CAMLE: A Caste-Centric Agent-Oriented
Modelling Language and Environment

Lijun Shan! and Hong Zhu?

! Department of Computer Science, National University of Defence Technology

Changsha, 410073, P.R. China
lijunshancn@yahoo.com

2 Department of Computing, Oxford Brookes University, Oxford 0X33 1HX, UK
hzhu@brookes.ac.uk

Abstract. This paper presents an agent-oriented modelling language and envi-
ronment CAMLE. It is based on the conceptual model of multi-agent systems
(MAS) proposed and formally defined in the formal specification language
SLABS. It is caste-centric because the notion of caste plays the central role in
its methodology. Caste is the classifier of agents in our language. It allows mul-
tiple and dynamic classifications of agents. It serves as the template of agents
and can be used to model a wide variety of MAS concepts, such as roles, agent
societies, etc. The language supports modelling MAS at both macro-level for
the global properties and behaviours of the system and micro-level for proper-
ties and behaviours of the agents. The environment provides tools for construct-
ing graphic MAS models in CAMLE, automatically checking consistency be-
tween various views and models at different levels of abstraction, and
automatically transforming models into formal specifications in SLABS. The
uses of the CAMLE modelling language and environment are illustrated by an
example.

1 Introduction

One of the key factors that contribute to the progress in software engineering over the
past two decades is the development of increasingly powerful and natural high-level
abstractions with which complex systems are modelled, analysed and developed. In
recent years, it becomes widely recognized that agents represent an advance in this
direction that can unify data abstraction and operation abstraction. A number of agent-
oriented software development methodologies have been proposed in the literature;
see e.g. [1]. These proposals vary in how to describe agent and MAS at a higher ab-
straction level as well as how to obtain such a description. For example, Gaia [2]
provides software engineers with the organization-oriented abstraction in which soft-
ware systems are conceived as organized society and agents are seen as role players.
Tropos [3] emphasizes the uses of notions related to mental states during all software
development phases. The notions like belief, intention, plan, goals, etc., represent the
abstraction of agent’s state and capability.

Our work originates from formally specifying agent behaviour as responses to en-
vironment scenarios [4], developed into a formal specification language SLABS for
engineering agent-based systems [5], and applied to a number of examples of MAS
[6, 7]. In [8] and [9], a diagrammatic notation for modelling agent behaviours and

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 144-161, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 145

collaborations was respectively developed. This paper proposes a methodology of
agent-oriented software engineering called CAMLE, which stands for Caste-centric
Agent-oriented Modelling Language and Environment. Caste is the classifier of
agents in our modelling and specification languages. It allows multiple classifications
(i.e. an agent can belong to more than one caste) and dynamic classifications (i.e. an
agent can change its caste membership at run time), as well as multiple inheritances
among castes. It can be used to model a wide variety of MAS concepts, such as roles,
agent societies, behaviour normality, etc. It provides the modularity language facility
and serves as the template of agents in the design and implementation of MAS. The
notion of caste plays a central role in the methodology. We consider behaviour rules
as the basic abstraction for agent’s behaviour while leaving out mental state notions
such as belief and goal that are used in some other agent-oriented software researches,
though such notions can be represented in our framework. Behaviour rules incorporat-
ing agent’s perception to its environment represent the autonomy of agent’s behav-
iour. With the CAMLE language, a software system can be modelled from three per-
spectives. The supporting tools help users to construct MAS models in graphical
notations, to check the consistency between models from various views and at differ-
ent abstraction levels, and automatically translate the graphic models into formal
specifications.

The remainder of this paper is organized as follows. Section 2 reviews the underly-
ing conceptual model. Section 3 presents the modelling language. Section 4 briefly
reports the modelling tools. Section 5 concludes the paper with discussions on related
work and directions for future work.

2 Conceptual Model

The conceptual model of MAS underlying our methodology is the same as that of the
language SLABS [4, 5], which is a formal specification language designed for engi-
neering MAS. It can be characterized by a set of pseudo-equations. Pseudo-equation
(1) states that agents are defined as real-time active computational entities that encap-
sulate data, operations and behaviours, and situate in their designated environments.

Agent=<Data, Operations, Behaviour>gyironment €))

Here, data represent an agent’s state. Operations are the actions that the agent can
take. Behaviour is described by a set of rules that determine how the agent behaves
including when and how to take actions and change state in the context of its desig-
nated environment. By encapsulation, we mean that an agent’s state can only be
changed by the agent itself, and the agent can decide ‘when to go’ and ‘whether to say
no’ according to an explicitly specified set of behaviour rules. Therefore, there are
two fundamental differences between objects and agents in our conceptual model.
First, objects do not contain any explicitly programmed behaviour rule. Second, ob-
jects are open to all computation entities to call its public methods without any dis-
tinction of them.

In our conceptual model, the classifier of agents is called caste. Castes classify
agents into various castes similar to that data types classify data into types, and
classes classify objects into classes. However, different from the notion of class in
object orientation, caste allows dynamic classification, i.e. an agent can change its

146 Lijun Shan and Hong Zhu

caste membership (called casteship in the sequel) at run time. It also allows multiple
classifications, i.e. an agent can belong to more than one caste at the same time. As all
classifiers, inheritance relations can also be specified between castes. As a conse-
quence of multiple classifications, a caste can inherit more than one caste. As a modu-
larity language facility, a caste serves as a template that describes the structure and
behaviour properties of agents in the caste, and as the basic organizational units in the
design and implementation of MAS. Pseudo-equation (2) states that a caste is a set of
agents that have the same structural and behavioural characteristics at any time mo-
ment t in the execution of the system. The structure of caste descriptions in SLABS is
shown in Fig.1.

Caste , = {agents | structure & behaviour properties} 2)

PhD Student <= Student ()
Var ResearchGroup: Groups;
Visible actions and state variables Act GivePracticeClass (Course);
ReportResearchProgress (Supervisor)

rNewCaste<=Castes (Instantiation)=—=

i ‘sor | [J->ReportProgress(Report
Environment| p o, oo specification Supervisor: |l port g (Report)
description Staff If Supervisor: RequestReport
Il I
Fig. 1. Caste descriptions in SLABS Fig. 2. An example of caste: PhD Student

For example, when modelling a university as an information system, each of the
people in the university can be modelled as an agent. They can be grouped into a
number of castes, such as the caste of students, the caste of faculty members and the
caste of secretaries. The students can be further classified into undergraduates, gradu-
ates and Ph. D students. Fig. 2 is an example of the caste definition of Ph. D student.

In the real world, an undergraduate student can become a postgraduate student or
alumni after graduation. To model this, the agents in an information system dynami-
cally change their membership to castes. The weakness of static object-class relation-
ship in current mainstream object-oriented programming has been widely recognized.
Proposals have been advanced, for example, to allow objects’ dynamic reclassifica-
tion [10]. In [11], we suggested that agents’ ability to dynamically change its roles is
represented by dynamic casteship. In our model, dynamic casteship is an integral part
of agents’ behaviour capability. Agents can have behaviour rules that allow them to
change their castes at run-time autonomously. To change its casteship, an agent takes
an action to join a caste or retreat from a caste at run time. Therefore, which agents
are in a caste depends on time even if agents can be persistent, hence the subscript of ¢
in pseudo-question (2). We believe that this feature allows users to model the real
world MAS naturally and to maximize the flexibility and power of agent technology.

In the research on agent-oriented methodologies, a number of notions have been
proposed in the literature to model agent-based systems, which include role, agent
society, organisation, normative behaviour, etc. The notion and language facility of
caste can be used to represent these concepts as discussed in [6]. For example, the set
of agents that play a specific role can be defined by a caste. The agents of a particular
society or community that obey a specific set of normative behaviour rules and share

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 147

a set of resources can also be defined as a caste. However, the notions of societies and
role etc. are too specific and restrictive to be used as a language facility. For example,
all the people who speak a particular language, say Chinese, can be defined as a caste,
but it would be unnatural to consider them as playing any specific role. Similarly, a
set of software agents that follow a particular communication protocol can be defined
by a caste, but it would be unnatural to model them by a role. The concept of society
or community has a strong sense of membership. A person who speaks English does
not necessarily belong to the society of English people. A society may also consists of
agents playing different roles and obey different behaviour rules. Therefore, the con-
cept of society is not suitable to be used as a language facility of code template.

The notion of role has been widely used to characterize agents’ behaviour and in-
teraction in agent-oriented methodologies, especially in the analysis and specification
stage [13]. However, role is often used intuitively in system analysis. They are trans-
formed into agent properties at design stage and eventually disappear in programming
stage or represented indirectly as objects and classes. In contrast, caste not only over-
comes the limitations and weakness of the informal notions of roles and societies at
analysis and specification stage, but, as a language facility, can also be directly im-
plemented in a programming language such as SLABSp [12].

Equation (3) states that in our model a MAS consists of a set of agents but nothing
else. Our definition of agent implies that object is a special case of agent in the sense
that it has a fixed rule of behaviour, i.e. “executes the corresponding method when
receives a message”.

MAS = {Agent .}, ne Integer 3)

Consequently, the environment of an agent in a MAS at time ¢ is a subset of the
agents, where some agents in the system may not be visible from the agent’s point of
view, as illustrated in pseudo-equation (4). Notice that, our use of the term ‘visibility’
is different from the concept of scope. In particular, from agent A’s point of view,
agent B is visible means that agent A can observe and perceive the visible actions
taken by agent B or obtain the value of agent B’s visible part of state at run time.

Environment , (Agent, MAS) c MAS — { Agent} 4

Here, we take a ‘designated environment’ approach, i.e. the environment of an
agent is specified when an agent is designed. The environment description of an agent
or a caste defines what kinds of agents are visible. For example, it can be that the
agents in a particular caste are visible. Note that a designated environment is neither
closed, nor fixed, nor totally open. Since an agent can change its casteship, its envi-
ronment may change dynamically. For example, an agent’s environment changes
when it joins a caste and hence the agents in the caste’s environment become visible.
The environment also changes when other agents join the caste in the agent’s envi-
ronment. Therefore, the set of agents in the environment of an agent depends on time,
hence, the subscription ¢ in pseudo-question (4).

The communication mechanism in our model is that an agent’s actions and states
are divided into the visible ones and internal ones. Agents communicate with each
other by taking visible actions and changing visible state variables, and by observing
other agents’ visible actions and visible states, as shown in pseudo-equation (5). An
agent taking a visible action can be understood as generating an event that can be
perceived by other agents in the system, while an agent taking an internal action

148 Lijun Shan and Hong Zhu

means it generates an event that can only be perceived by its components. Similarly,
the value of an agent’s visible state can be obtained by other agents, while the value
of the internal state can only be obtained by its components.

A — B = A.Action & B.Observation 5)

This communication mechanism is different from message passing between objects
where each message invokes a corresponding method of the object that receives the
message. In our model, agents are active computational entities that execute concur-
rently. They are not invoked by messages. Instead, each agent observes the events
happened in its environment and takes actions according to its behaviour rules. How
an agent handles an event that it perceives is solely determined by the agent itself
because agents are autonomous. In general, the agent that produces an event may not
know which agent in the system will respond to the event or how the event will be
handled. Therefore, the agent does not expect any agent to participate in the genera-
tion of an event. It may not even wait for the event to be handled to progress its own
computation task. In this sense, the communication mechanism can be considered as
asynchronous and non-blocking. Of course, this mechanism does not define the com-
munication protocol and agent communication language. These issues should be ad-
dressed in the design and implementation of specific multi-agent system, rather than
predefined by the modelling language or meta-model.

3 Modelling Language

CAMLE employs the multiple view principle. A MAS model contains three types of
models: caste models, collaboration models and behaviour models. Each model con-
sists of one or more diagrams.

The caste model specifies the castes of the system and the relationships between
them. A caste is a compound caste if its agents are composed of a number of other
agents; otherwise, it is atomic. For example, as shown in Fig 3 (a), the System is di-
rectly composed of agents of caste A and B. Each of them can be further decomposed
into smaller components N; and N,, and M; and M,, respectively. For each compound
caste, such as the System, A and B, a collaboration model and a behaviour model are
constructed. Atomic castes only have behaviour models because they have no compo-
nents thus no internal collaboration.

The overall structure of a system’s collaboration models and behaviour models can
be viewed as a hierarchy, which is isomorphic to the whole-part relations described in
the caste model; see e.g. Fig 3 (b).

The following subsections describe each type of model and discuss their uses in
agent-oriented software development, respectively; see [8, 9] for more details. Sub-
section 3. 4 discusses the consistency between various kinds of models.

3.1 Caste Model

We view an information system as an organization that consists of a collection of
agents that stand in certain relationships to one another by being a member of certain
groups and playing certain roles, i.e. in certain castes. They interact with each other
by observing their environments and taking visible actions as responses to the envi-
ronment scenarios. The behaviour of an individual agent in a system is determined by

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 149

. 1
Behaviour I

Collaboration

|
|| General Specific ||l || Behaviour [[Scenario [l
||_Diagram Diagrams J| ||_Diagram Diagrams

l"Collaboration | Behaviour 1 choEaFoBtEﬂlf' Behaviour _i

Model !l Model I Model Il Model |

| . — — JL_ ——_—_—— | = L —————

[|
| [| |

M _ __M, _ _M__ M _
I"Behaviour | I"Behaviour | | Behaviour | I Behaviour |
' Model | I Model ! I Model | ' Model |
L L —ad L——— L —

(b) Collaboration Models and Behaviour models

Fig. 3. Overall Structure of CAMLE Models

the ‘roles’ it is playing. An individual agent can change its role in the system. How-
ever, the set of roles and the assignments of responsibilities and tasks to roles are
usually quite stable [13]. Such an organizational structure of information systems is
captured in our caste model.

A caste diagram identifies the castes in a system, indicates the inheritance, aggre-
gation and migration relationships between them. Fig 4 shows the notation of caste
diagrams and illustrates it with the university example introduced in section 2.

The inheritance relationship between castes defines sub-groups of the agents that
have special responsibilities and hence additional capabilities and behaviours. Migra-
tion relations specify how agents in the castes can change their casteships. There are
two kinds of migration relationships: migrate and participate. A migrate relation from
caste A to B means that an agent of caste A can retreat from caste A and join caste B.
A participate relation from caste A to B means that an agent of caste A can join caste
B while retaining its casteship of A. For example, in Fig 4, an undergraduate student
may become a postgraduate after graduation. A postgraduate student may become a
PhD student after graduation or become a faculty member. Each student becomes a
member of the alumni of the university after leaving the university. A faculty member
can become a part time PhD student while remaining employed as a faculty member.
From this model, we can infer that an individual can be both a student and a faculty
member at the same time if and only if he/she is a PhD student.

150 Lijun Shan and Hong Zhu

Caste node

—> Inherit

----> Migrate - | Umver51ty Member |
®----> Participate

—< Aggregate
— Congregate |! Faculty ||

—® Composite Al

! ,
Postgraduate ||| PhD student

Staff Module
Manager |f| Manager

~—= -

Fig. 4. Caste diagram: notations and example

An agent may contain a number of components that are also agents. The former is
called compound agent of the latter. In such a case, there exists a whole-part relation-
ship between the compound agent and the components. We identify three types of
whole-part relationships between agents according to the ways a component agent is
bound to the compound agent and the ways the compound agent controls its compo-
nents. The strongest binding between a compound agent and its components is com-
position in which the compound agent is responsible for creation and destruction of its
components. If the compound agent no longer exists, the components will not exist.
The weakest binding is aggregation, in which the compound and the component are
independent to each other, so that the component agent will not be affected for both
its existence and casteships when the compound agent is destroyed. The third whole-
part relation is called congregation. It means if the compound agent is destroyed, the
component agents will still exist, but they will lose the casteship of the component
caste.

The composition and aggregation relation is similar to the composition and aggre-
gation in UML, respectively. However, congregation is a novel concept in modelling
languages introduced in by CAMLE. There is no similar counterpart in object ori-
ented modelling languages, such as UML. It has not been recognized in the research
on object-oriented modelling of whole-part relations [14]. We believe that it is impor-
tant for agent-oriented modelling because of agents’ basic feature of dynamic caste-
ship. For example, as shown in Fig 4, a university consists of a number of individuals
as its members. If the university is destroyed, the individuals should still exist. How-
ever, they will lose the membership as the university member. Therefore, the whole-
part relationship between University and University Member is a congregation rela-
tion. This relationship is different from the relationship between a university and its
departments. Departments are components of a university. If a university is destroyed,
its departments will no long exist. The whole-part relationship between Department
and University is therefore a composition relation.

The semantics of the whole-part relations at modelling level given above has a
number of implications on the operations on agents at implementation level , espe-
cially the creation and destroy of agents. For example, a composition relation implies
that a component agent can be destroyed when the compound agent is destroyed.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 151

In contrast, a component agent must be kept intact even if the compound agent is
destroyed if the whole-part relation is aggregate. In object-oriented systems, a com-
ponent object can be destroyed or garbage collected if there is no more reference to
the component object. Therefore, to support garbage collection, a reference count to a
component object should be maintained and the reference count must be decreased if
the compound object is destroyed. However, in agent-oriented systems, because
agents are active computation entities, an agent cannot be destroyed unless explicitly
instructed by the user even if it is not a component of any compound agent. For con-
gregation relation, when a compound agent is destroyed, the component agents should
not be destroyed, but their casteship must be changed so that they are no longer mem-
bers of the component castes of the compound agent. It is an open question whether
or not an agent should be destroyed if it no longer belongs to any caste.

3.2 Collaboration Model

While caste model defines the static architecture of MAS, collaboration model implic-
itly defines the dynamic aspect of the MAS organization by capturing the collabora-
tion dependencies and relationships between the agents.

Agents in a MAS collaborate with each other through communication, which is es-
sential to fulfil the system’s functionality. Such interactions between agents are cap-
tured and represented in a collaboration model. In CAMLE, a collaboration model is
associated to each caste and consists of a set of collaboration diagrams.

A collaboration diagram specifies the interaction between the agents in the system
or in a compound agent. Fig. 5 gives the notations.

Agent node: [AgentName:Caste Caste node: || CasteName
Actions
Communication Link: Ny, ——ms N

Fig. 5. Notation of Collaboration Diagram

There are two types of nodes in a collaboration diagram. An agent node represents
a specific agent. A caste node represents any agent in a caste. An arrow from node A
to node B represents that the visible behaviour of agent A is observed by agent B.
Therefore, agent A influences agent B. When agent B is particularly interested in
certain activities of agent A, the activities can also be annotated to the arrow from A
to B. Although this model looks similar to collaboration diagrams in UML, there are
significant differences in the semantics. In OO paradigm, what is annotated on the
arrow from A to B is a method of B. It represents a method call from object A to ob-
ject B, and consequently, object B must execute the method. In contrast, in CAMLE
the action annotated on an arrow from A to B is a visible action of A. Moreover, agent
B is not necessarily to respond to agent A’s action. The distinction indicates the shift
of modelling focus from controls represented as method calls in OO paradigm to
collaborations represented as signalling and observation of visible actions. It fits well
with the autonomous nature of agents.

152 Lijun Shan and Hong Zhu

3.2.1 Scenarios of Collaboration. One of the complications in the development of
collaboration models is to deal with agents’ various behaviours in different scenarios.
By scenario, we mean a typical situation of the operation of the system. In different
scenarios, agents may pass around different sequences of messages and may commu-
nicate with different agents. Therefore, it is better to describe them separately. The
collaboration model supports the separation of scenarios by including a set of collabo-
ration diagrams. Each diagram represents one scenario. In such a scenario specific
collaboration diagram, actions annotated on arrows can be numbered by their tempo-
ral sequence. Fig. 6 below gives an example of scenario-specific collaboration dia-
gram. It describes the collaborations of an undergraduate student with his/her personal
tutor, the faculty members who give lectures and the PhD students who are practical
class tutors.

PhDStudent

6.Give[practical class] | | 5.Atend(practical class)

4.Give[lecture]

2.5uggestfacademic advice]
. —
PersonalTutor:Faculty Undergraduate [
1.Request{cour se advic 3.Attend(lecture)

Fig. 6. An example of Scenario-Specific Collaboration Diagram

In addition to such specific diagrams, a general collaboration diagram is also asso-
ciated to the caste to give an overall picture of the communication between all the
component agents by describing all visible actions an agent may take and all possible
observers of the actions. Fig. 7 describes the communications within a department
between various agents.

3.2.2 Refinement of Collaboration Models. The modelling language supports mod-
elling complex systems at various levels of abstraction, and to refine from high-level
models of coarse granularity to more detailed fine granularity models. At the top
level, a system can be viewed as an agent that interacts with users and/or other sys-
tems in its external environment. This system can be decomposed into a number of
subsystems interacting with each other. A sub-system can also be viewed as an agent
and further decomposed. As analysis deepens, a hierarchical structure of the system
emerges. In this way, the compound agent has its functionality decomposed through
the decomposition of its structure. Such a refinement can be carried on until the prob-
lem is specified adequately in detail. Thus, a collaboration model at system level that
specifies the boundaries of the application can be eventually refined into a hierarchy
of collaboration models at various abstraction levels. Of course, the hierarchical struc-
ture of collaboration diagrams can also be used for bottom-up design and composition
of existing components to form a system.

Fig. 8 gives an example of general collaboration diagram that refines the caste
Dept Office. In this diagram, the agents in the castes of Student and Faculty as well as
a specific agent called Dept Head in the caste of Faculty form the environment of the
caste Dept Office. Therefore, they are visible for the component agents of the caste.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment

153

Report[progress]

Supervisor:Faculty

> PhDStudent

Suggest{research topic]

Give[practical class]

Attend[practical class]

Sugqestfacademic advice]

PersonalTutor:Faculty

DeptHead:Faculty

Undergra

< =

AgreeReferee() Attend(lecture)
P — Undergraduate M
Request[course advice] Givellecture) A
Request[reference]

Selectimodule]

Announce[module resuli] Applylgraduate course]

Offer[graduate course)

Result{exam]

Instruct(]

DeptOffice

Assignfteaching)

Report]) Inform[class list]

Fig. 7. An example of general collaboration diagram

 DeptOffice
Apply(graduate course]

_>1| StudentManager

[
Offer[graduate course]

duate

Announce[module result]

;

DeptHead:Faculty

Inform[class list)

Inform[module list]
Inform[exam result)

Assign[teaching

a

=

Instruct()

culty

StaffManager ||«

Resultfexam)

Fig. 8. An example of general collaboration diagram that refines a caste

3.3 Behaviour Model

While caste and collaboration models describe MAS at the macro-level from the per-

spective of an exte

rnal observer, behaviour model adopts the internal or first-person

154 Lijun Shan and Hong Zhu

view of each agent. It describes an agent’s dynamic behaviour in terms of how it acts
in certain scenarios of the environment. A behaviour model consists of two kinds of
diagrams: scenario diagrams and behaviour diagrams.

3.3.1 Scenario Diagrams. From an agent’s point of view, the situation of its envi-
ronment is characterized by what is observable by the agent. In other words, a sce-
nario is defined by the sequences of visible actions taken by the agents in its environ-
ment. Scenario diagrams identify and describe the typical situations that the agent
must respond to. Fig. 9 shows the layout of scenario diagrams. Fig. 10 gives the nota-
tions for specifying visible events and their temporal ordering in scenario diagrams, as
well as logic connective for the combination of situations.

4 N\ ' . |

Scenario Name + Qualifier

m | . : !

Swim | ! Swim : !

Lane1 | ! Lane N ' '

i - : !

1 1

S Logic connection network) E !
(a) The layout of scenario diagrams (b) The layout of swim lanes

Fig. 9. Format of Scenario Diagram

|rt: Act(pr,...pn) | Single action node: the agent takes an act with parameters py,...p,at time t .

- R-Exp
r Repetitive action node: the agent takes act repetitively at time t, where R-
|£ IAct(pl,...p,,) Exp defines the number of repetition of the action.

=~
|t State assertion node: the agent’s state satisfies the predicate at time t.
I_ =

c-Exp Continuous state assertion node: the agent’s state satisfies the predicate
I_t'_ . for a continuous period of time, where the period satisfies the expression
| & (Predicate

> C-Exp.
A T-Exp Immediate temporal order between the events: event B is immediately
. > after event A, where T-Exp is the constraint on the time gap between
event A and B.

T-Exp Discrete temporal order between the events: event B is after event A,
— E while there may be other events between them, where T-Exp is the con-

straints on the time gap between the events.

_— Logic links connect logic connective nodes

@ Logic connective nodes

Fig. 10. Notations of Scenario Diagram

For example, Fig. 11 describes a scenario where Greenspan announces that the in-
terest rate will increase by 0.25 points and all stock market analysts recommend sell
Microsoft’s share.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 155

4 N

Stormy_Market

Greenspan All' A: Stock_ Market_Analyst

'
1
|NewRate(+, 0.25)| ' | Recommend(Sell, Microsoft) |
1
1
1

v v
\/

- J

Fig. 11. Example of scenario diagram

3.3.2 Behaviour Diagrams. Behaviour diagrams describe agents’ designed behav-
iour in certain scenarios. For each caste, a behaviour diagram defines a set of behav-
iour rules. Each rule describes how the agent of the caste should respond to a particu-
lar situation in the environment (i.e. in a scenario). The notation of behaviour
diagrams includes the notation of scenario diagrams plus those in Fig. 12.

Scenario node: a scenario identifier, or a detailed scenario description.

!-Precondltlon Precondition node: give the precondition of an event.

Transition bar: conflux of scenario, precondition and previous events as
premise of behaviour rule.

= Action arrow: link from behaviour rule’s previous events to transition bar.

Fig. 12. Notation for behaviour diagrams

A behaviour diagram contains event nodes linked together by the temporal order-
ing arrows as in scenario diagrams to specify the agent’s previous behaviour pattern.
A transition bar with a conflux of scenario, precondition and previous pattern and
followed by an event node indicates that when the agent’s behaviour matches the
previous pattern and the system is in the scenario and the precondition is true, the
event specified by the event node under the transition bar will be taken by the agent.
In a behaviour diagram, a reference to a scenario indicated by a scenario node can be
replaced by a scenario diagram if it improves the readability. The behaviour diagram
in Fig. 13 partly defines the behaviour of an undergraduate student. It states that if the
student is in the final year and the average grade is ‘A’, the student may request a
reference from the personal tutor for the application of a graduate course. If the per-
sonal tutor agrees to be a referee, the student may apply for a graduate course. If the
department office offers a position in a graduate course, the student will join the
Graduates caste and retreat from the Undergraduates caste.

In CAMLE language, each agent/caste has a designated environment, which is de-
fined by its environment description. Therefore, in the development of a behaviour
model for a given agent/caste, the modeller needs not to know all agents in the sys-
tem, but only those in the environment. The modeller also does not need to know the
full details of the behaviour of the agents in its environment, but just their capabilities
in terms of the actions that they can take. As shown in the above example, the model-
ler needs not to know how a faculty member makes decisions on whether or not to
write a reference for his/her tutee, and how the department decides who will be ac-

156 Lijun Shan and Hong Zhu

:
_I

: ' ».-
|

——————— Xqum[“"crcnc:l

oo e il —

| Offer Graduate Course | Apply[graduate course)

[A\JL

‘ JOIN[Graduate]; QUIT[Undergraduate]

Fig. 13. Behaviour Diagram for Undergraduate Student

cepted as a postgraduate student. What the modeller only needs to know is that the
personal tutor is capable of writing a reference letter and the department is capable of
make a decision on the intake of postgraduate students'. We believe that this is per-
haps the minimal amount of information that a modeller need to know about the sys-
tem that his component will collaborate with.

3.4 Consistency of Models

Like all multiple view modelling languages, a model in CAMLE may have inconsis-
tency between various types of models. Errors such as ill-formed diagrams may be
introduced. Furthermore, because there are overlaps of information in different mod-
els, inconsistency between models can occur. In the case studies of CAMLE language
and the modelling environment, we found the following types of errors and inconsis-
tencies are among the most common problems.

(1) The same agent or caste may be refereed to with slightly different names.

(2) The set of actions occurred in the specific collaboration diagrams that specify
various collaboration scenarios often does not match the set of actions declared in
the corresponding general collaboration diagram.

(3) The names and parameter types of the actions defined for one caste/agent often
do not match the references to these actions in scenario diagrams and behaviour
diagrams.

(4) The behaviour of an agent or caste as described in a collaboration model is often
inconsistent with what is defined in the behaviour model. For example, a collabo-
ration model requires an agent to have certain sequence of activities, but the be-
haviour model does not define a corresponding behaviour rule or rules. It is also
common that a behaviour rule requires the observation of an agent’s visible action
but the definition of the agent does not contain the action as a visible one.

I Of course, in a more complicated system, if the modeller does not have such knowledge,
he/she needs to know how his/her agent can discover such knowledge at runtime.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 157

In order to ensure the consistency between various models and models at different
levels of abstraction, three types of the consistency constraints have been identified
and formally defined in the CAMLE language. Automated tools are implemented in
the modelling environment to check if these consistency constraints are satisfied.
These consistency constraints including (A) well-formedness conditions imposed on
each diagram, (B) intra-model consistency constraints that are imposed on diagrams
of the same model at the same abstraction levels, and (C) inter-model consistency
constraints that are imposed either on the same type of models at different abstraction
levels, or on different types of models at the same level of abstraction. The definitions
of the constraints are omitted here for the sake of space; see [15] for details.

4 Support Environment

A software environment to support the process of system analysis and modelling in

CAMLE has been designed and implemented?>. CAMLE aims at representing informa-
tion systems naturally using the conceptual model of MAS presented in the previous
section and facilitating the reasoning about such systems. It serves two interrelated
purposes, i.e. to develop abstract descriptive models of current systems and to develop
prescriptive designs of systems to be implemented. Therefore, in addition to model
construction, two key features of the language and environment are regarded as of
particular importance: (a) the consistency check between various models from differ-
ent views and at different levels of abstraction, and (b) the transformation of dia-
grammatic models into formal specifications. Details of these functionalities are be-
yond the scope of this paper and are reported separately [15].

Fig 14 shows the architecture of the current CAMLE environment and its main
functionality. The diagram editor supports the manual editing of models through
graphic user interface. The well-formedness checker ensures that user entered models
are well-formed, hence prevents syntactically incorrect diagrams from being
processed. The partial diagram generator can generate partial models (incomplete
diagrams) from existing diagrams to help users in model construction. It is based on
the consistency constraints so that the generated partial diagrams are consistent with
existing ones according to the consistency conditions. Consistency checking tools that
help to ensure the well-formedness, consistency and completeness of system models
are based on consistency constraints defined by the CAMLE language. Fig 15 is a
screen snapshot of the output of the consistency checking tool. The diagnostic infor-
mation helps users to locate and correct errors in the checked model.

The transformation from graphic models in CAMLE into formal specifications in
SLABS enables engineers to analyse, verify and validate system models before the
system is implemented. The specification generation tool in the CAMLE environment
can automatically derive a formal specification in SLABS after a model is constructed
and its consistency checked. Fig 16 shows a screen snapshot of the tool-generated
specification of the caste Undergraduate.

Besides the University example used in this paper, a number of case studies of the
modelling language and its modelling environment have been conducted. These case
studies include the following.

2 The tool is available for free for academic and research purposes. Please contact the authors.

158

Lijun Shan and Hong Zhu

Users’

Requirements

Formal

Model
Manager

Diagram
Generator,

Editor

Graphic User
Interface

onsistenc

Behaviour/
Collaboration
Checker,

troller

Caste/
Collaboration
Checker

Behaviour
Checker

Specific
Checker

Graphic
Models

Check
Result

Fig. 14. The Architecture of CAMLE Environment

1 Solar - [log]

Window Help

| File Edit Wiew Tooks

=R EEETE

--®% Undergradua
--®8 Undergradua
--™18 PhDStudent
-8 DeptOffice
{23 Behavior

H M8 Undergradua
E|D Specification
M8 Undergradua

Eim— E
i

Specifications

pecificatio
Generator

=Bl
=18l

] x| B Timg [1og info
' MaSMadel =»2004/07/13 08:13:14 [Check madel]
{21 Caste = 2004/07/13 08:13:14 [Supet-sub collabaration diagrams consistency check] finished
£ Collaboration = 2004/07[13 08:13:14 [General-specific collaboration diagrams consistency check] finished
H -8 main ’_) 2004/07/13 08:13:14 [Behavior-Scenario diagrams consistency check] finished

¥l 2004/07/13 08:13:1%
7 2004/07/13 08:13:1%

[Callaboration diagrams-caste diagrams consistency check] finished
Warning 003 [enwironment in collsboration/behavior diagrams inconsistenc
‘ModuleManager’ in <collaboration model= missed in <Behavior)l
Warning 003 [enwiranment in collaboration/behavior diagrams inconsistenc
‘StudentManager’ in <collabaration model= missed in <Behawior'
Error 017 [actions from environment in behaviorfcollaboration diagrams ing
‘Givellecture)' in <BehavioriUndergraduate > missed in <collabaol
Error 017 [actions from environment in behaviorfcollaboration diagrams ing
‘Givellecture)' in <BehavioriUndergraduate > missed in <collabaol
Warning 005 [actions from environment in collaborationfbehavior diagramn:
‘announce(module result)' in <collaboration madel> missed in <E
Warning 005 [actions from environment in collaborationfbehavior diagramn:
‘Offer{graduate course)'in <collaboration model missed in <Be
[Callaboration diagrams-behavior diagrams consistency check] finished
Warning 002 [Migration or participation in caste/behavior diagrams |ncnf;L|

? 2004/07/13 08:13:14
! 2004/07/13 08:13:14
! 2004/07/13 08:13:14
? 2004/07/13 08:13:14
? 2004/07/13 08:13:14

¥l 2004/07/13 08:13:14
? 2004/07/13 08:13:14

| ‘ |

Ready

[[

Fig. 15. Screen snapshot of the consistency checking tool’s output

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 159

— Undergraduate<=5tudent

q

ACTION Request(course advice]; Requestreference]; Selectimodule]; Apply{gr
Attend[practical class). Attend[lecture);

course);

PhDStudent

[!Status = Final'rear; Average = "A'] |-> Request{reference):
WHERE Graduate course availabl
[Request{reference]] |-> Applylgraduate course];
IF PersonalTutor:Faculty. [Agree as referee];
[Apply(graduate course]] |-> JOIN[Graduate]:QUIT[Undergraduate);
IF C5:DeptOffice. [Offer Graduate Course];
[Request{course advice]] |-> Selectimodule);
IF PersonalTutor:Faculty. [Suggestfacademic advice]];
[Selectimodule]] |-> Attend(lecture):
IF Faculty. [Give(lecture]];
[Attend[lecture]] |-> Attend|[practical class];
IF PhDStudent. [Give[practical class]];

‘ PersonalTutor:Faculty

Fig. 16. Screen Snapshot of Generated Specification of the Caste Undergraduate

e United Nations’ Security Council: The organisational structure and the work pro-
cedure to pass resolutions were modelled and a formal specification of the system
in SLABS was generated. Details of the case study as well as modelling in other

agent-oriented modelling notations can be found on AUML’s website?.

e Amalthaea: Amalthaea is an evolutionary multi-agent system developed at MIT’s
Media Lab to help the users to retrieve information from the Internet [16]. The
system was modelled and a formal specification was generated.

e Web Services: The case study modelled the architecture of web services and an
application of web services on online auctions. A formal specification in SLABS
of the architecture and application was generated successfully. More details of the
specification of web services in SLABS can be found in [17].

In the case studies, we found that the CAMLE language was highly expressive to
model information systems’ organisational structures, dynamic information process-
ing procedures, individual decision making processes, and so on. Models in CAMLE
were easy to understand because they naturally represent the real world systems. The
automated environment greatly helped to manage the consistency between various
diagrams from difference views and at different abstraction levels. It significantly
reduced the difficulty in the development of formal specifications of multi-agent sys-
tems especially for complicated systems such as Amalthaea.

5 Conclusion

This paper presented the agent-oriented modelling language and environment
CAMLE. It is based on the conceptual model of MAS of the formal specification
language SLABS. Models represented in the CAMLE can be automatically checked

3 URL: http://www.auml.org/

160 Lijun Shan and Hong Zhu

for consistency and transformed into formal specifications in SLABS by the tools in
the modelling environment. The modelling language has a number of novel features,
which include the congregate whole-part relation and migration relation between
castes, the designated environment descriptions, scenario diagrams, scenario driven
behaviour rules, and most importantly, the concept of caste.

There have been a number of efforts in the direction of AO methodology, many of
which focus on the process of MAS engineering as well as the representation of MAS.
With regard to conceptual model of the methodologies, there is a fundamental differ-
ence between CAMLE and the methodologies that are based on mental state related
notions such as belief, desire, intention, goal and plan. Although these notions are
widely used, their meanings vary from people to people in different methodologies.
CAMLE replaces these notions with an abstract model of agents as encapsulation of
data, operation and behaviour. CAMLE also has a fundamental distinction from the
methodologies that are based on social organization related notions such as roles,
agent society and organization structure. CAMLE replaces such intuitive concepts
with a well-defined language facility caste, which is easy to understand and use from
software engineering perspective. Caste can be used to represent a number of the
concepts in agent-oriented modelling, such as roles, agent societies, normative behav-
iour, common knowledge and protocols, etc. [6]. The caste-centric feature enables us
to achieve simplicity in the design of an expressive modelling language and efficiency
in the implementation of the powerful environment.

Among the related work, Gaia is perhaps one of the most mature agent-oriented
software development methodologies at the moment. It does not commit to specific
notations for modelling concepts such as roles, environment and interaction [1]. UML
notation are widely used, e.g. in Tropos, PASSI [18] and AUML [19]. However, there
is no clearly defined conceptual model or meta-model underlying the uses of UML
notations for agent-oriented modelling although there are fundamental differences
between agents and objects as discussed in section 2 and 3.

A related work on agent-oriented modelling language is ANote [20], which also
provides a set of diagrams to model different views of MAS. Systems’ structural as-
pects, dynamic aspects and physical aspects are specified with the notations represent-
ing the concepts of goal, agent, ontology, scenario, planning, interaction and organi-
zation etc. Although the concepts and notations are different from the ones used in
CAMLE, we share the same opinion that using (modified) OO paradigm to model
agent-based system is not desirable.

There are several issues remaining for future work. We are investigating software
tools that support model-based implementation of MAS in CAMLE. The design and
implementation of an agent-oriented programming language with caste as the basic
program unit is on the top of our agenda.

Acknowledgement

The work reported in this paper is supported by China High-Technology R&D Pro-
gramme under the grant 2002AA116070.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 161

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dam, K. H., Winikoff, M., “Comparing Agent-Oriented Methodologies”, Proc. of
AOIS’03, Melbourne, Australia, July 2003.

Zambonelli, F., Jennings, NR and Wooldridge, M., “Developing multiagent systems: the
Gaia Methodology”, ACM TOSEM 12(3), 2003, pp. 317-370.

. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos J. and Perini, A., “TROPOS: An

Agent-Oriented Software Development Methodology”, Journal of Autonomous Agents and
Multi-Agent Systems 8(3), Kluwer Academic Publishers, May 2004, pp. 203 - 236.

. Zhu, H., “Formal Specification of Agent Behaviour through Environment Scenarios”, For-

mal Aspects of Agent-Based Systems, Rash, J.L., et al., (Eds.), Springer, LNCS Vol. 1871,
2001, pp. 263-277.

. Zhu, H., “SLABS: A Formal Specification Language for Agent-Based Systems”, Int. J. of

Software Engineering and Knowledge Engineering 11(5), 2001, pp. 529-558.

. Zhu, H., “The role of caste in formal specification of MAS”, Intelligent Agents: Specifica-

tion, Modelling, and Application, Proc. of PRIMA’0l, Yuan, S-T; Yokoo, M. (Eds.),
LNCS, Vol. 2132, Springer, 2001, pp.1-15.

. Zhu, H., “Formal Specification of Evolutionary Software Agents”, Formal Methods and

Software Engineering, Proc. of ICFEM'2002, George, C. and Miao, H., (Eds.), LNCS, Vol.
2495, Springer, 2002, pp.249~261.

. Shan, L. and Zhu, H., “Analysing and Specifying Scenarios and Agent Behaviours”, Proc.

of IAT’03, Halifax, Canada, Oct. 2003.

. Shan, L. and Zhu, H., “Modelling Cooperative Multi-Agent Systems”, Proc. of the 2nd Int.

Workshop on Grid and Cooperative Computing. Shanghai, China. Dec. 2003.
Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M. and Giannini, P., “More dynamic
object reclassification: Fickle;”, ACM TOPLAS, 24(2), 2002, pp. 153-191.

Zhu, H., and Lightfoot, D., “Caste: A step beyond object orientation”, Modular Program-
ming Languages, Proc. of JMLC'2003, Boszormenyi, L., & Schojer, P. (eds), LNCS Vol.
2789, Springer, 2003, pp.59-62.

Shen, R., Wang, J. and Zhu, H., “Scenario Mechanism in Agent-Oriented Programming”,
Proc. of APSEC’04, Oct 30-Dec 3, 2004, Busan, Korea, in press.

Odell, J., Parunak, H. V. D. and Fleischer, M., “The Role of Roles”, Journal of Object
Technology 2(1), 2002, pp.39-51.

Barbier, F., Henderson-Sellers, B., Le Parc A. and Bruel J-M., “Formalization of the
Whole-Part Relationship in the Unified Modelling Language”, IEEE TSE 29(5), 2003,
pp-459-470.

Shan, L. and Zhu, H., “Consistency Check in Modeling Multi-Agent Systems”, Proc. of
COMPSAC’04, Hong Kong, IEEE CS, Sept., 2004.

Moukas, A., “Amalthaea: Information Discovery and Filtering Using a Multi-Agent Evolv-
ing Ecosystem”, Journal of Applied Artificial Intelligence, 11(5), 1997, pp.4370457.

Zhu, H., Bin Zhou, B., Mao, X., Shan, L., and Duce, D., “Agent-Oriented Formal Specifi-
cation of Web Services”, Proc. of the AAC-GEVO’04 at GCC’04, LNCS Vol. 3252,
Springer, Oct. 2004.

Burrafato, P. and Cossentino, M., “Designing a Multi-Agent Solution for a Bookstore With
the PASSI Methodology™, Proc. of AOIS’02 at CAiSE'02, May 2002.

Bauer, B., Muller, J.P. and Odell, J., “Agent UML: A Formalism for Specifying Multiagent
Software Systems”, Agent-Oriented Software Engineering, Ciancarini, P. and Wooldridge,
M. (eds.), LNCS, Vol. 1957, Springer, 2001, pp.91-103.

Shan, L. and Zhu, H., “CAMLE: A Caste-Centric Agent Modelling Language and Envi-
ronment”, Proc. of SELMAS’04 at ICSE 2004, Edinburgh, Scotland, UK, May 2004.

	1 Introduction
	2 Conceptual Model
	3 Modelling Language
	3.1 Caste Model
	3.2 Collaboration Model
	3.3 Behaviour Model
	3.4 Consistency of Models

	4 Support Environment
	5 Conclusion
	References

