CAMLE: A Caste-Centric Agent-Oriented Modeling Language and Environment

Lijun Shan
Department of Computer Science

National University of Defence Technology

Changsha, China
Email: lijunshancn@yahoo.com

Abstract

This paper presents an agent-oriented modeling lan-
guage and environment CAMLE. It is based on the con-
ceptual model of multi-agent systems (MAS) proposed
and formally defined in the formal specification language
SLABS. It is caste-centric because the notion of caste
plays the central role in its methodology. Caste is the
classifier of agents in our language. It allows multiple
and dynamic classifications of agents. It serves as the
template of agents and can be used to model a wide vari-
ety of MAS concepts, such as roles, agent societies, etc.
The language supports modeling MAS at both macro-
level for the global properties and behaviors of the system
and micro-level for properties and behaviors of the
agents. The environment provides tools for constructing
graphic MAS models in CAMLE, automatically checking
consistency between various views and models at differ-
ent levels of abstraction, and automatically transforming
models into formal specifications in SLABS.

1. Introduction

One of the key factors that contribute to the progress
in software engineering over the past two decades is the
development of increasingly powerful and natural high-
level abstractions with which complex systems are mod-
eled, analyzed and developed. In recent years, it becomes
widely recognized that agents represent an advance in this
direction that can unify data abstraction and operation
abstraction. A number of agent-oriented software devel-
opment methodologies have been proposed in the litera-
ture; see e.g. [1]. These proposals vary in how to describe
agent and MAS at a higher abstraction level as well as
how to obtain such a description. For example, Gaia [2]
provides software engineers with the organization-
oriented abstraction in which software systems are con-
ceived as organized society and agents are seen as role
players. Tropos [3] emphasizes the uses of notions related
to mental states during all software development phases.
The notions like belief, intention, plan, goals, etc., repre-
sent the abstraction of agent’s state and capability.

Hong Zhu
Department of Computing
Oxford Brookes University

Oxford OX33 1HX, England
Email: hzhu@brookes.ac.uk

Our work originates from formally specifying agent
behavior as responses to environment scenarios [4], de-
veloped into a formal specification language SLABS for
engineering agent-based systems [5], and applied to a
number of examples [6, 7]. In [8] and [9], a diagrammatic
notation for modeling agent behaviors and collaborations
was respectively developed. This paper proposes a meth-
odology of agent-oriented software engineering called
CAMLE, which stands for Caste-centric Agent-oriented
Modeling Language and Environment. Caste is the classi-
fier of agents in our modeling and specification languages.
It allows multiple classifications (i.e. an agent can belong
to more than one caste) and dynamic classifications (i.e.
an agent can change its caste membership at run time). It
also allows multiple inheritances between castes. It can be
used to model a wide variety of MAS concepts, such as
roles, agent societies, behavior normality, etc. It provides
the modularity language facility and serves as the tem-
plate of agents in the design and implementation of MAS.
The notion of caste plays a central role in the methodol-
ogy. We consider behavior rules as the basic abstraction
for agent’s behavior while leaving out mental state no-
tions such as belief and goal that are used in some other
agent-oriented software researches, though such notions
can be represented in our framework. Behavior rules in-
corporating agent’s perception to its environment repre-
sent the autonomy of agent’s behavior. With the CAMLE
language, a software system can be modeled from three
perspectives following the proposed process. The sup-
porting tools help users to construct MAS models in
graphical notations, to check the consistency between
models from various views and at different abstraction
levels, and automatically translate the graphic models into
formal specifications.

The remainder of this paper is organized as follows.
Section 2 reviews the underlying conceptual model. Sec-
tion 3 outlines the modeling process. Section 4 presents
the modeling language. Section 5 briefly reports the mod-
eling tools. Section 6 concludes the paper with discus-
sions on related work and directions for future work.

2. Conceptual model

The conceptual model of MAS underlying our meth-
odology is the same as that of the language SLABS [4,5],
which is a formal specification language designed for
engineering MAS. It can be characterized by a set of
pseudo-equations. Pseudo-equation (1) states that agents
are defined as real-time active computational entities that
encapsulate data, operations and behaviors, and situate in
their designated environments.

Agent=<Data, Operations, Behavior>guyironment (D)

Here, data represent an agent’s state. Operations are
the actions that the agent can take. Behavior is described
by a set of rules that determine how the agent behaves
including when and how to take actions and change state
in the context of its designated environment. By encapsu-
lation, we mean that an agent’s state can only be changed
by the agent itself, and the agent can decide ‘when to go’
and ‘whether to say no’ according to an explicitly speci-
fied set of behavior rules. Therefore, there are two fun-
damental differences between objects and agents in our
conceptual model. First, objects do not contain any ex-
plicitly programmed behavior rule. Second, objects are
open to all computation entities to call its public methods
without any distinction of them.

In our conceptual model, the classifier of agents is
called caste. Castes classify agents into various castes
similar to that data types classify data into types, and
classes classify objects into classes. However, different
from the notion of class in object orientation, caste allows
dynamic classification, i.e. an agent can change its caste
membership (called casteship in the sequel) at run time.
It also allows multiple classifications, i.e. an agent can
belong to more than one caste at the same time. As all
classifiers, inheritance relations can also be specified be-
tween castes. As a consequence of multiple classifications,
a caste can inherit more than one caste. As a modularity
language facility, a caste serves as a template that de-
scribes the structure and behavior properties of agents in
the caste, and as the basic organizational units in the de-
sign and implementation of MAS. Pseudo-equation (2)
states that s caste at time ¢ is a set of agents that have the
same structural and behavioral characteristics. The struc-
ture of caste descriptions in SLABS is shown in Figure 1.

The weakness of static object-class relationship in cur-
rent mainstream object-oriented programming has been
widely recognized. Proposals have been advanced, for
example, to allow objects’ dynamic reclassification [10].
In [11], we suggested that agents’ ability to dynamically
change its roles is represented by dynamic casteship. In
our model, dynamic casteship is an integral part of
agents’ behavior capability. Agents can have behavior
rules that allow them to change their castes at run-time
autonomously. To change its casteship, an agent takes an
action to join a caste or retreat from a caste at run time.

Therefore, which agents are in a caste depends on time
even if agents can be persistent, hence the subscript of # in
pseudo-question (2). We believe that this feature allows
users to model the real world multi-agent systems natu-
rally and to maximize the flexibility and power of AOP.

Caste , = {agents | structure & behavior properties} (2)
— MewCasteMame <= Caste Mames (Instantiation) —

WVizihle actions and state wariahles

Irerisible actions and state variahles

Enwirontnent
descrintion

B ehaviour specifications

Figure 1. Caste descriptions in SLABS

Equation (3) states that a MAS consists of a set of
agents but nothing else. Our definition of agent implies
that object is a special case of agent in the sense that it
has a fixed rule of behavior, i.e. “executes the corre-
sponding method when receives a message”.

MAS = {Agent .}, nelnteger 3)

Consequently, the environment of an agent in a MAS
at time ¢ is a subset of the agents, where some agents in
the system may not be visible from the agent’s point of
view, as illustrated in pseudo-equation (4). Notice that,
our use of the term ‘visibility’ is different from the con-
cept of scope. In particular, from agent A’s point of view,
agent B is visible means that agent A can observe and
perceive the visible actions taken by agent B or obtain the
value of agent B’s visible part of state at run time.

Environment , (Agent, MAS) c MAS — {Agent} (4)

Here, we take a ‘designated environment’ approach,
i.e. the environment of an agent is specified when an
agent is designed. The environment description of an
agent or a caste defines what kinds of agents are visible.
For example, it can be that the agents in a particular caste
are visible. Note that a designated environment is neither
closed, nor fixed, nor totally open. Since an agent can
change its casteship, its environment may change dy-
namically. For example, an agent’s environment changes
when it joins a caste and hence the agents in the caste’s
environment become visible. The environment also
changes when other agents join the caste in the agent’s
environment. Therefore, the set of agents in the environ-
ment of an agent depends on time, hence, the subscription
t in pseudo-question (4).

The communication mechanism of the conceptual
model and the language is that an agent’s actions and
states are divided into the visible ones and internal ones.
Agents communicate with each other by taking visible
actions and changing visible state variables, and by ob-
serving other agents’ visible actions and visible states, as
shown in pseudo-equation (5). An agent taking a visible
action can be understood as generating an event that can
be perceived by other agents in the system, while an agent

taking an internal action means it generates an event that
can only be perceived by its components. Similarly, the
value of an agent’s visible state can be obtained by other
agents, while the value of the internal state can only be
obtained by its components. As indicated above, this con-
cept of visibility is different from the concept of scope.

A --->B = A.Action & B.Observation %)

3. Modeling process

CAMLE is intended to support software engineers to
develop information systems systematically through
smooth and orderly transitions from models of the current
system and users’ requirements to the design and imple-
mentation of a new system evolutionarily and collabora-
tively. At the highest level of abstraction, our process
model is based on the current best practice of software
engineering rather than a dramatic revolution. In particu-
lar, we take a model driven and evolutionary approach.
We consider the evolutionary development of information
systems as repeated cycles of modeling the current system
and its operation environment, then designing and imple-
menting a new system to be executed in a new environ-
ment to meet users’ new requirements. In this process,
engineers move from the concrete current system to an
abstract model, analyze how to modify the current system
to satisfy the users’ requirements, and then build an ab-
stract model of the new system. The abstract model is
refined and the new system is realized. The new system is
subject to further modifications as users’ requirements
change and the organizational environment and technol-
ogy evolve. Then, a new cycle of modeling, design, re-
finement and implementation begin. This cycle continues
as the system evolves. Therefore, CAMLE’s process of
agent-oriented software development can be divided into
three stages: (a) the analysis and modeling of the current
information system, (b) the design of a new system as
modification to the existing system, hence the building of
a model of the new system, (c) the implementation of the
new system according the design model.

However, at a more concrete level of abstraction, our
modeling and analysis process shifts the focus from ob-

ject to agent and from control mechanism to collaboration.

It is a repeated iteration of the following activities.

1. Identifying agents and their roles in the system ac-
cording to their functionality and responsibilities and
grouping agents into castes;

2. Analyzing inheritance and aggregate relations between
the castes;

The outcome of these activities is a caste model.

3. Identifying the communications between the agents in
terms of how agents influence each other, and docu-
ments the communications in collaboration diagrams.

4. Identifying the specific visible actions and state vari-
ables of each agent, and associating them with the
communication links between the agent nodes in col-

laboration diagrams;

The outcome of these activities is a collaboration
model, which captures the inter-agent interactions.

The following activities are applied to each caste.

5. Identifying the typical scenarios in the operation of the
system,

6. Analyzing and describing each agent’s responses in
each scenario.

The outcome of these two activities is a behavior
model for each caste. This may not be successful when
the behavior of agents in the caste is too complicated. In
such cases, the complicated caste should be decomposed
into component castes and analyzed as a system by apply-
ing activities (1) ~ (4). As a result, the caste model and
collaboration model are revised.

The outcome of the whole process is a caste model that
represents the organization of the whole system, a col-
laboration model that comprises a hierarchy of collabora-
tion diagrams and represents the communication patterns
between the agents in the system, and a set of behavior
models that for each caste.

4. Modeling language

CAMLE employs the multi-view principle. There are
three types of models: caste models, collaboration models
and behavior models. Each model consists of one or more
diagrams. The caste model specifies the castes of the sys-
tem and the relationships between them, such as the in-
heritance and whole-part relations. A caste is a compound
caste if its agents are composed from a number of other
agents; otherwise, it is atomic.

A]
:E:aghagti;ﬂ :_E;h;ﬁg T ICnllaboratinnH Behaviom |
|__Model _ !y Model _I|[l_ Model ,;_Model]
R N D P N 7 2 _
Behaviour | || Behaviour | | Behavionr| | Behuviour |
| Model || |l Model || |1 Model || || Modsl |

(b) Collaboration Models and Behavior models
Figure 2. Overall Structure of CAMLE Models

For example, as shown in Figure 2(a), the System is
directly composed of agents of caste A and B. Each of
them can be further decomposed into smaller components
N; and N,, and M; and M,, respectively. For each com-
pound caste, such as the System, A and B, a collaboration
model and a behavior model are constructed. Atomic
castes only have behavior models because they have no
components thus no internal collaboration. The overall
structure of a system’s collaboration models and behavior
models can be viewed as a hierarchy, which is isomorphic
to the whole-part relations between castes described in
the caste model; see e.g. Figure 2(b).

To ensure the consistency between various models and
models at different levels of abstraction, three types of the
consistency constraints have been identified and formally
defined in the CAMLE language and checkers by the
tools in the environment. These consistency constraints
including (a) well-formedness conditions imposed on
each diagram, (b) intra-model consistency constraints that
are imposed on diagrams of the same model at the same
abstraction levels, and (c¢) inter-model consistency con-
straints that are imposed either on the same type of mod-
els at different abstraction levels, or on different types of
models at the same level of abstraction. For the sake of
space, details of the constraints are omitted here, and will
be reported separately. The following subsections de-
scribe each model and discuss their uses in agent-oriented
software development; see [8, 9] for more details.

4.1. Caste model

We view an information system as an organization that
consists of a collection of agents that stand in certain rela-
tionships to one another by being a member of certain
groups and playing certain roles, i.e. in certain castes.
They interact with each other by observing their envi-
ronments and taking visible actions as responses to the
environment scenarios. The behavior of an individual

agent in a system is determined by the ‘roles’ it is playing.

An individual agent can change its role in the system.
However, the set of roles and the assignments of
responsibilities and tasks to roles are usually quite stable
[12]. Such an organizational structure of information
systems is captured in our caste model.

Manager Manager

Caste node -
—— = Inheritance
777777777 % Migration H Alurnd || H University Mermber H H Dept. Office ||
*--- Z» Participation ‘\\\ ‘ ¢
——> Aggregation H Student H H Faculty H || Secretary ||
— Congregation ~ : 3 I

\ [7 4 =N
—*® Compostiion HUndergmduaLeH HPnngaduaLeH HPhD studth Staff Module

Figure 3. Caste diagfé}n: notat_i_dns and example

Figure 3 shows the notation and an example of caste
diagrams. A caste diagram identifies the castes in a sys-
tem, indicates the inheritance, aggregation and migration
relationships between them. Migration relations specify
how agents in the castes can change their casteships.

The inheritance relationship between castes defines
sub-groups of the agents that have special responsibilities
and hence additional capabilities and behaviors. For ex-
ample, in Figure 3, the members of a university are classi-
fied into three castes: students, faculties and secretaries.
Students are further classified into three sub-castes: un-
dergraduates, postgraduates and PhD students.

There are two kinds of migration relationships: mi-
grate and participate. A migrate relation from caste A to
B means that an agent of caste A can retreat from caste A
and join caste B. A participate relation from caste A to B
means that an agent of caste A can join caste B while
retaining its casteship of A. For example, in Figure 3, an
undergraduate student may become a postgraduate after
graduation. A postgraduate student may become a PhD
student after graduation or become a faculty member.
Each student becomes a member of the alumni of the uni-
versity after leaving the university. A faculty member can
become a part time PhD student while remaining em-
ployed as a faculty member. From this model, we can
infer that an individual can be both a student and a faculty
member at the same time if and only if he/she is a PhD
student.

An aggregate relation specifies a whole-part relation-
ship between agents. An agent may contain of a number
of components that are also agents. The former is called
compound agent of the latter. In such case, there exists a
whole-part relationship between the component and the
compound agent, which is represented through an aggre-
gate relation between castes. We identify three types of
part-whole relationships between agents according to the
ways a component agent is bound to the compound agent
and the ways a compound agent controls its components.
The strongest binding between a compound agent and its
components is composition in which the compound agent
is responsible for creation and destruction of its compo-
nents. If the compound agent no longer exists, the com-
ponents will not exist. The weakest binding is aggrega-
tion, in which the compound and the component are
independent, so that the component agent will not be
affected for both its existence and casteships when the
compound agent is destroyed. The third whole-part
relation is called congregation. It means if the compound
agent is destroyed, the component agents will still exist,
but they will lose the casteship of the component caste of
the compound agent. The composition and aggregation
relation is similar to the composition and aggregation in
UML, respectively. However, congregation is novel
concept in modeling languages introduced in by CAMLE.
There is no similar counterpart in object oriented
modeling languages, such as UML. It has not been

guages, such as UML. It has not been recognized in the
research on object-oriented modeling of whole-part rela-
tions [13]. We believe that it is important for agent-
oriented modeling because of agents’ basic features viz.
dynamic casteship. For example, as shown in Figure 3, a
university consists of a number of individuals as its mem-
bers. If the university is destroyed, the individuals should
still exist. However, they will lose the membership as the
university member. Therefore, the whole-part relationship
between University Member and University is a congre-
gation relation. This relationship is different from the
relationship between a university and its departments.
Departments are components of a university. If a univer-
sity is destroyed, its departments will no long exist. The
whole-part relationship between Department and Univer-
sity is therefore a composition relation.

4.2. Collaboration model

While caste model defines the static architecture of
MAS, collaboration model implicitly defines the dynamic
aspect of the MAS organization by capturing the collabo-
ration dependencies and relationships between the agents.

Agents in a MAS collaborate with each other through
communication, which is essential to fulfill the system’s
functionality. Such interactions between agents are cap-
tured and represented in a collaboration model. In
CAMLE, a collaboration model is associated to each
caste and consists of a set of collaboration diagrams.

A collaboration diagram specifies the interaction be-
tween the agents in the system or in a compound agent.
Figure 4 gives the notations.

Agent node: AgentName:Caste| Caste node:

Communication Link: N, Actions > N

Figure 4. Notation of Collaboration Diagram

There are two types of nodes in a collaboration dia-
gram. An agent node represents a specific agent. A caste
node represents any agent in a caste. An arrow from node
A to node B represents that the visible behavior of agent
A is observed by agent B. Therefore, agent A influences
agent B. When agent B is particularly interested in certain
activities of agent A, the activities can also be annotated
to the arrow from A to B. Although this model looks
similar to collaboration diagrams in UML, there are sig-
nificant differences in the semantics. In OO paradigm,
what is annotated on the arrow from A to B is a method
of B. It represents a method call from object A to object B,
and consequently, object B must execute the method. In
contrast, in CAMLE the action annotated on an arrow
from A to B is a visible action of A. Moreover, agent B is
not necessarily to respond to agent A’s action. The dis-
tinction indicates the shift of modeling focus from con-

trols represented as method calls in OO paradigm to col-
laborations represented as signaling and observation of
visible actions. It fits well with the autonomous nature of
agents.

4.2.1. Scenarios of collaboration. One of the complica-
tions in the development of collaboration models is to
deal with agents’ various behaviors in different scenarios.
By scenario, we mean a typical situation of the operation
of the system. In different scenarios, agents may pass
around different sequences of messages and may commu-
nicate with different agents. Therefore, it is better to de-
scribe them separately. The collaboration model supports
the separation of scenarios by including a set of collabo-
ration diagrams. Each diagram represents one scenario. In
such a scenario specific collaboration diagram, actions
annotated on arrows can be numbered by their temporal
sequence. In addition to such specific diagrams, a general
collaboration diagram is also associated to the caste to
give an overall picture of the communication between all
the component agents by describing all visible actions an
agent may take and all possible observers of the actions.

4.2.2. Refinement of collaboration models. The model-
ing language supports modeling complex systems at vari-
ous levels of abstraction, and to refine from high level
models of coarse granularity to more detailed fine granu-
larity models. At the top level, a system can be viewed as
an agent that interacts with users and/or other systems in
its external environment. This system can be decomposed
into a number of subsystems interacting with each other.
A sub-system can also be viewed as an agent and further
decomposed. As analysis deepens, a hierarchical structure
of the system emerges. In this way, the compound agent
has its functionality decomposed through the decomposi-
tion of its structure. Such a refinement can be carried on
until the problem is specified adequately in detail. Thus, a
collaboration model at system level that specifies the
boundaries of the application can be eventually refined
into a hierarchy of collaboration models at various ab-
straction levels. Of course, the hierarchical structure of
collaboration diagrams can also be used for bottom-up
design and composition of existing components to form a
system.

4.3. Behavior model

While caste and collaboration models describe MAS at
the macro-level from the perspective of an external ob-
server, behavior model adopts the internal or first-person
view of each agent. It describes an agent’s dynamic be-
havior in terms of how it acts in certain scenarios of the
environment at the micro-level. A behavior model con-
sists of two kinds of diagrams: scenario diagrams and
behavior diagrams.

4.3.1. Scenario diagrams. We believe that each agent’s
perception of its environment should be explicitly speci-
fied when modeling its behavior. From an agent’s point
of view, the situation of its environment is characterized
by what is observable by the agent. In other words, a sce-
nario is defined by the sequences of visible actions taken
by the agents in its environment. Scenario diagrams iden-
tify and describe the typical situations that the agent must
respond to. Figure 5 below shows the layout of scenario
diagrams.

4 Scenario Name) Qualifier
| ; _
Swim | ! Swim
Lane 1 ! !
! |
! 1

| 1
| 1

1 1

1

E Action 1 '

| 1

Lane N ! - !
meN :
| 1

| 1

1 1

| :

(b) The layout of
swim lanes

Logic connection network

- J

(a) The layout of scenario diagrams

Figure 5. Format of Scenario Diagram

Figure 6 depicts the notations to specify visible events
by nodes and temporal ordering by arrows in scenario
diagrams, as well as logic connective nodes and links for
the combination of situations.

— Single action node: the agent takes an act
l t:[Actp1,.--pn) £ g

with parameters p,...p,at time t .

R-Exp .. .
= Repetitive action node: the agent takes act
| b ACt(p1,---Pn)| repetitively at time t, where R-Exp defines

the number of repetition of the action.

Predicat State assertion node: the agent’s state sat-
N edieate isfies the predicate at time t.

Continuous state assertion node: the
agent’s state satisfies the predicate for a
continuous period of time, where the pe-
riod satisfies the expression C-Exp.

Im

t:

C-Exp

l _-
| emporal Order between t] 1€ events: event

T-Exp B is immediately after event A, where T-
A . . .
. > E Exp is the constraint on the time gap be-

tween event A and B.

|
L
I

Temporal order between the events: event B
is after event A, while there may be other

T_'EE _events between them, where T-Exp is the

constraints on the time gap between the
events.

—— > Logic links connect logic connective nodes

@ Logic connective nodes

Figure 6. Notations of Scenario Diagram

4.3.2. Behavior diagrams. Behavior diagrams describe
agents’ designed behavior in certain scenarios. For each
caste, a behavior diagram defines a set of behavior rules.
The notation of behavior diagrams includes the notation

of scenario diagrams plus those in Figure 7.

Scenario

—_—— ———

Precondition |

—— — —]

Scenario node: a scenario identifier, or
a detailed scenario description.

Precondition node: give the precondi-
tion of an event.

Transition bar: conflux of scenario,
precondition and previous events as
premise of behavior rule.

Action arrow: link from behavior rule’s
previous events to transition bar.

—— 2

Figure 7. Notation for behavior diagrams

A behavior diagram contains event nodes linked to-
gether by the temporal ordering arrows as in scenario
diagrams to specify the agent’s previous behavior pattern.
A transition bar with a conflux of scenario, precondition
and previous pattern and followed by an event node indi-
cates that when the agent’s behavior matches the previous
pattern and the system is in the scenario and the precondi-
tion is true, the event specified by the event node under
the transition bar will be taken by the agent. In a behavior
diagram, a reference to a scenario indicated by a scenario
node can be replaced by a scenario diagram if it improves
the readability. The behavior diagram in Figure 8 partly
defines the behavior of an undergraduate student. It states
that if the student is in the final year and the average
grade is ‘A’, the student may request a reference from the
personal tutor for the application of a graduate course. If
the personal tutor agrees to be a referee, the student may
apply for a graduate course. If the department office of-
fers a position in a graduate course, the student will join
the Graduates caste and retreat from the Undergraduates
caste.

e ———_
Status = FinalYear; Average = 'A"

l | Graduate course available ‘
J

| | !

—_— \F‘Equm{vﬂmml

| Ca:Deptoties__ _ | =
| OSiDeptoics__ __ \

Apply[graduate course)

| JOIN[Graduate);QUIT(Undergraduate)

Figure 8. Behavior Diagram for Undergraduate Student

5. Support environment

A software environment to support the process of sys-
tem analysis and modeling in CAMLE has been designed
and implemented. CAMLE aims at representing informa-

tion systems naturally using the conceptual model of
MAS presented in the previous section and facilitating the
reasoning about such systems. It serves two interrelated
purposes, i.e. to develop abstract descriptive models of
current systems and to develop prescriptive designs of
systems to be implemented. Therefore, in addition to
model construction, two key features of the language and
environment are regarded as of particular importance: (a)
the consistency check between various models from dif-
ferent views and at different levels of abstraction, and (b)
the transformation of diagrammatic models into formal
specifications. Such a consistent model and specification
should be able to be implemented in a high-level pro-
gramming language, ideally, in an agent-oriented pro-
gramming language based on the same conceptual model.
Figure 9 shows the architecture of the current
CAMLE environment and its main functionality. The
diagram editor supports the manual editing of models
through graphic user interface. The well-formedness
checker ensures the well-formedness of the user entered
models, hence prevents ill-formed artifacts from being
input. The partial diagram generator can generate partial
models (incomplete diagrams) from existing diagrams to
help users in model construction. The rules to generate
partial models are based on the consistency constraints so
that the generated partial diagrams are consistent with
existing ones according to the consistency conditions.

Users’ Formal
Requirements Spesifications

,,,,,,,,,,,,,,,

Checker
Behaviour/ ™ 47
Collaboration Sy

f Checker /

L] B Collaboration
Dmagram Castel
Generator Collaboration

,,,,,,,,,,,,,,, Checker

Check
Result

Figure 9. The Architecture of CAMLE Environment

Consistency checking tools that help to ensure the
well-formedness, consistency and completeness of system
models are based on consistency constraints defined by
the CAMLE language. The transformation from graphic
models in CAMLE into formal specifications in SLABS
enables engineers to analyze, verify and validate system
models before the system is implemented. The specifica-
tion generation tool in the CAMLE environment auto-
matically derives a formal specification in SLABS when a
model is constructed and its consistency checked. Details

of the transformation rules and algorithms are omitted
here for the sake of space. Figure 10 shows a screen snap-
shot of the tool-generated specification of a caste.

. Sular - [Specilication: IDA] =10]=|
TIFle Edt Wew Took Window Help _|®] %]
| DEd x ! R a & 7
ki na 8
o ACTION i o Payld:
=]
|E
t
[Fitneas =] |» IFitness = xie;
IF Frosystem, [Crediffsel, df;
Il . [Fitness = =] |> & Pay[cl:
‘Coosystem WHEREL 1 = Pay-time
[Searchlengine, keywords]] |- Queryfurl, wh);
IF Seardrengine. [Search culesll; ||
[Queryfurl, wiod] > Availalilefurl, whv]:
IFA IF :Database. [Queny-resultjurl, wia. 'no’)]:
Y Y| ;
o 4] LIJ
Ready M 4

Figure 10. Screen Snapshots of Specification Generatorh

6. Conclusion

This paper presents the agent-oriented modeling lan-
guage and environment CAMLE. It is based on the con-
ceptual model of MAS developed and formally defined in
the formal specification language SLABS. Models repre-
sented in the CAMLE language can be automatically
checked for consistency and transformed into formal
specifications in SLABS by the tools in the modeling
environment. The modeling language has a number of
novel features, which include the congregate whole-part
relation and migration relation between castes, the desig-
nated environment descriptions, scenario diagrams, sce-
nario driven behavior rules, and most importantly, the
concept of caste.

There have been a number of efforts in the direction of
AO methodology, many of which focus on the process of
MAS engineering as well as the representation of MAS.
With regard to conceptual model of the methodologies,
there is a fundamental distinction between CAMLE and
other methodologies that are based on mental state related
notions such as belief, desire, intention, goal and plan.
Although these notions are widely used, their meanings
vary from people to people in different methodologies.
CAMLE replaces these notions with an abstract model of
agents as encapsulation of data, operation and behavior.
CAMLE also has a fundamental distinction from method-
ologies that are based on social organization related no-
tions such as roles, agent society and organization struc-
ture. CAMLE replaces such intuitive concepts with a
well-defined language facility caste, which is easy to un-
derstand and use from software engineering perspective.
It can be used to represent a number of the concepts in
agent-oriented modeling, such as roles, agent societies,
normative behavior, common knowledge and protocols,
etc. [6]. The caste-centric feature enables us to achieve
simplicity in the design of an expressive modeling lan-

guage and efficiency in the implementation of the power-
ful environment.

Concerning the modeling process, different from most
other methodologies such as Tropos [3], CAMLE empha-
sizes evolutionary and cooperative development of MAS
and to reflect the shift of software construction focus
from control to cooperation in service oriented computing.
Gaia is perhaps one of the most mature agent-oriented
software development methodologies at the moment. It
does not commit to specific notations for modeling con-
cepts such as roles, environment and interaction [1].
UML notation are widely used, e.g. in Tropos, PASSI [14]
and AUML [15]. However, there are fundamental differ-
ences between agents and objects as discussed in section
2 and 3. There is no clearly defined conceptual model or
meta-model underlying the uses of UML notations for
agent-oriented modeling.

There are several issues remaining for future work. We
are investigating software tools that support model-based
implementation of MAS in CAMLE. The design and im-
plementation of an agent-oriented programming language
with caste as the basic program unit is on the top of our
agenda.

Acknowledgement

The work reported in this paper is supported by China
High-Technology R&D Programme under the grant
2002AA116070.

References

[1] Dam, K. H., Winikoff, M., “Comparing Agent-
Oriented Methodologies”, Proc. of 5" International Bi-
Conference Workshop on Agent-Oriented Information
Systems, Melbourne, Australia, July 2003.

[2] Zambonelli, F., Jennings, NR and Wooldridge, M.,
“Developing multiagent systems: the Gaia Methodology”,
ACM Trans on Software Engineering and Methodology
12(3), 2003, pp. 317-370.

[3] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos
J. and Perini, A., “TROPOS: An Agent-Oriented Software
Development Methodology”, Journal of Autonomous
Agents and Multi-Agent Systems 8(3), Kluwer Academic
Publishers, May 2004, pp. 203 - 236.

[4] Zhu, H., “Formal Specification of Agent Behaviour
through Environment Scenarios”, Formal Aspects of
Agent-Based Systems, Rash, J.L., et al., Editors. Springer,
LNCS Vol. 1871, 2001, pp. 263-277.

[5] Zhu, H., “SLABS: A Formal Specification Language
for Agent-Based Systems”, Int. J. of Software Engineer-
ing and Knowledge Engineering 11(5), 2001, pp. 529-558.

[6] Zhu, H., “The role of caste in formal specification of
MAS”, Intelligent Agents: Specification, Modeling, and

Application, 4™ Pacific Rim International Workshop on
Multi-Agents, PRIMA 2001, Taipei, Taiwan, July 28-29,
2001, Yuan, Soe-Tsyr; Yokoo, Makoto (Eds.), LNCS, Vol.
2132, Springer, 2001, pp. 1-15.

[7] Zhu, H., “Formal Specification of Evolutionary Soft-
ware Agents”, Formal Methods and Software Engineer-
ing, Proc. of ICFEM'2002, George, C. and Miao, H., Edi-
tors. LNCS, Vol. 2495, Springer, 2002, pp. 249~261.

[8] Shan, L. and Zhu, H., “Analysing and Specifying Sce-
narios and Agent Behaviours”, Proc. of the 2003
IEEE/WIC International Conference on Intelligent Agent
Technology. Halifax, Canada, Oct. 2003.

[9] Shan, L. and Zhu, H., “Modelling Cooperative Multi-
Agent Systems”, Proc. of the 2nd Int. Workshop on Grid
and Cooperative Computing. Shanghai, China. Dec. 2003.

[10] Drossopoulou, S., Damiani, F., Dezani-Ciancaglini,
M. and Giannini, P., “More dynamic object reclassifi-
cation: Fickley”, ACM Trans. on Programming Language
and Systems 24(2), 2002, pp. 153-191.

[11] Zhu, H., and Lightfoot, D., “Caste: A step beyond
object orientation”, Modular Programming Languages,
Proc. of JMLC'2003, Aug. 2003, Austria, Boszormenyi,
L., & Schojer, P. (eds), LNCS 2789, Springer, 2003,
pp-59-62.

[12] Odell, J., Parunak, H.V.D., and Fleischer, M., “The
Role of Roles”, Journal of Object Technology. 2(1), 2002,
pp- 39-51.

[13] Barbier, F., Henderson-Sellers, B., Le Parc A., Bruel
J-M., “Formalization of the Whole-Part Relationship in
the Unified Modeling Language”, IEEE Trans. Software
Eng. 29(5), 2003, pp. 459-470.

[14] Burrafato, P. and Cossentino, M., “Designing a
Multi-Agent Solution for a Bookstore With the PASSI
Methodology”, Proc. of 4™ International Bi-Conference
Workshop on Agent-Oriented Information Systems
(AOIS-2002), Toronto, Canada, at CAiSE'02, 27-28 May
2002,

[15] Bauer, B., Muller, J.P. and Odell, J., “Agent UML: A
Formalism for Specifying Multiagent Software Systems”,
Agent-Oriented Software Engineering. Ciancarini, P. and
Wooldridge, M. (eds.), LNCS Vol. 1957, Springer, 2001,
pp. 91-103. Also see URL: www.auml.org.

