Specifying Consistency Constraints for Modelling Languages

Lijun Shan
Department of Computer Science
National University of Defence Technology
Changsha, 410073, China
Email: lijunshancn@yahoo.com

Abstract. As graphic modelling languages play an increas-
ingly important role in software development, completeness
and consistency have become essential quality attributes of
software models. This paper presents a framework for the
formal definition of the abstract syntax and type systems of
modelling languages that facilitates formal specification
and automatic checking of consistency and completeness
constraints on graphic models. The approach is illustrated
by the specification of CAMLE modelling language and its
consistency and completeness constraints. An empirical
study of the effectiveness of the framework is reported,
which shows that about 85% of errors generated by muta-
tion operators can be detected by automatic consistency
checking.

1. Introduction

Modelling languages are playing an increasingly impor-
tant role in software development as model-driven software
development methodology is gaining wide acceptance.
Typical modelling languages include UML for object ori-
ented software development [1], Yourdon notation and
SSADM for structured analysis and design, CAMLE mod-
elling language [2] for the emerging agent-oriented soft-
ware development, etc. Well-defined visual notations for
modelling software systems balance well between readabil-
ity and preciseness due to their semi-formal nature. As a
means of separation of concerns, the multiple-views princi-
ple has been widely adopted in modern modelling lan-
guages. By representing different aspects of a system in
different views and/or at different levels of abstractions, it
provides a powerful vehicle for dealing with the complexity
of information systems. However, as pointed out in [3, 4],
maintaining consistency between views and completeness
of the models is crucial, but difficult. It is highly desirable
to automatically check models’ consistency and complete-
ness; yet, graphic models must be well-formed to be proc-
essed and transformed. Unfortunately, these tasks are by no
means trivial. For example, UML [1] does not systemati-
cally and explicitly define consistency and completeness
constraints, though OCL [5] provides a language facility for
specifying constraints on the instances of models. Many
research efforts addressing the consistency problems of
UML have been reported, c.f. [6, 7, 8,9, 10]. Although
graphic modelling languages such as UML are widely ac-

Hong Zhu
Department of Computing
Oxford Brookes University

Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk

cepted and new modelling languages are being developed,
how to define the syntax and semantics of graphic model-
ling languages is still an open problem.

In [11], we proposed a framework for the definition of
the abstract syntax and type systems of graphic modelling
languages so that well-formedness, consistency and com-
pleteness of graphic models can be formally specified and
automatically checked. To demonstrate the effectiveness of
the approach, this paper exemplifies the framework with
the CAMLE language by defining its abstract syntax and
type system and specifying its consistency and complete-
ness constraints. An experiment with CAMLE consistency
checking tool is also reported in this paper. It shows that
consistency constraints specified and implemented in our
approach can achieve an error-detecting rate around 85%.

The remainder of the paper is organised as follows. Sec-
tion 2 reviews the framework proposed in [11]. Section 3
presents the definition of CAMLE language. Section 4
reports the experiment with the effectiveness of consistency
and completeness checking. Section 5 concludes the paper
with a discussion of related work and further works.

2. Overview of the framework
2.1 Type systems and well-formedness

Let’s first formally define a few basic concepts of mod-
elling languages; see [11] for more details.

A modelling language ML is called a multiple-views
modelling language, if it defines a finite set T#J of types
of diagrams. Each type TeT of diagrams provides a set of
graphical notations to represent a view of the system. A
model M in ML consists of a set D= of diagrams. Each
diagram DeD has one and only one type Tp in T. We write
Type(D) to denote the type Tj of diagram D. The subset of
diagrams of a type T in a model M is called the T-view of
the model M (or simply the T-sub-model or T-model), writ-
ten M.T. Formally, M.T={D|DeM, Type(D)=T}.

ML is said to be graphically typed, iff for each type
TeT, ML defines a finite set Ny of node types and a finite
set Er of relation types. For each type te € Ey of relations, a
relation e of type fe in a diagram D of type T can only be
specified on certain type(s) of nodes or relations in D.

ML is annotationally typed, iff for each type T of dia-
grams, the following conditions hold.

(a) For each diagram type 7, ML defines a finite number of
fields f7,, i=1, ...np, for the annotations that can be associ-
ated to a diagram of type T. For each field f; ML defines a
data type FTr; of the values that can be assigned to field f7,.
(b) For each node or relation type ¢ of diagrams of type 7,
ML defines a finite set of fields f;;, i=1, ..., n,, for the anno-
tations that can be associated to the nodes or relations of
type ¢. For each field f;;, ML defines a data type d,,; of the
values that can be assigned to field f;;.

A modelling language ML is typed, iff it is both graphi-
cally and annotationally typed.

In a typed ML, a diagram D of type T is graphically
well-formed, iff each node n is associated to one and only
one node type #n, and each relation e of type fe on nodes
ny, ..., n, must satisfy the type requirements of fe. A dia-
gram D of type T is annotationally well-formed, iff the
values assigned to the annotation fields of the diagrams, the
nodes and the relations of the diagrams are all compatible
to the data types. A model M is well-formed if all diagrams
of M are both graphically and annotationally well-formed.

To define type systems and abstract syntax of modelling
languages, a graphical extension of BNF (called GEBNF)
was proposed [11], which is summarized in Table 1.

Table 1. GEBNF Notation
Notation Meaning Example and explanation

<X> | X is the name of |<Class Diagram>: the type of entities called
a type of entities |class diagrams.
X =Y |Xisdefined as |<Model> ::= <Diagram>*: a model is
Y defined as consisting of a number of dia-
grams.
X* |Repetition of X [<Diagram>*: the entity consists of a num-
(include null) |ber N of diagrams, where N > 0.
X+ |Repetition of X |<Diagram>+: the entity consists of a
(exclude null) |number N of diagrams, where N > 1.
X|Y |Choice of X and|<Actor node>|<Use case node> means that
Y the entity is either an actor node or a use
case node.
<Actor node>, <Use case node>: an entity
that consists of an actor node and a use case
node.
[<Actor>]: Actor is optional.
XY |Order pairs <Actor node> <Use case node>: an element
consists of X that consists of an order pair of an actor
and Y node and a use case node.
/X/ | An annotation |/Use case name/: the annotation field called

X,Y |XandY

[X] [Xisoptional

field named X |use case name.
X:Y |The type of X is |/Use case namel: Text : the type of the
Y. annotation use case name is text.
(X) |Parenthesis It is used to change the preferences of the
expression.
‘abc’ |The literal of a |‘extends’: the literal value of the string
string ‘extends’.

Text[!F] |Predefined type | Text’: a text in any format;

Text with syntax |‘Text ! <object name> *:’ <class name>":
specified by F in|the text that consists of an object name and a
BNF class name separated by a colon.

2.2 Consistency and completeness constraints

Generally speaking, a consistency constraint C is a
predicate defined on models such that C(M) = true means
that the model is consistent with respect to the constraint;
otherwise, the model is inconsistent and hence, not sound.

Informally, a consistency constraint restricts how models
should be constructed so that certain types of conflictions in
the information specified by the model can be prevented
and detected. A completeness constraint restricts the con-
struction of the models so that certain types of errors due to
the lack of information can be prevented and detected. A
violation of a consistency constraint implies that there is an
error in the model due to confliction between different parts
of the model. Therefore, no system can satisfy the specifi-
cation of the model. In contrast, a violation of a complete-
ness constraint implies that a certain piece of information is
missing. Therefore, there will be a system that the users do
not want satisfying the specification.

There are several kinds of constraints that can be defined
on modelling languages.

A. Intra-diagram vs Inter-diagram constraints. A constraint
C is intra-diagram, if it is defined on a diagram of a spe-
cific type 7. It is inter-diagram, if it is defined on two or
more diagrams.

B. Inter-model vs Intra-model constraints. A constraint C is
inter-model, if it is defined on diagrams of more than one
type; otherwise, it is intra-model.

For hierarchical modelling languages, constraints can
also be classified into vertical and horizontal constraints,
and global and local constraints.

C. Vertical vs. Horizontal constraints. A constraint C is
horizontal if it is defined between diagrams of the same
abstraction level. A vertical constraint C is defined between
diagrams that have refinement relationships between them.

E. Local vs Global constraints. A constraint C is global on
a particular type of diagrams, if it is defined on the whole
set of diagrams of the type. Otherwise, it is local constraint.

Given a definition in GEBNF, a first order language can
be derived as follows for the formal definition of consis-
tency and completeness constraints. Let ¢ and p be n-ary
operator and relation, respectively.

o Expressions are formed by finite applications of the fol-
lowing constructions.
- Variables and constants are expressions;
- ¢(e, ey, ..., €,) is an expression, if e, e, ..
- e.f1s an expression, if e is and f'is a field;
- e.t is an expression, whose value is the set of the ele-
ments of type ¢ in e, if e is an expression and ¢ is a type;
- Type(e) is an expression, if e is. Type(e) is e’s type.
o Statements are formed by finite application of the follow-
ing constructions.
- pley, ey, ..., €,) 1s a statement, if e, e, ..., ¢, are ex-
pressions; in particular, e; = e, , e; e, are statements.
- 0, P10, PSP, P1 AP, and pp v, are state-
ments, if p, p; andp, are statement;
- VXeFE.S and 3XeE.S are statements, if X is a free vari-
able in statement S.

3. Definition of CAMLE Language

As shown in the following GEBNF formula, a CAMLE

model consists of three sub-models.
<CAMLE model>::=

., e, are;

<Caste model>, <Collaboration model>, <Behaviour model>
The following subsections present the abstract syntax of
the sub-models and some examples of constraints. The
definitions of the syntax of various text types are omitted
for the sake of space.

3.1 Caste model

From agent-oriented view of information systems, an or-
ganization consists of a collection of agents. The agents
stand in certain relationships by being a member of certain
groups and playing certain roles, i.e. in certain castes. The
caste model describes the castes in the system and the struc-
tural relationships between them. This organizational struc-
ture is captured in a caste diagram. Fig. 1 is an example.

2 /
ﬁ /
Faculty
IS
T I ’A%
[| | Ly
H H H H H H ” TN ” ” Graduate H ” Undergraduate H
[
-—--> _— —e
Migrate ~ Aggregate Composite
Castenode e Congreodte horiin
astenode pyrticipate Congregate Inheritance

Fig 1. Caste diagram: Example and notation

In GEBNF, caste model is defined as follows.
<Caste model>::= <Caste diagram>
<Caste diagram>::= /Title/:Text ! ‘main’, <Caste node>+,
<Inheritance relation>*, <Migration relation>*,
<Participation relation>*, <Aggregation relation>*,
<Congregation relation>*, <Composition relation>*
<Caste node>::= /[Name/: <Caste Name>
<Inheritance relation>::= <Caste node> <Caste node>
<Migration relation>::= <Caste node> <Caste node>
<Participation relation>::= <Caste node> <Caste node>
<Aggregation relation>::= <Caste node> <Caste node>
<Congregation relation>::= <Caste node> <Caste node>
<Composition relation>::= <Caste node> <Caste node>
The following is an example of intra-diagram consis-

tency constraints on caste diagram.

(‘main’| <Scenario description>),
<Agent node>*, <Caste node>)*, <Interaction>*,
[<Environment boundary>]
<Agent node>::= /Name/: Text |<Agent Name>
<Environment boundary>::= <Caste node>*, <Agent node>*
<Interaction>:: = /Action List/: Text ! <Actions>,
(<Agent node>|<Caste node>)(<Agent node>|<Caste node>)

A

8.Give(practical class]| | 7.Attend[practical class]

b.Give[lecture]

“ Faculty

5.Attend(lecture)

2.Suggest{academic advice] *

Undergraduate

1.Request[course advice] [y

PersonalTutor:Faculty

3.Selectimodule) LK [result)

DeptOffice

" CasteName "

| Agent:Caste | Actions

Agentnode = Caste node Communication Link
Fig 2. Collaboration diagram: example ana notaton

An example of intra-diagram consistency constraint on
collaboration diagrams is given below.

Each caste or agent node must have a unique name.
VDeM.<Collaboration diagram>.(VX, YeD.(<Caste node> U
<Agent node>). (X./Name/=Y./Name/ = X=Y))

In a caste diagram, each node has a unique name, i.e.
VDeM.<Caste diagram>.NV X, YeD.<Caste node>.

A caste is a compound caste if it is composed of a num-
ber of other castes; otherwise, it is atomic. Each compound
caste has a collaboration model and a behaviour model,
while each atomic caste only has a behaviour model. Thus,
a collaboration model may contain a hierarchy of sub-
models on various abstraction levels. When an agent in a
system is decomposed into a set of components, a collabo-
ration model is constructed for the compound agent to spec-
ify the interactions between its components.

Collaboration model on each abstraction level may con-
tain a general diagram and a set of specific diagrams. A
general diagram serves as a declaration of what castes and
their instance agents are involved in collaborations, while
the specific diagrams define the details of the collaboration
protocols in various scenarios. Constraints on the collabora-
tion diagrams at the same abstraction level are horizontal
constraints. The following is such an example.

(X./Name/= Y./Namel = X=Y)

3.2 Collaboration models

Collaboration models describe the dynamic structure of a
system from the perspective of communication. As shown
in Fig 2, there are two types of nodes in a collaboration
diagram. An agent node represents a specific agent, while a
caste node represents any agent in a caste. An interaction
edge from node 4 to B indicates that A’s visible actions are
observed by agent B. The actions are annotated on the links.

The definition of collaboration model follows.
<Collaboration model>::= <Collaboration diagram>+
<Collaboration diagram>::=

[Title/: Text ! [(<Agent Name> | <Caste Name>) *']

Every agent node in general diagram G must appear in at
least one specific diagram in the same collaboration model.
VneG.<Agent node>.(3DeS .(neD. <Agent node>)

where S is the set of specific diagrams of the same level,
CName(n) denotes CasteName part of node n, JnS.<X>
is an abbreviation of 3D €S.Jn eD.<X>.

The following is an example of vertical constraints. It is
imposed on the models at different levels.

The set of agents and castes in C’s environment described
in M must be equal to the set of agents and castes in M¢’s
environment description.

neMc.<Environment boundary>

<IJae G <Interaction>.(n=Begin(a)n C =End())

where G is the general diagram in M.

3.3 Behaviour model

Behaviour model of a system consists of two types of
diagrams: behaviour diagrams and scenario diagrams. A
behaviour diagram contains a set of behaviour rules to
specify the caste’s behaviour in certain scenarios. There are
six different kinds of arrows that connect different kinds of
nodes in behaviour diagrams. A scenario diagram describes
a typical situation in the operation of the system. Scenario
diagrams are referred to in behaviour diagrams. Fig 3
shows an example of behaviour diagram.

— T

<Status = Finalear
Average ='A' -
d

QUIT(Undergraduate)

Fig 3. Example of behaviour diagram

The following is the abstract syntax of behaviour models
in GEBNF, where details of various types of the links are

omitted for the sake of space.
<Behaviour model>::= <Behaviour diagram>+,<Scenario diagram>*
<Behaviour diagram>::=
[Title/: Text ! (<Agent Name> | <Caste Name>),
<Logic connector>*, <Scenario node>*, <Activity node>+,
<Action link>+, <Condition node>*,<Transition node>+,
<Logic link>*, <Temporal relation>*
<Activity node> ::= [</Time stamp/: Text ! <Time stamp>],
[/Repetition/: Text | <Repetition expression>],
(<Action node> | <State node>)
<Action node> ::= /Action/: Text ! <Act>
<State node> ::= /State/: Text ! <Predicate>
<Scenario node>::= (/Scenario name/: Text ! <Scenario name>)
| <Scenario diagram>
<Scenario diagram>::= [/Scenario name/: Text ! <Scenario name>],

different types of models.
(4) Between collaboration and caste models

Let CM and AM be the collaboration and caste model of
a system, respectively.

Castes specified in the collaboration model must be defined
in the caste model. Formally,

Vne CM.(<Agent node> U <Caste node>).

In’ e AM <Caste node>.(CName(n) = n’./Name/)

Let x be a caste in the system, M, be the collaboration
model for x. For models M, and My in CM, we say that My

is an immediate refinement of model M, and write Mz <

My, if B is the component caste of 4. The following is an
example of global constraints.

The hierarchical structure of the CM must be consistent
with the whole-part relations between castes defined in
caste diagram. Formally,

VMA, MBECM

(Mz< M, & <B, A> € AM.<Aggregation relation>)

(B) Between behaviour and caste model

A behaviour diagram defines the behaviour of a caste and
the caste must be in the caste model.

V DeM.<Behaviour diagram>.3ne M.<Caste node>.

(D./Title/ = n./Namel).

In a behaviour diagram Dj; for caste B, the description of
scenarios may refer to the agents in the environment of B.
Let ReferredAgents(D3p) be the set of agents referred to in
scenarios in Dg.

Every referred agent in a behaviour diagram must have its
caste defined in the caste model. Formally,

V DeM.<Behaviour diagram>.¥ a€ ReferredAgents(D).

Ine AM <Caste node>.(CName(a)= n./Namel).

(C) Between collaboration and behaviour model

An action of a caste C described in a scenario Sc is
called a referred action of C in Sc. We write ReferredAc-
tions(C, Sc) to denote the set of referred actions of caste C
in scenario Sc.

Every referred action in a scenario used in a behaviour
diagram must be a visible action of the caste.

(Type(Sc) = <Scenario node>) =

V' n eReferredActions(C, Sc).(n € VisibleActions(C)).

<Logic connector>*, <Scenario node>*, < Activity node>+,
<Logic link>*, <Temporal relation>*, <Swim lane>*
<Swim lane> ::=
/Actor/: Text ! <Actor specification>, < Activity node>*
The following is a constraint on behaviour models.

Table 2 summarises the total numbers of consistency and
completeness constraints on CAMLE.

Table 2. Summary of CAMLE’s Constraints

Scenarios referred to in behaviour diagrams by scenario
reference nodes must be defined in scenario diagrams. Let
N be the set of scenario nodes in the behaviour model, S be
the set of scenario diagrams.

Vne N. (n./Scenario name/ = s. =

3n’e S.<Scenario diagram> (n’./Scenario name/ = s..))

Horizontal Vertical Consistency

Consistency Local Global
Intra- Intra-diagram 17 - -
model Inter-diagram 9 4 -
Inter-model 5 4 1

3.4 Inter-model Consistency

There are totally 9 inter-model constraints defined for
CAMLE and implemented in the automatic checking tool.
This subsection gives some examples of constrains between

4. Effectiveness of Consistency Check

The well-formedness, consistency and completeness
constraints have been implemented as automated checking
tools as an integral part of the CAMLE modelling environ-
ment [2]. Once invoked, the tool checks the model and
reports the diagnostic information about the inconsistency

or incompleteness, if any. The violation of a constraint is
reported as an error and a warning. There are totally 21
types of errors and 15 types of warning messages.

A number of case studies have been conducted to model
systems including Amalthaea [12, 13], online auction [14],
United Nations' Security Council, etc. In our experiences,
the automatically checking consistency and completeness
was helpful in detecting errors during model construction.

We have also conducted a systematic evaluation of the
effectiveness of CAMLE’s consistency checker using data
mutation analysis to measure the checker’s error detecting
ability. Data mutation analysis as a software testing method
was introduced in [15]. It was designed for testing software
systems that have input data of highly complicated struc-
tures, such as diagrammatic models. The process of apply-
ing data mutation analysis method to our modelling tool
consists of the following steps. The first step develops a
number of models that passes the consistency checking.
These models are called the seeds. The second step derives
a set of mutants from each seed by systematically applying
a set of data mutation operators. Each mutant is obtained by
one application of one mutation operator on the seed so that
it is slightly different from the original model. The mutation
operators are design in such a way that it will in most cases
make a consistent model inconsistent. Therefore, in most
cases, a mutant contains one artificially inserted defect. In
our experiment, totally 24 types of mutation operators are
designed for CAMLE models. The Amalthaea, the online
auction and the United Nations' Security Council models
are taken as the seeds, from which totally 7152 mutants are
generated. In the third step, the consistency checker is exe-
cuted to check the consistency of the mutants. According to
the output of the checker, the mutants are classified into
dead or alive. A mutant is dead if the checker’s output on it
is different from that on the seed. Otherwise, it is alive. In
other words, a mutant is dead if and only if the checker
detected that it is inconsistent. The effectiveness of the
consistency checker can therefore be measured by the per-
centage of mutants that are killed. A mutation analysis tool
was implemented to automatically generate mutants as test
cases, check the consistency of all mutants, and calculate
statistics. Table 3 shows the results of our experiment. The
dead mutant scores in the three suites are around 85%.

Table 3. Results of the Effectiveness Study

Seed #Mutant #Dead #Alive %Dead
Amalthaea 3065 2692 373 87.83%
Auction 3095 2579 516 83.33%
UNSC 992 821 171 82.76%
Total 7152 6092 1060 85.18%

In general, a mutant may remain alive for two possible
reasons. First, it is still consistent and complete even
though it is different from the seed. Second, the checker is
incapable to detect the inconsistency or incompleteness. In
the experiments, the outputs of the checker on each mutant
are manually analysed to see if the results are correct.

Therefore the effectiveness measurement not only tests the
implementation of the consistency checker, but also evalu-
ates the design of the consistency rules.

5. Conclusion

In this paper, we present the definition of the abstract

syntax and type system of CAMLE modelling language in
the graphically extended BNF. The consistency and com-
pleteness constraints for CAMLE are formally defined in
the first order logic language derived from the abstract
syntax and type system. These constraints are implemented
in an automatic checking tool. An evaluation of the consis-
tency constraints in detecting errors demonstrated that the
approach is valid and of high error detecting ability.
In recent years, the consistency of multiple-viewed models
has been an active research topic. The existing works fall
into two approaches: the transformation approach, and the
meta-logic/meta-programming approach. The first approach
translates diagrammatic models into a formal notation such
as B [16], Promela and LTL [17], CSP [18], first-order
logic [19], etc. and then applies model checking or auto-
mated proof tools; see [20] for a survey. Such methods take
advantages of existing formal techniques and tools, and are
capable of reasoning deeply about the semantics of the
models. The second approach applies formalisms at meta-
model level by explicitly defining consistency constraints
on the modelling languages. The consistency constraints are
expressed with some formalism such as conceptual graphs
[21], attributed EBNF [22], OCL [23], description logic
[24], graph-grammars [25], etc. Tools have been developed
to enable checking models’ consistency against the con-
straints as CASE tools such as OCL Environment [23] and
Xlinkit [26, 27], or as plug-ins of existing modelling envi-
ronments, such as MCC as a plug-in of Poseidon for UML
[24] and as a plug-in of Fujaba tool suit [25]. In comparison
with the transformation approach, the meta-level approach
is more practically applicable. The detected inconsistencies
can be directly located in the original models, thus provide
more instructive information on how to revise the model.
The success of this approach replies on a set of well defined
and explicitly specified consistency constraints, which is
still an open problem.

Our work belongs to the second approach. It is based on
our previous work on modelling tools for structured meth-
ods [28]. The main contributions of the work reported in
this paper are three-fold. First, a framework of first order
language that is capable of specifying constraints on multi-
ple view modelling languages is proposed based on a the-
ory of the structure and type systems of modern modelling
languages and the taxonomy of constraints. Second, it dem-
onstrates the practical applicability of the framework by
specifying an adequate set of the constraints on a non-
trivial modelling language. Third, it provides empirical
evidence that the approach is effective and efficient to de-
tect errors in models.

In comparison with existing works, especially those
based on OCL, our language is more expressive. It is capa-

ble of specifying constraints across the boundaries between
diagrams. Existing OCL-based works e.g. [23] are mainly
checking on the well-formedness constraints specified in
UML 2.0 documentation, which represent restrictions on
the uses of individual elements [1], thus belong to intra-
model constraints. They do not address inter-diagram con-
sistency of models. A complete set of consistency and
completeness constraints in OCL for UML has not been
reported in the literature as far as we know. OCL was origi-
nally designed for writing constraints on instances of a
system as a part of a model. Meta-level constraints written
in OCL tend to be complex and lengthy as shown in [23]. It
is also questionable if OCL is capable of specifying inter-
diagram and inter-model constraints. The existing tools
such as Dresden OCL Toolkit, Kent OCL library, OSLO
[29] facilitate the use of OCL rather than the consistency
and completeness problems. It is yet to be proved that they
are capable of handling complicated constraints.

In [30], an empirical study was reported on uses of real
industrial examples to investigate the occurrence frequency
of various types of inconsistency in modelling. In this pa-
per, we reported the case study on the effectiveness of con-
sistency checking through artificially produced inconsistent
models. These works have different purposes, but the
methods are complementary in the research on the consis-
tency problem.

We are currently further investigating how to formally
specify UML and define its consistency and completeness
constraints.

Acknowledgement

The work reported in this paper is partly funded by The
Ministry of Science and Technology of China in the High-
Technology R&D Programme (863 Programme) under the
grants 2002AA116070 and 2005AA113130. The authors
would like to thank Dr. Ian Bayley of Oxford Brookes
University for his comments on the earlier versions of the
paper and valuable discussions on the related topics.

References

[1]1 OMG, Unified Modelling Language: Superstructure, Version
2.0, formal/05-07-04.

[2] Zhu H and Shan L. Caste-Centric Modelling of Multi-Agent
Systems: The CAMLE Modelling Language and Automated
Tools. In Model-driven Software Development, Beydeda S and
Gruhn V (eds), Springer, 2005, pp57-89.

[3] Finklestein A, Gabbay D, Hunter A, Kramer J, Nuseibeh B.
Inconsistency handling in multi-perspective specifications, In
IEEE TSE, Vol. 20, No. 8, 1994, pp569-578.

[4] Hunter A, Nuseibeh B. Managing inconsistent specifications:
reasoning, analysis and action, In ACM TOSEM, Vol. 7, No. 4,
October 1998, pp335-367.

[51 OMG, OCL 2.0 Specification, Version 2.0 ptc/2005-06-06

[6] Kuzniarz L, Reggio G, Sourrouille J L & Huzar Z (eds). Work-
shop on Consistency Problems in UML-based Software De-
velopment at UML’02.

[7] Kuzniarz L, Huzar Z, Reggio G, Sourrouille J L, Staron M
(eds). Workshop on Consistency Problems in UML-based
Software Development Il at UML’03.

[8] Huzar Z, Kuzniarz L, Reggio G, Sourrouille J L (eds). Third
Workshop on Consistency Problems in UML-based Software
Development at UML’04.

[9] Paige R F, Ostroff J S, and Brooke P J. Check the Consistency
of Collaboration and Class Diagrams using PVS. In Proc. of
4™ Workshop on Rigorous Object-Oriented Methods, London,
British Computer Society, 2002.

[10] Astesiano E & Reggio G. An Attempt at Analysing the Con-
sistency Problems in the UML from a Classical Algebraic
Viewpoint. Recent Trends in Algebraic Development Tech-
niques, Selected Papers of the 15™ Int. Workshop WADT'02,
LNCS, Springer Verlag, 2003.

[11] Zhu H and Shan L. Well-Formedness, Consistency and Com-
pleteness of Graphic Models. In Proceedings of the 9th Inter-
national Modelling and Simulation (UKSim’06). pp47-54.

[12] Zhu H. Formal Specification of Evolutionary Software
Agents. Proc. ICFEM’2002, Springer LNCS 2495, pp249-261.

[13] Shan L and Zhu H. Modelling and specification of scenarios
and agent behaviour. In Proc. of IEEE/WIC conference on In-
telligent Agent Technology (1AT’03), IEEE CS, pp32-38.

[14] Zhu H and Shan L. Agent-Oriented Modelling and Specifica-
tion of Web Services. In Proc. of WORDS’05, pp152-159.

[15] Shan L and Zhu H. Testing Software Modelling Tools Using
Data Mutation. Accepted by AST’06 at ICSE 2006.

[16] Marcano R and Levy N. Using B formal specifications for
analysis and verification of UML/OCL models. In [6]

[17] Inverardi P, Muccini H, Pelliccione P. Automated check of
architectural models consistency using SPIN. In Proc. of
ASE’01, pp346-356

[18] Kiister JM, Stehr J. Towards Explicit Behavioral Consistency
Concepts in the UML. In Proceedings of the 2nd Interna-
tional Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools, 2003

[19] Kaneiwa K and Satoh K. Consistency Checking Algorithms
for Restricted UML Class Diagrams. In Proceedings of
Foundations of Information and Knowledge Systems.: 4th In-
ternational Symposium, FoIKS 2006 (FolKS2006), pp219—
239. LNCS 3861, Springer

[20] Sourroulle J L, Caplat G., A Pragmatic View about Consis-
tency Checking of UML Models. In [7]

[21] Sunetnanta T T and Finkelsteing A. Automated Consistency
Checking for Multiperspective Software Specifications. In
Workshop on Advanced Separation of Concerns at ICSE 2001.

[22] Xia Y and Glinz M. Rigorous EBNF-based Definition for a
Graphic Modeling Language. In Proceedings of APSEC 2003,
IEEE Computer Society Press.

[23] Chiorean D, Pasca M, Carcu A, Botiza C, Moldovan S. En-
suring UML Models Consistency Using the OCL Environ-
ment. In Electr. Notes Theor. Comput. Sci. 102: 99-110 (2004)

[24] Simmonds J M. Bastarrica C. A Tool for Automatic UML
Model Consistency Checking. In Proc. of ASE’05.

[25] Wagner R, Giese H and Nickel U A. A Plug-In for Flexible
and Incremental Consistency Management. In [7]

[26] Gryce C, Finkelstein A, and Nentwich C. Lightweight Check-
ing for UML Based Software Development. In [6]

[27] Nentwich C, Emmerich W, & Finkelstein A. Flexible Consis-

tency Check, In ACM TOSEM 12(1), pp28-63, 2003.

[28] Xu, J. and Zhu, H., Requirements analysis and specification
as a problem of software automation -- Some researches on
requirements analysis, in Proc. SEKE'96, pp457~464.

[29] Accessible at http://www-st.inf.tu-dresden.de/ocl/

[30] Langel C, Chaudron M RV, Muskens J, Somers L J, Dort-

mans H M. An Empirical Investigation in Quantifying Incon-
sistency and Incompleteness of UML Designs. In [6].

