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Abstract. Agent-orientation has been considered as a 
viable solution to the development of software systems in 
dynamic environments such as the Internet. This paper 
presents a high level language virtual machine CAVM 
designed for distributed agent-oriented programming in the 
Internet environment. The main features of the virtual 
machine (VM) are two-fold. First, the communication 
between agents is separated from computation so that 
communication is network transparent of agent location. 
Second, code deployment is separated from loading so that 
multiple agents of the same caste can be dynamically 
distributed to the network and dynamical integrated into the 
systems by adding new agents. The paper first reviews the 
key features of an agent-oriented programming language 
called CAOPLE. It then presents the design of the virtual 
machine to support the implementation of the language. 
Experiments with the performance of the system in a network 
environment are also reported.  

1. Introduction 
Agent-orientation has been long considered as a viable so-
lution to the development of software systems in dynamic 
environments such as the Internet [1, 2]. A great amount of 
research efforts has been reported in the literature; see, for 
example, [3,4,5]. However, the IT industry has been slow to 
adopt the approach. A key problem that hampers the wide 
adoption of agent technology is the lack of efficiently im-
plemented agent-oriented programming languages. Among 
the most promising approaches to the design and imple-
mentation of such a language is virtualization, which can 
provide a high level abstraction of computation resources 
associated to the internet and a unified framework for effi-
cient uses of the resources [6]. The most appealing feature of 
virtualization is that it can provide software developers and 
end-users a virtual computation environment that is con-
ceptually simple and easy to use through hiding the com-
plexity caused by the heterogeneity and spatial distribution 
of hardware and the diversity of software platforms and 
interaction protocols.  

In this paper, we present the design and implementation 
of a virtual machine called CAVM, which stands for 
Caste-centric Agent-oriented Virtual Machine. It is a high 
level language virtual machine (VM) for the implementation 
of a high level agent-oriented programming language, 
CAOPLE, for distributed programming on the Internet. The 
caste centric model is a simple but powerful multi-agent 
model of software systems proposed in [7]. Its expressive-
ness has been demonstrated by the specification and mod-
eling of various types of multi-agent systems, communica-
tion protocols, distributed algorithms and web services ar-
chitecture and applications [7, 8].  

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the caste-centric model on which the 

VM is based, where caste is the modular program unit and 
the templates of agents. The key features of an 
agent-oriented programming language CAOPLE will be 
described. Section 3 presents the design of CAVM, the VM 
in order to efficiently implement the semantic of CAOPLE. 
Section 4 describes the implementation of the system and 
reports the main results of preliminary evaluation. Section 5 
concludes the paper with a discussion of related work and 
future work. 

2. Overview of The CAOPLE Language 
This section briefly reviews the key concepts and features of 
the caste centric model [9, 10] and the language CAOPLE 
and discusses their requirements on the VM. 

2.1. The Caste-Centric Model of Multi-Agent Systems 
In this model, a software system consists of a number of 
active autonomous computation entities called agents. 
Agents are instances of Castes, and may be distributed over 
a network and execute concurrently. Each agent encapsulates 
four parts, which are defined in their corresponding Caste: 
− State space defined by a set of variables;  
− Actions that the agent can perform;  
− Behaviour rules that the agent uses to determine when to 

take an action and how to change its state; and  
− Environment description that defines the entities in the 

system the agent observes.  
An action can be either observable by other agents or just 

internal. When an agent takes an externally observable ac-
tion, it generates an event that the outside can perceive. 
Similarly, a state variable can also be either observable by 
the outside or just internal. The outside can obtain (but not 
change) the value of an observable variable. Thus, agents 
communicate and interact with each other through taking 
observable actions and changing observable states and ob-
serving other agents’ actions and states. It is worth noting 
that in this model, all entities in a multi-agent system are 
agents. Object can be considered as a degenerate form of 
agent [7, 9].  

For example, the following simple CAOPLE program 
given in Figure 1 defines a caste GreetingAgent, whose 
agents are capable of taking two actions, to say Hello 
World and to say Welcome. Each of them observes all 
other agents of the caste. Their behaviour rules are: (1) to 
say HelloWorld when it is created, and (2) whenever it 
observes another agent says HelloWorld, it responds with 
Welcome.  

Figure 1. The HelloWorld program in CAOPLE

caste GreetingAgent; 
observes all GreetingAgent; 
action HelloWorld; Welcome; 
init HelloWorld; 
body 
  when some A in GreetingAgent: HelloWorld() 
    -> Welcome() End; 

end GreetingAgent 



As shown in the HelloWorld example, agents are de-
fined as instances of castes. A caste defines a template of 
agents via encapsulating a collection of structural and be-
havioural characteristics in the form of a set of state vari-
ables, a set of actions, a set of behaviour rules and a de-
scription of a set of other agents as its designated environ-
ment. Here, caste plays a similar role as class in Ob-
ject-Oriented (OO) programming and data type in structured 
programming. However, in OO paradigm an object is 
bounded to its class statically. In contrast, in the caste model, 
an agent is bounded to its castes dynamically, i.e. it may 
change its caste membership at runtime by joining to or 
quitting from a caste. An agent can also be a member of a 
number of castes at the same time. The CAOPLE program 
given in Figure 2 defines a caste Creator whose instances 
will create a number of agents of caste GreetingAgent to 
populate the world.  

The location of the caste in a create statement can be 
specified explicitly or implicitly. The general format of a 
create statement is  

create [AgentName in] CasteName(Para) [@URL], 
where URL is a string that gives the location where the caste 
object code is deployed. When URL is omitted, the location 
of the caste must be resolved during the deployment of the 
caste through a search strategy. However, agents of the same 
caste can be created and execute on different machines. Thus, 
the executable code of a caste must be loaded to these ma-
chines from where it is deployed. Such distributions of code 
may happen at runtime. Agents can be created at runtime and 
joins a caste at runtime through remote loading of the object 
code from where the caste is deployed.  

For example, suppose that two agents of caste Creator 
declared in Figure 2 run on machine C1 and C2 and generate 
N1 and N2 agents of GreetingAgent, respectively. The 
system will then contain a total of N1+N2 agents of 
GreetingAgent; N1 agents on C1 and N2 agents on C2. 
They must be able to communicate with each other despite of 
their distribution on the different computers. Moreover, the 
system must also support the integration of new agent into 
the system when a new agent is created. For example, if 
another new agent of GreetingAgent is created on a 
computer, say C3, all the N1+N2 existing agents should re-
spond to its HelloWorld action with their Welcome ac-
tions. This simple example shows that CAOPLE has the 
features of network transparency of agents’ location because 
the programmer does not need to know where the agents are 
located at runtime.  

The caste centric model not only supports dynamic inte-
gration of new agents into a system, but also adaptation of 
behaviours through dynamic casteship changes. For example, 
suppose that three sub-castes of caste GreetingAgent 
are defined as in Figure 3. An agent of caste Smart can 
determine its behaviour according to the weather of the day. 
When the weather is fine, it will join the caste Golf-
Player and invite the new agent to play golf. If the day is 
rainy, it will join the caste of CoffeeDrinker and 
invite the new agent to drink coffee.  

The support to the seamlessly dynamic integration of new 
agents into the system must also enable new castes to be 
added into the system without interfering with the existing 

ones. For example, the caste Monitor given in Figure 4 can 
be written and compiled after the agents of castes Greet-
ingAgent and Creator are created and running. When 
an instance of the Monitor is created on a machine in the 
network, it will start to count how many Welcome actions 
are taken by the agents of caste GreetingAgent no mat-
ter whether the agents are created before or after its creation.   

The overall structure of CAOPLE programs consist of a 
number of type declarations and caste declarations.  

A type declaration defines the formats of data that are 
exchanged among agents, such as the parameters of ob-
servable actions and the values of observable variables. The 
data are represented in XML. The type definition defines the 
formats in Pascal-like syntax. It takes both advantages of the 
flexibility and extendibility of data representation in XML 
and the readability and high level of abstraction of type 
definitions in Pascal-like programming languages and en-
ables static type checking during compilation. A type defi-
nition can be easily translated into XML for runtime proc-
essing. Details are omitted here as the focus of the paper is on 
the VM.  

2.2. Requirements on the Virtual Machine 
In order to support distributed programming in a network 
environment, the VM must support the following key fea-
tures of the CAOPLE language facilities. 
Distributed deployment. Object code of a caste must be 
deployed to a unique location in a distributed computer 
system so that consistency of the code can be managed. 
Object codes of different castes must be able to be deployed 
to different computers so that load balance can be achieved. 
Dynamic deployment must also be supported so that new 
caste can be deployed without interfering with the execution 
of an existing system.   

Figure 2. An example of dynamic creation of agents.

caste Creator (population: Integer); 
init  
   Begin for i:=1 to population do 
      create GreetingAgent;  end; 

end Creator 

Figure 3. An example of adaptive behaviour

caste GolfPlayer is GreetingAgent; 
action InvitePlayGolf(); 
body 
  when some A in GreetingAgent: HelloWorld() 
    -> InvitePlayGolf(); 
  End; 

end GolfPlayer 
caste CoffeeDrinker is GreetingAgent; 

action InviteCoffee(); 
body 
  when some A in GreetingAgent: HelloWorld() 
    -> InviteCoffee(); 
  End; 

end CoffeeDrinker 
caste Smart is GreetingAgent; 
  observes WeatherMan in WeatherForecaster 

body 
  when some A in GreetingAgent: HelloWorld() 
    -> if WeatherMan.Today=’Fine’  
       then join(GolfPlayer) 
       elseif weatherman.Today=’Rainy’ 
       then join(CoffeeDrinker)end; 
  End; 

end Smart 

Figure 4. An example of dynamic integration of castes

caste Monitor; 
  observes all GreetingAgent; 
  var counter: Integer; 
  init counter :=0; 

body 
   when some A in GreetingAgent:        
           SayWelcomeToTheWorld() 
     -> counter:=counter+1 end; 

end Monitor 



Dynamic remote loading.  An agent must be able to be 
created or join a caste dynamically through create/join 
statements.  Consequently, the deployed caste object code 
must be able to be loaded to any computer in the system at 
runtime. When multiple agents of the same caste exist on the 
same machine the code will be shared by these agents rather 
than storing duplicated copies.  
Autonomic management of object code. An agent can be 
destroyed or quit from a caste using destroy/quit statements. 
The loaded object code may be no longer needed thus can be 
removed from the machine. However, the object code could 
still be required as other agents may remain alive and run-
ning on the same machine. Such management of loaded 
object code must be performed autonomically.   
Transparent communication. In CAOPLE, agents commu-
nicate with each other through taking observable actions and 
observing other agents’ states and actions in their environ-
ments. This communication facility is highly abstract and 
transparent to the location where the agents are located. This 
mechanism is essentially event driven. An agent’s observ-
able actions can be considered as publication of events. The 
environment description can also be understood as sub-
scription to such publications. This publication/subscription 
mechanism must also be supported by the VM.  

3. The Virtual Machine CAVM 
This section presents the design of the virtual machine. 

3.1. Architecture 
As illustrated in Figure 5, CAVM consists of two types of 
components: Local Execution Engines (LEEs) and Commu-
nication Engines (CEs). The LEEs support the executions of 
agents while the CEs support the communications between 
agents, which may share the same computer with an LEE 
(e.g. CE1 and LEE1 in Figure 5) or on different computers 
over a network (e.g. CE2 and LEE2). 

A program written in CAOPLE that consists of a number 
of castes is compiled into CAVM’s object codes. Each 
caste’s object code is deployed to one CE, but can be loaded 
to a number of LEEs at runtime. When an agent of the caste 
is created or an agent joins the caste on an LEE, the object 
code is loaded if it is not already there. The object code could 
be loaded locally or from a remote CE. 

An object code file generated by compiler contains the 
definition of a single caste in the object code of the CAVM. 
It includes three main sections: constants, initialization code 
and body code. The constant data section contains literal 
constants and reference addresses in the code sections, such 
as the offsets of state variables, offsets of action bodies, 
offsets of environment variables, etc. The initialization code 

section contains the instructions for the initialization of agent 
when the agent is created or joins the caste. The body code 
section contains the instructions fulfilling the main func-
tionalities of the agent. It is compiled from the source code in 
the Body part of the caste. The object codes are represented 
in XML format, which is transformed into a binary format 
when the code is loaded to LEE.  

Caste deployment is mandatory before any agent can be 
instantiated from it. It binds the object code of a caste to a 
communication engine CE. The process consists of two steps. 
First, the CE stores and registers the caste’s object code file 
and second the CE sets up and initializes the membership 
management service and the communication services for the 
caste. 

If a caste is deployed successfully on a CE, we say that the 
CE is the host CE of that caste. In general, a CE instance can 
host many resident castes.  

3.2. Local Execution Engines 
As shown in Figure 6, a local execution engine (LEE) con-
sists of the following components. Program space (PS) stores 
the object code of castes loaded on the LEE together with 
LLC, a list of stored castes and their locations in the program 
space. Loader finds and loads the object code of castes into 
the program space when instructed by the Central Processing 
Unit (CPU). A pre-defined search policy is applied by the 
Loader to locate the object code deployed on CE. Memory 
Space (MS) is the runtime memory that stores the states, 
environment data of the agents running on the LEE, organ-
ized as agent context data (current program counter, operand 
stack and local variables, etc). When an agent quits from a 
caste, its context data is discarded. CPU interprets instruc-
tions stored in the PS and processes the data stored in the 
memory space. For each instruction, the CPU changes the 
state of the memory space and context register and updates 
the Program Counter (PC) and then loads the next instruction 
to the CPU. PC is a pointer to a location in the PS where the 
next instruction will be loaded to the CPU to execute. It 
therefore represents a thread of control. Upon send-
ing/receiving state/action update messages to/from a par-
ticular CE, environment data is updated autonomically and 
asynchronously by the Communication Manager. 

CAVM supports not only parallel computation by run-
ning a number of LEEs and CEs on a network of computers, 
but also concurrent execution of multiple agents on one 
computer through interleave. The multiple threads of exe-
cutions are achieved through a schedule policy (currently, 
round robin) and switches between agents using the Context 
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Figure 5. The architecture of CAVM 
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Registers, which is a set of registers that store the context 
information of the current agent. It includes two parts: the 
offset of the agent’s local variables in memory and the 
pointer to the agent’s operand stack. Within any one par-
ticular agent’s data in MS, it has its own local variables and 
operand stack, which are two major runtime data structures 
used by instructions to store/access runtime intermediate 
states.  

3.3. Communication Engines 
The main functionalities of communication engines include 
deployment management, membership management and 
communication support of its resident castes. As shown in 
Figure 7, a communication engine consists of the following 
components. Receiver and Dispatcher are communication 
units for receiving/dispatching messages from/to LEEs. 
Communication Manager (CM) manages the state and action 
lists of the active agents of the resident castes, according to 
the environment descriptions, which serves as the definition 
of the subscriptions, by means of Observe messages sent by 
LEEs, to the events of observable actions and state changes. 
Once an observable action or state change is received, the 
Dispatcher sends the agent’s state/action change to the LEE 
on which those agents who are observing it are running. 
Membership Manager (MM) manages the activeness status 
of all the agents of the resident castes, which can be distrib-
uted over the network. A data structure, Membership List, is 
used to trace the activeness. Deployment Manager (DM) 
manages the deployed castes’ object code and Publication 
Space (PubS) is the memory space that stores the states and 
actions published by its active agents. 

3.4. Interactions between LEEs and CEs 
One of the key features of the CAVM is its support to the 
network transparent communications between the agents. 
This is achieved by separating LEE and CE. The interactions 
between LEEs and CEs are realized through the communi-
cation messages between LEEs and CEs, which can be 
classified into the following categories. 
Register/Deregister. When one agent is created as an in-
stance of a caste or joins a caste resident on a CE, it registers 
to the caste through a Register message sent to the host CE. 
Receiving such a message, the CE’s membership and 
communication managers updates the caste’s information 
and start to provide services to the agent. Similarly, when an 
agent of a caste is destroyed or quits from the caste, a de-
register message is sent to the host CE. Consequently, the CE 
updates its information and stops the services.  
State/Action observe/update. At a high level caste-centric 
agent-oriented programming language, agents communicate 
with each other through taking observable actions and up-

dating observable state variables and perceiving other 
agents’ actions and state variables. An agent A’s observable 
actions and variable updating are compiled into instructions 
that instruct the LEE to send Action or State Update mes-
sages to the caste’s host CE, which are forwarded to the LEE 
on which agents that observes agent A execute according to 
their environment descriptions. The environment descrip-
tions are also compiled into instructions that instruct the LEE 
to send Action or State Observe messages to the corre-
sponding host CE. This is similar to the subscrip-
tion/publishing mechanism in many middleware, but repre-
sented at a higher level of abstraction and implemented with 
more flexibility.  
Membership book keeping. The host CE of a caste keeps the 
track of the aliveness state of its agents, which can also be 
queried by agents, for example, to obtain a list of live agents 
of a caste. This is also realized through instructions that 
results in a message sent to the caste’s host CE.  

The messages are encoded in XML format. For example, 
when an agent of caste GreetingAgent performs an 
action HelloWorld, an update message is sent to the CE, 
which in turn automatically propagates the change to the 
Monitor agent that observes it. When the update message is 
received by an LEE where a Monitor agent runs, the 
Communication Manager will update the corresponding 
environment data in its Memory Space. 

3.5. Instruction Set 
There are three types of CAVM instructions. The computa-
tion instructions perform computation and local control 
functions. It includes arithmetic and logic operations as well 
as control and stack operations. The interaction instructions 
deal with the interactions between agents and castes. It in-
clude caste loading, agent’s joining and quitting a caste, 
agent creation and deletion, state update, action event pub-
lishing, message sending and receiving, and event publishing 
and subscription. The external invocation instructions are 
those operations facilitating CAVM’s interaction with native 
environment, such as invocation of third-party runtime li-
braries (e.g. DLL library) on the host machine, and those for 
debugging purpose. Details of the instruction set are omitted 
for the sake of space. 

4. Implementation and Evaluation 
A prototype system of CAVM is implemented with C/C++ 
using Visual Studio .NET. LEE and CE are realized as two 
separate Common Language Runtime console servers. All 
the functions described in section 3 have been implemented. 
To facilitate experiments with and evaluation of the design 
and implementation of the VM, a GUI interface is also de-
veloped for the deployment and execution of object code, the 
measurement of system performance and the management of 
the VMs running over a network.  

Figure 8 is a screen snapshot of the interface. It shows the 
object code of a caste on the left part of the window. On the 
right hand side are the IP addresses of the CEs on which 
object codes are (to be) deployed. The performances of CEs 
and LEEs are monitored and information is displayed on the 
tab CE monitor and LEE monitor, respectively. It also pro-
vides remote control over agents distributed over a network, 
such as remote agent launching. 

To test the system and evaluate its performance, several 
preliminary experiments have been conducted. The experi-

Publication Space 
Agent A1 s/a 

data 

Agent Ai s/a 
data 

Communication 
Manager 

Membership List 
(of Active Agents) 

Receiver Dispatcher

Object  
Code

Deployment
Manager

Local Network Network

… 

Membership 
Manager 

Figure 7. Structure of Communication Engine (CE).



ments were performed in a network environment consists of 
several computers (depending on different experiments). All 
the computers have Intel Pentium 1.70GHz CPU, 512MB 
RAM, interconnected by 100M Ethernet. The computation 
performance is measured by the number of instructions per 
milli-second (IPmS) and communication performance is 
measured by the number of messages per milli-second 
(MPmS).  

Figure 9 shows the result of experiments in which the 
performance of a system that consists of a number of agents 
communicating to another agent running on the same com-
puter (Exp1) is compared with the performance when the 
other agent is running on a different computer (Exp2). The 
performance difference of Exp1 and Exp2 is largely be-
cause in the former the communication is via shared mem-
ory while the latter is through TCP. 

Figure 10 shows the results of experiments in which 
agents are distributed to a number of computers and each 
computer hosts 100 agents. The performance of the system 
only declines slightly due to communication overhead when 
the number of computers increases.  

From the results of the experiments, we can conclude 
that the design and implementation of the prototype CAVM 
is efficient in performance and scalable for running a large 
number of agents over a network.  

There are more experiments with the system. Due to the 
limit on space, the data will be reported in another paper. 

5. Related Works 
There are two classes of related 
works. One is the implementa-
tion of agent- oriented pro-
gramming languages and the 
other is virtual machines.  

A few programming lan-
guages have been proposed and 
implemented to directly imple-
ment agent-oriented concepts in 
the literature. In [11], Rafael H. 
Bordini et al. classified these 
agent- oriented languages into 
three categories: purely de-
clarative (e.g. CLAIM [ 12 ]), 
purely imperative (e.g. JACK 
[13]), and hybrid languages that 
combines declarative and im-
perative features (e.g. 3APL 
[14], Jason [15], and IMPACT 
[16]). They also surveyed those 
platforms which realized the 

semantic of those languages. The CAOPLE is an imperative 
programming language with language facilities of high level 
abstractions that directly support the caste-centric approach.  

Such implementations have been focusing on the supports 
to programming in mentalist models of agents such as belief, 
desire, intension, reasoning, and planning through extending 
existing programming languages and concepts based on 
logic or object-oriented languages. However, their pro-
gramming platforms are either centralized or using a simple 
distributed computing models (e.g. RMI) to support agent 
communication in decentralized environment.  

The JACK Agent Language (JAL) [13] is probably the 
most similar to CAOPLE language. It is also an imperative 
programming language, which extended Java by adding a 
number of declaration types used to declare agents, belief-
sets, views, events, plans and capabilities, and statements to 
manipulate events in an imperative manner. In addition to 
the development environment and debugger, JACK’s plat-
form contains a light weight communication mechanism to 
support the sending and receiving messages between agents. 
The address of the agent on the computer in the form of 
portal is required when an agent send a message to another, 
while our VM supports network transparency at high level 
programming language so that agents can communicate with 
each other without explicitly specify network address of the 
agents as shown in our examples. In comparison with JACK, 
CAVM provides a much higher level communication facil-
ity and autonomic mechanism.  

In our previous work of experiments with design and 
implementations of agent oriented programming languages, 
the SLABSp language [17] is also based on the caste centric 
model. It extends Java with caste and scenario facilities. The 
implementation of SLABSp uses components and middle-
ware in a similar way as JACK’s platform. It is observed that 
the VM approach reported in this paper is more flexible and 
more efficient.  

VMs have long been used in hardware virtualization, 
representing intermediate structures, and bytecode interpre-
tation [18]. They have drawn renewed attention in recent 
years for their advantages in resource virtualization in the 
network environments [6]. As a virtual machine of TinyOS, 
Mate [19] can reprogram the sensor network by sending and 
receiving messages that enable the deployment of ad-hoc 
routing and data aggregation algorithm. This feature is 
similar to CAVM’s dynamic loading of object code to LEEs. 

Figure 8. Screen snapshot of the management tool.
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Comparing to Mate, CAVM is more powerful, flexible and 
at a higher level of abstraction. Moreover, by decoupling 
computation from communication, CAVM enables LEE to 
be run on less powerful devices while leave communication 
tasks to be handled by CE running on computers of high 
network bandwidth and processing power. Of course, the 
main difference between CAVM and Mate is that CAVM is 
a high level language VM while Mate is a system VM ac-
cording to Smith and Nair’s classification. A well-known 
high language level VM is the Java Virtual Machine JVM 
[20], which provides platform independence to the object 
oriented programming language Java. Similar to JVM and all 
other high level language VMs, CAVM provides an abstract 
layer of indirection for efficient implementation of a high 
level programming language that is not directly supported by 
the hardware architecture and instructions. However, unlike 
JVM, CAVM supports distributed computing from the in-
struction level rather than using an add-on distributed object 
model (e.g. RMI). Thus, distributed programs can be written 
at a higher level of abstraction without being forced to 
comply with a distributed computation model.  

Finally, the publish/subscribe paradigm has the feature of 
decoupling the communicating parties in time, space and 
flow, and facilitating concurrent asynchronous computations, 
which is essential for Internet-based computation. The 
mechanism has been implemented in various middleware, 
but few in VMs [21]. The communications between LEEs 
and CEs in CAVM can be viewed as a publish/subscribe 
model, but it is in the agent-oriented metaphor described at a 
high level of abstraction in the form of environment de-
scription. In particular, it is unnecessary for an agent to hold 
each other’s references to actively participate in interaction. 
The built-in communication management mechanism in 
CAVM enables an asynchronous updates of agents’ 
state/action changes.  

6. Conclusion and Future Work 
The main contribution of the paper is a virtual machine 
CAVM designed for the implementation of caste-centric 
agent-oriented programming language CAOPLE. Its archi-
tecture consists of local execution engines (LEEs) and 
communications engines (CEs) distributed over a TCP/IP 
network such as the Internet. It provides the mechanisms 
and facilities to support inter-agent communications with 
location transparency, dynamic code distribution for agents’ 
dynamic joining to and quitting from castes and creating 
agents as instances of castes whose object codes are de-
ployed to computers on the network. Experiments with the 
performance of the VM were reported, which demonstrated 
the efficiency and scalability of the system.  

Currently, we are completing a compiler that translates 
CAOPLE source code to the CAVM object code. We are 
also developing a library of graphic user interface agents for 
dynamic construction and adaptation of graphic user inter-
faces. Finally, case studies with real applications are also on 
our agenda.  
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