
A Framework for Agent-based Service-Oriented Modelling ∗

Zhi Jin
School of Electronics Engineering and Computer Science, Peking University

Key Laboratory of High Confidence Software Technologies, Ministry of Education
Beijing 100871, China. Email: zhijin@amss.ac.cn

Hong Zhu
Department of Computing, Oxford Brookes University
Oxford OX33 1HX, UK. Email: hzhu@brookes.ac.uk

Abstract

Service-oriented computing is becoming a direction of
computing technology. For realising the mission of service-
oriented computing, service-oriented architecture has been
proposed to facilitate the application development via dis-
coverable services distributed on Internet. That brings out
service-oriented modelling as a new technical area to pro-
vide modelling and analysis techniques of service-oriented
applications. The paper proposes a framework for agent-
based service-oriented modelling. It treats both the service
providers and the service requesters as service agents. Do-
main ontology has been used to provide the sharable do-
main knowledge as well as terminology for allowing the
agents to understand each others. A modelling process has
also been illustrated with the model development of an on-
line auction service.

1. Introduction

Service-oriented modelling (SOC) aims to develop ser-
vices and use available services as basic computing enti-
ties to support distributed computing applications [4]. It as-
sumes that service requests would be satisfied through dis-
covering and invoking available services dynamically and
automatically. One of the main challenges for supporting
the mission of SOC lies in the area of service-oriented mod-
elling (SOM) [3], which has been considered as the first
phase in the lifecycle of service-oriented application [15].
∗This work was supported by the National Natural Science Fund for

Distinguished Young Scholars of China under Grant No. 60625204, the
Key Project of National Natural Science Foundation of China under Grant
No.60796324, and the National 973 Fundamental Research and Develop-
ment Program of China under Grant No.2002CB312004. This work is
finished when the first author visits Oxford Brookes University funded by
Oxford Brookes’ International Visiting Fellowship.

Research attentions have been paid to this area recently.
Levi and Arsanjani, [9] and Endrei, Ang and Arsanjani,
[14] for example, used goals to guide behavioural specifica-
tion for components and extend component based analysis
beyond traditional OOAD to model SOA application. Zim-
mermann, Krohdaul and Gee considered service-oriented
modelling as a hybrid approach including a set of traditional
techniques that incorporate object-oriented analysis and de-
sign, business process modelling and enterprise architecture
description [17]. Arsanjani advocated an iterative and in-
cremental service-oriented architecture modelling process
that consists of identification, specification and realization
of services, components as well as workflows [2].

Despite of these efforts, SOM discipline is still far from
being mature. Most of these efforts are trying to shift ex-
isting software modelling techniques into the field of SOM,
whereas some significant features of SOC are obviously ig-
nored. First of all, Web Services technology is fundamen-
tally different from the traditional distributed computing
technologies [16]. In [8], Zhu et al. argued that the services
in service-oriented applications are autonomous, active and
persistent computational entities which control their own
resources and their own behaviours and even show some
kind of social ability such as collaborating with each other
through dynamic discovery and invocation of other services.

Second, service-oriented technology enables dynamic
software integration at runtime. To realize its full power,
it does not only require the interfaces between integrated
entities syntactically compatible, but more importantly, the
interactions must be semantically correct. It is a major prob-
lem in the development of service-oriented applications to
enable dynamic search of semantically correct services and
to understand required services with correct meanings. It
is widely recognised that background knowledge shared by
services is essential for supporting the dynamic discovery
and invocation of services. Unfortunately, these have not

been taken into consideration in existing works on SOM.
The current state of art in SOM is that there is no unified

modelling language for describing the models suitable for
SOM, no systematic methodology and controllable process
for conducting the modelling, and no usable tools or plat-
forms for supporting the modelling. These are necessities of
a mature modelling discipline. This paper is motivated by
this consideration and aims to provide a systematic method-
ology and a controllable process as well as a modelling lan-
guage. The main essences of the approach proposed in this
paper include: (1) Using agents to capture the autonomy
and activeness of participants in service-oriented comput-
ing; (2) Introducing domain ontology to provide sharable
knowledge and terminology for these participants coming
from different parties; and (3) Providing guidelines to help
conducting the process of service modelling.

This paper is organized as follows. An agent-oriented
SOM framework have been presented in Section 2. Sec-
tion 3 addresses the modelling of domain ontology. Sec-
tion 4 is devoted to the process of the agent-based SOM.
And finally, Section 5 concludes the paper.

2. An Agent-based Framework

In [7, 8], a general framework for modelling information
systems as well as Web Services was proposed based on the
caste-centric approach to multi-agent systems. Two main
principles for the development of service oriented systems
were identified and stated, i.e. the autonomy principle and
the explicitness principle.

The autonomy principle states that in order to achieve the
full power of service oriented computing, both the service
providers and the service requesters should be autonomous
so that the interaction between them can be established dy-
namically and flexibly.

Based on this principles, Zhu et al. proposed a core struc-
ture for agent-based approach to service oriented applica-
tions [8]. In this structure, a service oriented application
consists of a number of agents classified into a number of
castes as illustrated in Figure 1. Each caste represents a role
of parties involved in the service. Agents are the active com-
putational entities that play the roles. They are autonomous
and collaborate with each other to provide services and to
obtain services. Each agent may possess a number of ‘real
world’ entities, i.e. resources, that it can control and change
their states through a set of operations, which reflect its ca-
pability. In addition to a set of actions that the agent is ca-
pable of performing, the definition of an agent also contains
a set of behaviour rules that determine when to take action
and which one to take. An agent also explicitly defines a
set of other agents (which can be variable) in the systems as
its neighbours that collaborate with. A caste defines these
structural and behavioural features of the agents as a tem-

plate so that agents can be instantiated through declaration
at compiler time or dynamically created at runtime. Agents
can also dynamically join a caste to obtain its capability and
to be bound to its behaviour rules.

Caste S1R1:
Role 1

(Realiser)

Caste S1U1:
Role 2
(Users)

Caste S1U2:
Role 4
(Users)

Caste S1R2:
Role 3

(Realiser)

Caste S2R1:
Role 1

(Realiser)

Caste S2U1:
Role 3
(Users)

Caste S2U2:
Role 2
(Users)

Agent A1:
S1R1

Agent A2:
S1R2

Agent A3:
S2R1,
S1R2

Agent A7:
S2U1

Agent A5:
S2U2

Agent A6:
S1U1

Service 1 Service 2

Agent A4:
S2U1

Agent A7:
S2U1

Figure 1. The Core Structure

The explicitness principle states that all aspects of each
service, including the capability, the structure of resources
as well as the behaviour rules, must be explicitly specified
covering both the syntax and semantic of the services. This
enables the semantic correctness of service interactions to
be assessable.

Applying this principle, the specification and model of
a service and its castes that represent its service users and
serve as the interface to the external must be published and
searchable. Consequently, the core structure of caste centric
agent-based approach to service orientation is altered into
the architecture illustrated in Figure 2.

Caste Spec/Model

Caste Cn

Caste C2

Caste C1

Overall Spec/Model

Service 1
Spec/Model

Caste Cn

Service 1

Caste C2 Caste C1

……

Service Registry

Service 2
Spec/Model

Service 3
Spec/Model

Service N
Spec/Model

… …

Register

Search

Agent A1 Agent A2 Agent Ak

Service 2 Service 3 Service N

Agent B1 Agent B2 Agent BN … …

Figure 2. Structure of Service-Oriented Archi-
tecture

The architecture above provides a mechanism for regis-
tering and searching services at semantic level. It also place
the formal specification and modelling of services at the
centre of developing and utilization of services. In [8], it
was proposed that agent-oriented formal specification lan-
guage SLABS [6] and agent oriented modelling language
CAMLE [12] are used for this purpose.

In addition to the above two principles, here we propose
one more principle, which is called competence principle.

The competence principle states that for a service to be
able to dynamically interact with other services meaning-
fully and correctly, it must be competent enough to under-
stand other services’ specifications, which according to the
explicitness principle, is accessible.

For a service to be understandable to other services, its
specification must be in a standard language, using stan-
dard terminology and encoding. A great amount of efforts
have been reported in the literature on the standardisation
of encoding, such as the WSDL and the representation of
business process as well as ontology like OWL-S. How-
ever, how the domain knowledge are modelled at a high
level of abstraction has not been addressed adequately. In
[18, 19], Wang and Jin et al propose to use environment-
based semantic capability specifications and to model the
semantic capabilities of services as the effects imposed by
services on the real world entities. This matches very well
the agent approach advanced in [7, 8]. Combining these
two approaches, this paper propose to add a new type of
elements in the architecture, i.e. i.e. ontology of the ‘real
world’ entities in application domains. Consequently, the
architecture of SOM can be illustrated in Figure3.

Caste Cn

Caste C3
Caste C2

Caste C1

Overall Spec/Model

Caste Spec/Model

Service 1
Spec/Model

Service Registry

Service 2
Spec/Model

Service 3
Spec/Model

Service N
Spec/Model

… …

Ontology of
Domain 1

Ontology of
Domain 2

Ontology of
Domain M

… …

Figure 3. Structure of Service Registry

3. Domain Ontology Specification

The idea of environment-based semantic capability of
services is motivated by the observation that the semantics
of a software system concerns the environment on which
the system will operate. In this sense, only considering the
‘inner world’ of a service is not enough for modelling its
capability. It is necessary to distinguish the capability spec-
ification from the internal structure of the service and to al-
low the capability specification to refer to its ‘outer world’
that corresponds to the environment of the service.

The outer world which consists of ‘real world’ entities is
outside the service. These entities are domain relevant and
independent of the existence of any particular service and
thus they can be shared by services from different parties.
For modelling the ‘real world’ entities, a practical approach
is to use ontology that is standardised and shared in the
application domain. This technique has been widely used

in agent-oriented architecture [10] for providing machine
readable vocabularies and sharable domain knowledge.

This ontology needs to specify the domain entities as
well as the attributes of these entities. Here, we include
a portion of Auction Domain Ontology for illustrating the
structure of the ontology as shown in Figure 4. This portion
of ontology contains domain stateful entities, such as Bid,
Auction, Item, etc, and domain stateless attributes such as
Date and Price, Identifier etc. The ontology also contains
associations among these entities. Obviously, this portion
of ontology can be easily extended by including more types
of entities and associations.

Figure 4. A Portion of Auction Domain Con-
cept Structure

For those stateful entities, further specification needs to
be given for describing their states and state transitions. Fig-
ure 5 shows the state diagrams of some stateful domain en-
tities in Auction domain. For example, each auction could
be in the states: null (i.e. it is not yet proposed), created
(i.e. it has been proposed), started (i.e. after the start date),
end-in-Success (i.e. there exists a successful bid) or end-by-
Overdue (i.e. no bid succeed after the end date).

Auction State Diagram

Item State Diagram

Bid State Diagram

Figure 5. Domain Entity State Diagram

We use an effect-based view for specifying the service
capability. In terms of the ontology, there are several kinds
of elementary effects on the real world entities which can
be imposed by services. They are: (1) an instance of a real
world entity can be created and assigned to a unique identi-
fier; (2) a stateless attribute of an entity/instance can be as-

signed a value; (3) the state of a stateful entity instance can
be changed; and (4) an entity instance can be eliminated.

The effect of a service can be the combination of the el-
ementary effects which may happen on the entity instances.
Sometimes the effect can be represented as a compressed
combination of effects so that it only contains necessary
milestones of the changes of the instances. The feasibility
constraints can be given on the effect representation. They
are: (1) an instance has to be created before other effects
happen on it; (2) when a stateful instance is created, it is in
its starting state by default; (3) when a stateful instance en-
ters its ending state, it is eliminated by default; and (4) any
stateless attribute can only be assigned one value.

The effect can be formalized as < Entity, Effect > in
which Entity is a set of entity instances and the Effect is a
set of effects which include creating/eliminating entity in-
stances, making the stateful entity instances changing their
states, and assigning values to stateless attributes.

For example, a possible effect in Auction domain is
’JoinAuction’. It concerns two entity instances, i.e. Auc-
tion[auctionID] which is already there and Client[clientID]
which will be created for Auction[auctionID], and makes
Client[clientID] becoming a member (from being a non-
member) in Auction[auctionID].

4. Process of Service-Oriented Modelling

Our process of SOM consists of four main stages: (a)
domain identification and capability modelling; (b) service
model construction; (c) model verification, validation and
checking; (d) specification generation. The following dis-
cuss each stage.

4.1 Domain identification and Capability
Modelling

As in the development of all software systems, the first
step in the development of a service is the elicitation, clar-
ification and definition of its requirements. For service ori-
ented applications, one of the most important requirements
is to determine the capability of the service to be provided,
which as argued in the previous section, must be specified
in the context of the application domain using a domain on-
tology. Thus, our first step of SOM is to identify the ap-
plication domain and to determine the domain ontology to
be used, if more than one such ontology exists. In case of
such a domain ontology is not available, develop a domain
ontology is necessary. Once such a domain ontology is de-
termined, the capability of the service can be specified in
the vocabulary of the ontology without ambiguity.

For example, the capability of Auction Membership
Manager can be represented as follows using the domain
ontology of auction.

Capability Profile Auction Membership Manager
Participants: {Client,Auction}
Effects:
Effect JoinAuction

InstanceChange: {+Client[clientID]}
StateChange:
{<beInState(Client[clientID],non-member|Auction[auctionID]),
beInState(Client[clientID], member|Auction[auctionID])>}

Effect WithdrawAuction
InstanceChange: {-Client[clientID]}
StateChange:
{<beInState(Client[clientID],member|Auction[auctionID]),
beInState(Client[clientID],non-member|Auction[auctionID])>}

Capability modelling is equivalent to the initial func-
tional requirements specification. Non-functional require-
ments of services such as the quality of services should also
be modelled and specified at this stage. However, details on
this issue is beyond the scope of this paper.

4.2 Model Construction

In the model construction stage, the functional require-
ments of a service is further clarified and specified through
a set of models on various aspects of the services. In partic-
ular, a structural model provides the information about how
to service fits into its environment by specifying its intended
types of users and the types of other services it relies on. A
collaboration model specifies the protocol that the service
interacts with its users and other services that it depends on
in various interaction scenarios. The behaviour model spec-
ifies its internal decision processes, etc.

4.2.1 Structural Modelling

After capability modelling, we get a set of entities and/or
their instances which will be operated by the service. How-
ever, such operations may be performed through collabora-
tion with other services, which could either be a service re-
quester, or another service provider. Then, structural mod-
elling is to identify relationships among these services.

For example, for the online auction service, we can iden-
tify the following participants in the service application
system, Auction service manager who provide auction ser-
vices, Seller who sells items at the auction and Buyer who
submit bids and buys the items. The Seller and Buyer are
service requesters and Auction service provider obviously
are the service provider. The domain objects involved in
the service are bid and it auction. This leads to the a caste
diagram in CAMLE language [8] shown in Figure 6.

Entity

Service Domain Objects

Provider Requester

Auction Manager Buyer Seller

AuctionBid

Figure 6. Structure Hierarchy Diagram

4.2.2 Collaboration Modelling

Collaboration model is specifying the interactions between
the participants of the service. We use scenario analysis as
the basis for developing the collaboration model.

A scenario is a typical situation in the interaction be-
tween certain participants. It represents a typical service
usage. A collaboration model refers to the structural model
for the participants and domain objects involved in the in-
teraction as well as the domain ontology.

A scenario can be specified as a sequence of interactions
among participants. A scenario can be formulated as fol-
lows where Service Name gives the service in which the
scenario happens (indicated by Scenario Name). The par-
ticipants in the interaction are named in Interactee. For
this scenario to happen, the Pre-conditions must be satis-
fied. The main body of the scenario is a sequence of events,
which consists of the action taken and the agent name who
takes the action. As a result, interaction must finish with the
Post-conditions satisfied.

Scenario Profile Service Name : Scenario Name
Interactee: P Autonomous Entity
Reference: P Domain Object
Pre-Condition: P Assertions
Event sequence: P Interactee: Message
Post-Condition: P Assertions

The following is a simplified scenario of Auction Service
for accepting an auction request in which it only accepts the
request from a member of the Auction:

Scenario Profile Auction Service : Acceptance of sell request
Interactee: {Auction Manger, Seller[SellerID], Bank[BankID]}
Reference: {Item[ItemID], Auction[AuctionID]}
Pre-Condition:
Seller[SellerID]:beInState(member,-),
belongTo(Item[ItemID], Seller[SellerID]),

Item[ItemID]:not(beInState(in-auction,-),
belongTo(CreditCard[CreditCardNo], Seller[SellerID]),

CreditCard[CreditCardNo]: beInState(valid(credit),Seller[SellerID]),
CreditCard[CreditCardNo]: beInState(valid(credit-Payment),Seller[SellerID]

Event Sequence:
Seller[SellerID]: ↓RequestAuction(Seller[SellerID],
Item[ItemID], StartDate, EndDate, MinPrice),

Bank[BankID]: ↑Transfer(CreditCard[CreditCardNo], Payment),
Seller[SellerID]: ↑AcceptAuction(Seller[SellerID],
Item[ItemID], Auction[AuctionID])

Post-Condition:
Auction[AuctionID]: beInState(created, -),
Item[ItemID]: beInState(in-auction, Auction[AuctionID])

In the same way, we can specify other scenarios taken
part by the auction service provider. For each scenario, a
scenario specific collaboration model can be derived. Once
a complete set of collaboration diagrams for a service is ob-
tained, a general collaboration diagram depicts all possible
interactions between service participants can be produced
[8]. Figure 7 shows the general collaboration model of the
Online Auction Service.

4.2.3 Behaviour Modelling

The next step is to develop a behaviour model for each caste.
A behaviour model defines a set of behaviour rules that

the agents of the caste must follow. Each rule specifies the

3. <isState(SellerID,member)>

RequestAuction(ItemID,ItemID.Info,

 StartDate,EndDate,MinPrice,

 CreditCardNo)

6. AcceptAuction(ItemID,AuctionID)

4. Transfer(TrasactionID,

CreditCardNo,Payment)

1. ApplyMembership(_) 2. AcceptMembership(SellerID)

5. Send(TrasactionID,success)

Figure 7. General Collaboration Model of
Auction Service

condition in which an action should be taken. These condi-
tions give additional information that cannot be specified in
scenario and collaboration diagrams, but they must be con-
sistent with the information contained there. The purpose of
behaviour model is making the dynamic behaviour of each
agent more accurate.

For example, the behaviour model for Auction Accep-
tance could be figured out as follows.

Behaviour Profile Auction Acceptance
Interactee: {Seller[SellerID], Bank[BankID]}
Reference: {Item[ItemID], Auction[AuctionID]}
Behaviours:
Pre-Condition:

Seller[SellerID]:inState(member,-),
belongTo(Item[ItemID], Seller[SellerID]),
Item[ItemID]:not(inState(in-auction,-)

Interaction:
Seller[SellerID]: ↓RequestAuction(Seller[SellerID],

Item[ItemID], StartDate, EndDate, MinPrice)
Post-Condition:
Pre-Condition:

belongTo(CreditCard[CreditCardNo], Seller[SellerID]),
CreditCard[CreditCardNo]:inState(valid(credit), Seller[SellerID]),

Interaction:
Bank[BankID]: ↑Transfer(CreditCard[CreditCardNo],Payment)

Post-Condition:
CreditCard[CreditCardNo]:inState(valid(credit-Payment), Seller[SellerID]),

Pre-Condition:
Interaction:

Seller[SellerID]: ↑AcceptAuction(Seller[SellerID],
Item[ItemID], Auction[AuctionID])

Post-Condition:
Auction[AuctionID]:inState(created, -),
Item[ItemID]:inState(in-auction, Auction[AuctionID])

4.3 Checking Model Consistency and
Generation of Formal Specification

Verification, validation and testing play a significant role
in SOM. It is difficult because services are normally de-
veloped by different vendors. It is impossible to check the
consistency via analysis of the whole system structure as in
traditional development of software system, because each
service provider has only limited access to the information.

However, as demonstrated in [8], when all the models
are represented in CAMLE, the consistency of between ser-
vices can be automatically checked by the CAMLE mod-
elling tool. This consistency checking can be extended to
include domain ontology models by explicitly defining a set
of consistency constraints on the models in terms of the do-
main ontology.

Once models in CAMLE passes the consistency check,
using CAMLE’s specification generator, a service model
can be automatically transformed into a formal specifica-
tion in SLABS. Readers are referred to [12] for details.

5. Conclusions

In this paper, we take a holistic view to service-oriented
modelling, which consists of requirements analysis, do-
main knowledge analysis, model construction with struc-
tural, collaborational and behavioural modelling of ser-
vices, model consistency checking and specification gen-
eration. It fits into the holistic view of developing of ser-
vice oriented application, which include analysis and de-
sign, architecture and deployment [2]. The service-oriented
modelling framework [13] has been devised for illustrat-
ing the service-oriented development life cycle methodol-
ogy. There have been some efforts to modelling service-
oriented applications. Proposals to the description of se-
mantic aspects of service have been advanced in the liter-
atures that rely on ontology for taxonomic descriptions of
the functionality of services and workflow descriptions, e.g.
WSFL [5] based on Petri Net theory and the Pi-Calculus
model with its XLANG [20]. These two approaches are
unified in BPML [1]. But most of them are designed for
manually modelling not for dynamic and autonomic appli-
cation modelling which has been recognized as a must-be-
addressed challenge [11].

Compared with the existing works, the key features of
our approach include: (1) Extending the agent-oriented
flavour of our previous work by explicitly capturing the ca-
pability, strategy and knowledge of service agents; (2) Do-
main ontology is used as the background knowledge shared
by service agents; and (3) A process has been proposed for
conducting the service-oriented modelling, which is obvi-
ously urgently needed for developing service-oriented ap-
plications.

There are some issues worthy further research. We are
investigating the model analysis and the verification and
validation of modelled services. More efforts should also
be made on the development of domain ontology for cap-
turing the precise meanings of the service capability and
other models.

References

[1] A.Arkin. Business process modeling lan-
guage. http://www.w3.org/TR/2004/WD-ws-cdl-10-
20041217/BPML, 2004.

[2] A.Arsanjani. Service-oriented mod-
eling and architecture. http://www-
128.ibm.com/developerworks/webservices/library/ws-
soa-design1/, 2004.

[3] B.Michael. Introduction to Service-Oriented Modeling: Ser-
vice Analysis, Design, and Architecture. John Wiley and
Sons, 2008.

[4] C.M.MacKenzie, K.Laskey, F.McCabe, and
et al. OASIS reference model for service
oriented architecture 1.0. http://www.oasis-
open.org/committees/tc−home.php?wg−abbrev=soa-rm.

[5] F.Leymann. Web services flow language. http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
2001.

[6] H.Zhu. SLABS: A formal specification language for agent-
based systems. International Journal of Software Engineer-
ing and Knowledge Engineering, 11(5):529–558, 2001.

[7] H.Zhu. Towards an Agent-oriented paradigm of Informa-
tion systems, chapter in Handbook of Research on Nature
Inspired Computing for Economy and Management, pages
679–691. Idea Group Inc., 2006.

[8] H.Zhu and L.Shan. Agent-oriented modeling and specifica-
tion of web services. International Journal of Simulation
and Process Modeling, 3(1&2):26–77, 2007.

[9] K.Levi and A.Arsanjani. A goal-driven approach to enter-
prise component identification and specification. Communi-
cations of The ACM, 45(10):45–52, 2002.

[10] K.Sycara and M.Paolucci. Ontologies in agent architectures,
chapter in Handbook on Ontologies in Information Systems,
pages 343–364. Springer-Verlag, 2004.

[11] K.Sycara, M.Paolucci, A.Ankolekar, and et al. Automated
discovery, interaction and composition of semantic web ser-
vices. Journal of Web Semantics, 1(1):27–46, 2003.

[12] L.Shan and H.Zhu. CAMLE: a caste-centric agent-oriented
modelling language and environment. In Proc. SELMAS’04
at ICSE’04, pages 66–73, Edinburgh, UK, 2004. IEE.

[13] M.Bell. Service-oriented Modeling: Service Analysis, De-
sign and Architecture. Wiley & Sons, 2008.

[14] M.Endrei, J.Ang, and A.Arsanjani. Patterns: Service ori-
ented architecture and web services. Technical report, IBM,
2004.

[15] M.P.Papazoglou and W. van den Heuvel. Business process
development lifecycle methodology: Bridging together the
world of business processes and web services. Technical
report, University of Tilburg, 2006.

[16] M.Stal. Web services: beyond component-based computing.
Communications of ACM, 45(10):71–76, 2002.

[17] O.Zimmermann, P.Krogdahl, and C.Gee. Elements of
service-oriented analysis and design. Technical report, IBM,
2004.

[18] P.Wang, Z.Jin, and L.Liu. An approach for specifying ca-
pability of web services based on environment ontology. In
Proceedings of IEEE International Conference on Web Ser-
vices, ICWS’06, pages 365–372, 2006.

[19] P.Wang, Z.Jin, L.Liu, and G.Cai. Building towards capabil-
ity specifications of web services based on an environment
ontology. IEEE Transactions on Knowledge and Data Engi-
neering, 20(4):547–561, 2008.

[20] S.Thatte. XLANG-Web services for for business process de-
sign. http://www.gotdotnet.com/teams/xml−wsspecs/slang-
c/default.htm, 2001.

