A Virtual Machinefor Distributed Agent-Oriented Programming

Bin Zhou
School of Computer, National Univ. of Def. Tech.
Changsha, China, Email: binzhou@nudt.edu.cn

Abstract. Agent-orientation has been considered as a
viable solution to the development of software systems in
dynamic environments such as the Internet. This paper
presents a high level language virtual machine CAVM
designed for distributed agent-oriented programming in the
Internet environment. The main features of the virtual
machine (VM) are two-fold. First, the communication
between agents is separated from computation so that
communication is network transparent of agent location.
Second, code deployment is separated from loading so that
multiple agents of the same caste can be dynamically
distributed to the network and dynamical integrated into the
systems by adding new agents. The paper first reviews the
key features of an agent-oriented programming language
called CAOPLE. It then presents the design of the virtual
machine to support the implementation of the language.
Experiments with the performance of the systemin a network
environment are also reported.

1. Introduction

Agent-orientation has been long considered as a viable so-
Iution to the development of software systems in dynamic
environments such as the Internet [1, 2]. A great amount of
research efforts has been reported in the literature; see, for
example, [3,4,5]. However, the IT industry has been slow to
adopt the approach. A key problem that hampers the wide
adoption of agent technology is the lack of efficiently im-
plemented agent-oriented programming languages. Among
the most promising approaches to the design and imple-
mentation of such a language is virtuaization, which can
provide a high level abstraction of computation resources
associated to the internet and a unified framework for effi-
cient uses of the resources[6]. The most appealing feature of
virtualization is that it can provide software developers and
end-users a virtual computation environment that is con-
ceptually simple and easy to use through hiding the com-
plexity caused by the heterogeneity and spatia distribution
of hardware and the diversity of software platforms and
interaction protocols.

In this paper, we present the design and implementation
of a virtual machine caled CAVM, which stands for
Caste-centric Agent-oriented Virtual Machine. It is a high
level language virtual machine (VM) for the implementation
of a high level agent-oriented programming language,
CAOPLE, for distributed programming on the Internet. The
caste centric model is a simple but powerful multi-agent
model of software systems proposed in [7]. Its expressive-
ness has been demonstrated by the specification and mod-
eling of various types of multi-agent systems, communica
tion protocols, distributed algorithms and web services ar-
chitecture and applications[7, 8].

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the caste-centric model on which the

Hong Zhu
School of Technology, Oxford Brookes University
Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

VM is based, where caste is the modular program unit and
the templates of agents. The key features of an
agent-oriented programming language CAOPLE will be
described. Section 3 presents the design of CAVM, the VM
in order to efficiently implement the semantic of CAOPLE.
Section 4 describes the implementation of the system and
reports the main results of preliminary evaluation. Section 5
concludes the paper with a discussion of related work and
future work.

2. Overview of The CAOPLE Language

This section briefly reviews the key concepts and features of
the caste centric model [9, 10] and the language CAOPLE
and discusses their requirements on the VM.

2.1. TheCaste-Centric Model of Multi-Agent Systems

In this model, a software system consists of a number of

active autonomous computation entities called agents.

Agents are instances of Castes, and may be distributed over

anetwork and execute concurrently. Each agent encapsulates

four parts, which are defined in their corresponding Caste:

— State space defined by a set of variables;

— Actions that the agent can perform;

—Behaviour rules that the agent uses to determine when to
take an action and how to change its state; and

—Environment description that defines the entities in the
system the agent observes.

An action can be either observable by other agents or just
internal. When an agent takes an externally observable ac-
tion, it generates an event that the outside can perceive.
Similarly, a state variable can also be either observable by
the outside or just internal. The outside can obtain (but not
change) the value of an observable variable. Thus, agents
communicate and interact with each other through taking
observable actions and changing observable states and ob-
serving other agents' actions and states. It is worth noting
that in this model, all entities in a multi-agent system are
agents. Object can be considered as a degenerate form of
agent [7, 9].

For example, the following smple CAOPLE program
giveninFigure1 defines acaste Greet ingAgent , whose
agents are capable of taking two actions, to say Hello
World and to say Welcome. Each of them observes al
other agents of the caste. Their behaviour rules are: (1) to
say HelloWorld when it is created, and (2) whenever it
observes another agent saysHelloWorld, it respondswith
Welcome.

caste GreetingAgent;
observes all GreetingAgent;
action HelloWorld; Welcome;
init HelloWorld;
body
when some A in GreetingAgent: HelloWorld()
-> Welcome () End;
end GreetingAgent

Figure 1. The Helloworld program in CAOPLE

As shown in the Hel1loWorld example, agents are de-
fined as instances of castes. A caste defines a template of
agents via encapsulating a collection of structural and be-
havioura characteristics in the form of a set of state vari-
ables, a set of actions, a set of behaviour rules and a de-
scription of a set of other agents as its designated environ-
ment. Here, caste plays a similar role as class in Ob-
ject-Oriented (OO) programming and data type in structured
programming. However, in OO paradigm an object is
bounded to its class statically. In contrat, in the caste modedl,
an agent is bounded to its castes dynamicaly, i.e. it may
change its caste membership at runtime by joining to or
quitting from a caste. An agent can also be a member of a
number of castes at the same time. The CAOPLE program
given in Figure 2 defines a caste Creator whose instances
will create anumber of agents of caste Greet ingAgent to
populate the world.

The location of the caste in a create statement can be
specified explicitly or implicitly. The general format of a
create statement is

create [AgentName in] CasteName(Para) [@URL],

where URL isastring that gives the location where the caste
object code is deployed. When URL is omitted, the location
of the caste must be resolved during the deployment of the
caste through a search strategy. However, agents of the same
caste can be created and execute on different machines. Thus,
the executable code of a caste must be loaded to these ma-
chines from where it is deployed. Such distributions of code
may happen at runtime. Agents can be created at runtime and
joins a caste at runtime through remote loading of the object
code from where the caste is deployed.

For example, suppose that two agents of caste Creator
declared in Figure 2 run on machine C; and C, and generate
N; and N, agents of GreetingAgent, respectively. The
system will then contain a total of N;+N, agents of
GreetingAgent; N; agents on C; and N, agents on C,.
They must be able to communicate with each other despite of
their distribution on the different computers. Moreover, the
system must also support the integration of new agent into
the system when a new agent is created. For example, if
another new agent of GreetingAgent is created on a
computer, say Cs, al the N;+N, existing agents should re-
spond to its HelloWorld action with their welcome ac-
tions. This simple example shows that CAOPLE has the
features of network transparency of agents' location because
the programmer does not need to know where the agents are
located at runtime.

The caste centric model not only supports dynamic inte-
gration of new agents into a system, but also adaptation of
behaviours through dynamic casteship changes. For example,
suppose that three sub-castes of caste GreetingAgent
are defined as in Figure 3. An agent of caste Smart can
determine its behaviour according to the weather of the day.
When the weather is fine, it will join the caste Golf-
Player and invite the new agent to play golf. If the day is
rainy, it will join the caste of CoffeeDrinker and
invite the new agent to drink coffee.

The support to the seamlessly dynamic integration of new
agents into the system must also enable new castes to be
added into the system without interfering with the existing

caste Creator (population: Integer);
init
Begin for i:=1 to population do
create GreetingAgent; end;
end Creator

caste GolfPlayer is GreetingAgent;
action InvitePlayGolf () ;
body
when some A in GreetingAgent: HelloWorld()
-> InvitePlayGolf () ;
End;
end GolfPlayer
caste CoffeeDrinker is GreetingAgent;
action InviteCoffee() ;
body
when some A in GreetingAgent: HelloWorld()
-> InviteCoffee() ;
End;
end CoffeeDrinker
caste Smart is GreetingAgent;
observes WeatherMan in WeatherForecaster
body
when some A in GreetingAgent: HelloWorld()
-> if WeatherMan.Today='Fine’
then join(GolfPlayer)
elseif weatherman.Today='Rainy’
then join(CoffeeDrinker)end;
End;
end Smart

Figure 3. An example of adaptive behaviour

ones. For example, the casteMonitor givenin Figure4 can
be written and compiled after the agents of castes Greet -
ingAgent and Creator are created and running. When
an instance of the Monitor is created on a machine in the
network, it will start to count how many Welcome actions
are taken by the agents of caste GreetingAgent no mat-
ter whether the agents are created before or after its creation.

The overall structure of CAOPLE programs consist of a
number of type declarations and caste declarations.

A type declaration defines the formats of data that are
exchanged among agents, such as the parameters of ob-
servable actions and the values of observable variables. The
data are represented in XML. The type definition defines the
formats in Pascal-like syntax. It takes both advantages of the
flexibility and extendibility of data representation in XML
and the readability and high level of abstraction of type
definitions in Pascal-like programming languages and en-
ables static type checking during compilation. A type defi-
nition can be easily trandated into XML for runtime proc-
ng. Details are omitted here asthe focus of the paper ison
the VM.

2.2. Requirementson the Virtual Machine

In order to support distributed programming in a network
environment, the VM must support the following key fea
tures of the CAOPLE language facilities.

Distributed deployment. Object code of a caste must be
deployed to a unique location in a distributed computer
system so that consistency of the code can be managed.
Object codes of different castes must be able to be deployed
to different computers so that |oad balance can be achieved.
Dynamic deployment must also be supported so that new
caste can be deployed without interfering with the execution
of an existing system.

caste Monitor;
observes all GreetingAgent;
var counter: Integer;
init counter :=0;
body
when some A in GreetingAgent:
SayWelcomeToTheWorld ()
-> counter:=counter+1l end;
end Monitor

Figure 2. An example of dynamic creation of agents.

Figure 4. An example of dynamic integration of castes

Dynamic remote loading. An agent must be able to be
created or join a caste dynamically through create/join
statements. Consequently, the deployed caste object code
must be able to be loaded to any computer in the system at
runtime. When multiple agents of the same caste exist on the
same machine the code will be shared by these agents rather
than storing duplicated copies.

Autonomic management of object code. An agent can be
destroyed or quit from a caste using destroy/quit statements.
The loaded object code may be no longer needed thus can be
removed from the machine. However, the object code could
still be required as other agents may remain alive and run-
ning on the same machine. Such management of loaded
object code must be performed autonomically.

Transparent communication. In CAOPLE, agents commu-
nicate with each other through taking observable actions and
observing other agents' states and actions in their environ-
ments. This communication facility is highly abstract and
transparent to the location where the agents are located. This
mechanism is essentially event driven. An agent’s observ-
able actions can be considered as publication of events. The
environment description can also be understood as sub-
scription to such publications. This publication/subscription
mechanism must also be supported by the VM.

3. TheVirtual Machine CAVM
This section presents the design of the virtual machine.

3.1. Architecture

Asiillustrated in Figure 5, CAVM consists of two types of
components: Local Execution Engines (LEEs) and Commu-
nication Engines (CEs). The LEEs support the executions of
agents while the CEs support the communications between
agents, which may share the same computer with an LEE
(e.g. CE; and LEE; in Figure 5) or on different computers
over anetwork (e.g. CE, and LEE,).

A program written in CAOPLE that consists of a humber
of castes is compiled into CAVM’s object codes. Each
caste’ s object code is deployed to one CE, but can be loaded
to anumber of LEEs at runtime. When an agent of the caste
is created or an agent joins the caste on an LEE, the object
codeisloaded if itisnot already there. The object code could
be loaded locally or from aremote CE.

An object code file generated by compiler contains the
definition of a single caste in the object code of the CAVM.
It includes three main sections: constants, initialization code
and body code. The constant data section contains literal
constants and reference addresses in the code sections, such
as the offsets of state variables, offsets of action bodies,
offsets of environment variables, etc. The initialization code

CAOPLE Compil CAVM Object Code
0 e nae _Mi’ Cage O
Caste Caste SC, Caste OC,

fmmmm e . Computer C, |
iComputer £ ! ! !

J--.___.____J,______ _____ ~ ::*ComuterCn '
:\\.rCompLW Cs ! l |
Gl ___

[eE] | it

Figure 5. The architecture of CAVM

section containstheinstructionsfor theinitialization of agent
when the agent is created or joins the caste. The body code
section contains the instructions fulfilling the main func-
tionalities of the agent. It is compiled from the source codein
the Body part of the caste. The object codes are represented
in XML format, which is transformed into a binary format
when the code is loaded to LEE.

Caste deployment is mandatory before any agent can be
instantiated from it. It binds the object code of a caste to a
communication engine CE. The process consists of two steps.
First, the CE stores and registers the caste’' s object code file
and second the CE sets up and initializes the membership
management service and the communication services for the
caste.

If acasteisdeployed successfully on a CE, we say that the
CE isthe host CE of that caste. In general, a CE instance can
host many resident castes.

3.2. Local Execution Engines

As shown in Figure 6, alocal execution engine (LEE) con-
sists of the following components. Program space (PS) stores
the object code of castes loaded on the LEE together with
LLC, alist of stored castes and their locationsin the program
space. Loader finds and loads the object code of castes into
the program space when instructed by the Central Processing
Unit (CPU). A pre-defined search policy is applied by the
Loader to locate the object code deployed on CE. Memory
Space (MS) is the runtime memory that stores the states,
environment data of the agents running on the LEE, organ-
ized as agent context data (current program counter, operand
stack and local variables, etc). When an agent quits from a
caste, its context data is discarded. CPU interprets instruc-
tions stored in the PS and processes the data stored in the
memory space. For each instruction, the CPU changes the
state of the memory space and context register and updates
the Program Counter (PC) and then loads the next instruction
to the CPU. PC isapointer to alocation in the PS where the
next instruction will be loaded to the CPU to execute. It
therefore represents a thread of control. Upon send-
ing/receiving state/action update messages to/from a par-
ticular CE, environment data is updated autonomically and
asynchronously by the Communication Manager.

CAVM supports not only parallel computation by run-
ning anumber of LEEs and CEs on a network of computers,
but aso concurrent execution of multiple agents on one
computer through interleave. The multiple threads of exe-
cutions are achieved through a schedule policy (currently,
round robin) and switches between agents using the Context

Network Local Network
N s
X 2"
Communication Loader |- p| Program Space
Manager 'y
* Object cod
-l e - ject code
= < @ oc
_y Memory Space a
Central .
=l [AgentA _ 5 '
Qe C%?]rt]extl < rgn > Processing & | |Object codg
S 3 i 8% oc
= data o Unit (CPU) <H >
> > — o)
e 3 A 8
2 g a
0 Agent A, a v 2
§ “ c%r;t{ext i % Context o _»Object codg
=~ a Registers L —| oC,

Figure 6. Structure of Local Execution Engine (LEE)

Registers, which is a set of registers that store the context
information of the current agent. It includes two parts. the
offset of the agent’s local variables in memory and the
pointer to the agent’s operand stack. Within any one par-
ticular agent’sdatain MS, it hasits own local variables and
operand stack, which are two major runtime data structures
used by instructions to store/access runtime intermediate
states.

3.3. Communication Engines

The main functionalities of communication engines include
deployment management, membership management and
communication support of its resident castes. As shown in
Figure 7, a communication engine consists of the following
components. Recelver and Dispatcher are communication
units for receiving/dispatching messages from/to LEEs.
Communication Manager (CM) manages the state and action
lists of the active agents of the resident castes, according to
the environment descriptions, which serves as the definition
of the subscriptions, by means of Observe messages sent by
LEEs, to the events of observable actions and state changes.
Once an observable action or state change is received, the
Dispatcher sends the agent’ s state/action change to the LEE
on which those agents who are observing it are running.
Membership Manager (MM) manages the activeness status
of all the agents of the resident castes, which can be distrib-
uted over the network. A data structure, Membership List, is
used to trace the activeness. Deployment Manager (DM)
manages the deployed castes object code and Publication
Space (PubS) is the memory space that stores the states and
actions published by its active agents.

3.4. Interactions between LEEsand CEs

One of the key features of the CAVM s its support to the
network transparent communications between the agents.
Thisisachieved by separating LEE and CE. The interactions
between LEEs and CEs are realized through the communi-
cation messages between LEEs and CEs, which can be
classified into the following categories.

Register/Deregister. When one agent is created as an in-
stance of acaste or joins a caste resident on aCE, it registers
to the caste through a Register message sent to the host CE.
Receiving such a message, the CE's membership and
communication managers updates the caste's information
and start to provide services to the agent. Similarly, when an
agent of a caste is destroyed or quits from the caste, a de-
register messageis sent to the host CE. Consequently, the CE
updates its information and stops the services.

Sate/Action observe/update. At a high level caste-centric
agent-oriented programming language, agents communicate
with each other through taking observable actions and up-

Network Lo Negyvork
\ 7 % WI
< K N

Publication Space
Agent Al ga [Receiver] [Dispatcher]
data |
Communication || Deployment
) >
Agent A Ja Manager Manager
data I 7Y
¥ ¥
Membership List Membership Object
(of Active Agents) [€ | Manager Code

Figure 7. Structure of Communication Engine (CE).

dating observable state variables and perceiving other
agents’ actions and state variables. An agent A's observable
actions and variable updating are compiled into instructions
that instruct the LEE to send Action or State Update mes-
sagesto the caste’ shost CE, which are forwarded to the LEE
on which agents that observes agent A execute according to
their environment descriptions. The environment descrip-
tionsare also compiled into instructionsthat instruct the LEE
to send Action or State Observe messages to the corre-
sponding host CE. This is similar to the subscrip-
tion/publishing mechanism in many middleware, but repre-
sented at a higher level of abstraction and implemented with
more flexibility.

Member ship book keeping. The host CE of a caste keeps the
track of the aliveness state of its agents, which can also be
queried by agents, for example, to obtain alist of live agents
of a caste. This is also realized through instructions that
resultsin a message sent to the caste’ s host CE.

The messages are encoded in XML format. For example,
when an agent of caste GreetingAgent performs an
action HelloWorld, an update message is sent to the CE,
which in turn automatically propagates the change to the
Monitor agent that observes it. When the update message is
received by an LEE where a Monitor agent runs, the
Communication Manager will update the corresponding
environment datain its Memory Space.

3.5. Instruction Set

There are three types of CAVM instructions. The computa-
tion instructions perform computation and local control
functions. It includes arithmetic and logic operations as well
as control and stack operations. The interaction instructions
deal with the interactions between agents and castes. It in-
clude caste loading, agent’s joining and quitting a caste,
agent creation and deletion, state update, action event pub-
lishing, message sending and receiving, and event publishing
and subscription. The external invocation instructions are
those operations facilitating CAVM'’ sinteraction with native
environment, such as invocation of third-party runtime li-
braries (e.g. DLL library) on the host machine, and those for
debugging purpose. Details of the instruction set are omitted
for the sake of space.

4. Implementation and Evaluation

A prototype system of CAVM is implemented with C/C++
using Visual Studio .NET. LEE and CE are realized as two
separate Common Language Runtime console servers. All
the functions described in section 3 have been implemented.
To facilitate experiments with and evaluation of the design
and implementation of the VM, a GUI interface is also de-
veloped for the deployment and execution of object code, the
measurement of system performance and the management of
the VMs running over a network.

Figure 8 is a screen snapshot of theinterface. It shows the
object code of a caste on the l€eft part of the window. On the
right hand side are the IP addresses of the CEs on which
object codes are (to be) deployed. The performances of CEs
and LEEs are monitored and information is displayed on the
tab CE monitor and LEE monitor, respectively. It aso pro-
vides remote control over agents distributed over a network,
such as remote agent launching.

To test the system and evaluate its performance, several
preliminary experiments have been conducted. The experi-

EEX

{E] CAVE Nanagement Console

Caste Tleployment |pgent Utility | CE Monitor | LEE Monitor

Flease select caste sbject code you want to deploy

<def ~
<eommentmanuslly generated, dateZ007-03-05, B
time:12:08, author:Bin Zhou</comment?
<conztant_section’
Qb i JPeer{futfE>
<ntfd i eer. sayHello</ut£5>
Qutf8 index= eloome<fut €37
“utf8 index="3">Lep://161.T3. 145, 225/ <futfE>
utfB index="4" F < utfEr
datate /7

Caction index="5"> v

[Scan for available CE?
From (IF):
To (TF):

IF address of the CE. |161.73.146.201 v

(]

Status: Deployment &

Figure 8. Screen snapshot of the management tool.

ments were performed in a network environment consists of
several computers (depending on different experiments). All
the computers have Intel Pentium 1.70GHz CPU, 512MB
RAM, interconnected by 100M Ethernet. The computation
performance is measured by the number of instructions per
milli-second (IPmS) and communication performance is
measured by the number of messages per milli-second
(MPmS).

Figure 9 shows the result of experiments in which the
performance of a system that consists of a number of agents
communicating to another agent running on the same com-
puter (Expl) is compared with the performance when the
other agent is running on a different computer (Exp2). The
performance difference of Expl and Exp2 is largely be-
cause in the former the communication is via shared mem-
ory while the latter is through TCP.

Figure 10 shows the results of experiments in which
agents are distributed to a number of computers and each
computer hosts 100 agents. The performance of the system
only declines dlightly due to communication overhead when
the number of computers increases.

From the results of the experiments, we can conclude
that the design and implementation of the prototype CAVM
is efficient in performance and scalable for running a large
number of agents over a network.

There are more experiments with the system. Due to the
limit on space, the data will be reported in another paper.

5. Related Works

semantic of those languages. The CAOPLE is an imperative
programming language with language facilities of high level
abstractions that directly support the caste-centric approach.

Such implementations have been focusing on the supports
to programming in mentalist models of agents such as belief,
desire, intension, reasoning, and planning through extending
existing programming languages and concepts based on
logic or object-oriented languages. However, their pro-
gramming platforms are either centralized or using a simple
distributed computing models (e.g. RMI) to support agent
communication in decentralized environment.

The JACK Agent Language (JAL) [13] is probably the
most similar to CAOPLE language. It is also an imperative
programming language, which extended Java by adding a
number of declaration types used to declare agents, belief-
sets, views, events, plans and capabilities, and statements to
manipulate events in an imperative manner. In addition to
the development environment and debugger, JACK’s plat-
form contains a light weight communication mechanism to
support the sending and receiving messages between agents.
The address of the agent on the computer in the form of
portal is required when an agent send a message to another,
while our VM supports network transparency at high level
programming language so that agents can communicate with
each other without explicitly specify network address of the
agents as shown in our examples. In comparison with JACK,,
CAVM provides a much higher level communication facil-
ity and autonomic mechanism.

In our previous work of experiments with design and
implementations of agent oriented programming languages,
the SLABSp language [17] is also based on the caste centric
model. It extends Java with caste and scenario facilities. The
implementation of SLABSp uses components and middle-
warein asimilar way as JACK’ splatform. It is observed that
the VM approach reported in this paper is more flexible and
more efficient.

VMs have long been used in hardware virtualization,
representing intermediate structures, and bytecode interpre-
tation [18]. They have drawn renewed attention in recent
years for their advantages in resource virtualization in the
network environments [6]. Asavirtua machine of TinyOS,
Mate [19] can reprogram the sensor network by sending and
receiving messages that enable the deployment of ad-hoc
routing and data aggregation algorithm. This feature is
similar to CAVM’ s dynamic loading of object codeto LEEs.

There are two classes of related
works. One is the implementa

Exp. 1 and Exp.2 - Instructions

tion of agent- oriented pro-

=

[e,

gramming languages and the

S

other isvirtual machines.

IS
S

Instructions/ms

A few programming lan-
guages have been proposed and

=5
T

=

implemented to directly imple-
ment agent-oriented concepts in
the literature. In [11], Rafael H.

0 20 40 60 80

Number of Agents

100

Bordini et a. classified these
agent- oriented languages into

Exp.1 and Exp.2 - Messages

three categories. purely de
clarative (e.g. CLAIM [12]),

purely imperative (e.g. JACK

Messages/ms

[13]), and hybrid languages that v

combines declarative and im-

5
4
3 T e
2
1
0

perative features (e.g. 3APL
[14], Jason [15], and IMPACT

0 20 40 60 80

Number of Agents

100

10
£ 3
g6t
ﬁ
—=—Exp. 2 z 4T
7
g 2
0
0.6<
0.5 \
é% 0.4
= 0.3 A
So2f N
—e—Exp. 1 = 4
01t
0
100 200 300 400 500 60
Number of Agents

[16]). They aso surveyed those
platforms which realized the

Figure 9. One computer vs two computers

Figure 10. Performance as the numbers of computers
and agentsincrease

Comparing to Mate, CAVM is more powerful, flexible and
at a higher level of abstraction. Moreover, by decoupling
computation from communication, CAVM enables LEE to
be run on less powerful devices while leave communication
tasks to be handled by CE running on computers of high
network bandwidth and processing power. Of course, the
main difference between CAVM and Mate isthat CAVM is
a high level language VM while Mate is a system VM ac-
cording to Smith and Nair’s classification. A well-known
high language level VM is the Java Virtua Machine VM
[20], which provides platform independence to the object
oriented programming language Java. Similar to VM and all
other high level language VMs, CAVM provides an abstract
layer of indirection for efficient implementation of a high
level programming language that is not directly supported by
the hardware architecture and instructions. However, unlike
JVM, CAVM supports distributed computing from the in-
struction level rather than using an add-on distributed object
model (e.g. RMI). Thus, distributed programs can be written
a a higher level of abstraction without being forced to
comply with adistributed computation model.

Finally, the publish/subscribe paradigm has the feature of
decoupling the communicating parties in time, space and
flow, and facilitating concurrent asynchronous computations,
which is essentia for Internet-based computation. The
mechanism has been implemented in various middleware,
but few in VMs [21]. The communications between LEEs
and CEs in CAVM can be viewed as a publish/subscribe
model, but it isin the agent-oriented metaphor described at a
high level of abstraction in the form of environment de-
scription. In particular, it is unnecessary for an agent to hold
each other’s references to actively participate in interaction.
The built-in communication management mechanism in
CAVM enables an asynchronous updates of agents
state/action changes.

6. Conclusion and Future Work

The main contribution of the paper is a virtual machine
CAVM designed for the implementation of caste-centric
agent-oriented programming language CAOPLE. Its archi-
tecture consists of local execution engines (LEEs) and
communications engines (CEs) distributed over a TCP/IP
network such as the Internet. It provides the mechanisms
and facilities to support inter-agent communications with
location transparency, dynamic code distribution for agents
dynamic joining to and quitting from castes and creating
agents as instances of castes whose object codes are de-
ployed to computers on the network. Experiments with the
performance of the VM were reported, which demonstrated
the efficiency and scalability of the system.

Currently, we are completing a compiler that translates
CAOPLE source code to the CAVM object code. We are
also developing alibrary of graphic user interface agentsfor
dynamic construction and adaptation of graphic user inter-
faces. Finally, case studies with real applications are also on
our agenda.

Acknowledgments

The authors would like to thank the Applied Formal Method
research group at Oxford Brookes University for discussions
on related topics and comments on the earlier draft of the
paper. The work is partially supported by China Ministry of
Science and Technology in the National Basic Research
Program (973 program) under the grant 2005CB321800. The
work is carried out while the first author, Bin Zhou, was
visiting Oxford Brookes University.

References

[1] Jennings, N. R.: On agent-based software engineering. Artifi-
cial Intelligence 117, 277-296, 2000.

[2] Jennings, N.R., Wooldridge, M.J. (eds.): Agent Technology:
Foundations, Applications, and Markets. Springer, 1998.

[3] Zambonelli, F. and Omicini, A.: Challenges and Research
Directions in Agent-Oriented Software Engineering, AAMAS
9, 253-283, 2004.

[4] Henderson-Sellers, B. and Giorgini, P. (Eds.): Agent-oriented
Methodologies, |dea Group Publishing, June 28, 2005.

[5] Padgham, L., and Zambonelli, F.: Agent-Oriented Software
Engineering VII, LNCS 4405. Springer, 2007.

[6] Figueiredo, R., Dinda, P. A., Fortes, J.: Resource Virtualiza-
tion Renaissance, Computer 38(5), 28-31, 2005.

[7] Zhu, H.: SLABS: A formal specification language for agent
based systems. SEKE 11(5), 529-558, 2001.

[8] Zhu, H. and Shan, L., Caste-Centric Modelling of Multi-Agent
Systems: The CAMLE Modelling Language and Automated
Tools, in Model-driven Software Development, Beydeda, S.
and Gruhn, V. (eds), 57-89. Springer, 2005.

[9] Zhu, H.: Towards An Agent-Oriented Paradigm of Informa
tion Systems. Handbook of Research on Nature Inspired
Computing for Economy and Management, Jean-Philippe
Rennard (Ed), Idea Group Inc. Chapter XLIV, 679-691, 2006.

[10] Mao, X., Shan, L., Zhu, H and Wang, J.: An Adaptive Cast-
eship Mechanism for Developing Multi-Agent Systems, Intl. J.
of Computer Application in Technology. (In press)

[11] Bordini, R. H., et al.: A survey of programming languages and
platforms for multi-agent systems. Informatica 30(1), 33-44,
2001.

[12] Seghrouchni A., Suna. A.: CLAIM: A computational language
for autonomous, intelligent and mobile agents. Programming
Multiagent Systems, LNCS 3067, Springer Verlag, 2004.

[13] Winikoff. M.: JACKTM intelligent agents: An industrial
strength platform. In Multi-Agent Programming: Languages,
Platforms, and Applications, Bordini, R. H., Dastani, M., Dix, J.,
Seghrouchni, A. (eds.), Springer, Chapter 7, (2005)

[14] Hindriks, K., de Boer, F., van der Hoek, W., Meyer. J.: Agent
programming in 3APL. AAMAS 2(4), 357401, 1999.

[15] Rao. A.S.: AgentSpeak(L): BDI agents speak out in alogical
computable language. Proc. of Modelling Autonomous Agents
in a Multi-Agent World, LNAI 1038, 42-55. Springer, 1996.

[16] Subrahmanian, V., et a.: Heterogenous Active Agents.
MIT-Press 2000.

[17] Wang, J., Shen, R., Zhu, H.: Agent oriented programming
based on SLABS. Proc. of COMPSAC' 05, 127-132, 2005.

[18] Smith, J. E. and Nair, R.: The Architecture of Virtual Ma
chines, Computer 38(5), 32-38, 2005.

[19] LevisP., Culler. D.: Mate: A tiny virtual machine for sensor
networks. Proc. of Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2002.

[20] Lindholm, T., Yellin, F.: The Java Virtual Machine Specifi-
cation. Second Edition, Addison-Wesley, 1999.

[21] Deng, Y., Sadjadi, S. M., Clarke, P. J. Zhang, C., Hristidis, V.,
Rangaswami, R., and Prabakar, N.: A Communication Virtua
Machine, Proc. of COMPSAC'06, 521-531, 2006.

