DEVELOPING A SOFTWARE TESTING ONTOLOGY

Running head: DEVELOPING A SOFTWARE TESTING ONTOLOGY

Developing A Software Testing Ontology in UML

for A Software Growth Environment of Web-Based Applications

Hong Zhu
Department of Computing
Oxford Brookes University
Wheatley Campus, Oxford OX33 1HX, UK
Tel: ++44 1865 484580
Fax: ++44 1865 484545
Email: hzhu@brookes.ac.uk

Qingning Huo
Lanware, Ltd.
68 South Lambeth Road, London SW8 1RL, UK
Tel: T: ++44 20 7735 1717

Email: Qingning. Huo@lanware.co.uk

DEVELOPING A SOFTWARE TESTING ONTOLOGY 2

Developing A Software Testing Ontology in UML

for A Software Growth Environment of Web-Based Applications

Abstract

This chapter introduces the concept of software growth environments to support
sustainable long term evolution of web-based application systems. A multi-agent prototype
system is designed and implemented with emphasis on software testing. In this environment,
software tools are agents that cooperate effectively with each other and human testers through
communications at a high level of abstraction. New tools can be integrated into the system
with maximal flexibility. These are achieved through the design and utilisation of an ontology
of software testing that represents the knowledge of software engineering and codifies the
knowledge for computer processing as the contents of an agent communication language. The
ontology is represented in UML at a high level of abstraction so that it can be validated by
human experts. It is also codified in XML for computer processing to achieve the required

flexibility and extendibility.
Keywords:

Software Engineering, Information Systems, Web-based Applications, Software Evolution,
Software Testing, Computer-Aided Software Engineering (CASE), Software Development
Tools and Environments, Agent, Ontologies, UML, XML.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 3

INTRODUCTION

The Internet and Web are becoming a distributed, heterogeneous and hypermedia
computation platform, which stimulates many new progresses in software applications, cf.
(Crowder, Wills & Hall, 1998). However, web-based applications are complex and difficult
to develop and maintain. In (Zhu, et al. 2000), we argued that most web-based applications
are by nature evolutionary and proposed a growth model of software process. To support the
sustainable evolutionary development of web-based systems, we designed a multi-agent
architecture of software development and maintenance environment and developed a
prototype system for testing web-based applications. A key feature of the architecture and the
prototype system is the use of an ontology of software testing to facilitate the
communications between agents and between agents and human developers and testers. In
this paper, we report the development of the ontology of software testing and its
representation in UML.

The remainder of the chapter is organised as follows. Section 2 gives the motivation of
our research and briefly outlines our approach to the development and maintenance of
web-based applications. The structure and features of the multi-agent software environment is
described. A prototype system for testing web-based applications is presented. Section 3
reports the ontology of software testing and its representation in UML. Section 4 discusses
the uses of the ontology in the prototype systems. Section 5 concludes the chapter with a

discussion of related works and directions for future research.
BACKGROUND AND MOTIVATIONS
Characteristics of Web-Based Applications

According to Lehman (2001), software systems can be classifies into three types
according to what ‘correctness’ means to the system. An S-fype program is required to satisfy
a pre-stated specification. For such a system, correctness is the absolute relationship between
the specification and the program. A P-type program is required to form an acceptable
solution to a stated problem in the real world. The correctness of a P-type program is
determined by the acceptability of the solution to the stated problem. An E-type program is
required to solve a problem or implement an application in a real-world domain which often
has no clearly stated specification. Correctness here is determined by the program’s

behaviour under operational conditions and judged by the users. Obviously, many kinds of

DEVELOPING A SOFTWARE TESTING ONTOLOGY 4

web applications such as e-commerce, enterprise portal, web-based CRM systems,
e-government, e-science, etc., belong to the E-type, where problems are not clearly stated and
the correctness of the system is judged by the users for its fitness to their purposes.

Different types of software systems tend to demonstrate different evolutionary
behaviours, because their development processes are dominated by different types of
uncertainties. Generally speaking, there are three types of uncertainties associated software
development (Lehman, 1990). Gédel-like uncertainties arise because software systems and
their specifications are models of the real world. The representations of such models and their
relationships are Godel incomplete. Consequently, the properties of a program cannot be
completely known from the representations. Heisenberg-type uncertainties result from the
processes of using the system that may change the user’s perception and understanding of the
application. A common phenomenon in the development of software systems is that the users
are uncertain about the requirements, but they are often certain that ‘I’ll know it when I see it’
(Boehm, 2000). Uncertainties of this type exhibit themselves in the form of changing
requirements either in the form of unsatisfactory of implemented or to be implemented
functional or non-functional requirements, or the emergent of new requirements. Pragmatic
uncertainties are due to the problems in actually performing the development activities.
Software development is still a process that relies on human performance. During this process,
errors are made and faults are introduced. Many types of risks in software development are
caused by this type of uncertainty. For example, the adaptation of a new development method,
the use of a new software tool or programming language, the use of a new library of software
code and so on may introduce uncertainties to the quality of the product and the development
process.

Although these sources of uncertainties are associated with all software development
projects, Godel and Heisenberg types of uncertainties have strong impact on E-type software
in general and web-based applications in particular. However, pragmatic uncertainty also
plays a significant role in the development of web-based applications as web technology has
been changing rapidly in the past few years. Consequently, web-based applications
commonly demonstrate a clear evolutionary life-cycle. During the evolution process,
uncertainties are clarified through developing and adjusting the model of the problem,
revising the representation of the models, updating users’ requirements and correcting errors
of development activities. In the meantime, new uncertainties may emerge and require further
development and maintenance. Lehman characterised E-type systems’ evolution processes by

8 laws of evolution (Lehman, 2001), which are summarised in Table 1 below. These laws

DEVELOPING A SOFTWARE TESTING ONTOLOGY 5

should be equally applicable to web-based applications. In addition, in the investigation of
web-based applications, we also observed a common phenomenon of web-based systems,
that is, web-based systems commonly contains components developed using different
technology, such as component codes written in different languages and executed on different
platforms, data represented in different formats, interfaces designed to comply with different
standards, interactions proceeded in different protocols, etc. We call this phenomenon the law

of diversity, which is also listed in Table 1 together with Lehman’s laws.

Table 1. Laws of Evolution of E-type Systems

Law Description

Continuing E-type systems must be continually adapted else they
Change become progressively less satisfactory in use.
Increasing As an E-type system is evolved its complexity increases
Complexity unless work is done to maintain or reduce it.

Self Regulation Global E-type system evolution processes are self

regulating.

Conservation of
Organisational
Stability

Unless feedback mechanisms are appropriately adjusted,
average effective global activity rate in an evolving
E-type system tends to remain constant over product
lifetime.

Conservation of

In general, the incremental growth and long term growth

Familiarity rate of E-type systems tend to decline.
Continuing The functlopal capability of E-t?/pe systems must be
continually increased to maintain user satisfaction over
Growth o
the system lifetime.
. The quality of E-type systems will appear to be declining
Declining . .
. unless they are rigorously adapted, as required, to take
Quality . . ; .
into account changes in the operational environment.
Feedback E-type evolution processes are multi-level, multi-loop,
System multi-agent feedback systems.
An E-type system contains components that are
Diversity developed using a diversity of techniques and integrated

into the system at different times.

Lehman’s laws were proposed on the bases of his observations on E-type software
systems that had survived after a long evolutionary process. They can be considered as
‘survival guidelines’ for the evolutionary development of E-type software systems. Violating
these laws in the development of an E-type software system may mean a death penalty to the
system. Here, the death of a software system should be understood in Peter Naur’ sense (1992)
that the state of death become visible when demands for modifications of the program cannot
be intelligently answered although the program may continue to be used for execution and

provide useful results.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 6

Software Growth Process Model And Growth Environment

From Lehman’s theory of software evolution, we can see that clarifying uncertainties is
the driving force of E-type software evolution. Therefore, the development of an E-type
software system is best to be a process of growth in functionality. Tool supports must be
provided to manage the complexity and quality of the product during its whole life time.
Figure 1 below depicts a growth model of software lifecycles of web-based applications. As
argued in (Zhu et al., 2000), this process is suitable for the development of web-based
applications. It also has a number of advantages, which include reducing time pressure on the
developers, minimizing development risks, offering learning opportunities to developers,
improving communications between developers and users as well as various other

stakeholders, etc.

f

Seed
period Develop a seed
system
. 2
A
A 4
Operation
\
Recognise new Suspend
requirements [requirements
* Not worth
Growth Analyse the importance implementation
period and feasibility of new
requirements Requirements
are essential,
Worth to but not feasible
implement and
v feasible

Develop new components according
to recognised requirements

Y
Restructure system architecture /
—— Integrate new components /
Delete out of date components

System deceased /

. -
Inception of new system
Decease
eriod
p v
Stop system’s operation /
Migrate to a new system
Y.

Figure 1. The Growth Model of Software Lifecycle

DEVELOPING A SOFTWARE TESTING ONTOLOGY 7

To support sustainable long term evolutionary development of web-based applications
with a growth strategy, we proposed a new type of software environments and designed an
architectural structure for their implementations. Figure 2 depicts the architecture of software

environments, which consists of a number of cooperative agents.

Application Sever [Development Service Agents] Development Sever Knowledge Base
I (Global)

Management
Agents

Knowledge Base
(Local)

I Development
4—.—»[Management Agents] Service Agents
1

Network |

I I

| | Client | | Client (T face Agents

[Application Service Agents]

Application
Service Agents

Figure 2. Architecture of Software Growth Environment

The architecture of software growth environment consists of the following types of
agents. Development service agents provide developers with various supports to the evolution
of software systems in the growth strategy. They fulfil the functions that support evolutionary
development of web-based applications. Management agents are agents that manages agents
and responsible for the following tasks.

(a) Registration. When a new agent is added into the system, information about its
functionality, capability, execution environment, etc. are registered with a management agent.
When an agent is deleted from the system, its registration information is updated.

(b) Task allocation. A management agent receives service requests as well as
development and maintenance task requests. When such a task is requested, it searches for an
appropriate agent and assigns the task to the agent through a task allocation protocol.

(c) Monitoring and recording agents’ and the system’s behaviours. The management
agents will monitor the progresses of each task and record the state and outcomes of each task.
They will also monitor and record the behaviour of each service agent for the optimisation of
future task allocation.

These agents may also interact with the application system and its components to obtain
data and knowledge of the application and their evolution histories in order to support their

future evolutions. The interactions between human developers and the agents may also be

DEVELOPING A SOFTWARE TESTING ONTOLOGY 8

through a set of interface agents that provide assistant to each individual developer to
communicate with the development tools and to access the data and knowledge of the
application system at a high level of abstraction. Ideally, the application system consists of a
number of application service agents that provide the services and functionality of the
application system to its users.

This architecture significantly differs from existing software development environments
such as CASE tools and run-time support environments such as middleware due to the
following two features. Because of these features, it is called software growth environment.

First, tools that support the development and maintenance of a system run in the same
environment of the software system. They coexist with the system monitoring the evolution
process of the system and supporting the modifications of the system. Moreover, they grow
with the system as new tools are integrated into the environment when new functional
components of the application are developed using new technology and integrated into the
system. The relationship between the tools and the system is similar to the relationship
between a tree and its natural environment where it is growing, and between a human and
his/her social environment that changes as the person is growing up.

Second, the tools (i.e. agents) in the environment collect, store and process the
information about the system and the knowledge of software development, and present such
knowledge to human beings or other software tools at a high level of abstraction when
requested. Such information and knowledge include: (a) the structure of the system, the
functionality, versions, evolution history and configurations of the system components, etc.;
(b) the capability, performance, and operational conditions of each development and
application service agent, as well as interrelationships between them; (c) the knowledge about
software development processes, logical and temporal relations between development tasks
and how tasks are decomposed into subtasks, etc.

Obviously, the key to the success of such a software growth environment is the
mechanisms that enable software tools flexibly integrated into the system gradually and
enables tools to cooperation with each other effectively. This can only be achieved by using
agent technology and a well-developed ontology and representing the ontology in a highly

flexible and extendable format to enable the collaboration between the agents.
A Prototype System for Testing Web-Based Applications

To demonstrate the feasibility and advantages of the above proposed approach, we

DEVELOPING A SOFTWARE TESTING ONTOLOGY 9

designed and implemented a prototype with emphasis on quality assurance and testing.

As shown in Figure 3, the environment consists of a number of agents to fulfil various
testing tasks for web-based applications. These agents can be distributed to different
computers, for example, as in Figure 4, on an application server, a test server and a client. In
fact, agents can be freely distributed according to any specific configuration. They can also
be mobile and change their location at runtime. The following briefly describes the agents
that have been implemented for testing web-based applications. More details can be found in

(Huo, Zhu & Greenwood, 2003).

Application Server Test Server
Web
Info
—>
Testing Testing Tester
Command Guidance Feedback

Client Computer

Figure 3. Structure of the Prototype System for Testing Web-based Applications

GWP (Get Web Page) agents retrieve web pages from a web site. Two agents of this type
have been implemented. One is GWP-No-Cache, whose function is to fetch the web page of a
given URL, and return the page’s contents. Another is GWP-Cache, which has the same
functionality as GWP-No-Cache, but with cache ability. It uses a knowledge base to store
downloaded web pages, and uses the last modification time to determine whether the web
page is updated on the cached copy.

WPI (Web Page Information) agents analyse the source code of a web page and extract
various useful information from the source code. The information includes the page title,
meta-information, hyperlinks, etc. They also store the information about the web page’s
structure in a knowledge base. When a web page’s structural information is requested, a
message is sent to a GWP agent with a HTML source file as the content of the message. It
runs a HTML parser on the file and extracts information of the structure of the file from the
parser. If the input page is unmodified since last retrieval, the WPI agent just uses the cached
data in the knowledge base.

WSS (Web Site Structure) agents analyse the hyperlink structure of a web site, and

DEVELOPING A SOFTWARE TESTING ONTOLOGY 10

generate a directed graph to describe the structure. This structure is also stored in a
knowledge base to share with other agents.

TCG (Test Case Generator) agents generate test cases to test a web site according to
certain testing criteria. Currently, three agents are implemented for node coverage, link
coverage and linear independent path coverage criteria, respectively. Details of these test
criteria for hypertext applications can be found in (Jin, Zhu & Hall, 1997).

TCE (Test Case Executors) agents execute test cases, and generate execution results.
Two TCE agents are implemented. One is to run the test cases interactively in front of the
human tester with the aid of a testing assistant agent. The other is to playback a recorded test
sequence. This is often used in regression testing.

TO (Test Oracles) agents verify whether a test result matches a specification. Different
types of test results require different kinds of oracles. For each type of result data, one agent
is design and implemented. Some simply compare the test output with the results from
previously recorded tests. Some examine if the test output satisfies a certain condition, such
as if the structure matches a certain pattern. These patterns can be predefined or generated
automatically from previous tests or defined by software engineers.

TA (Testing Assistants) agents are user interface agents that assist human testers in the
process of testing. They communicate at a high level of abstraction and in a language that are
understandable by human testers based on the ontology. They provide helps to human testers
on various testing tasks. For example, they get test requirements from the human users, send
correctly formatted messages to TCG to generate test cases, present the generated test cases
to the user, guide the user to walk through the links in a web site to test each web page on the
test cases, collect human tester’s feedback on the validity of tested pages, record testing
history and generate testing reports.

WSM (Web Site Monitor) agents monitor the changes on web sites and generate new
testing tasks according to these changes.

An ontology of software testing is developed and codified in XML for the
communications between agents. The following section gives details of the ontology and its

uses in the prototype system.
ONTOLOGY OF SOFTWARE TESTING

Generally speaking, ontology defines the basic terms and relations comprising the

vocabulary of a topic area as well as the rules for combining terms and relations to define

DEVELOPING A SOFTWARE TESTING ONTOLOGY 11

extensions to the vocabulary (Uschold & Gruninger, 1996). It is widely recognised that
ontology can be used where domain knowledge specification is useful (Staab & Maedche,
2001). For example, ontology can be used in the communications between people and
information systems. It can also be used to improve inter-operability between systems, such
as translation of modelling methods, paradigms, languages and software tools. It can also be
used in systems engineering, e.g. to achieve reusability, shareability, search, reliability,
specification and knowledge acquisition (Neches et al., 1991; Uschold & Gruninger, 1996;
Staab & Maedche, 2001). Ontology can be used in a multi-agent system as a means for agents
to share knowledge, to transfer information and to negotiate their actions. For example, Fox
and Gruninger (1994) proposed using ontology to represent agent activities in a cooperative
information system. The advantage of using ontology in such a system is that ontology
provides a standard specification of concepts in the specific domain. All agents that
understand the ontology can participate in the system. Although ontology has been an active
research area in the past decade, there is no ontology reported in the literature for software
engineering purpose. In this section, we report our work on designing an ontology of software
testing (Huo, Zhu & Greenwood, 2002).

A number of ontology modelling methods have been proposed in the literature. The most
widely used traditional approaches include the Knowledge Interchange Format (KIF)
(National Committee for Information Technology Standards), description logic, and object
oriented modelling, such as in UML (Cranefield, Haustein & Purvis, 2001). In recent years,
XML is more and more used as the format to represent ontology and as a format of agent
communication languages. XML has a very simple syntax. It is customisable, extensible, and
most importantly, suitable for web-based applications. The users can define the tags and
formats to represent both simple concepts and complex structures. These tags and formats
form a formal knowledge representation language. For these reasons, XML is used in our
system to codify the ontology for computer processing. However, an XML representation of
ontology is at a rather low level of abstraction. It does not support the validation of the
ontology by domain experts. Therefore, we need a representation of ontology at a higher level
of abstraction. As a powerful modelling language, UML has the advantage of representing
the concepts and relationships at a high level of abstraction that are readable and
understandable to human beings so that the knowledge represented in the ontology can be
validated by domain experts. Therefore, in addition to the representation of the ontology in
XML at machine processing level, we also represent the structure and relationships of the

concepts and relations of the ontology in UML. In this chapter, we focus on the UML

DEVELOPING A SOFTWARE TESTING ONTOLOGY 12

representation. The XML Schema (XSD) definition of the XML representation is given in the
appendix.

Taxonomy of Testing Concepts

Taxonomy is a way to specify and organize domain concepts. We divide the concepts
related to software testing into two groups: the basic concepts and compound concepts. As
shown in Figure 4, there are six types of basic concepts related to software testing, which

include testers, context, activities, methods, artefacts, and environment.

Basic
Concepts

JAN

|
Tester Context
Environment Artefact Activity

Figure 4. Basic Concepts of Software Testing

For each basic concept, there may be a number of sub-concepts. For example, a testing
activity can be the generation of test cases, the verification of test results, the measurement of
test adequacy, etc. A basic concept may also be characterized by a number of properties,
which are the parameters of the concept. For example, a software artefact is determined by (a)
its format, such as HTML file, JavaScript, etc., (b) its type, such as a program, or a test suite,
etc., (c) its creation and revision history, such as who and when created the artefact, and who
and when revised it, and the version number of the artefact, etc. (d) the location that the
artefact is stored, and (e) the data, i.e. the contents, of the artefact. The following briefly
discusses each type of the basic concepts.

(A) Tester. A tester refers to a particular party who carries out a testing activity. A tester
can be a human being, a software tool (including software agents), or a team, which consists

of one or more testers. This structure represented in UML as follows in Figure 5.

Name

Capability

| Human || Software || Team

Figure 5. The Concept of Testers

DEVELOPING A SOFTWARE TESTING ONTOLOGY 13

A tester team contains a number of other testers, which can be individuals or sub-teams,
and has a leader, which is an attribute that gives the name of the leader of the team. An
important attribute of tester is capability that describes what a tester can do. The concept of
capability is a compound concept that must be defined on the bases of other basic concepts of
software testing. It is discussed in the next subsection.

Example 1. The following is an example of a human tester named Howard represented in
XML.

<TESTER TESTER_TYPE="HUMAN" TESTER_NAME="Howard" />

The following is an example of a test team that consists of Joe as the leader and a
software agent as a member.

<TESTER TESTER_TYPE="TEAM" TESTER_NAME="ATEAM" TESTER_LEADER="JOE">

<TESTER TESTER_TYPE="HUMAN" TESTER_NAME="]OE" />
<TESTER TESTER_TYPE="SOFTWARE" TESTER_NAME="ANAGENT" />
</TESTER>

[m]

(B) Context. Software testing activities occur in various software development stages
and have different testing purposes. For example, unit testing is to test the correctness of
software units at implementation stage. Integration testing is to verify the interface between
software units at integration stage. The context of testing in the development process
determines the appropriate testing methods as well as the input and output of the testing
activity. Typical testing contexts include unit testing, integration testing, system testing,

regression testing, and so on.

— Unittest |
| Integration test |
_| Regression test |
| Systemtest |

Figure 6. The Concept of Test Context

[Conen K

(C) Activity. There are various kinds of testing activities, including test planning, test
case generation, test execution, test result validation and verification, test coverage

measurement, test report generation, and so on.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 14

—| Test planning |

—| Test case generation |

—| Test execution |

Aoy K

—| Test result validation |

—| Adequacy Measurement|

—| Report generation |

Figure 7. The Concept of Test Activity

(D) Method. For each testing activity, there may be a number of testing methods
applicable. For instance, applicable unit testing methods include structural testing,
fault-based testing and error-based testing. Each test method can also be classified into
program-based and specification-based. There are two main groups of program-based
structural testing methods: control-flow methods and data-flow methods. The control-flow
methods include statement coverage, branch coverage and various path coverage criteria,
etc.; see (Zhu, Hall & May, 1997) for a survey of research on software testing methods.
These concrete testing methods are instances of various subclasses of testing methods. The

structure of the concept of testing methods is shown in UML as follows.

—| Error-based |
Technique kJ+4—| Fault-based
— —{_Structural_|

Specification-

e— Method

\ based
T

Program-

Specification- || Program-based based

based structural || structural testing

testing Statement

Control flow coverage
testing

Branch

Data flow coverage

testing

Figure 8. The Concept of Test Method
(E) Artefact. Each testing activity may involve a number of software artefacts as the
object under test, intermediate data, testing result, test plans, test suites, test scripts, and so on.
There are different types of objects under test, such as source code in programming languages,
HTML files, XML files, embedded images, sound, video, Java applets, JavaScript,
documents, etc. Testing results include error reports, test coverage measurements, etc. Each
artefact is also associated with a location that the artefact is stored, the data, i.e. the contents,

of the artefact, and a history of creation and revision, which include the creator, update-time,

DEVELOPING A SOFTWARE TESTING ONTOLOGY 15

version numbers, etc.

Artefact Location

Data

A .
—| C Program | —| Test suite |
—| HTML file | — Test result |

—| XML file | —| Test plan |
—| Java Applet —| Test script
—| JavaScript —|Object under test|
—| MPEG —| Error report |
CD Sound

—| BMP Image —| Test coverage
VCD Video

—| DVD Video —| Specification

History

Type

Creator
Version

Update Date

Text file

Word file

PDF file

Postscript

JPEG Image

Figure 9. The Concept of Artefact
(F) Environment. The environment in which testing is performed is also an important
issue in software testing. Information about the environment includes hardware and software
configurations. For each hardware device, there are three essential fields, including the device
category, the manufacturer and the model. For the software component, there are also three

essential fields: the type, product name and version.

Environment

10 0]

* *
| Hardware | | Software |

4 4

3
_| Device | _| Product |
_| Type | _| Type |<|_
|Manufacturer|| Version |

_| Operating system |

_| Compiler |
_| Database |

_| Web Browser |

Figure 10. The Concept of Test Environment

Compound Concepts

Compound concepts are those defined on the bases of basic concepts, for example,

DEVELOPING A SOFTWARE TESTING ONTOLOGY 16

testing tasks and agent's capability. They are defined as follows.

(A) Capability. The capability of a tester is determined by the activities that a tester can
perform together with the context for the agent to perform the activity, the testing method
used, the environment to perform the testing, the required resources (i.e. the input) and the
output that the tester can generate.

Capability
[]

£\

1 1 0-*
Activity Method | Capability Data |

0-1 0-1
| Context | | Environment | \L
1-*

<<enumeration>>
Capability Data Type
Input
Output

Figure 11. The Compound Concept of Capability

Example 2. The following is an example of capability description in XML. The agent is
capable of doing node coverage test case generation in the context of system testing of
hypertext applications represented in HTML.
<CAPABILITY>
<CONTEXT CONTEXT_TYPE="SYSTEM_TEST" />
<ACTIVITY ACTIVITY_TYPE="TEST_CASE_GENERATION" />
<METHOD METHOD_NAME="NODE_COVERAGE_TESTING" />
<CAPABILITY_DATA CAPABILITY_DATA_TYPE="INPUT">
<ARTEFACT ARTEFACT_TYPE="OBJECT_UNDER_TEST"
ARTEFACT_FORMAT="HTML" />
</CAPABILITY_DATA>
<CAPABILITY_DATA CAPABILITY_DATA_TYPE="OUTPUT">
<ARTEFACT ARTEFACT_TYPE="TEST_SUITE"
ARTEFACT_FORMAT="NODE_SEQUENCES" />
</CAPABILITY_DATA>
</CAPABILITY>
(]
(B) Task. A testing task consists of a testing activity and related information about how
the activity is required to be performed, such as the context to give the purpose of the testing

activity, the specific testing method to use, the environment in which the activity must be

DEVELOPING A SOFTWARE TESTING ONTOLOGY 17

carried out, the available resources and the requirements on the test results. It can be

represented by the following UML class diagram.

| Task |

3 + 9
1 1 |

Activity Method | Task Data |

0-1 0-1
| Context || Environment | \L
1-*

<<enumeration>>

Task Data Type
Input
Output

Figure 12. The Compound Concept of Task
Notice that, the class diagram for the concept of task is very similar to the diagram for
the concept of capability. However, the semantics of the concepts are different.
Example 3. The following is an example of testing task that requires to generate test cases
according to the node coverage criterion for the HTML pages at the URL
http://www.brookes.ac.uk.
<TASK>
<CONTEXT CONTEXT_TYPE="SYSTEM_TEST" />
<ACTIVITY ACTIVITY_TYPE="TEST_CASE_GENERATION" />
<METHOD METHOD_NAME="NODE_COVERAGE_TESTING" />
<TASK_DATA TASK_DATA_TYPE="INPUT">
<ARTEFACT ARTEFACT_TYPE="OBJECT_UNDER_TEST"
ARTEFACT_FORMAT="HTML">
<ARTEFACT_LOCATION>http://www.brookes.ac.uk
</ARTEFACT_LOCATION>
</ARTEFACT>
</TASK_DATA>
</TASK>

[m]
Notice that, not all combinations of basic concepts make sense. For example, the node

coverage method cannot be applied to a media file, such as images, sound or videos. A

weakness of XML is that it provides very limited power to restrict such illegal combinations.
Basic Relations

Relationships between concepts play a significant role in the management of testing

DEVELOPING A SOFTWARE TESTING ONTOLOGY 18

activities in our multi-agent system. We identified a number of relationships between basic
concepts as well as compound concepts.

Basic relations between basic concepts form a very important part of the knowledge of
software testing. They must be stored in a knowledge-base as basic facts. This type of
knowledge is listed below.

(A) Subsumption relation between testing methods. A testing method 4 subsumes
method B, if the application of method 4 always achieves a test adequacy that is adequate
according to method B. The subsumption relation has been intensively investigated in
software testing literature; see (Zhu, Hall & May, 1997) for a survey.

(B) Compatibility relation between artefacts’ formats. An artefact format 4 is
compatible with artefact format B, if they are of the same type and the format of 4 is
compatible with B in the sense that if a tester understands the format of 4 implies that the
tester also understands the format of B.

(C)Enhancement relation between environments. An environment A4 is an
enhancement of environment B, if a testing task can be performed in environment B implies
that it can also be performed in environment 4. Assume that an enhancement relation is
defined on software and hardware components. The enhancement relation between
environments can be defined formally as follows. Let environments 4 and B consist of sets
{ai, ay, ..., ay} and {by, by, ..., b,,} of hardware and software components, respectively. 4 is an
enhancement of B, if and only if for all b;, i=1, 2, ..., m, there is one component a; € {ai, aa, ...,
a,} such that a; is an enhancement of b;.

(D) Inclusion relation between test activities. A test activity 4 may include a number
of more basic activities. For example, the test execution activity may include the derivation of
test driver and/or test stubs, the installation of test tools, etc. A test activity can be completed
only if all the sub-activities are completed.

(E) Temporal ordering between test activities. To fulfil a test task, a number of test
activities must be carried out in certain temporal order. For example, the generation of test
cases must be carried out before test execution.

These relations are all partial orderings. That is, they are transitive and reflexive. Figure

13 summarises these basic relations.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 19

hiethod Jé— — S [Aaiy K
* Subsumes IsBefore *| * Includes

: Artefact | !
:le | Order | | Include |

él Environmentl | Format |F

Enhances * [* IsCompatible

Figure 13. Basic Relations on Testing Concepts
Based on these basic facts and knowledge, more complicated relations can be defined
and used through knowledge inferences. The following are definitions of the most important

ones.
The MorePowerful Relation on Capability

The relation MorePowerful is defined between two capabilities. Let C represent the set of
all capabilities. For all ¢, ¢; € C, we say that ¢; is more powerful than c,, write
MorePowerful(ci, c), if and only if all of the following statements are true.

(1) c; and ¢, have the same context, and

(2) ¢ and ¢, have the same activity, and

(3) The method of ¢; subsumes the method of ¢,, and

(4) The environment of ¢; is an enhancement of the environment of ¢, and

(5) For all input artefacts a; of ¢, there is at least one input artefact a, of ¢, that a; is
compatible with a,, and

(6) For all output artefacts a, of ¢y, there is at least one output artefact a; of c; that a; is
compatible with a;.

Informally, MorePowerful(ci, c;) means that a tester has capability ¢; implies that the
tester can do all the tasks that can be done by a tester who has capability c¢,. In UML, the
MorePowerful relation is an association class; see Figure 14 for its structure.

It is easy to prove that the MorePowerful relation is also a partial ordering.

Theorem 1 (Reflexiveness): Vce C. MorePowerful(c, c).
Theorem 2 (Transitiveness):

Ve, ¢, cze C.MorePowerful(ci, c2) A MorePowerful(c,, c3) = MorePowerful(ci, c3).

DEVELOPING A SOFTWARE TESTING ONTOLOGY 20

The Contains Relation on Test Tasks

The relation Contain is defined between two tasks. Let 7 represent the set of all tasks.
For all ¢, and #,e T, we say that task ¢, contains t,, write Contain (t,, t,), if and only if all of
the following conditions are true.

(1) Task ¢, and #, have the same context;

(2) The activity of ¢, includes the activity of #;

(3) The method of #; subsumes the method of #;

(4) The environment of #; is an enhancement of the environment of #,;

(5) For all input artefacts a, of ¢, , there is at least one input artefact a; that a, is
compatible with a;;

(6) For all output artefact a, of #,, there is at least one output artefact a; of #, that a2 is
compatible a;.

Informally, Contain(t,, t;) means that accomplishing task ¢, implies accomplishing task #,.
Similar to the relation MorePowerful on capabilities, the Contains relation is also an
association class and can be similarly represented in UML; see Figure 14.

The Contain relation is also a partial ordering. That is, we have the following property of
the relation.

Theorem 3 (Reflexiveness): V¢eT, Contain(t, t).

Theorem 4 (Transitiveness): Vi, t;, t3 € T, Contain(ty, t;) A Contain(t,, t3) = Contain(t,, t3)
The Matches Relation Between Tasks And Capabilities

In the assignment of a testing task to a tester, a broker agent must answer the question
whether the task matches the capability of the tester. For example, assume that an agent is
registered as capable of generating statement coverage test cases for Java Applets and a test
task is requested for structural testing a Java Applet. The broker agent need to infer that the
agent is capable of fulfil the task. Therefore, it is necessary to define the following Matches
relation between a capability and a task.

For any ceC and te T, we say that capability ¢ matches task ¢, write Match(c, t), if and
only if all of the following conditions are true.

(1) Capability c and task ¢ have the same context;

(2) The activity of ¢ includes the activity of #;

(3) The method of ¢ subsumes the method of #, or the method of ¢ is an instance or a
subclass of the method of ¢;

(4) The environment of # is an enhancement of environment of c;

(5) For all artefacts a. in the input artefact set of C, there exists at least one artefact a; in
the input artefact of #, such that a, is compatible with a.;

(6) For all artefact @, in the output artefact set of 7, there exists at least one artefact a. in
the output artefact of ¢, such that a. is compatible with a;,.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 21

Match(c, t) means that a tester with capability ¢ can fulfil the task ¢. The following
properties of the relations form the foundation of the inferences that the broker agent requires
in the assignment of testing tasks.

Theorem S: V¢, c,€C, VteT, MorePowerful(ci, c2) A Match(c,, t) = Match(c, t).
Theorem 6: VceC, V¢, t,eT, Contain(t, t;) A Match(c, t|) = Match(c, t,).

Figure 14 below shows the structures of compound relations.

| Tester |

L 2

X — Cc T 7
[y] e RG]
] *
IsMorePowerful * | Ci ! *| T Contains

= .

| MorePowerful |

Figure 14. Compound Relations

USES OF THE SOFTWARE TESTING ONTOLOGY
In this section, we discuss how the ontology is used in our multi-agent system.
Communication Protocols And Task Scheduling

In a multi-agent system, many agents can play a similar role but with different
specialities. As discussed in the previous section, in our system, agents that play the same
role may have different capabilities, are implemented with different algorithms, execute on
different platforms, and are specialised in dealing with different formats of information. The
agent society is dynamically changing; new agents can be added into the system and old
agents can be replaced by a newer version. This makes task scheduling and assignment more
important and more difficult as well. Therefore, management agents are implemented as
brokers to negotiate with testing service agents to assign and schedule testing activities to
testing service agents. Each broker manages a registry of agents and keeps a record of their
capabilities and performances. Each service agent registers its capability to a broker when
joining the system. Tests tasks are also submitted to the brokers. For each task, the broker
will send it to the most suitable agent use the Match relation as a means of inferences. The
following describe the communication protocols and mechanisms for capability registration

and testing task submission.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 22

Combining Ontology with Speech-Act

In a multi-agent society, a clearly defined semantics is necessary for agents to express
their intensions and commitments to tasks. For example, when an agent sends a message to a
broker, it must make the intension of the message clear as to register their capabilities or to
submit a test job request, or to report a test result, etc. Such intensions can be represented as
illocutionary forces of the message. As in (Singh, 1993; 1998), illocutionary forces can be
classified into 7 types: assertive, directive, commissive, permissive, prohibitive, declarative,
and expressive.

To incorporate illocutionary forces in our agent communications, we associate each

message with a speech-act parameter. Hence, messages have the following structure in UML.

| Message |
<<Enumeration>> | Content |
Speech-Act Type JA

assertive, Capability
directive,

commissive,

permissive, ‘ Task

prohibitive, 1 1
declaratl.ve, Artefact
expressive

Figure 15. Message Structure
The following example is a typical scenario of using the ontology in agent
communication.

Example 4.

The following is a sequence of messages between agents 4; and 4, and a broker B.

(1) Agent 4, sends an ASSERTIVE message with a <capability> parameter to the broker B.
This means the agent 4| wants to register to the broker B and claims its capability.

(2) Agent A, sends an EXPRESSIVE message to the broker B, with a <task> parameter
describing a testing task. This means that the agent wants to find some agent to perform
the testing task.

(3) The broker B searches its knowledge about registered agents, and finds that agent 4, is the
best match for the task. It then sends a DIRECTIVE message with the <task> parameter
to agent 4.

(4) When agent 4, finishes the task, it sends an ASSERTIVE message with an <answer>

parameter to the broker. The <answer> parameter describes the status of the task and

DEVELOPING A SOFTWARE TESTING ONTOLOGY 23

output of the task if it is successful, or the reason of failure or error messages if it is not
successful.
(5) The broker B may forward the message to agent A,, or try to find another agent to carry

out the testing task in case the output of agent A, is not successful. o
CONCLUSION

This paper presents an ontology of software testing and discusses it uses in a multi-agent
software environment to support the evolutionary development and maintenance of
web-based applications. The prototype system consists of a number of software testing and
quality assurance agents. Each testing task is assigned to an agent in the system, which either
performs the requested task or decomposes it into smaller tasks for other agents to perform.
In this way, agents cooperate with each other to carry out complicated testing tasks.

As Jennings and Wooldridge (1998) pointed out, agent techniques benefit in application
areas that involve diverse platforms and information formats and in dynamic environments.
Our experiment supports this claim. In particular, for the following reasons, agent technology
is suitable for testing web-based systems.

The dynamic and evolutionary nature of web-based applications requires constantly
monitoring the changes of the system and its environment. Sometimes, the changes in the
system and its environment may require changes in testing strategy and method accordingly.
Agents are adaptive, and they can adjust their behaviours based on environment changes.
These changes can be integrated to the system dynamically.

Web-based information systems often operate on a diversity of platforms and use various
different formats of media and data. This demands a wide variety of test methods and tools to
be used in testing a single system. Multi-agent systems can provide a promising solution to
this problem. Different agents are built to handle different types of information, to implement
different testing methods and to integrate different tools. Thus, each individual agent can be
relatively simple while the whole system is powerful and extendible.

The distribution of large volume of information and functionality over a large geographic
area requires testing tasks carried out at different geographic locations and to transfer
information between computer systems. The agents can be distributed among many
computers to reduce the communication traffic.

Agents also provide a nice way that human testers interact with testing tools. The

relationship between human testers and agents are no longer a commander/slave relation.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 24

Instead, the human tester and the agents form a testing team and cooperate with each other. In
particular, when a part of a complicated testing task cannot be performed by the tools, the
testing will not fail completely. Instead, the agent can pass the unsolvable task to the human
tester and ask for help. This feature is of particular importance for testing web-based
applications, because they are often extended by integrating into the system new components
developed with new technology that may have no ready made testing tools at the beginning.
The collaborative relationship not only release human testers from routine work, which are
performed by the agents, but also enables the human testers to participate in the testing
process by taking the most intellectually challenging tasks so that the whole testing job can
be performed more efficiently and effectively.

In the design and implementation of the prototype system, we realised that the key issue
is the mechanism that enables the flexible integration of agents into the environment and the
effective communications between agents and between the human testers and agents. Our
solution is the ontology of software testing. It is used as the content language for software
agents to register into the system with a capability description, for human testers and agents
to make testing requests and report testing results, for management agents to allocate tasks to
agents. This paper reports how the concepts of the ontology and the relations between them
are defined in UML. Their properties are also analysed. Speech-act theory is incorporated in
the system and combined with the ontology to define communication protocols and to
facilitate collaborations between agents. Our experience in the development of the ontology
further confirmed the advantages and benefits of using ontology in tool integration that have
already been observed in other application domains such as those mentioned in section 0, but
have not been explored in software engineering research as far as we know.

The ontology is designed based on the domain knowledge of software testing to mediate
the communications between the agents. It was represented in XML to codify the knowledge
of software testing for agents’ processing of messages. The representation in XML for
run-time communications between agents achieved a flexibility of modification and
extendibility very well. However, during the testing and validation of the prototype system,
we realised that XML representation is at a rather low level of abstraction. It is not very
readable for domain experts to validate the ontology. Our first attempt to represent the
ontology at a higher level of abstraction was the uses of BNF to describe the syntax structure
of XML expressions (Huo, Zhu and Greenwood, 2003). For example, the following is the
BNF definition of tester.

<tester> ::= "<TESTER" {<tester parameter>} ">" { <tester> } "</ TESTER >"

DEVELOPING A SOFTWARE TESTING ONTOLOGY 25

<tester parameter> ::= <tester type> | <name> | <capability> | <leader>

<name> ::="NAME =" <string>

<leader> ::= “LEADER =" <name>

<tester type> ::="TYPE =" ("HUMAN" | "SOFTWARE" | "TEAM")

BNF descriptions of the XML syntax are significantly shorter than the corresponding
XML Schema definitions. For example, the XML Schema definition of XML representation
of the concept tester below is 3 times longer than the BNF expressions. BNF is more suitable
to human readers. Moreover, software engineers and computer scientists, who are the domain
experts of software testing, are more familiar with BNF than XML Schema.

<!-- TESTER -->
<xs:element name="TESTER">
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="TESTER"/>
</Xs:sequence>
<xs:attribute name="TESTER_TYPE" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="HUMAN"/>
<xs:enumeration value="SOFTWARE"/>
<xs:enumeration value="TEAM"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="TESTER_NAME" use="required"/>
<xs:attribute name="TESTER_LEADER"/>
</xs:complexType>
</xs:element>

However, the BNF representation is still not good enough for end users of the prototype
system, who communicate with the agents in the ontology of software testing to request
testing tasks and receive testing results. BNF is still at the syntax level. It does not properly
represent some important concepts of ontology, such as the concept of sub-class, etc.
Therefore, we also developed the representation of the ontology in UML. It is at a suitable
level of abstraction for both validation by human experts and communication with the end
users.

Representing the ontology in two notations at different abstraction levels raised the
question how to validate the consistency between the UML and XML representations.
Recently, standard XML representations of UML models and tools though XMI have
emerged to enable the automatic translation of UML models into XML representations.
Using such techniques will result in completely re-writing the whole prototype system. It is

unclear and worth further investigation that whether the automatic technique of translation

DEVELOPING A SOFTWARE TESTING ONTOLOGY 26

from UML to XML can be applied to our ontology. It seems that our ontology is significantly
more complicated than the examples and case studied conducted in the development of such
techniques and reported in the literature.

We are also further investigating the methodology of developing ontology at a wider
context of software engineering and further developing the prototype of software growth
environment. The automatic translation technique will be beneficial to our further research. A
difficulty problem is the development of a model of the whole system, including definitions
of the organizational structure, functionality and dynamic behaviours of the agents. It seems
that an agent-oriented modelling language such as the CAMLE (Shan and Zhu, 2003a; 2003b)
or AUML (FIPA Modelling TC) is necessary to catch the agents’ autonomous and social
behaviours. In our design and implementation of the ontology in UML and XML, we noticed
that UML does not provide adequate support to the formal specification and analysis of the
relations between concepts although OCL can be partially helpful. For example, we have to
use first order logic formula for the definitions and proofs of the properties of compound

relations.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 27

REFERENCES

Bennett, K. & Rajlich, V. (2000). Software maintenance and evolution: a roadmap.
Proceedings of the Conference on the Future of Software engineering. ACM Press. 73-87.

Boehm, B. (2000). Requirements that handle IKIWISI, COTS, and rapid change. /[EEE
Computer, July 2000, 99-102.

Cranefield, S., Haustein, S. & Purvis M. (2001). UML-Based Ontology Modelling for
Software Agents. Proceedings of Ontologies in Agent Systems Workshop, August 2001,
Montreal, 21-28.

Crowder, R., Wills, G., & Hall, W. (1998). Hypermedia information management: A new
paradigm. Proceedings of 3" International Conference on Management Innovation in
Manufacture, July 1998, 329-334.

FIPA Modelling Technical Committee, Agent UML, AUML website at URL

http://www.auml.org/

Fox, M. S., & Gruninger, M. (1994). Ontologies for Enterprise Integration. Proceedings of
the 2™ Conf. on Cooperative Information Systems, Toronto.

Huo, Q., Zhu, H. & Greenwood, S. (2002). Using Ontology in Agent-based Web Testing.
Proceedings of International Conference on Intelligent Information Technology (ICIIT’02),
Beijing, China.

Huo, Q., Zhu, H. & Greenwood, S. (2003). A Multi-Agent Software Environment for Testing
Web-based Applications. Proceedings of the 27" IEEE Annual Computer Software and
Applications Conference (COMPSAC’03), Dallas, Taxas, USA, 210-215.

Jennings N. R. & Wooldridge, M. (eds.) (1998). Agent Technology: Foundations,
Applications, and Markets. Springer-Verlag.

Jin, L., Zhu, H., & Hall, P. (1997). Adequate testing of hypertext applications. Journal of
Information and Software Technology, 39(4), 225-234.

Lehman, M. M. (1980). Programs, life cycles and laws of software evolution. Proceedings of
IEEE, Sept. 1980, 1060-1076.

Lehman, M. M. (1990). Uncertainty in Computer Application. Communications of ACM,
33(5), 584-586.

Lehman M. M. & Ramil, J. F. (2001). Rules and Tools for Software Evolution Planning and
Management. Annals of Software Engineering, Special Issue on Software Management,

11(1), 15-44.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 28

National Committee for Information Technology Standards. Draft proposed American
national standard for Knowledge Interchange Format. Retrieved Sept. 2003 from
http://logic.stanford.edu/kif/dpans.html

Naur, P. (1992). Programming as theory building, in Computing: A Human Activity. ACM
Press, 37-48.

Neches, R. et al. (1991). Enabling Technology for Knowledge Sharing. A Magazine, Winter
issue, 36-56.

Rajlich, V. & Bennett, K., (2000). A staged model for the software life cycle. IEEE Computer,
July 2000, 66-71.

Shan, L., & Zhu, H., (2003a) Modelling Cooperative Multi-Agent Systems, Proceedings of
The Second International Workshop on Grid and Cooperative Computing (GCC’03),
Shanghai, China, 1451-1458.

Shan, L., & Zhu, H., (2003b) Modelling and specification of scenarios and agent behaviour,
in Proceedings of IEEE/WIC conference on Intelligent Agent Technology (IAT03),
Halifax, Canada, 32-38.

Staab, S. & Maedche, A.(2001). Knowledge portals - Ontology at work. Al Magazine, 21(2).

Singh, M.P. (1993). A semantics for speech acts. Annals of Mathematical and Artificial
Intelligence, 8(I), 47-71.

Singh, M. P. (1998) Agent communication languages: Rethinking the principles. /EEE
Computer, Dec 1998, 40-47.

Uschold, M. & Gruninger M. (1996). Ontologies: Principles, Methods, and Applications.
Knowledge Engineering Review, 11(2). 93—155.

Zhu, H., Hall, P. & May, J. (1997). Software Unit Test Coverage and Adequacy. ACM
Computing Survey, 29(4), 366~427.

DEVELOPING A SOFTWARE TESTING ONTOLOGY 29

APPENDIX. XML SCHEMA (XSD) DEFINITION OF XML REPRESENTATION OF
THE ONTOLOGY OF SOFTWARE TESTING

The following is the complete XML Schema (XSD) definition of the XML
representation of the ontology of software testing.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<!-- TESTER -->
<xs:element name="TESTER">
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="TESTER"/>
</Xs:sequence>
<xs:attribute name="TESTER_TYPE" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="HUMAN"/>
<xs:enumeration value="SOFTWARE"/>
<xs:enumeration value="TEAM"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="TESTER_NAME" use="required"/>
<xs:attribute name="TESTER_LEADER"/>
</xs:complexType>
</xs:element>
<!-- CONTEXT -->
<xs:element name="CONTEXT">
<xs:complexType>
<xs:attribute name="CONTEXT_TYPE" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="UNIT_TEST"/>
<xs:enumeration value="INTEGRATION_TEST"/>
<xs:enumeration value="SYSTEM_TEST"/>
<xs:enumeration value="REGRESSION_TEST"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<!-- ACTIVITY -->
<xs:element name="ACTIVITY">
<xs:complexType>
<xs:attribute name="ACTIVITY_TYPE" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="TEST_PLANNING"/>
<xs:enumeration value="TEST_CASE_GENERATION"/>
<Xxs:enumeration value="TEST_CASE_EXECUTION"/>
<xs:enumeration value="TEST_RESULT_VERIFICATION"/>
<xs:enumeration value="TEST_COVERAGE_MEASUREMENT"/>

DEVELOPING A SOFTWARE TESTING ONTOLOGY

30

<xs:enumeration value="TEST_REPORT_GENERATION"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<!-- METHOD -->
<xs:element name="METHOD">
<xs:complexType>
<xs:attribute name="METHOD_NAME" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="CONTROL_FLOW_TESTING"/>
<xs:enumeration value="DATA_FLOW_TESTING"/>
<xs:enumeration value="STATEMENT_COVERAGE_TESTING"/>
<xs:enumeration value="BRANCH_COVERAGE_TESTING"/>
<xs:enumeration value="PATH_COVERAGE_TESTING"/>
<xs:enumeration value="NODE_COVERAGE_TESTING"/>
<xs:enumeration value="LINK_COVERAGE_TESTING"/>
<xs:enumeration value="LIP_COVERAGE_TESTING"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="METHOD_TECHNIQUE">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="STRUCTUAL_TESTING"/>
<xs:enumeration value="FAULT_BASED_TESTING"/>
<xs:enumeration value="ERROR_BASED_TESTING"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="METHOD_APPROACH">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="PROGRAM_BASED_ TESTING"/>
<xs:enumeration value="SPECIFICATION_BASED_APPROACH"/>
<xs:enumeration value="RANDOM_TESTING"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<!-- ARTEFACT -->
<xs:complexType name="ARTEFACT">
<Xs:sequence>
<xs:element ref="ARTEFACT"/>
</Xs:sequence>
</xs:complexType>
<xs:element name="ARTEFACT">
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" ref="TESTER"/>
<xs:element minOccurs="0" ref="ARTEFACT_DATA"/>
<xs:element minOccurs="0" ref="ARTEFACT_LOCATION"/>
</Xs:sequence>
<xs:attribute name="ARTEFACT_TYPE" use="required">

DEVELOPING A SOFTWARE TESTING ONTOLOGY

31

<xs:simpleType>
<xs:restriction base="xs:token">

<XS:

<XS

<XS

<XS

enumeration

:enumeration
<XS:
<XS:

enumeration
enumeration

:enumeration
<XS:
<XS:
:enumeration

enumeration
enumeration

</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="ARTEFACT_FORMAT" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">

<XS

:enumeration
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:

enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="ARTEFACT_DATA" type="any"/>
<xs:element name="ARTEFACT_LOCATION" type="any"/>
<!-- ENVIROMENT -->
<xs:element name="ENVIRONMENT" >
<xs:complexType>
<Xxs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="HARDWARE"/>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="SOFTWARE"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="HARDWARE" >
<xs:complexType>
<xs:attribute name="HARDWARE_DEVICE" use="required"/>
<xs:attribute name="HARDWARE_MANUFATURER" use="required"/>
<xs:attribute name="HARDWARE_MODEL" use="required"/>
</xs:complexType>

value="OBJECT_UNDER_TEST"/>
value="TEST_PLAN"/>
value="TEST_SCRIPT"/>
value="TEST_RESULT"/>
value="TEST_SUITE"/>
value="TEST_COVERAGE"/>
value="ERROR_REPORT"/>
value="SPECIFICATION"/>

value="PROGRAM"/>
value="HTML"/>
value="XML"/>
value="TEXT_FILE"/>
value="WORD_FILE"/>
value="PDF_FILE"/>
value="POSTSCRIPT_FILE"/>
value="BMP_IMAGE"/>
value="JPEG_IMAGE"/>
value="CD_SOUND"/>
value="MPEG_VIDEQ"/>
value="VCD_VIDEO"/>
value="DVD_VIDEQ"/>
value="JAVA_ APPLET"/>
value="JAVA_SCRIPT"/>
value="NODE_SEQUENCES"/>
value="LINK_SEQUENCES"/>
value="LIP_SEQUENCES"/>
value="DATA"/>

DEVELOPING A SOFTWARE TESTING ONTOLOGY

32

</xs:element>
<xs:element name="SOFTWARE">
<xs:complexType>
<xs:attribute name="SOFTWARE_TYPE" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="0S"/>
<xs:enumeration value="DATABASE"/>
<xs:enumeration value="COMPILER"/>
<xs:enumeration value="WEB_SERVER"/>
<xs:enumeration value="WEB_BROWSER"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="SOFTWARE_PRODUCT" use="required"/>
<xs:attribute name="SOFTWARE_VERSION" use="required"/>
</xs:complexType>
</xs:element>
<!-- CAPABILITY -->
<xs:element name="CAPABILITY">
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" ref="CONTEXT"/>
<xs:element minOccurs="1" maxOccurs="1" ref="ACTIVITY"/>
<xs:element minOccurs="1" maxOccurs="1" ref="METHOD"/>
<xs:element minOccurs="0" maxOccurs="1" ref="ENVIRONMENT"/>
<xs:element minOccurs="0" maxOccurs="unbounded"
ref="CAPABILITY_DATA"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="CAPABILITY_DATA">
<xs:complexType>
<xs:complexContent>
<xs:extension base="ARTEFACT">
<xs:attribute name="CAPABILITY_DATA_TYPE" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="INPUT"/>
<xs:enumeration value="OUTPUT"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<!-- TASK -->
<xs:element name="TASK">
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" ref="CONTEXT"/>
<xs:element minOccurs="1" maxOccurs="1" ref="ACTIVITY"/>
<xs:element minOccurs="1" maxOccurs="1" ref="METHOD"/>
<xs:element minOccurs="0" maxOccurs="1" ref="ENVIRONMENT"/>
<xs:element maxOccurs="unbounded" ref="TASK_DATA"/>
</Xs:sequence>

DEVELOPING A SOFTWARE TESTING ONTOLOGY 33

</xs:complexType>
</xs:element>
<xs:element name="TASK_DATA">
<xs:complexType>
<xs:complexContent>
<xs:extension base="ARTEFACT">
<xs:attribute name="TASK_DATA_TYPE" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="INPUT"/>
<xs:enumeration value="OUTPUT"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<!-- REPLY -->
<xs:element name="REPLY">
<xs:complexType>
<xs:attribute name="REPLY_STATUS" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="SUCCESSFUL"/>
<xs:enumeration value="FAILED"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="REPLY_REASON"/>
</xs:complexType>
</xs:element>
<!-- MESSAGE -->
<xs:element name="MESSAGE">
<xs:complexType>
<xs:choice>
<xs:element ref="CAPABILITY"/>
<xs:element ref="TASK"/>
<xs:element ref="REPLY"/>
</xs:choice>
<xs:attribute name="MESSAGE_ACT" use="required">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="ASSERTIVE"/>
<xs:enumeration value="DIRECTIVE"/>
<xs:enumeration value="COMMISIVE"/>
<xs:enumeration value="PERMISSIVE"/>
<xs:enumeration value="PROHIBITIVE"/>
<xs:enumeration value="DECLARATIVE"/>
<xs:enumeration value="EXPRESSIVE"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:complexType name="any" mixed="true">
<Xs:sequence>

DEVELOPING A SOFTWARE TESTING ONTOLOGY 34

<xs:any minOccurs="0" maxOccurs="unbounded" processContents="strict"/>
</Xs:sequence>
</xs:complexType>
</xs:schema>

