
DEVELOPING A SOFTWARE TESTING ONTOLOGY 1

Running head: DEVELOPING A SOFTWARE TESTING ONTOLOGY

Developing A Software Testing Ontology in UML

for A Software Growth Environment of Web-Based Applications

Hong Zhu

Department of Computing

Oxford Brookes University

Wheatley Campus, Oxford OX33 1HX, UK

Tel: ++44 1865 484580

Fax: ++44 1865 484545

Email: hzhu@brookes.ac.uk

Qingning Huo

Lanware, Ltd.

68 South Lambeth Road, London SW8 1RL, UK

Tel: T: ++44 20 7735 1717

Email: Qingning.Huo@lanware.co.uk

DEVELOPING A SOFTWARE TESTING ONTOLOGY 2

Developing A Software Testing Ontology in UML

for A Software Growth Environment of Web-Based Applications

Abstract

This chapter introduces the concept of software growth environments to support

sustainable long term evolution of web-based application systems. A multi-agent prototype

system is designed and implemented with emphasis on software testing. In this environment,

software tools are agents that cooperate effectively with each other and human testers through

communications at a high level of abstraction. New tools can be integrated into the system

with maximal flexibility. These are achieved through the design and utilisation of an ontology

of software testing that represents the knowledge of software engineering and codifies the

knowledge for computer processing as the contents of an agent communication language. The

ontology is represented in UML at a high level of abstraction so that it can be validated by

human experts. It is also codified in XML for computer processing to achieve the required

flexibility and extendibility.

Keywords:

Software Engineering, Information Systems, Web-based Applications, Software Evolution,

Software Testing, Computer-Aided Software Engineering (CASE), Software Development

Tools and Environments, Agent, Ontologies, UML, XML.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 3

INTRODUCTION

The Internet and Web are becoming a distributed, heterogeneous and hypermedia

computation platform, which stimulates many new progresses in software applications, cf.

(Crowder, Wills & Hall, 1998). However, web-based applications are complex and difficult

to develop and maintain. In (Zhu, et al. 2000), we argued that most web-based applications

are by nature evolutionary and proposed a growth model of software process. To support the

sustainable evolutionary development of web-based systems, we designed a multi-agent

architecture of software development and maintenance environment and developed a

prototype system for testing web-based applications. A key feature of the architecture and the

prototype system is the use of an ontology of software testing to facilitate the

communications between agents and between agents and human developers and testers. In

this paper, we report the development of the ontology of software testing and its

representation in UML.

The remainder of the chapter is organised as follows. Section 2 gives the motivation of

our research and briefly outlines our approach to the development and maintenance of

web-based applications. The structure and features of the multi-agent software environment is

described. A prototype system for testing web-based applications is presented. Section 3

reports the ontology of software testing and its representation in UML. Section 4 discusses

the uses of the ontology in the prototype systems. Section 5 concludes the chapter with a

discussion of related works and directions for future research.

BACKGROUND AND MOTIVATIONS

Characteristics of Web-Based Applications

According to Lehman (2001), software systems can be classifies into three types

according to what ‘correctness’ means to the system. An S-type program is required to satisfy

a pre-stated specification. For such a system, correctness is the absolute relationship between

the specification and the program. A P-type program is required to form an acceptable

solution to a stated problem in the real world. The correctness of a P-type program is

determined by the acceptability of the solution to the stated problem. An E-type program is

required to solve a problem or implement an application in a real-world domain which often

has no clearly stated specification. Correctness here is determined by the program’s

behaviour under operational conditions and judged by the users. Obviously, many kinds of

DEVELOPING A SOFTWARE TESTING ONTOLOGY 4

web applications such as e-commerce, enterprise portal, web-based CRM systems,

e-government, e-science, etc., belong to the E-type, where problems are not clearly stated and

the correctness of the system is judged by the users for its fitness to their purposes.

Different types of software systems tend to demonstrate different evolutionary

behaviours, because their development processes are dominated by different types of

uncertainties. Generally speaking, there are three types of uncertainties associated software

development (Lehman, 1990). Gödel-like uncertainties arise because software systems and

their specifications are models of the real world. The representations of such models and their

relationships are Gödel incomplete. Consequently, the properties of a program cannot be

completely known from the representations. Heisenberg-type uncertainties result from the

processes of using the system that may change the user’s perception and understanding of the

application. A common phenomenon in the development of software systems is that the users

are uncertain about the requirements, but they are often certain that ‘I’ll know it when I see it’

(Boehm, 2000). Uncertainties of this type exhibit themselves in the form of changing

requirements either in the form of unsatisfactory of implemented or to be implemented

functional or non-functional requirements, or the emergent of new requirements. Pragmatic

uncertainties are due to the problems in actually performing the development activities.

Software development is still a process that relies on human performance. During this process,

errors are made and faults are introduced. Many types of risks in software development are

caused by this type of uncertainty. For example, the adaptation of a new development method,

the use of a new software tool or programming language, the use of a new library of software

code and so on may introduce uncertainties to the quality of the product and the development

process.

Although these sources of uncertainties are associated with all software development

projects, Gödel and Heisenberg types of uncertainties have strong impact on E-type software

in general and web-based applications in particular. However, pragmatic uncertainty also

plays a significant role in the development of web-based applications as web technology has

been changing rapidly in the past few years. Consequently, web-based applications

commonly demonstrate a clear evolutionary life-cycle. During the evolution process,

uncertainties are clarified through developing and adjusting the model of the problem,

revising the representation of the models, updating users’ requirements and correcting errors

of development activities. In the meantime, new uncertainties may emerge and require further

development and maintenance. Lehman characterised E-type systems’ evolution processes by

8 laws of evolution (Lehman, 2001), which are summarised in Table 1 below. These laws

DEVELOPING A SOFTWARE TESTING ONTOLOGY 5

should be equally applicable to web-based applications. In addition, in the investigation of

web-based applications, we also observed a common phenomenon of web-based systems,

that is, web-based systems commonly contains components developed using different

technology, such as component codes written in different languages and executed on different

platforms, data represented in different formats, interfaces designed to comply with different

standards, interactions proceeded in different protocols, etc. We call this phenomenon the law

of diversity, which is also listed in Table 1 together with Lehman’s laws.

Table 1. Laws of Evolution of E-type Systems
Law Description
Continuing
Change

E-type systems must be continually adapted else they
become progressively less satisfactory in use.

Increasing
Complexity

As an E-type system is evolved its complexity increases
unless work is done to maintain or reduce it.

Self Regulation Global E-type system evolution processes are self
regulating.

Conservation of
Organisational
Stability

Unless feedback mechanisms are appropriately adjusted,
average effective global activity rate in an evolving
E-type system tends to remain constant over product
lifetime.

Conservation of
Familiarity

In general, the incremental growth and long term growth
rate of E-type systems tend to decline.

Continuing
Growth

The functional capability of E-type systems must be
continually increased to maintain user satisfaction over
the system lifetime.

Declining
Quality

The quality of E-type systems will appear to be declining
unless they are rigorously adapted, as required, to take
into account changes in the operational environment.

Feedback
System

E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems.

Diversity
An E-type system contains components that are
developed using a diversity of techniques and integrated
into the system at different times.

Lehman’s laws were proposed on the bases of his observations on E-type software

systems that had survived after a long evolutionary process. They can be considered as

‘survival guidelines’ for the evolutionary development of E-type software systems. Violating

these laws in the development of an E-type software system may mean a death penalty to the

system. Here, the death of a software system should be understood in Peter Naur’ sense (1992)

that the state of death become visible when demands for modifications of the program cannot

be intelligently answered although the program may continue to be used for execution and

provide useful results.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 6

Software Growth Process Model And Growth Environment

From Lehman’s theory of software evolution, we can see that clarifying uncertainties is

the driving force of E-type software evolution. Therefore, the development of an E-type

software system is best to be a process of growth in functionality. Tool supports must be

provided to manage the complexity and quality of the product during its whole life time.

Figure 1 below depicts a growth model of software lifecycles of web-based applications. As

argued in (Zhu et al., 2000), this process is suitable for the development of web-based

applications. It also has a number of advantages, which include reducing time pressure on the

developers, minimizing development risks, offering learning opportunities to developers,

improving communications between developers and users as well as various other

stakeholders, etc.

Inception

Develop a seed
system

Recognise new
requirements

Develop new components according
to recognised requirements

Analyse the importance
and feasibility of new

requirements

Restructure system architecture /
Integrate new components /

Delete out of date components

Operation

Worth to
implement and
feasible

Requirements
are essential,
but not feasible

System deceased／
Inception of new system

Suspend
requirements

Not worth
implementation

Seed
period

Growth
period

Decease
period

Stop system’s operation /
Migrate to a new system

Figure 1. The Growth Model of Software Lifecycle

DEVELOPING A SOFTWARE TESTING ONTOLOGY 7

To support sustainable long term evolutionary development of web-based applications

with a growth strategy, we proposed a new type of software environments and designed an

architectural structure for their implementations. Figure 2 depicts the architecture of software

environments, which consists of a number of cooperative agents.

Figure 2. Architecture of Software Growth Environment

The architecture of software growth environment consists of the following types of

agents. Development service agents provide developers with various supports to the evolution

of software systems in the growth strategy. They fulfil the functions that support evolutionary

development of web-based applications. Management agents are agents that manages agents

and responsible for the following tasks.

(a) Registration. When a new agent is added into the system, information about its

functionality, capability, execution environment, etc. are registered with a management agent.

When an agent is deleted from the system, its registration information is updated.

(b) Task allocation. A management agent receives service requests as well as

development and maintenance task requests. When such a task is requested, it searches for an

appropriate agent and assigns the task to the agent through a task allocation protocol.

(c) Monitoring and recording agents’ and the system’s behaviours. The management

agents will monitor the progresses of each task and record the state and outcomes of each task.

They will also monitor and record the behaviour of each service agent for the optimisation of

future task allocation.

These agents may also interact with the application system and its components to obtain

data and knowledge of the application and their evolution histories in order to support their

future evolutions. The interactions between human developers and the agents may also be

Network

Server

Server

Server

Client

Client

 Knowledge Base
(Global)

Development
Service Agents

Development Sever

Management
Agents

System Resource

Application
Service Agents

Knowledge Base
(Local)

Development Service AgentsApplication Sever

Management Agents

 Client Interface Agents

Application Service Agents

Application System

DEVELOPING A SOFTWARE TESTING ONTOLOGY 8

through a set of interface agents that provide assistant to each individual developer to

communicate with the development tools and to access the data and knowledge of the

application system at a high level of abstraction. Ideally, the application system consists of a

number of application service agents that provide the services and functionality of the

application system to its users.

This architecture significantly differs from existing software development environments

such as CASE tools and run-time support environments such as middleware due to the

following two features. Because of these features, it is called software growth environment.

First, tools that support the development and maintenance of a system run in the same

environment of the software system. They coexist with the system monitoring the evolution

process of the system and supporting the modifications of the system. Moreover, they grow

with the system as new tools are integrated into the environment when new functional

components of the application are developed using new technology and integrated into the

system. The relationship between the tools and the system is similar to the relationship

between a tree and its natural environment where it is growing, and between a human and

his/her social environment that changes as the person is growing up.

Second, the tools (i.e. agents) in the environment collect, store and process the

information about the system and the knowledge of software development, and present such

knowledge to human beings or other software tools at a high level of abstraction when

requested. Such information and knowledge include: (a) the structure of the system, the

functionality, versions, evolution history and configurations of the system components, etc.;

(b) the capability, performance, and operational conditions of each development and

application service agent, as well as interrelationships between them; (c) the knowledge about

software development processes, logical and temporal relations between development tasks

and how tasks are decomposed into subtasks, etc.

Obviously, the key to the success of such a software growth environment is the

mechanisms that enable software tools flexibly integrated into the system gradually and

enables tools to cooperation with each other effectively. This can only be achieved by using

agent technology and a well-developed ontology and representing the ontology in a highly

flexible and extendable format to enable the collaboration between the agents.

A Prototype System for Testing Web-Based Applications

To demonstrate the feasibility and advantages of the above proposed approach, we

DEVELOPING A SOFTWARE TESTING ONTOLOGY 9

designed and implemented a prototype with emphasis on quality assurance and testing.

As shown in Figure 3, the environment consists of a number of agents to fulfil various

testing tasks for web-based applications. These agents can be distributed to different

computers, for example, as in Figure 4, on an application server, a test server and a client. In

fact, agents can be freely distributed according to any specific configuration. They can also

be mobile and change their location at runtime. The following briefly describes the agents

that have been implemented for testing web-based applications. More details can be found in

(Huo, Zhu & Greenwood, 2003).

 Testing
Guidance

GWP

Application Server

WPI

WSS WSM

KB

TCG
Test Server

TCE

TO

KB

Client Computer
TA

 Tester
Feedback

 Testing
Command

Web
Info

Figure 3. Structure of the Prototype System for Testing Web-based Applications

GWP (Get Web Page) agents retrieve web pages from a web site. Two agents of this type

have been implemented. One is GWP-No-Cache, whose function is to fetch the web page of a

given URL, and return the page’s contents. Another is GWP-Cache, which has the same

functionality as GWP-No-Cache, but with cache ability. It uses a knowledge base to store

downloaded web pages, and uses the last modification time to determine whether the web

page is updated on the cached copy.

WPI (Web Page Information) agents analyse the source code of a web page and extract

various useful information from the source code. The information includes the page title,

meta-information, hyperlinks, etc. They also store the information about the web page’s

structure in a knowledge base. When a web page’s structural information is requested, a

message is sent to a GWP agent with a HTML source file as the content of the message. It

runs a HTML parser on the file and extracts information of the structure of the file from the

parser. If the input page is unmodified since last retrieval, the WPI agent just uses the cached

data in the knowledge base.

WSS (Web Site Structure) agents analyse the hyperlink structure of a web site, and

DEVELOPING A SOFTWARE TESTING ONTOLOGY 10

generate a directed graph to describe the structure. This structure is also stored in a

knowledge base to share with other agents.

TCG (Test Case Generator) agents generate test cases to test a web site according to

certain testing criteria. Currently, three agents are implemented for node coverage, link

coverage and linear independent path coverage criteria, respectively. Details of these test

criteria for hypertext applications can be found in (Jin, Zhu & Hall, 1997).

TCE (Test Case Executors) agents execute test cases, and generate execution results.

Two TCE agents are implemented. One is to run the test cases interactively in front of the

human tester with the aid of a testing assistant agent. The other is to playback a recorded test

sequence. This is often used in regression testing.

TO (Test Oracles) agents verify whether a test result matches a specification. Different

types of test results require different kinds of oracles. For each type of result data, one agent

is design and implemented. Some simply compare the test output with the results from

previously recorded tests. Some examine if the test output satisfies a certain condition, such

as if the structure matches a certain pattern. These patterns can be predefined or generated

automatically from previous tests or defined by software engineers.

TA (Testing Assistants) agents are user interface agents that assist human testers in the

process of testing. They communicate at a high level of abstraction and in a language that are

understandable by human testers based on the ontology. They provide helps to human testers

on various testing tasks. For example, they get test requirements from the human users, send

correctly formatted messages to TCG to generate test cases, present the generated test cases

to the user, guide the user to walk through the links in a web site to test each web page on the

test cases, collect human tester’s feedback on the validity of tested pages, record testing

history and generate testing reports.

WSM (Web Site Monitor) agents monitor the changes on web sites and generate new

testing tasks according to these changes.

An ontology of software testing is developed and codified in XML for the

communications between agents. The following section gives details of the ontology and its

uses in the prototype system.

ONTOLOGY OF SOFTWARE TESTING

Generally speaking, ontology defines the basic terms and relations comprising the

vocabulary of a topic area as well as the rules for combining terms and relations to define

DEVELOPING A SOFTWARE TESTING ONTOLOGY 11

extensions to the vocabulary (Uschold & Gruninger, 1996). It is widely recognised that

ontology can be used where domain knowledge specification is useful (Staab & Maedche,

2001). For example, ontology can be used in the communications between people and

information systems. It can also be used to improve inter-operability between systems, such

as translation of modelling methods, paradigms, languages and software tools. It can also be

used in systems engineering, e.g. to achieve reusability, shareability, search, reliability,

specification and knowledge acquisition (Neches et al., 1991; Uschold & Gruninger, 1996;

Staab & Maedche, 2001). Ontology can be used in a multi-agent system as a means for agents

to share knowledge, to transfer information and to negotiate their actions. For example, Fox

and Gruninger (1994) proposed using ontology to represent agent activities in a cooperative

information system. The advantage of using ontology in such a system is that ontology

provides a standard specification of concepts in the specific domain. All agents that

understand the ontology can participate in the system. Although ontology has been an active

research area in the past decade, there is no ontology reported in the literature for software

engineering purpose. In this section, we report our work on designing an ontology of software

testing (Huo, Zhu & Greenwood, 2002).

A number of ontology modelling methods have been proposed in the literature. The most

widely used traditional approaches include the Knowledge Interchange Format (KIF)

(National Committee for Information Technology Standards), description logic, and object

oriented modelling, such as in UML (Cranefield, Haustein & Purvis, 2001). In recent years,

XML is more and more used as the format to represent ontology and as a format of agent

communication languages. XML has a very simple syntax. It is customisable, extensible, and

most importantly, suitable for web-based applications. The users can define the tags and

formats to represent both simple concepts and complex structures. These tags and formats

form a formal knowledge representation language. For these reasons, XML is used in our

system to codify the ontology for computer processing. However, an XML representation of

ontology is at a rather low level of abstraction. It does not support the validation of the

ontology by domain experts. Therefore, we need a representation of ontology at a higher level

of abstraction. As a powerful modelling language, UML has the advantage of representing

the concepts and relationships at a high level of abstraction that are readable and

understandable to human beings so that the knowledge represented in the ontology can be

validated by domain experts. Therefore, in addition to the representation of the ontology in

XML at machine processing level, we also represent the structure and relationships of the

concepts and relations of the ontology in UML. In this chapter, we focus on the UML

DEVELOPING A SOFTWARE TESTING ONTOLOGY 12

representation. The XML Schema (XSD) definition of the XML representation is given in the

appendix.

Taxonomy of Testing Concepts

Taxonomy is a way to specify and organize domain concepts. We divide the concepts

related to software testing into two groups: the basic concepts and compound concepts. As

shown in Figure 4, there are six types of basic concepts related to software testing, which

include testers, context, activities, methods, artefacts, and environment.

Figure 4. Basic Concepts of Software Testing

For each basic concept, there may be a number of sub-concepts. For example, a testing

activity can be the generation of test cases, the verification of test results, the measurement of

test adequacy, etc. A basic concept may also be characterized by a number of properties,

which are the parameters of the concept. For example, a software artefact is determined by (a)

its format, such as HTML file, JavaScript, etc., (b) its type, such as a program, or a test suite,

etc., (c) its creation and revision history, such as who and when created the artefact, and who

and when revised it, and the version number of the artefact, etc. (d) the location that the

artefact is stored, and (e) the data, i.e. the contents, of the artefact. The following briefly

discusses each type of the basic concepts.

(A) Tester. A tester refers to a particular party who carries out a testing activity. A tester

can be a human being, a software tool (including software agents), or a team, which consists

of one or more testers. This structure represented in UML as follows in Figure 5.

Figure 5. The Concept of Testers

Basic
Concepts

Tester Context Method

Environment Artefact Activity

Tester

Human Software Team Leader

Capability

Name

DEVELOPING A SOFTWARE TESTING ONTOLOGY 13

A tester team contains a number of other testers, which can be individuals or sub-teams,

and has a leader, which is an attribute that gives the name of the leader of the team. An

important attribute of tester is capability that describes what a tester can do. The concept of

capability is a compound concept that must be defined on the bases of other basic concepts of

software testing. It is discussed in the next subsection.

Example 1. The following is an example of a human tester named Howard represented in

XML.
<TESTER TESTER_TYPE="HUMAN" TESTER_NAME="Howard" />

The following is an example of a test team that consists of Joe as the leader and a

software agent as a member.
<TESTER TESTER_TYPE="TEAM" TESTER_NAME="ATEAM" TESTER_LEADER="JOE">

 <TESTER TESTER_TYPE="HUMAN" TESTER_NAME="JOE" />

 <TESTER TESTER_TYPE="SOFTWARE" TESTER_NAME="ANAGENT" />

</TESTER>

(B) Context. Software testing activities occur in various software development stages

and have different testing purposes. For example, unit testing is to test the correctness of

software units at implementation stage. Integration testing is to verify the interface between

software units at integration stage. The context of testing in the development process

determines the appropriate testing methods as well as the input and output of the testing

activity. Typical testing contexts include unit testing, integration testing, system testing,

regression testing, and so on.

Figure 6. The Concept of Test Context

(C) Activity. There are various kinds of testing activities, including test planning, test

case generation, test execution, test result validation and verification, test coverage

measurement, test report generation, and so on.

Context

Unit test

Integration test

Regression test

System test

DEVELOPING A SOFTWARE TESTING ONTOLOGY 14

Figure 7. The Concept of Test Activity

 (D) Method. For each testing activity, there may be a number of testing methods

applicable. For instance, applicable unit testing methods include structural testing,

fault-based testing and error-based testing. Each test method can also be classified into

program-based and specification-based. There are two main groups of program-based

structural testing methods: control-flow methods and data-flow methods. The control-flow

methods include statement coverage, branch coverage and various path coverage criteria,

etc.; see (Zhu, Hall & May, 1997) for a survey of research on software testing methods.

These concrete testing methods are instances of various subclasses of testing methods. The

structure of the concept of testing methods is shown in UML as follows.

Figure 8. The Concept of Test Method

 (E) Artefact. Each testing activity may involve a number of software artefacts as the

object under test, intermediate data, testing result, test plans, test suites, test scripts, and so on.

There are different types of objects under test, such as source code in programming languages,

HTML files, XML files, embedded images, sound, video, Java applets, JavaScript,

documents, etc. Testing results include error reports, test coverage measurements, etc. Each

artefact is also associated with a location that the artefact is stored, the data, i.e. the contents,

of the artefact, and a history of creation and revision, which include the creator, update-time,

Activity

Test planning

Test case generation

Test execution

Test result validation

Adequacy Measurement

Report generation

Method

Technique

Error-based
Fault-based

Structural

Program-based
structural testing

Data flow
testing

Name

Approach
Program-

based

Specification-
based

Specification-
based structural

testing
Control flow

testing

Statement
coverage

Branch
coverage

DEVELOPING A SOFTWARE TESTING ONTOLOGY 15

version numbers, etc.

Figure 9. The Concept of Artefact

(F) Environment. The environment in which testing is performed is also an important

issue in software testing. Information about the environment includes hardware and software

configurations. For each hardware device, there are three essential fields, including the device

category, the manufacturer and the model. For the software component, there are also three

essential fields: the type, product name and version.

Figure 10. The Concept of Test Environment

Compound Concepts

Compound concepts are those defined on the bases of basic concepts, for example,

Environment

SoftwareHardware

Product

Type

Version

Device

Type

Manufacturer

Operating system

Compiler

Database

Web Browser

* *

1 1

Artefact

Format Type

C Program

HTML file

XML file

Java Applet

JavaScript

MPEG

BMP Image

DVD Video

Object under test

Test result

Test plan

Test suite

Test script

Error report

Test coverage

Specification

History

Creator

Version

Update Date

Text file

Word file

PDF file

Postscript

JPEG Image

CD Sound

VCD Video

Location

Data

DEVELOPING A SOFTWARE TESTING ONTOLOGY 16

testing tasks and agent's capability. They are defined as follows.

(A) Capability. The capability of a tester is determined by the activities that a tester can

perform together with the context for the agent to perform the activity, the testing method

used, the environment to perform the testing, the required resources (i.e. the input) and the

output that the tester can generate.

Figure 11. The Compound Concept of Capability

Example 2. The following is an example of capability description in XML. The agent is

capable of doing node coverage test case generation in the context of system testing of

hypertext applications represented in HTML.
 <CAPABILITY>

 <CONTEXT CONTEXT_TYPE="SYSTEM_TEST" />

 <ACTIVITY ACTIVITY_TYPE="TEST_CASE_GENERATION" />

 <METHOD METHOD_NAME="NODE_COVERAGE_TESTING" />

 <CAPABILITY_DATA CAPABILITY_DATA_TYPE="INPUT">

 <ARTEFACT ARTEFACT_TYPE="OBJECT_UNDER_TEST"

 ARTEFACT_FORMAT="HTML" />

 </CAPABILITY_DATA>

 <CAPABILITY_DATA CAPABILITY_DATA_TYPE="OUTPUT">

 <ARTEFACT ARTEFACT_TYPE="TEST_SUITE"

 ARTEFACT_FORMAT="NODE_SEQUENCES" />

 </CAPABILITY_DATA>

 </CAPABILITY>

(B) Task. A testing task consists of a testing activity and related information about how

the activity is required to be performed, such as the context to give the purpose of the testing

activity, the specific testing method to use, the environment in which the activity must be

Capability

Method Activity

Environment Context

Capability Data

Artefact

<<enumeration>>
Capability Data Type

Input
Output

1 1

0-1 0-1

0-*

1-*

DEVELOPING A SOFTWARE TESTING ONTOLOGY 17

carried out, the available resources and the requirements on the test results. It can be

represented by the following UML class diagram.

Figure 12. The Compound Concept of Task

Notice that, the class diagram for the concept of task is very similar to the diagram for

the concept of capability. However, the semantics of the concepts are different.

Example 3. The following is an example of testing task that requires to generate test cases

according to the node coverage criterion for the HTML pages at the URL

http://www.brookes.ac.uk.
 <TASK>

 <CONTEXT CONTEXT_TYPE="SYSTEM_TEST" />

 <ACTIVITY ACTIVITY_TYPE="TEST_CASE_GENERATION" />

 <METHOD METHOD_NAME="NODE_COVERAGE_TESTING" />

 <TASK_DATA TASK_DATA_TYPE="INPUT">

<ARTEFACT ARTEFACT_TYPE="OBJECT_UNDER_TEST"

ARTEFACT_FORMAT="HTML">

 <ARTEFACT_LOCATION>http://www.brookes.ac.uk

</ARTEFACT_LOCATION>

 </ARTEFACT>

 </TASK_DATA>

 </TASK>

Notice that, not all combinations of basic concepts make sense. For example, the node

coverage method cannot be applied to a media file, such as images, sound or videos. A

weakness of XML is that it provides very limited power to restrict such illegal combinations.

Basic Relations

Relationships between concepts play a significant role in the management of testing

Task

Method Activity

Environment Context

Task Data

Artefact

<<enumeration>>
Task Data Type

Input
Output

0-1 0-1

1 1 1-*

1-*

DEVELOPING A SOFTWARE TESTING ONTOLOGY 18

activities in our multi-agent system. We identified a number of relationships between basic

concepts as well as compound concepts.

Basic relations between basic concepts form a very important part of the knowledge of

software testing. They must be stored in a knowledge-base as basic facts. This type of

knowledge is listed below.

(A) Subsumption relation between testing methods. A testing method A subsumes

method B, if the application of method A always achieves a test adequacy that is adequate

according to method B. The subsumption relation has been intensively investigated in

software testing literature; see (Zhu, Hall & May, 1997) for a survey.

(B) Compatibility relation between artefacts’ formats. An artefact format A is

compatible with artefact format B, if they are of the same type and the format of A is

compatible with B in the sense that if a tester understands the format of A implies that the

tester also understands the format of B.

(C)Enhancement relation between environments. An environment A is an

enhancement of environment B, if a testing task can be performed in environment B implies

that it can also be performed in environment A. Assume that an enhancement relation is

defined on software and hardware components. The enhancement relation between

environments can be defined formally as follows. Let environments A and B consist of sets

{a1, a2, ..., an} and {b1, b2, ..., bm} of hardware and software components, respectively. A is an

enhancement of B, if and only if for all bi, i=1, 2, ..., m, there is one component aj ∈{a1, a2, ...,

an} such that ai is an enhancement of bj.

(D) Inclusion relation between test activities. A test activity A may include a number

of more basic activities. For example, the test execution activity may include the derivation of

test driver and/or test stubs, the installation of test tools, etc. A test activity can be completed

only if all the sub-activities are completed.

(E) Temporal ordering between test activities. To fulfil a test task, a number of test

activities must be carried out in certain temporal order. For example, the generation of test

cases must be carried out before test execution.

These relations are all partial orderings. That is, they are transitive and reflexive. Figure

13 summarises these basic relations.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 19

Figure 13. Basic Relations on Testing Concepts

Based on these basic facts and knowledge, more complicated relations can be defined

and used through knowledge inferences. The following are definitions of the most important

ones.

The MorePowerful Relation on Capability

The relation MorePowerful is defined between two capabilities. Let C represent the set of

all capabilities. For all c1, c2 ∈ C, we say that c1 is more powerful than c2, write

MorePowerful(c1, c2), if and only if all of the following statements are true.

(1) c1 and c2 have the same context, and
(2) c1 and c2 have the same activity, and
(3) The method of c1 subsumes the method of c2, and
(4) The environment of c2 is an enhancement of the environment of c1, and
(5) For all input artefacts a1 of c1, there is at least one input artefact a2 of c2 that a1 is

compatible with a2, and
(6) For all output artefacts a2 of c2, there is at least one output artefact a1 of c1 that a2 is

compatible with a1.

Informally, MorePowerful(c1, c2) means that a tester has capability c1 implies that the

tester can do all the tasks that can be done by a tester who has capability c2. In UML, the

MorePowerful relation is an association class; see Figure 14 for its structure.

It is easy to prove that the MorePowerful relation is also a partial ordering.

Theorem 1 (Reflexiveness): ∀c∈C. MorePowerful(c, c).

Theorem 2 (Transitiveness):

∀c1, c2, c3∈C.MorePowerful(c1, c2) ∧ MorePowerful(c2, c3) ⇒ MorePowerful(c1, c3).

Basic Concepts

Method
*

*

Subsumes

Subsume
Artefact

*

*

IsCompatible

Compatible

Format

Activity
*

*

Includes

Include

*

*

IsBefore

Order

Environment
*

*

Enhances

Enhance

DEVELOPING A SOFTWARE TESTING ONTOLOGY 20

The Contains Relation on Test Tasks

The relation Contain is defined between two tasks. Let T represent the set of all tasks.

For all t1 and t2∈T, we say that task t1 contains t2, write Contain (t1, t2), if and only if all of

the following conditions are true.

(1) Task t1 and t2 have the same context;
(2) The activity of t1 includes the activity of t2;
(3) The method of t1 subsumes the method of t2;
(4) The environment of t1 is an enhancement of the environment of t2;
(5) For all input artefacts a2 of t2 , there is at least one input artefact a1 that a2 is

compatible with a1;
(6) For all output artefact a2 of t2, there is at least one output artefact a1 of t2 that a2 is

compatible a1.

Informally, Contain(t1, t2) means that accomplishing task t1 implies accomplishing task t2.

Similar to the relation MorePowerful on capabilities, the Contains relation is also an

association class and can be similarly represented in UML; see Figure 14.

The Contain relation is also a partial ordering. That is, we have the following property of

the relation.

Theorem 3 (Reflexiveness): ∀t∈T, Contain(t, t).

Theorem 4 (Transitiveness): ∀t1, t2, t3 ∈ T, Contain(t1, t2) ∧ Contain(t2, t3) ⇒ Contain(t1, t3)

The Matches Relation Between Tasks And Capabilities

In the assignment of a testing task to a tester, a broker agent must answer the question

whether the task matches the capability of the tester. For example, assume that an agent is

registered as capable of generating statement coverage test cases for Java Applets and a test

task is requested for structural testing a Java Applet. The broker agent need to infer that the

agent is capable of fulfil the task. Therefore, it is necessary to define the following Matches

relation between a capability and a task.

For any c∈C and t∈T, we say that capability c matches task t, write Match(c, t), if and

only if all of the following conditions are true.

(1) Capability c and task t have the same context;
(2) The activity of c includes the activity of t;
(3) The method of c subsumes the method of t, or the method of t is an instance or a

subclass of the method of c;
(4) The environment of t is an enhancement of environment of c;
(5) For all artefacts ac in the input artefact set of C, there exists at least one artefact at in

the input artefact of t, such that at is compatible with ac;
(6) For all artefact at in the output artefact set of t, there exists at least one artefact ac in

the output artefact of c, such that ac is compatible with at.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 21

Match(c, t) means that a tester with capability c can fulfil the task t. The following

properties of the relations form the foundation of the inferences that the broker agent requires

in the assignment of testing tasks.

Theorem 5: ∀c1, c2∈C, ∀t∈T, MorePowerful(c1, c2) ∧ Match(c2, t) ⇒ Match(c1, t).

Theorem 6: ∀c∈C, ∀t1, t2∈T, Contain(t1, t2) ∧ Match(c, t1) ⇒ Match(c, t2).

Figure 14 below shows the structures of compound relations.

Figure 14. Compound Relations

USES OF THE SOFTWARE TESTING ONTOLOGY

In this section, we discuss how the ontology is used in our multi-agent system.

Communication Protocols And Task Scheduling

In a multi-agent system, many agents can play a similar role but with different

specialities. As discussed in the previous section, in our system, agents that play the same

role may have different capabilities, are implemented with different algorithms, execute on

different platforms, and are specialised in dealing with different formats of information. The

agent society is dynamically changing; new agents can be added into the system and old

agents can be replaced by a newer version. This makes task scheduling and assignment more

important and more difficult as well. Therefore, management agents are implemented as

brokers to negotiate with testing service agents to assign and schedule testing activities to

testing service agents. Each broker manages a registry of agents and keeps a record of their

capabilities and performances. Each service agent registers its capability to a broker when

joining the system. Tests tasks are also submitted to the brokers. For each task, the broker

will send it to the most suitable agent use the Match relation as a means of inferences. The

following describe the communication protocols and mechanisms for capability registration

and testing task submission.

Capability

Tester

MorePowerful

*

* IsMorePowerful
C2

C1
Task

Contains T1

T2C TMatches

Match

Contain

* * *
*

DEVELOPING A SOFTWARE TESTING ONTOLOGY 22

Combining Ontology with Speech-Act

In a multi-agent society, a clearly defined semantics is necessary for agents to express

their intensions and commitments to tasks. For example, when an agent sends a message to a

broker, it must make the intension of the message clear as to register their capabilities or to

submit a test job request, or to report a test result, etc. Such intensions can be represented as

illocutionary forces of the message. As in (Singh, 1993; 1998), illocutionary forces can be

classified into 7 types: assertive, directive, commissive, permissive, prohibitive, declarative,

and expressive.

To incorporate illocutionary forces in our agent communications, we associate each

message with a speech-act parameter. Hence, messages have the following structure in UML.

Figure 15. Message Structure

The following example is a typical scenario of using the ontology in agent

communication.

Example 4.

The following is a sequence of messages between agents A1 and A2 and a broker B.

(1) Agent A1 sends an ASSERTIVE message with a <capability> parameter to the broker B.

This means the agent A1 wants to register to the broker B and claims its capability.

(2) Agent A2 sends an EXPRESSIVE message to the broker B, with a <task> parameter

describing a testing task. This means that the agent wants to find some agent to perform

the testing task.

(3) The broker B searches its knowledge about registered agents, and finds that agent A1 is the

best match for the task. It then sends a DIRECTIVE message with the <task> parameter

to agent A1.

(4) When agent A1 finishes the task, it sends an ASSERTIVE message with an <answer>

parameter to the broker. The <answer> parameter describes the status of the task and

Message

<<Enumeration>>
Speech-Act Type

assertive,
 directive,

commissive,
permissive,
prohibitive,
declarative,
expressive

Content

Capability

Task

Answer Artefact
1 1..*

DEVELOPING A SOFTWARE TESTING ONTOLOGY 23

output of the task if it is successful, or the reason of failure or error messages if it is not

successful.

(5) The broker B may forward the message to agent A2, or try to find another agent to carry

out the testing task in case the output of agent A1 is not successful.

CONCLUSION

This paper presents an ontology of software testing and discusses it uses in a multi-agent

software environment to support the evolutionary development and maintenance of

web-based applications. The prototype system consists of a number of software testing and

quality assurance agents. Each testing task is assigned to an agent in the system, which either

performs the requested task or decomposes it into smaller tasks for other agents to perform.

In this way, agents cooperate with each other to carry out complicated testing tasks.

As Jennings and Wooldridge (1998) pointed out, agent techniques benefit in application

areas that involve diverse platforms and information formats and in dynamic environments.

Our experiment supports this claim. In particular, for the following reasons, agent technology

is suitable for testing web-based systems.

The dynamic and evolutionary nature of web-based applications requires constantly

monitoring the changes of the system and its environment. Sometimes, the changes in the

system and its environment may require changes in testing strategy and method accordingly.

Agents are adaptive, and they can adjust their behaviours based on environment changes.

These changes can be integrated to the system dynamically.

Web-based information systems often operate on a diversity of platforms and use various

different formats of media and data. This demands a wide variety of test methods and tools to

be used in testing a single system. Multi-agent systems can provide a promising solution to

this problem. Different agents are built to handle different types of information, to implement

different testing methods and to integrate different tools. Thus, each individual agent can be

relatively simple while the whole system is powerful and extendible.

The distribution of large volume of information and functionality over a large geographic

area requires testing tasks carried out at different geographic locations and to transfer

information between computer systems. The agents can be distributed among many

computers to reduce the communication traffic.

Agents also provide a nice way that human testers interact with testing tools. The

relationship between human testers and agents are no longer a commander/slave relation.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 24

Instead, the human tester and the agents form a testing team and cooperate with each other. In

particular, when a part of a complicated testing task cannot be performed by the tools, the

testing will not fail completely. Instead, the agent can pass the unsolvable task to the human

tester and ask for help. This feature is of particular importance for testing web-based

applications, because they are often extended by integrating into the system new components

developed with new technology that may have no ready made testing tools at the beginning.

The collaborative relationship not only release human testers from routine work, which are

performed by the agents, but also enables the human testers to participate in the testing

process by taking the most intellectually challenging tasks so that the whole testing job can

be performed more efficiently and effectively.

In the design and implementation of the prototype system, we realised that the key issue

is the mechanism that enables the flexible integration of agents into the environment and the

effective communications between agents and between the human testers and agents. Our

solution is the ontology of software testing. It is used as the content language for software

agents to register into the system with a capability description, for human testers and agents

to make testing requests and report testing results, for management agents to allocate tasks to

agents. This paper reports how the concepts of the ontology and the relations between them

are defined in UML. Their properties are also analysed. Speech-act theory is incorporated in

the system and combined with the ontology to define communication protocols and to

facilitate collaborations between agents. Our experience in the development of the ontology

further confirmed the advantages and benefits of using ontology in tool integration that have

already been observed in other application domains such as those mentioned in section 0, but

have not been explored in software engineering research as far as we know.

The ontology is designed based on the domain knowledge of software testing to mediate

the communications between the agents. It was represented in XML to codify the knowledge

of software testing for agents’ processing of messages. The representation in XML for

run-time communications between agents achieved a flexibility of modification and

extendibility very well. However, during the testing and validation of the prototype system,

we realised that XML representation is at a rather low level of abstraction. It is not very

readable for domain experts to validate the ontology. Our first attempt to represent the

ontology at a higher level of abstraction was the uses of BNF to describe the syntax structure

of XML expressions (Huo, Zhu and Greenwood, 2003). For example, the following is the

BNF definition of tester.

<tester> ::= "< TESTER" {<tester parameter>} ">" { <tester> } "</ TESTER >"

DEVELOPING A SOFTWARE TESTING ONTOLOGY 25

<tester parameter> ::= <tester type> | <name> | <capability> | <leader>

<name> ::= "NAME =" <string>

<leader> ::= “LEADER =” <name>

<tester type> ::= "TYPE =" ("HUMAN" | "SOFTWARE" | "TEAM")

BNF descriptions of the XML syntax are significantly shorter than the corresponding

XML Schema definitions. For example, the XML Schema definition of XML representation

of the concept tester below is 3 times longer than the BNF expressions. BNF is more suitable

to human readers. Moreover, software engineers and computer scientists, who are the domain

experts of software testing, are more familiar with BNF than XML Schema.
 <!-- TESTER -->
 <xs:element name="TESTER">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="TESTER"/>
 </xs:sequence>
 <xs:attribute name="TESTER_TYPE" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="HUMAN"/>
 <xs:enumeration value="SOFTWARE"/>
 <xs:enumeration value="TEAM"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="TESTER_NAME" use="required"/>
 <xs:attribute name="TESTER_LEADER"/>
 </xs:complexType>
 </xs:element>

However, the BNF representation is still not good enough for end users of the prototype

system, who communicate with the agents in the ontology of software testing to request

testing tasks and receive testing results. BNF is still at the syntax level. It does not properly

represent some important concepts of ontology, such as the concept of sub-class, etc.

Therefore, we also developed the representation of the ontology in UML. It is at a suitable

level of abstraction for both validation by human experts and communication with the end

users.

Representing the ontology in two notations at different abstraction levels raised the

question how to validate the consistency between the UML and XML representations.

Recently, standard XML representations of UML models and tools though XMI have

emerged to enable the automatic translation of UML models into XML representations.

Using such techniques will result in completely re-writing the whole prototype system. It is

unclear and worth further investigation that whether the automatic technique of translation

DEVELOPING A SOFTWARE TESTING ONTOLOGY 26

from UML to XML can be applied to our ontology. It seems that our ontology is significantly

more complicated than the examples and case studied conducted in the development of such

techniques and reported in the literature.

We are also further investigating the methodology of developing ontology at a wider

context of software engineering and further developing the prototype of software growth

environment. The automatic translation technique will be beneficial to our further research. A

difficulty problem is the development of a model of the whole system, including definitions

of the organizational structure, functionality and dynamic behaviours of the agents. It seems

that an agent-oriented modelling language such as the CAMLE (Shan and Zhu, 2003a; 2003b)

or AUML (FIPA Modelling TC) is necessary to catch the agents’ autonomous and social

behaviours. In our design and implementation of the ontology in UML and XML, we noticed

that UML does not provide adequate support to the formal specification and analysis of the

relations between concepts although OCL can be partially helpful. For example, we have to

use first order logic formula for the definitions and proofs of the properties of compound

relations.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 27

REFERENCES

Bennett, K. & Rajlich, V. (2000). Software maintenance and evolution: a roadmap.

Proceedings of the Conference on the Future of Software engineering. ACM Press. 73-87.

Boehm, B. (2000). Requirements that handle IKIWISI, COTS, and rapid change. IEEE

Computer, July 2000, 99-102.

Cranefield, S., Haustein, S. & Purvis M. (2001). UML-Based Ontology Modelling for

Software Agents. Proceedings of Ontologies in Agent Systems Workshop, August 2001,

Montreal, 21-28.

Crowder, R., Wills, G., & Hall, W. (1998). Hypermedia information management: A new

paradigm. Proceedings of 3rd International Conference on Management Innovation in

Manufacture, July 1998, 329-334.

FIPA Modelling Technical Committee, Agent UML, AUML website at URL

http://www.auml.org/

Fox, M. S., & Gruninger, M. (1994). Ontologies for Enterprise Integration. Proceedings of

the 2nd Conf. on Cooperative Information Systems, Toronto.

Huo, Q., Zhu, H. & Greenwood, S. (2002). Using Ontology in Agent-based Web Testing.

Proceedings of International Conference on Intelligent Information Technology (ICIIT’02),

Beijing, China.

Huo, Q., Zhu, H. & Greenwood, S. (2003). A Multi-Agent Software Environment for Testing

Web-based Applications. Proceedings of the 27th IEEE Annual Computer Software and

Applications Conference (COMPSAC’03), Dallas, Taxas, USA, 210-215.

Jennings N. R. & Wooldridge, M. (eds.) (1998). Agent Technology: Foundations,

Applications, and Markets. Springer-Verlag.

Jin, L., Zhu, H., & Hall, P. (1997). Adequate testing of hypertext applications. Journal of

Information and Software Technology, 39(4), 225-234.

Lehman, M. M. (1980). Programs, life cycles and laws of software evolution. Proceedings of

IEEE, Sept. 1980, 1060-1076.

Lehman, M. M. (1990). Uncertainty in Computer Application. Communications of ACM,

33(5), 584-586.

Lehman M. M. & Ramil, J. F. (2001). Rules and Tools for Software Evolution Planning and

Management. Annals of Software Engineering, Special Issue on Software Management,

11(1), 15-44.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 28

National Committee for Information Technology Standards. Draft proposed American

national standard for Knowledge Interchange Format. Retrieved Sept. 2003 from

http://logic.stanford.edu/kif/dpans.html

Naur, P. (1992). Programming as theory building, in Computing: A Human Activity. ACM

Press, 37-48.

Neches, R. et al. (1991). Enabling Technology for Knowledge Sharing. AI Magazine, Winter

issue, 36-56.

Rajlich, V. & Bennett, K., (2000). A staged model for the software life cycle. IEEE Computer,

July 2000, 66-71.

Shan, L., & Zhu, H., (2003a) Modelling Cooperative Multi-Agent Systems, Proceedings of

The Second International Workshop on Grid and Cooperative Computing (GCC’03),

Shanghai, China, 1451-1458.

Shan, L., & Zhu, H., (2003b) Modelling and specification of scenarios and agent behaviour,

in Proceedings of IEEE/WIC conference on Intelligent Agent Technology (IAT’03),

Halifax, Canada, 32-38.

Staab, S. & Maedche, A.(2001). Knowledge portals - Ontology at work. AI Magazine, 21(2).

Singh, M.P. (1993). A semantics for speech acts. Annals of Mathematical and Artificial

Intelligence, 8(II), 47-71.

Singh, M. P. (1998) Agent communication languages: Rethinking the principles. IEEE

Computer, Dec 1998, 40-47.

Uschold, M. & Gruninger M. (1996). Ontologies: Principles, Methods, and Applications.

Knowledge Engineering Review, 11(2). 93—155.

Zhu, H., Hall, P. & May, J. (1997). Software Unit Test Coverage and Adequacy. ACM

Computing Survey, 29(4), 366~427.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 29

APPENDIX. XML SCHEMA (XSD) DEFINITION OF XML REPRESENTATION OF

THE ONTOLOGY OF SOFTWARE TESTING

The following is the complete XML Schema (XSD) definition of the XML

representation of the ontology of software testing.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">
 <!-- TESTER -->
 <xs:element name="TESTER">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="TESTER"/>
 </xs:sequence>
 <xs:attribute name="TESTER_TYPE" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="HUMAN"/>
 <xs:enumeration value="SOFTWARE"/>
 <xs:enumeration value="TEAM"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="TESTER_NAME" use="required"/>
 <xs:attribute name="TESTER_LEADER"/>
 </xs:complexType>
 </xs:element>
 <!-- CONTEXT -->
 <xs:element name="CONTEXT">
 <xs:complexType>
 <xs:attribute name="CONTEXT_TYPE" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="UNIT_TEST"/>
 <xs:enumeration value="INTEGRATION_TEST"/>
 <xs:enumeration value="SYSTEM_TEST"/>
 <xs:enumeration value="REGRESSION_TEST"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <!-- ACTIVITY -->
 <xs:element name="ACTIVITY">
 <xs:complexType>
 <xs:attribute name="ACTIVITY_TYPE" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="TEST_PLANNING"/>
 <xs:enumeration value="TEST_CASE_GENERATION"/>
 <xs:enumeration value="TEST_CASE_EXECUTION"/>
 <xs:enumeration value="TEST_RESULT_VERIFICATION"/>
 <xs:enumeration value="TEST_COVERAGE_MEASUREMENT"/>

DEVELOPING A SOFTWARE TESTING ONTOLOGY 30

 <xs:enumeration value="TEST_REPORT_GENERATION"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <!-- METHOD -->
 <xs:element name="METHOD">
 <xs:complexType>
 <xs:attribute name="METHOD_NAME" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="CONTROL_FLOW_TESTING"/>
 <xs:enumeration value="DATA_FLOW_TESTING"/>
 <xs:enumeration value="STATEMENT_COVERAGE_TESTING"/>
 <xs:enumeration value="BRANCH_COVERAGE_TESTING"/>
 <xs:enumeration value="PATH_COVERAGE_TESTING"/>
 <xs:enumeration value="NODE_COVERAGE_TESTING"/>
 <xs:enumeration value="LINK_COVERAGE_TESTING"/>
 <xs:enumeration value="LIP_COVERAGE_TESTING"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="METHOD_TECHNIQUE">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="STRUCTUAL_TESTING"/>
 <xs:enumeration value="FAULT_BASED_TESTING"/>
 <xs:enumeration value="ERROR_BASED_TESTING"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="METHOD_APPROACH">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="PROGRAM_BASED_TESTING"/>
 <xs:enumeration value="SPECIFICATION_BASED_APPROACH"/>
 <xs:enumeration value="RANDOM_TESTING"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <!-- ARTEFACT -->
 <xs:complexType name="ARTEFACT">
 <xs:sequence>
 <xs:element ref="ARTEFACT"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ARTEFACT">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" ref="TESTER"/>
 <xs:element minOccurs="0" ref="ARTEFACT_DATA"/>
 <xs:element minOccurs="0" ref="ARTEFACT_LOCATION"/>
 </xs:sequence>
 <xs:attribute name="ARTEFACT_TYPE" use="required">

DEVELOPING A SOFTWARE TESTING ONTOLOGY 31

 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="OBJECT_UNDER_TEST"/>
 <xs:enumeration value="TEST_PLAN"/>
 <xs:enumeration value="TEST_SCRIPT"/>
 <xs:enumeration value="TEST_RESULT"/>
 <xs:enumeration value="TEST_SUITE"/>
 <xs:enumeration value="TEST_COVERAGE"/>
 <xs:enumeration value="ERROR_REPORT"/>
 <xs:enumeration value="SPECIFICATION"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="ARTEFACT_FORMAT" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="PROGRAM"/>
 <xs:enumeration value="HTML"/>
 <xs:enumeration value="XML"/>
 <xs:enumeration value="TEXT_FILE"/>
 <xs:enumeration value="WORD_FILE"/>
 <xs:enumeration value="PDF_FILE"/>
 <xs:enumeration value="POSTSCRIPT_FILE"/>
 <xs:enumeration value="BMP_IMAGE"/>
 <xs:enumeration value="JPEG_IMAGE"/>
 <xs:enumeration value="CD_SOUND"/>
 <xs:enumeration value="MPEG_VIDEO"/>
 <xs:enumeration value="VCD_VIDEO"/>
 <xs:enumeration value="DVD_VIDEO"/>
 <xs:enumeration value="JAVA_APPLET"/>
 <xs:enumeration value="JAVA_SCRIPT"/>
 <xs:enumeration value="NODE_SEQUENCES"/>
 <xs:enumeration value="LINK_SEQUENCES"/>
 <xs:enumeration value="LIP_SEQUENCES"/>
 <xs:enumeration value="DATA"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="ARTEFACT_DATA" type="any"/>
 <xs:element name="ARTEFACT_LOCATION" type="any"/>
 <!-- ENVIROMENT -->
 <xs:element name="ENVIRONMENT">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="HARDWARE"/>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="SOFTWARE"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="HARDWARE">
 <xs:complexType>
 <xs:attribute name="HARDWARE_DEVICE" use="required"/>
 <xs:attribute name="HARDWARE_MANUFATURER" use="required"/>
 <xs:attribute name="HARDWARE_MODEL" use="required"/>
 </xs:complexType>

DEVELOPING A SOFTWARE TESTING ONTOLOGY 32

 </xs:element>
 <xs:element name="SOFTWARE">
 <xs:complexType>
 <xs:attribute name="SOFTWARE_TYPE" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="OS"/>
 <xs:enumeration value="DATABASE"/>
 <xs:enumeration value="COMPILER"/>
 <xs:enumeration value="WEB_SERVER"/>
 <xs:enumeration value="WEB_BROWSER"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="SOFTWARE_PRODUCT" use="required"/>
 <xs:attribute name="SOFTWARE_VERSION" use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- CAPABILITY -->
 <xs:element name="CAPABILITY">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" ref="CONTEXT"/>
 <xs:element minOccurs="1" maxOccurs="1" ref="ACTIVITY"/>
 <xs:element minOccurs="1" maxOccurs="1" ref="METHOD"/>
 <xs:element minOccurs="0" maxOccurs="1" ref="ENVIRONMENT"/>
 <xs:element minOccurs="0" maxOccurs="unbounded"

ref="CAPABILITY_DATA"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="CAPABILITY_DATA">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="ARTEFACT">
 <xs:attribute name="CAPABILITY_DATA_TYPE" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="INPUT"/>
 <xs:enumeration value="OUTPUT"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <!-- TASK -->
 <xs:element name="TASK">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" ref="CONTEXT"/>
 <xs:element minOccurs="1" maxOccurs="1" ref="ACTIVITY"/>
 <xs:element minOccurs="1" maxOccurs="1" ref="METHOD"/>
 <xs:element minOccurs="0" maxOccurs="1" ref="ENVIRONMENT"/>
 <xs:element maxOccurs="unbounded" ref="TASK_DATA"/>
 </xs:sequence>

DEVELOPING A SOFTWARE TESTING ONTOLOGY 33

 </xs:complexType>
 </xs:element>
 <xs:element name="TASK_DATA">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="ARTEFACT">
 <xs:attribute name="TASK_DATA_TYPE" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="INPUT"/>
 <xs:enumeration value="OUTPUT"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <!-- REPLY -->
 <xs:element name="REPLY">
 <xs:complexType>
 <xs:attribute name="REPLY_STATUS" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="SUCCESSFUL"/>
 <xs:enumeration value="FAILED"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="REPLY_REASON"/>
 </xs:complexType>
 </xs:element>
 <!-- MESSAGE -->
 <xs:element name="MESSAGE">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="CAPABILITY"/>
 <xs:element ref="TASK"/>
 <xs:element ref="REPLY"/>
 </xs:choice>
 <xs:attribute name="MESSAGE_ACT" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="ASSERTIVE"/>
 <xs:enumeration value="DIRECTIVE"/>
 <xs:enumeration value="COMMISIVE"/>
 <xs:enumeration value="PERMISSIVE"/>
 <xs:enumeration value="PROHIBITIVE"/>
 <xs:enumeration value="DECLARATIVE"/>
 <xs:enumeration value="EXPRESSIVE"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="any" mixed="true">
 <xs:sequence>

DEVELOPING A SOFTWARE TESTING ONTOLOGY 34

 <xs:any minOccurs="0" maxOccurs="unbounded" processContents="strict"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

