, Sy,” and X'y,” denote the visible part of
agent X’s state and action at time ¢. The history of a run r
up to time 7, written as 7, is a mapping that is the restric-

tion of r to the subset {x <t|re T} of T.

Let 4 be any given agent in a MAS. Let ¢y, ..., ¢, , .
€ ¥, —{r} be the sequence of non-silent actions taken by

agent A inarunrandf, ty, ..., t,, ...€ T are the times of the
actions, i.e. r{(t)=c, forall i=l, 2, .., n, ... At a time
moment f€ T, we say that ¢, is agent A's current action, and
cq+1 the next action, if 7, <r<t¢,, . Let s; be the state of
agent A at time #, we write Current(rAit)=<t,,, Sps C>
Next(rA¢t)=<t,,+1, Sutls Cni1>, and Events(rA»Lt)=<<t1, S1,
Cl>9 ey <tn: Sns Cn>>~

Let Sc be a scenario. We write A:r{ ¢|=Sc to denote

that from agent A4's point of view, the scenario Sc occurs at
time moment ¢ in a run . When taking a global view, we

~2~

H. Zhu, Formal Reasoning of Emergent Behaviour (to appear in Proc. of SEKE’05)

21/04/2005

omit the viewer and write r t|: Sc . A formal definition

of the notation can be found in [6].

The following define what meant by a correct imple-
mentation of a specification in SLABS. Let § be a formal
specification in SLABS, M a MAS, and RULE, the set of
behaviour rules specified in S for 4.

Definition 1.

Agent A in M always follows a set R of rules, iff in all
runs » of M, VteT3<Sc |->e; p>eR. (Ardf=(Sc & p)
=Next(r,t)=e), and we write 4/M|= R. AMAS M always
follows S, iff for all 4 in M, A always follows RULE .
Formally, VAe M.(A/M|= RULE), we write M|=,S. []

Informally, at any time in a run of a MAS, an agent 4
that always follows a set R of behaviour rules will
non-deterministically select one rule p from the applicable
subset of R and then apply p, if the subset of applicable
rules is non-empty.

It is worth noting that, the definition above gives the
freedom to the agents to do anything that they like when
there is no applicable rules. This enables the verification
and validation of a MAS against a ‘partial’ specification of
its behaviour. Such partial specifications are of particular
importance in collaborative software development such as
in service-oriented computing [10, 11]. The following
definition still gives agents this freedom, but prevent them
from taking actions unexpected.

Definition 2.

Let W be a subset of the actions that agent 4 can take.
We say that 4 always strictly follows a set R of behaviour
rules for actions in W, and write A/M [=gw)R , if A always
follows R and VieT.VreM, r,“(=ecW = 3t’eT.
J<Scl>e; p>eR.(Mt[=(Sc&p) & Next(r,dt)=(t, e).

A MAS M strictly follows S, written as M|=sS, if and
only if for all 4 in M, 4 always strictly follows RULE, for
all actions specified in S. []

Definition 3.

Agent A in M faithfully follows a set R of rules, written
as At |=¢ R, iff for all runs » and time moments ¢, (<Sc
|>e; p>eR &A:rdt [=(Sc & p) implies that there is a run »°
of M such that for all u< teT.(r’(u)=r(u)) and
Next(r’ ty=e.

A MAS M faithfully follows S, written as M|=gS, if and
only if for all 4 in M, A faithfully follows RULE . [
Definition 4. (Correctness of implementation)

A MAS M is a correct implementation of specification
S, written as M|=S, iff M always follows § strictly and
faithfully. Formally, M|=S <& M|=xS & M|=sS & M|=3S. [

2.2. Example: Autonomous sorting

In this subsection, we give an example of the formal
specification of MAS. It is a simplified version of the
sorting program in [12]. The original program can be
found at URL http://diet-agents.sourceforge.net.

Example 1. (SortingSpec)
In this MAS, the agents can introduce one to another

~3~

by passing through the identity of an agent that it knows.
CASTE Sociable;

ENVIRONMENT ALL: Sociable;

ACTION Introduce(Sociable /*to whom*/ , Sociable /*of whom*/);
END.

Social agents are further divided into two sub-castes:
Linker and Mediator. Each linker carries a value and can
link to two other agents through channels Higher and
Lower. Mediators only introduce agents to each other. An
EB of the system may occur if each linker only connects
through the Higher channel to an agent that carries a
greater value and connects through the Lower channel to
an agent that carries a less value. When all linkers are
connected, the values carried by them are sorted. The me-
diator agents take random actions to introduce Linker
agents to each other, which triggers the Linker agents to
change their connections.

CASTE Linker <= Sociable;
ENVIRONMENT Higher, Lower: Linker; All: Mediator;
VAR *Value: INTEGER;
BEGIN
<|--Initialisation> <> |— Lower:= NIL; Higher:= NIL;
<|H--Introduced to a better higher friend>
[8] |- Higher:=Ag; IF 3Xe Sociable.X:[Introduce(Self, Ag)],
WHERE Ag.Value > Self.Value & ((Higher = NIL) v
(Higher = NIL & Higher.Value > Ag.Value))
<IL--Introduced to a better lower friend>
[$] |- Lower:=Ag; IF 3Xe Sociable.X:[Introduce(Self, Ag)]
WHERE Ag.Value < Self.Value & (Lower = NIL) v
((Lower = NIL)& (Lower.Value < Ag.Value)))
END Linker;
CASTE Mediator <= Sociable;
BEGIN [§] |— Introduce(A, B); WHERE A e Linker & B < Linker
END Mediator. [

An execution of a system that correctly implements

SortingSpec will evolve into the state shown in Figure 1.

Higher Higher Higher Higher Higher

RN R AR R T BN U

Lower Lower Lower Lower

NIL

Lower

Figure 1. The emergent state of the MAS
This emergent state can be formally expressed in
SLABS by the following scenario Fully-Linked.
Fully-Linked = 3nAeLinker.(A.Higher=NIL)
& JimAeLinker.(A.Lower=NIL)
& VAelLinker.(A.Higher=NIL=>3B eLinker.(A.Higher=B& B.Lower=A))
& VAeLinker.(A.Lower=NIL)=3BeLinker.(A.Lower=B & B.Higher=A)
The statement that in a run M of a multi-agent
autonomous sorting system M that satisfies the above
specification SortingSpec of autonomous sorting is in the
scenario of Fully-Linked at time moment # can be formally
expressed as Mt |= Fully-Linked.
Let F;={AeLinker | A.Lower=NIL}, and
F.1={AeLinker | 3Be Fr.(A.Lower=B & B.Higher=A)}.
When this statement is true, the system has that the
following property.
M t=Fully-Linked=>MJt |=Vie {1,...,||Linker||}.(|Fi=1)
Assume that the system is in the Fully-Linked scenario.

H. Zhu, Formal Reasoning of Emergent Behaviour (to appear in Proc. of SEKE’05)

21/04/2005

Let A; eF;. The values carried by agents 4, 4,, ..., 4, are
in the ascending order. This can be formally expressed by
the following statement.
Vie{l,...,||Linker||-1}.(4;. Value<A . Value).

Another very important property of the system is that
in any run of a MAS that strictly follows SortingSpec, it
will eventually come to the scenario of Fully-Linked. In
general, let M be any given MAS and Sc be a given sce-

nario. We write M—Sc to denote that VM eM.3reT. (Mt

|=Sc). The EB of autonomous sorting can then be formally
expressed by the statement (S1) below.
M|=SortingSpec = M— Fully-Linked (S1)

Note that, without the strictness condition, a linker
may update its Higher/Lower channels without following
the behaviour rules. Hence, it may connect to any agents
regardless the value carried by them.

If the MAS strictly follows SortingSpec, it will not
only eventually come to the state of Fully-Linked, but also
stay in the state although mediators are still making intro-
ductions to the linker agents. This is the convergence
property of the MAS. In general, we write M@ |=Sc to

denote that Ire T.(V¢' e T.(r'2t=MLr’|=Sc), and M3 Sc to
denote that VMeM.(My @ |=Sc). Therefore, we have that
M|=SortingSpec = M- Fully-Linked. (S2)

In the next section, we will discuss how to prove the
above statements.

3. Reasoning about emergent behaviours

To enable the formal reasoning about MAS’ behav-
iours, we define two relations on scenarios and an opera-
tor on scenarios and study their properties. For the sake of
space, we will omit the proofs in the paper.

3.1. Scenario inclusion relation

One of the basic relation between scenarios is the in-
clusion relation =. Informally, Sc;=Sc, means that, if the
system is in scenario Scy, it is also in scenario Sc,.
Definition 5. (Scenario inclusion)

A scenario Sc; implies scenario Sc, in a MAS M, writ-
ten M |= Sc;=Sc,, if and only if for all runs M and at all
time moments te 7, M¢t|=Sc1 implies that M¢t|=Scz. d

The inclusion relation has the following properties.
Lemma 1. For all agents 4, and patterns [Py, Ps,...P,], we
have that for all M,

(1) M|= A:[Py, P>,...P,] = A:[P,,...P,];

(2) M= A:[Py, ..., P,] = AP}, ..., P], if for all
i:1,2,...,n, Pi:P’i or P,:$ a
Lemma 2.

(1) For all predicates pred, and pred, defined on the state
space of a MAS M, M |= pred,=pred,, if pred,=pred,
is true in first order predicate logic.

(2) For scenarios S; and S,, we have that for all M, M |=

S1=8,, if §1 :>5'2, where 3,. is obtained from .S,

i=1, 2, by replacing patterns with propositions. [

By the above lemmas, we can see that = is just the
logic connective implication if patterns are considered as
propositions.

Example 2.

Consider the MAS specified in section 2.2. Suppose
that a Linker agent 4 is connected to agent B through the
Higher channel and 4 is introduced to agent C, which car-
ries a value greater than the value carried by A4 but less
than the value carried by B. This situation can be formally
expressed as follows.

Better-Higher-Introduced
= (A.Higher=B) & 3XeSociable.(X:[Introduce(A4,C)]
& (C.Value < B.Value) & (C.Value > A.Value))

Intuitively, according to Linker’s specification, the IH
behaviour rule should be enabled. By Lemma 2, we can
formally prove that
(1) Better-Higher-Introduced implies the scenario of the
IH rule, i.e. Better-Higher-Introduced =
dXeSociable.(X:[Introduce(A,C)])
Better-Higher-Introduced implies that the precondi-
tion of the IH rule is true, i.e. Better-Higher-Introduced
= C.Value > A.Value & ((A.Higher = NIL) v (A.Higher #
NIL & A.Higher.Value > C.Value)) ||

@

3.2. Scenario update

In Example 2, we have shown that agent 4 in scenario
Better-Higher-Introduced can apply the behaviour rule IH.
When the rule is applied, agent A’s Higher channel will be
updated so that it connects to C. Consequently, the system
will be in a different scenario. We will write Sc(4:E) to
denote the scenario after agent 4 taking an action £ in the
scenario Sc. The following definition formally defines this
operator.

Definition 6. (Scenario update)

Let Sc be any given scenario, 4 an agent, and E an ac-
tion that can be taken by agent 4. We define Sc(4:E) to
be the scenario that for all run r of the system rdt,,; |=
ScNA:E) if and only if rd#=Sc and Next(r,\ty=<t,:1, s,1,
Cp+1™ and E:<S,,+], Cpt1”. 0

The operator ” has the following properties.

Lemma 3. For all scenarios S, Si, S,, agents 4 and B, and
actions E, we have the following properties of the * op-
erator.
(1) M |= (S1&S)MAE) < SINAE) & SaNAE)
Q)M |= (S) or SHNAE) < S\NA:E) or S;MAE)
(B)M |= A:[P,, Pa,...PJNAE) < A:[Py, P,...P,, E]
(HM|=B:[P\,... P,)NA:EY=(B:[Py,...P])&(A:[E]),if A#B.
S) M |= (VxeC.HNAE) < (VxeC.9& (4:[E]), if A¢C.
(6) M |= (VxeC.SYNA:E)

& (VxeC.(xzA=S))& (S[x/ANA:E), if AeC.
(7) Ml=3xe C.HNMA:E)= (AxeC.89& (4:[E]), if A¢C.
@) M |=(IxeC.SHNAE)

< (AxeC.(x24 & S) or (S[x/A]NA: E), if AeC,
where S[x/A] is obtained by replacing free occurrences of
the variable x systematically with 4. [

H. Zhu, Formal Reasoning of Emergent Behaviour (to appear in Proc. of SEKE’05)

21/04/2005

Lemma 4. Let Pred be any predicate on the state of a

MAS M, A any agent in M, and E an action that 4 can

take. We have that M |= Pred™(A:E) < s.p.c(Pred), where

s.p.c(Pred, A, E) is the strongest post-condition of Pred

w.r.t. to A’s action E. []

Example 3. For example, consider the autonomous sort-

ing system.

(1) The strongest post condition of the predicate (C.Value
> B.Value) with respect to agent 4’s action Higher:=C
is that (C.Value > B.Value) & (A.Higher=C).

(2) The strongest post condition of the predicate
(4.Higher=B) w.r.t. to the action Higher:=C is
(4.Higher=C). [

Example 4.

Continuing Example 2, we can see that after agent A4’s
application of the IH rule, the system will be in the sce-
nario that 4 is in the state Better-Higher-Introduced™
(A:Higher:=C). By the properties of ~ operator and =, we
can derive that Better-Higher-Introduced(A:Higher:=C) =
(A.Higher=C). [

3.3. Scenario transition

Having proved that after agent 4 applies the behaviour
rule IH in the scenario Better-Higher-Introduced, the sys-
tem will be in the scenario 4.Higher=C, we would like to
formally express that there is a relationship between these
two scenarios. The following definition defines a relation
— on scenarios such that S;—S, means the system in a
state in scenario S) can evolve into a state in scenario S,.
Definition 7. (Scenario transition)

Let S and S, be two scenarios of a MAS M. We say
that S| can lead to S, in the system M and write M
|=S,—S, if and only if there is a run M of the system M
and time moments ¢, < f, €T, we have that M»Ltl |= S, and
M\Ltz |: Sz. 0

The relation — has the following properties.

Lemma 5. Let S, S;_S,, S; be scenarios of a MAS.

(1) M |=S5,>8,; and M |=S,—S; imply that M |=S,—>S;;
2) M |=5=8,; and M |=S,—S; imply that M |=S,—>S;;
(3) M|=S,—>S, and M|=S,=S; imply that M|=S,—S;. []
Lemma 6.

If an agent 4 in a MAS follows behaviour rule <S|— E;

P>, for all assignments o, A(S&P) - a(S&P)NA:E)). [
Example 5.
Let o be an assignment such that a(4g)=C and
ofSelf)=A. Let
1IH-Premise = o((3Xe Sociable.(X : [Introduce(Self, A2)]))
(Ag.Value>Self-Value & ((Higher = NIL)
v (Higher # NIL & Higher.Value > Ag.Value))))
By Example 2, Better-Higher-Introduced = IH-Premise.
Let IH-Result =a((3X e Sociable.(X : [Introduce(Self, Ag)]))
& (Ag.Value>Self.Value & ((Higher=NIL)
v (Higher#NIL& Higher.Value>Ag.Value)))" (A: Higher:=Ag))
By Example 4, /[H-Result = A.Higher=C. By Lemma
6, [H-Premise — IH-Result — (A.Higher=C). [
By the properties of the scenario transitions, we can

prove the reachability of a scenario in a MAS.

Example 6. (Reachability)

Consider the autonomous sorting MAS. We now prove
that it can lead to the scenario of Fully-Linked. The fol-
lowing is an outline of the proof.

(1) Assume that there are N>0 Linker agents, K>0 Media-
tor agents, and Linker agents A, Value<A;..Value,
i=1, ..., N—1. Initially the system is in the scenario that
no agents are linked to each other. That is,

Initial-State =V X e Linker.(X.Lower=NIL& X .Higher=NIL)
(2) From the initial state, assume that mediator agents

introduce agents 4; and A;;; to each other in the order

that i=1,2, ..., N—1. Although this is probably not to
happen when the mediators selects the introduction ac-
tion at random, but this is still possible.

(3) Then, we can prove that Linked,— Linked,., for all

k=0,1, ..., N, where Linked, is depicted in Figure 2.
NIL
Higher ngher Hzgher nghe” Higher
e N R #
Lower¢ Lower Lower Lower Lower
NIL

Figure 2. The scenario Linked,
(4) Finally, notice that Linkedy = Fully-Linked. By Lemma
5(2), we have Initial-State — Fully-Linked.
Therefore, we can prove that autonomous sorting algo-
rithm can reach the Fully-Linked state. [

3.4. Example: Autonomous sorting

Now, let’s prove that a correct implementation will
always evolve into the Fully-Linked state. Moreover, once
reached this state, it will stay in the state.

For each Linker agent 4,, i=1,2, ..., n, in an autono-
mous sorting system M, we define scenario 4;-H-LinksTo,
and A,-H-NotLinked as follows.

Ai-H-LinkedTo=(A;.Higher=A ;),
AiH-NotLinked<A;.Higher=NIL.

If M|=SortingSpec, we can prove that in any run » of
the system M, at all time moment ¢, r»Lt|:A,-—H—LinkedToj
implies that i<j. Otherwise, assume that at time moment ¢,
we have that i>j. Then, there must be a time moment #’
such that agent 4, assigned the value 4; to its Higher vari-
able. Since M strictly follows the behaviour rules for
Linker agents, 4,’s assignment of 4; to its Higher variable
must have been followed the behav10ur rule TH. Therefore,
we have that 4, Value<A;.Value. Thus, i<j. This is contra-
diction to the assumption. Consequently, agent 4; must be
in one of the scenarios A;-H-NotLinked and
Ai-H-LinkedTo; where j = i+1, i+2,..., n. The set of sce-
narios is called complete. 1t is also orthogonal in the sense
that at any time at most one of them can be true.

Similar to Example 6, we can prove that for all 7, j and
k, i< j <k, and i, j, k=1,2,..., n, A-H-LinksTo,—
Ai-H-LinksTo; and A-H-NotLinked — A-H-LinksTo,. That
is, we have the following state transition diagram for

H. Zhu, Formal Reasoning of Emergent Behaviour (to appear in Proc. of SEKE’05)

21/04/2005

agent A4;, where node labeled with k represents scenario
Ai-H-LinkedTo; and node labeled with o represents the
scenario A;-H-NotLinked.

Figure 3. State transition diagram for Linker agent A4;

From this diagram, it is easy to see that Linker agent A4;
will eventually evolve to the state in scenario
Ai-H-LinkedT0.).

Similarly, we can prove that for each Linker agent A4,,
the following set of scenarios is complete and orthogonal.
Ai-L-LinkedToj=(A;.Lower=A), j=1, 2, ..., i-1.

Ai-L-NotLinked<A;.Lower=NIL.

Moreover, we have the following transitions between

the scenarios. For all >>k=1,2,..., n,
Ai-L-LinksTo,— A-L-LinksTo; and
A-L-NotLinked — A;-H-LinksTo;.

Therefore, the Linker agent 4; will also eventually
evolve into the state in scenario 4;-L-LinkedTo_,).

Notice that, Fully-Linked < Vie(l,...,n-1).
A-H-LinkedTo;.y & Vie(2,...,n). Ar-L-LinkedTo;., &
Ai-L-NotLinked & A,-H-NotLinked.

Therefore, we proved that a correct implementation M
of the specification SortingSpec will eventually evolve
into the Fully-Linked state, i.e. statement (S1) is true.

Because both sets L-LinksTo and H-LinksTo of scenar-
ios are complete and there is no state transition from the
state of A,-H-LinkedTo; or Ai-L-LinkedTo;_,), the system
will stay in the Fully-Linked state when it achieves it.
Thus, statement (S2) is true.

It is worthy noting that, the following two scenarios
have the same properties of the Fully-Linked scenario.
Fully-H-Linked =

Vie(l,...,n—-1). A-H-LinkedTo ;.\, & A,-H-NotLinked,
Fully-L-Linked =

Vie(2,...,n). A-L-LinkedTo_, & A-L-NotLinked.

We can prove the following statements.

M|=SortingSpec = M— Fully-H-Linked, (S1.H)

M|=SortingSpec = M- Fully-H-Linked, (S2.H)

vt eT. (MYt|= Fully-H-Linked

=>Vie{l,...,||Linker||-1}.(4;. Value<A4;.,.Value)).

The similar statements hold for Fully-L-Linked sce-
nario. Therefore, they can also be considered as the emer-
gent states of autonomous sorting. The following formally
state relationships between these three emergent states.

Fully-Linked = Fully-H-Linked,

Fully-Linked = Fully-L-Linked.

An interesting property of the emergent states
Fully-H-Linked and Fully-L-Linked is that the system still
dynamically change it state and perform actions when it is
in such a scenario. This is the dynamic feature of EB.

4. Conclusion

In this paper, we presented a framework to specify and
prove the EBs of MAS. The method is illustrated by an
example of autonomous sorting. The concept of scenario
plays the central role in the method. Based on the formal
semantics of the specification language SLABS, we inves-
tigated the properties of the scenario inclusion relation =,
the scenario transition relation — and the update operator
~ on scenarios. We are further studying the properties of
scenarios, such as complete and orthogonal systems of
scenarios. Our preliminary study shows that the concept of
scenarios is expressive and suitable for the study of EBs.
We are also investigating how the concepts proposed in
this paper are related to existing formalisms in software
specification and proof, such as Hoare logic, process al-
gebra, temporal logic, and modal logics, etc.

Acknowledgement

The paper is written when the author is visiting the
Future Technologies Group of the BT’s Pervasive ICT
Centre at Ipswich, UK. The author is most grateful to the
research group, especially Fang Wang, Cefn Hoile, et al.
for the friendly and stimulating research environment and
numerous invaluable discussions on related topics.

References

[1] Johnson, S., Emergence: The Connected Lives of Ants, Brains,
Cities, and Software, Scribner, September, 2002.

[2] Moukas, A., Amalthaea: Information Discovery and Filtering
Using a Multi-Agent Evolving Ecosystem, Journal of Applied
Artificial Intelligence 11(5) , 1997, 437-457.

[3] Walsh, W. E., et al., Some Economics of Market-Based Dis-
tributed Scheduling, in: Proc. of 18" International Conference
on Distributed Computing Systems, May 1998, 612-619.

[4] Wooldridge, M., Reasoning About Rational Agents, MIT
Press, 2000.

[5] D’Inverno, M. and Luck, M., Understanding Agent Systems,
2" Edition, Springer, 2004

[6] Zhu, H. SLABS: A Formal Specification Language for
Agent-Based Systems, Int. J. of Software Engineering and
Knowledge Engineering 11(5) (Nov. 2001), 529-558.

[7] Zhu, H., A Formal Specification Language for Agent-Ori-
ented Software Engineering, in Proc. of AAMAS'2003, July,
2003, Melbourne, Australia, 1174-1175.

[8] Zhu, H., Formal Specification of Evolutionary Software
Agents, Proc. of ICFEM’2002, Springer LNCS 2495, 2002,
249-261.

[9] Zhu, H., The role of caste in formal specification of MAS, in
Proc. of PRIMA’2001, LNCS 2132, Springer, 1-15.

[10] Zhu, H., Zhou, B., Xinjun Mao, X., Shan, L. Duce, D.,
Agent-Oriented Formal Specification of Web Services, Proc.
of AAC-GEV0’2004, Wuhan, China, Oct. 2004.

[11] Zhu, H. and Shan, L., Agent-Oriented Modelling and
Specification of Web Services, Post-Conference Proc. of
WORDS2005, Sedona, Arizona, USA, Feb., 2005.

[12] Marrow, P., et al., Agents in decentralised information eco-
systems: the DIET approach. Proc. of AISB'01 Symposium
on Information Agents for Electronic Commerce, York, UK,
2001, 109-117.

