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Abstract 
This paper presents an agent-oriented modeling lan-

guage and environment CAMLE. It is based on the con-
ceptual model of multi-agent systems (MAS) proposed 
and formally defined in the formal specification language 
SLABS. It is caste-centric because the notion of caste 
plays the central role in its methodology. Caste is the 
classifier of agents in our language. It allows multiple 
and dynamic classifications of agents. It serves as the 
template of agents and can be used to model a wide vari-
ety of MAS concepts, such as roles, agent societies, etc. 
The language supports modeling MAS at both macro-
level for the global properties and behaviors of the system 
and micro-level for properties and behaviors of the 
agents. The environment provides tools for constructing 
graphic MAS models in CAMLE, automatically checking 
consistency between various views and models at differ-
ent levels of abstraction, and automatically transforming 
models into formal specifications in SLABS.  

1. Introduction 
One of the key factors that contribute to the progress 

in software engineering over the past two decades is the 
development of increasingly powerful and natural high-
level abstractions with which complex systems are mod-
eled, analyzed and developed. In recent years, it becomes 
widely recognized that agents represent an advance in this 
direction that can unify data abstraction and operation 
abstraction. A number of agent-oriented software devel-
opment methodologies have been proposed in the litera-
ture; see e.g. [1]. These proposals vary in how to describe 
agent and MAS at a higher abstraction level as well as 
how to obtain such a description. For example, Gaia [2] 
provides software engineers with the organization-
oriented abstraction in which software systems are con-
ceived as organized society and agents are seen as role 
players. Tropos [3] emphasizes the uses of notions related 
to mental states during all software development phases. 
The notions like belief, intention, plan, goals, etc., repre-
sent the abstraction of agent’s state and capability.  

Our work originates from formally specifying agent 
behavior as responses to environment scenarios [4], de-
veloped into a formal specification language SLABS for 
engineering agent-based systems [5], and applied to a 
number of examples [6, 7]. In [8] and [9], a diagrammatic 
notation for modeling agent behaviors and collaborations 
was respectively developed. This paper proposes a meth-
odology of agent-oriented software engineering called 
CAMLE, which stands for Caste-centric Agent-oriented 
Modeling Language and Environment. Caste is the classi-
fier of agents in our modeling and specification languages. 
It allows multiple classifications (i.e. an agent can belong 
to more than one caste) and dynamic classifications (i.e. 
an agent can change its caste membership at run time). It 
also allows multiple inheritances between castes. It can be 
used to model a wide variety of MAS concepts, such as 
roles, agent societies, behavior normality, etc. It provides 
the modularity language facility and serves as the tem-
plate of agents in the design and implementation of MAS. 
The notion of caste plays a central role in the methodol-
ogy. We consider behavior rules as the basic abstraction 
for agent’s behavior while leaving out mental state no-
tions such as belief and goal that are used in some other 
agent-oriented software researches, though such notions 
can be represented in our framework. Behavior rules in-
corporating agent’s perception to its environment repre-
sent the autonomy of agent’s behavior. With the CAMLE 
language, a software system can be modeled from three 
perspectives following the proposed process. The sup-
porting tools help users to construct MAS models in 
graphical notations, to check the consistency between 
models from various views and at different abstraction 
levels, and automatically translate the graphic models into 
formal specifications.  

The remainder of this paper is organized as follows. 
Section 2 reviews the underlying conceptual model. Sec-
tion 3 outlines the modeling process. Section 4 presents 
the modeling language. Section 5 briefly reports the mod-
eling tools. Section 6 concludes the paper with discus-
sions on related work and directions for future work.  



2. Conceptual model  
The conceptual model of MAS underlying our meth-

odology is the same as that of the language SLABS [4,5], 
which is a formal specification language designed for 
engineering MAS. It can be characterized by a set of 
pseudo-equations. Pseudo-equation (1) states that agents 
are defined as real-time active computational entities that 
encapsulate data, operations and behaviors, and situate in 
their designated environments.  

Agent=<Data, Operations, Behavior>Environment       (1) 
Here, data represent an agent’s state. Operations are 

the actions that the agent can take. Behavior is described 
by a set of rules that determine how the agent behaves 
including when and how to take actions and change state 
in the context of its designated environment. By encapsu-
lation, we mean that an agent’s state can only be changed 
by the agent itself, and the agent can decide ‘when to go’ 
and ‘whether to say no’ according to an explicitly speci-
fied set of behavior rules. Therefore, there are two fun-
damental differences between objects and agents in our 
conceptual model. First, objects do not contain any ex-
plicitly programmed behavior rule. Second, objects are 
open to all computation entities to call its public methods 
without any distinction of them.   

In our conceptual model, the classifier of agents is 
called caste. Castes classify agents into various castes 
similar to that data types classify data into types, and 
classes classify objects into classes. However, different 
from the notion of class in object orientation, caste allows 
dynamic classification, i.e. an agent can change its caste 
membership (called casteship in the sequel) at run time.  
It also allows multiple classifications, i.e. an agent can 
belong to more than one caste at the same time. As all 
classifiers, inheritance relations can also be specified be-
tween castes. As a consequence of multiple classifications, 
a caste can inherit more than one caste. As a modularity 
language facility, a caste serves as a template that de-
scribes the structure and behavior properties of agents in 
the caste, and as the basic organizational units in the de-
sign and implementation of MAS. Pseudo-equation (2) 
states that s caste at time t is a set of agents that have the 
same structural and behavioral characteristics. The struc-
ture of caste descriptions in SLABS is shown in Figure 1.  

The weakness of static object-class relationship in cur-
rent mainstream object-oriented programming has been 
widely recognized. Proposals have been advanced, for 
example, to allow objects’ dynamic reclassification [10]. 
In [11], we suggested that agents’ ability to dynamically 
change its roles is represented by dynamic casteship. In 
our model, dynamic casteship is an integral part of 
agents’ behavior capability. Agents can have behavior 
rules that allow them to change their castes at run-time 
autonomously. To change its casteship, an agent takes an 
action to join a caste or retreat from a caste at run time. 

Therefore, which agents are in a caste depends on time 
even if agents can be persistent, hence the subscript of t in 
pseudo-question (2). We believe that this feature allows 
users to model the real world multi-agent systems natu-
rally and to maximize the flexibility and power of AOP. 
   Caste t = {agents | structure & behavior properties} (2) 

 
Figure 1. Caste descriptions in SLABS 

Equation (3) states that a MAS consists of a set of 
agents but nothing else. Our definition of agent implies 
that object is a special case of agent in the sense that it 
has a fixed rule of behavior, i.e. “executes the corre-
sponding method when receives a message”.  

MAS = {Agent n}, n∈Integer    (3) 
Consequently, the environment of an agent in a MAS 

at time t is a subset of the agents, where some agents in 
the system may not be visible from the agent’s point of 
view, as illustrated in pseudo-equation (4). Notice that, 
our use of the term ‘visibility’ is different from the con-
cept of scope. In particular, from agent A’s point of view, 
agent B is visible means that agent A can observe and 
perceive the visible actions taken by agent B or obtain the 
value of agent B’s visible part of state at run time.  

Environment t (Agent, MAS) ⊆ MAS – {Agent}  (4) 
Here, we take a ‘designated environment’ approach, 

i.e. the environment of an agent is specified when an 
agent is designed. The environment description of an 
agent or a caste defines what kinds of agents are visible. 
For example, it can be that the agents in a particular caste 
are visible. Note that a designated environment is neither 
closed, nor fixed, nor totally open. Since an agent can 
change its casteship, its environment may change dy-
namically. For example, an agent’s environment changes 
when it joins a caste and hence the agents in the caste’s 
environment become visible. The environment also 
changes when other agents join the caste in the agent’s 
environment. Therefore, the set of agents in the environ-
ment of an agent depends on time, hence, the subscription 
t in pseudo-question (4).   

The communication mechanism of the conceptual 
model and the language is that an agent’s actions and 
states are divided into the visible ones and internal ones. 
Agents communicate with each other by taking visible 
actions and changing visible state variables, and by ob-
serving other agents’ visible actions and visible states, as 
shown in pseudo-equation (5). An agent taking a visible 
action can be understood as generating an event that can 
be perceived by other agents in the system, while an agent 



taking an internal action means it generates an event that 
can only be perceived by its components. Similarly, the 
value of an agent’s visible state can be obtained by other 
agents, while the value of the internal state can only be 
obtained by its components. As indicated above, this con-
cept of visibility is different from the concept of scope. 

 A ---> B  =  A.Action & B.Observation   (5) 

3. Modeling process 
CAMLE is intended to support software engineers to 

develop information systems systematically through 
smooth and orderly transitions from models of the current 
system and users’ requirements to the design and imple-
mentation of a new system evolutionarily and collabora-
tively. At the highest level of abstraction, our process 
model is based on the current best practice of software 
engineering rather than a dramatic revolution. In particu-
lar, we take a model driven and evolutionary approach. 
We consider the evolutionary development of information 
systems as repeated cycles of modeling the current system 
and its operation environment, then designing and imple-
menting a new system to be executed in a new environ-
ment to meet users’ new requirements. In this process, 
engineers move from the concrete current system to an 
abstract model, analyze how to modify the current system 
to satisfy the users’ requirements, and then build an ab-
stract model of the new system. The abstract model is 
refined and the new system is realized. The new system is 
subject to further modifications as users’ requirements 
change and the organizational environment and technol-
ogy evolve. Then, a new cycle of modeling, design, re-
finement and implementation begin. This cycle continues 
as the system evolves. Therefore, CAMLE’s process of 
agent-oriented software development can be divided into 
three stages: (a) the analysis and modeling of the current 
information system, (b) the design of a new system as 
modification to the existing system, hence the building of 
a model of the new system, (c) the implementation of the 
new system according the design model.  

However, at a more concrete level of abstraction, our 
modeling and analysis process shifts the focus from ob-
ject to agent and from control mechanism to collaboration. 
It is a repeated iteration of the following activities.  
1. Identifying agents and their roles in the system ac-

cording to their functionality and responsibilities and 
grouping agents into castes;  

2. Analyzing inheritance and aggregate relations between 
the castes; 
The outcome of these activities is a caste model.  

3. Identifying the communications between the agents in 
terms of how agents influence each other, and docu-
ments the communications in collaboration diagrams. 

4. Identifying the specific visible actions and state vari-
ables of each agent, and associating them with the 
communication links between the agent nodes in col-

laboration diagrams; 
The outcome of these activities is a collaboration 

model, which captures the inter-agent interactions. 
The following activities are applied to each caste. 

5. Identifying the typical scenarios in the operation of the 
system; 

6. Analyzing and describing each agent’s responses in 
each scenario.  
The outcome of these two activities is a behavior 

model for each caste. This may not be successful when 
the behavior of agents in the caste is too complicated. In 
such cases, the complicated caste should be decomposed 
into component castes and analyzed as a system by apply-
ing activities (1) ~ (4). As a result, the caste model and 
collaboration model are revised.   

The outcome of the whole process is a caste model that 
represents the organization of the whole system, a col-
laboration model that comprises a hierarchy of collabora-
tion diagrams and represents the communication patterns 
between the agents in the system, and a set of behavior 
models that for each caste.  

4. Modeling language 
CAMLE employs the multi-view principle. There are 

three types of models: caste models, collaboration models 
and behavior models. Each model consists of one or more 
diagrams. The caste model specifies the castes of the sys-
tem and the relationships between them, such as the in-
heritance and whole-part relations. A caste is a compound 
caste if its agents are composed from a number of other 
agents; otherwise, it is atomic.  

 
(a) Example of Caste Model with Whole-Part Relations 

 
 (b) Collaboration Models and Behavior models 

Figure 2. Overall Structure of CAMLE Models 



For example, as shown in Figure 2(a), the System is 
directly composed of agents of caste A and B. Each of 
them can be further decomposed into smaller components 
N1 and N2, and M1 and M2, respectively. For each com-
pound caste, such as the System, A and B, a collaboration 
model and a behavior model are constructed. Atomic 
castes only have behavior models because they have no 
components thus no internal collaboration. The overall 
structure of a system’s collaboration models and behavior 
models can be viewed as a hierarchy, which is isomorphic 
to the whole-part relations between castes described in 
the caste model; see e.g. Figure 2(b).  

To ensure the consistency between various models and 
models at different levels of abstraction, three types of the 
consistency constraints have been identified and formally 
defined in the CAMLE language and checkers by the 
tools in the environment. These consistency constraints 
including (a) well-formedness conditions imposed on 
each diagram, (b) intra-model consistency constraints that 
are imposed on diagrams of the same model at the same 
abstraction levels, and (c) inter-model consistency con-
straints that are imposed either on the same type of mod-
els at different abstraction levels, or on different types of 
models at the same level of abstraction. For the sake of 
space, details of the constraints are omitted here, and will 
be reported separately. The following subsections de-
scribe each model and discuss their uses in agent-oriented 
software development; see [8, 9] for more details. 

4.1. Caste model 
We view an information system as an organization that 

consists of a collection of agents that stand in certain rela-
tionships to one another by being a member of certain 
groups and playing certain roles, i.e. in certain castes. 
They interact with each other by observing their envi-
ronments and taking visible actions as responses to the 
environment scenarios. The behavior of an individual 
agent in a system is determined by the ‘roles’ it is playing. 
An individual agent can change its role in the system. 
However, the set of roles and the assignments of 
responsibilities and tasks to roles are usually quite stable 
[ 12 ]. Such an organizational structure of information 
systems is captured in our caste model.  

Figure 3. Caste diagram: notations and example 

Figure 3 shows the notation and an example of caste 
diagrams. A caste diagram identifies the castes in a sys-
tem, indicates the inheritance, aggregation and migration 
relationships between them.  Migration relations specify 
how agents in the castes can change their casteships. 

The inheritance relationship between castes defines 
sub-groups of the agents that have special responsibilities 
and hence additional capabilities and behaviors. For ex-
ample, in Figure 3, the members of a university are classi-
fied into three castes: students, faculties and secretaries. 
Students are further classified into three sub-castes: un-
dergraduates, postgraduates and PhD students.  

There are two kinds of migration relationships: mi-
grate and participate. A migrate relation from caste A to 
B means that an agent of caste A can retreat from caste A 
and join caste B. A participate relation from caste A to B 
means that an agent of caste A can join caste B while 
retaining its casteship of A. For example, in Figure 3, an 
undergraduate student may become a postgraduate after 
graduation. A postgraduate student may become a PhD 
student after graduation or become a faculty member. 
Each student becomes a member of the alumni of the uni-
versity after leaving the university. A faculty member can 
become a part time PhD student while remaining em-
ployed as a faculty member. From this model, we can 
infer that an individual can be both a student and a faculty 
member at the same time if and only if he/she is a PhD 
student. 

An aggregate relation specifies a whole-part relation-
ship between agents. An agent may contain of a number 
of components that are also agents. The former is called 
compound agent of the latter. In such case, there exists a 
whole-part relationship between the component and the 
compound agent, which is represented through an aggre-
gate relation between castes. We identify three types of 
part-whole relationships between agents according to the 
ways a component agent is bound to the compound agent 
and the ways a compound agent controls its components. 
The strongest binding between a compound agent and its 
components is composition in which the compound agent 
is responsible for creation and destruction of its compo-
nents. If the compound agent no longer exists, the com-
ponents will not exist. The weakest binding is aggrega-
tion, in which the compound and the component are 
independent, so that the component agent will not be 
affected for both its existence and casteships when the 
compound agent is destroyed. The third whole-part 
relation is called congregation. It means if the compound 
agent is destroyed, the component agents will still exist, 
but they will lose the casteship of the component caste of 
the compound agent. The composition and aggregation 
relation is similar to the composition and aggregation in 
UML, respectively. However, congregation is novel 
concept in modeling languages introduced in by CAMLE. 
There is no similar counterpart in object oriented 
modeling languages, such as UML. It has not been 



guages, such as UML. It has not been recognized in the 
research on object-oriented modeling of whole-part rela-
tions [13 ]. We believe that it is important for agent-
oriented modeling because of agents’ basic features viz. 
dynamic casteship. For example, as shown in Figure 3, a 
university consists of a number of individuals as its mem-
bers. If the university is destroyed, the individuals should 
still exist. However, they will lose the membership as the 
university member. Therefore, the whole-part relationship 
between University Member and University is a congre-
gation relation. This relationship is different from the 
relationship between a university and its departments. 
Departments are components of a university. If a univer-
sity is destroyed, its departments will no long exist. The 
whole-part relationship between Department and Univer-
sity is therefore a composition relation.  

4.2. Collaboration model  
While caste model defines the static architecture of 

MAS, collaboration model implicitly defines the dynamic 
aspect of the MAS organization by capturing the collabo-
ration dependencies and relationships between the agents. 

Agents in a MAS collaborate with each other through 
communication, which is essential to fulfill the system’s 
functionality. Such interactions between agents are cap-
tured and represented in a collaboration model. In 
CAMLE, a collaboration model is associated to each 
caste and consists of a set of collaboration diagrams.  

A collaboration diagram specifies the interaction be-
tween the agents in the system or in a compound agent. 
Figure 4 gives the notations.  

 
 
 
 
 

Figure 4. Notation of Collaboration Diagram 

There are two types of nodes in a collaboration dia-
gram. An agent node represents a specific agent. A caste 
node represents any agent in a caste. An arrow from node 
A to node B represents that the visible behavior of agent 
A is observed by agent B. Therefore, agent A influences 
agent B. When agent B is particularly interested in certain 
activities of agent A, the activities can also be annotated 
to the arrow from A to B. Although this model looks 
similar to collaboration diagrams in UML, there are sig-
nificant differences in the semantics. In OO paradigm, 
what is annotated on the arrow from A to B is a method 
of B. It represents a method call from object A to object B, 
and consequently, object B must execute the method. In 
contrast, in CAMLE the action annotated on an arrow 
from A to B is a visible action of A. Moreover, agent B is 
not necessarily to respond to agent A’s action. The dis-
tinction indicates the shift of modeling focus from con-

trols represented as method calls in OO paradigm to col-
laborations represented as signaling and observation of 
visible actions. It fits well with the autonomous nature of 
agents. 

4.2.1. Scenarios of collaboration. One of the complica-
tions in the development of collaboration models is to 
deal with agents’ various behaviors in different scenarios. 
By scenario, we mean a typical situation of the operation 
of the system. In different scenarios, agents may pass 
around different sequences of messages and may commu-
nicate with different agents. Therefore, it is better to de-
scribe them separately. The collaboration model supports 
the separation of scenarios by including a set of collabo-
ration diagrams. Each diagram represents one scenario. In 
such a scenario specific collaboration diagram, actions 
annotated on arrows can be numbered by their temporal 
sequence. In addition to such specific diagrams, a general 
collaboration diagram is also associated to the caste to 
give an overall picture of the communication between all 
the component agents by describing all visible actions an 
agent may take and all possible observers of the actions.  

4.2.2. Refinement of collaboration models. The model-
ing language supports modeling complex systems at vari-
ous levels of abstraction, and to refine from high level 
models of coarse granularity to more detailed fine granu-
larity models. At the top level, a system can be viewed as 
an agent that interacts with users and/or other systems in 
its external environment. This system can be decomposed 
into a number of subsystems interacting with each other. 
A sub-system can also be viewed as an agent and further 
decomposed. As analysis deepens, a hierarchical structure 
of the system emerges. In this way, the compound agent 
has its functionality decomposed through the decomposi-
tion of its structure. Such a refinement can be carried on 
until the problem is specified adequately in detail. Thus, a 
collaboration model at system level that specifies the 
boundaries of the application can be eventually refined 
into a hierarchy of collaboration models at various ab-
straction levels. Of course, the hierarchical structure of 
collaboration diagrams can also be used for bottom-up 
design and composition of existing components to form a 
system.   

4.3. Behavior model  
While caste and collaboration models describe MAS at 

the macro-level from the perspective of an external ob-
server, behavior model adopts the internal or first-person 
view of each agent. It describes an agent’s dynamic be-
havior in terms of how it acts in certain scenarios of the 
environment at the micro-level. A behavior model con-
sists of two kinds of diagrams: scenario diagrams and 
behavior diagrams.  

AgentName:Caste Agent node: CasteNameCaste node: 

Communication Link: Actions N1 N2 



4.3.1. Scenario diagrams.  We believe that each agent’s 
perception of its environment should be explicitly speci-
fied when modeling its behavior. From an agent’s point 
of view, the situation of its environment is characterized 
by what is observable by the agent. In other words, a sce-
nario is defined by the sequences of visible actions taken 
by the agents in its environment. Scenario diagrams iden-
tify and describe the typical situations that the agent must 
respond to. Figure 5 below shows the layout of scenario 
diagrams.  

 
 
 
 
 
 
 
 
  

Figure 5. Format of Scenario Diagram 

Figure 6 depicts the notations to specify visible events 
by nodes and temporal ordering by arrows in scenario 
diagrams, as well as logic connective nodes and links for 
the combination of situations. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 6. Notations of Scenario Diagram 

4.3.2. Behavior diagrams. Behavior diagrams describe 
agents’ designed behavior in certain scenarios. For each 
caste, a behavior diagram defines a set of behavior rules. 
The notation of behavior diagrams includes the notation 

of scenario diagrams plus those in Figure 7.  

 
 
 
 
 
 
 
 
 
 

Figure 7. Notation for behavior diagrams 

A behavior diagram contains event nodes linked to-
gether by the temporal ordering arrows as in scenario 
diagrams to specify the agent’s previous behavior pattern. 
A transition bar with a conflux of scenario, precondition 
and previous pattern and followed by an event node indi-
cates that when the agent’s behavior matches the previous 
pattern and the system is in the scenario and the precondi-
tion is true, the event specified by the event node under 
the transition bar will be taken by the agent. In a behavior 
diagram, a reference to a scenario indicated by a scenario 
node can be replaced by a scenario diagram if it improves 
the readability. The behavior diagram in Figure 8 partly 
defines the behavior of an undergraduate student. It states 
that if the student is in the final year and the average 
grade is ‘A’, the student may request a reference from the 
personal tutor for the application of a graduate course. If 
the personal tutor agrees to be a referee, the student may 
apply for a graduate course. If the department office of-
fers a position in a graduate course, the student will join 
the Graduates caste and retreat from the Undergraduates 
caste. 

 

 
Figure 8. Behavior Diagram for Undergraduate Student 

5. Support environment 
A software environment to support the process of sys-

tem analysis and modeling in CAMLE has been designed 
and implemented. CAMLE aims at representing informa-

& or ¬ Logic connective nodes  

Logic links connect logic connective nodes 

Single action node: the agent takes an act 
with parameters p1,…pn at time t . 

Act(p1,…pn) t: 

Repetitive action node: the agent takes act 
repetitively at time t, where R-Exp defines 
the number of repetition of the action.  

Act(p1,…pn) 
R-Exp 

t: 

Continuous state assertion node: the 
agent’s state satisfies the predicate for a 
continuous period of time, where the pe-
riod satisfies the expression C-Exp. 

t: 
C-Exp 

Predi-
t

Temporal order between the events: event B 
is after event A, while there may be other 
events between them, where T-Exp is the 
constraints on the time gap between the 
events. 

B A T-Exp 

Scenario Scenario node: a scenario identifier, or 
a detailed scenario description. 

Precondition Precondition node: give the precondi-
tion of an event. 

Transition bar: conflux of scenario, 
precondition and previous events as 
premise of behavior rule.  

Action arrow: link from behavior rule’s 
previous events to transition bar. 

T-Exp 
A B 

Temporal order between the events: event 
B is immediately after event A, where T-
Exp is the constraint on the time gap be-
tween event A and B. 

State assertion node: the agent’s state sat-
isfies the predicate at time t. 

t: Predicate 

Scenario Name 

Swim 
Lane 1 

Swim 
Lane N 

… 

Logic connection network  

Qualifier 

Action 1 

Action 2 

Action K 
(b) The layout of 

swim lanes (a) The layout of scenario diagrams 



tion systems naturally using the conceptual model of 
MAS presented in the previous section and facilitating the 
reasoning about such systems. It serves two interrelated 
purposes, i.e. to develop abstract descriptive models of 
current systems and to develop prescriptive designs of 
systems to be implemented. Therefore, in addition to 
model construction, two key features of the language and 
environment are regarded as of particular importance: (a) 
the consistency check between various models from dif-
ferent views and at different levels of abstraction, and (b) 
the transformation of diagrammatic models into formal 
specifications. Such a consistent model and specification 
should be able to be implemented in a high-level pro-
gramming language, ideally, in an agent-oriented pro-
gramming language based on the same conceptual model. 

 Figure 9 shows the architecture of the current 
CAMLE environment and its main functionality. The 
diagram editor supports the manual editing of models 
through graphic user interface. The well-formedness 
checker ensures the well-formedness of the user entered 
models, hence prevents ill-formed artifacts from being 
input. The partial diagram generator can generate partial 
models (incomplete diagrams) from existing diagrams to 
help users in model construction. The rules to generate 
partial models are based on the consistency constraints so 
that the generated partial diagrams are consistent with 
existing ones according to the consistency conditions.  

 

 
Figure 9. The Architecture of CAMLE Environment 

Consistency checking tools that help to ensure the 
well-formedness, consistency and completeness of system 
models are based on consistency constraints defined by 
the CAMLE language. The transformation from graphic 
models in CAMLE into formal specifications in SLABS 
enables engineers to analyze, verify and validate system 
models before the system is implemented. The specifica-
tion generation tool in the CAMLE environment auto-
matically derives a formal specification in SLABS when a 
model is constructed and its consistency checked. Details 

of the transformation rules and algorithms are omitted 
here for the sake of space. Figure 10 shows a screen snap-
shot of the tool-generated specification of a caste. 

 
Figure 10. Screen Snapshots of Specification Generator 

6. Conclusion 
This paper presents the agent-oriented modeling lan-

guage and environment CAMLE. It is based on the con-
ceptual model of MAS developed and formally defined in 
the formal specification language SLABS. Models repre-
sented in the CAMLE language can be automatically 
checked for consistency and transformed into formal 
specifications in SLABS by the tools in the modeling 
environment. The modeling language has a number of 
novel features, which include the congregate whole-part 
relation and migration relation between castes, the desig-
nated environment descriptions, scenario diagrams, sce-
nario driven behavior rules, and most importantly, the 
concept of caste. 

There have been a number of efforts in the direction of 
AO methodology, many of which focus on the process of 
MAS engineering as well as the representation of MAS. 
With regard to conceptual model of the methodologies, 
there is a fundamental distinction between CAMLE and 
other methodologies that are based on mental state related 
notions such as belief, desire, intention, goal and plan. 
Although these notions are widely used, their meanings 
vary from people to people in different methodologies. 
CAMLE replaces these notions with an abstract model of 
agents as encapsulation of data, operation and behavior. 
CAMLE also has a fundamental distinction from method-
ologies that are based on social organization related no-
tions such as roles, agent society and organization struc-
ture. CAMLE replaces such intuitive concepts with a 
well-defined language facility caste, which is easy to un-
derstand and use from software engineering perspective. 
It can be used to represent a number of the concepts in 
agent-oriented modeling, such as roles, agent societies, 
normative behavior, common knowledge and protocols, 
etc. [6]. The caste-centric feature enables us to achieve 
simplicity in the design of an expressive modeling lan-



guage and efficiency in the implementation of the power-
ful environment.  

Concerning the modeling process, different from most 
other methodologies such as Tropos [3], CAMLE empha-
sizes evolutionary and cooperative development of MAS 
and to reflect the shift of software construction focus 
from control to cooperation in service oriented computing. 
Gaia is perhaps one of the most mature agent-oriented 
software development methodologies at the moment. It 
does not commit to specific notations for modeling con-
cepts such as roles, environment and interaction [1]. 
UML notation are widely used, e.g. in Tropos, PASSI [14] 
and AUML [15]. However, there are fundamental differ-
ences between agents and objects as discussed in section 
2 and 3. There is no clearly defined conceptual model or 
meta-model underlying the uses of UML notations for 
agent-oriented modeling.   

There are several issues remaining for future work. We 
are investigating software tools that support model-based 
implementation of MAS in CAMLE. The design and im-
plementation of an agent-oriented programming language 
with caste as the basic program unit is on the top of our 
agenda. 
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