Ontology for Service Oriented Testing of Web Services

Yufeng Zhang
Dept of Computer Sci, National Univ. of Defence Tech.,
Changsha, China, Email: yuffonzhang@163.com

Abstract

This paper presents a service oriented architecture for
testing Web Services. In this architecture, various par-
ties interoperate with each other to complete testing
tasks through testing service registration, discovery and
invocation. The analysis of the architecture in a typical
scenario shows that it has the advantages of supporting
dynamic discovery and invocation of testing services as
required by the dynamic discovery and invocation of
normal functional services without compromising secu-
rity, privacy and intellectual property rights. It is flexi-
ble and extendable. It also helps to reduce the risk of
unnecessary disturbances to the normal operations of
services due to testing activities. The paper reports a
prototype implementation of the architecture by adapt-
ing and implementing the ontology of software testing
using Semantic Web Services technology. A case study
with the WS wrapping of an automated testing tool is
also reported, which demonstrated that the architecture
is technically feasible.

1. Introduction

The recent development of web technology marks the
beginning of a new era of service oriented computing. In
particular, Web Services (WS) enable applications to
communicate with each other over the Internet [1]. Se-
mantic Web facilitates the definition of the semantics of
information and services on the web, making it possible
for the web to understand and satisfy the requests of
people and machines to use the web content [3]. The
combination of these two, i.e. Semantic Web Services
(SWS), uses the Semantic Web to help to create a re-
pository of computer readable data and to describe the
semantics of the services that perform tasks and transac-
tions. It supports capability-based service discovery and
interoperation at runtime. This opens up a huge range of
new applications and a new platform of great flexibility.

However, quality assurance and testing of WS appli-
cations is still an open problem. On one hand, loose cou-
pling of services improves system testability. However,
on the other hand, the difficulty of testing WS applica-
tions increased due to the poor observability and control-
lability [4]. Services are independent entities that control
their own resources and behaviors autonomously and
collaborate with each other actively and automatically
[2]. Their autonomous and dynamic behaviours make
the observation of test results and the control of testing
process much more difficult, if not impossible.

Hong Zhu
Department of Computing, Oxford Brookes University,
Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

In the literature, research efforts on quality assurance
and testing of WS applications have been reported. Chan
and Cheung applied metamorphic testing methods to test
WS and treat WS as black box [5]. Tsai and Paul pro-
posed to extend the WSDL to support WS testing by
providing additional information in WS description [6].
In [7], network level fault injection was used to test WS
applications. Some other methods have also been pro-
posed, such as using data perturbation to generate test
cases for WS [8] and testing the semantics of XML
Schema [9], etc. However, the difficulties in testing WS
caused by the autonomous nature of WS and the need of
testing on-the-fly are still not addressed.

To meet these challenges, in [4] Zhu proposed a ser-
vice oriented framework. In this framework, various
parties interoperate with each other to perform testing
tasks via test service search, invocation and delivery. He
also proposed the utilization of an ontology STOWS of
software testing to enable the collaboration between
testing services. This paper is based on the framework. It
further develops the techniques by implementing it in
Semantic Web Services and demonstrates its feasibility.

The remainder of this paper is organized as follows.
Section 2 outlines the architecture and analyzes the
workflow of testing tasks to show how the services col-
laborate with each other. Section 3 presents the ontology.
Section 4 describes the implementation of the frame-
work using techniques in Semantic Web Services. Sec-
tion 5 reports a case study to show how a testing tool is
wrapped into SWS. Section 6 concludes paper with a
remark on future work.

2. SOA for Testing WS

This section first outlines the architecture and then ana-
lyzes a typical scenario in testing a web service.

2.1 Overview of the architecture

Figure 1 shows the overall structure of the architecture
proposed in [4]. In this architecture, a WS should ideally
be accompanied with a specially designed service that
facilitates the online testing of the original services. For
the sake of convenience, the original services that pro-
vide functions for costumers are called functional ser-
vices (or shortly F-services in the sequel). The special
services that designed to help testing the functional ser-
vices are called festing services (T-services for short),
which are provided either by the functional services pro-
viders or a third party.

UDDI Registry

T-services of 4 T-services
Tester T, \ 4 of Tester T, o
F-services of Matchmaker F-services =1
Tester T, of Tester T, %
[°]
<
3 | Broker |<.>| GUI 5
)
=]
T-services T | T-services 0%
@
of A; g of Ay =]
9]
F-services F-services =1
of A of A,

Figure 1. System Architecture

In Figure 1, A, is the service that to be tested. The T-
services of A (i.e. testing services) is designed specially
for testing the F-services of A;. Testers are third party
service providers specialized in providing software test-
ing services, such as testing tool vendors. These testers
can perform general testing tasks such as test case gen-
eration, test execution, measuring test adequacy and so
forth. They could have their own T-services that enable
testing themselves. Testing tasks are performed by the
collaboration of these loose-coupled testing services.

It is worth noting that the general service oriented ar-
chitecture is insufficient to achieve the purpose of online
testing of WS, because testing tasks are usually too com-
plicated to be performed by one testing service and need
dynamic generation of test plan and execution of the test
plan through the collaboration of multiple testing ser-
vices. This problem becomes apparent in the analysis of
a typical scenario in the next subsection. A solution to
this problem is to introduce the notion of testing service
broker, which is a special type of testing services that
coordinates the testing services to ensure test tasks per-
formed correctly. It receives the requests of testing tasks
from test requesters, makes test plans, decomposes the
test plans into subtasks, searches for and invokes other
testing services that are capable of performing the corre-
sponding tasks according to the plan. Search for appro-
priate testing services is another difficulty. Our technical
solution is to use a Matchmaker to collaborate with
UDDI to provide testing service registration and search
facility. It is a searching engine of testing services regis-
tered in UDDI.

For this idea to be practically workable, some techni-
cal issues must be addressed. First, an effective commu-
nication mechanism for these WS is needed. Entities
involved in this framework are loose-coupled WS. The
bindings of services may happen at runtime. This re-
quires that the artefacts should be encoded in machine
readable standard code so that services can understand
them correctly. Second, the services should be search-
able according to their capabilities. These issues can be
achieved using Semantic Web Services techniques.

2.2 A typical scenario

In order to illustrate how the proposed architecture
works and to identify the technical issues in the imple-
mentation, let’s analyze a fictional typical scenario.

Suppose that a bank is developing or running a WS
called FM to serve its team of fund managers to buy and
sell shares through stock market brokers and to serve its
customers to buy and sell fund online. In order to con-
nect to a WS provided by a stock market broker, say SB,
it is required to test SB’s WS with adequate combina-
tions of parameters. Note that the connection to SB could
take place at runtime as a result of searching the UDDI.
In our proposed architecture, SB should provide a festing
service (T-services) in order to separate testing transac-
tions from the real transactions. The later will require
real monies change hands and share account state up-
dates; while the former does not.

The process of testing starts with the request of a
testing task by F'M either manually or automatically. The
task should consist of a test objective to be achieved and
the target service to be tested. For example, the test ob-
jective might be to check every equation in a formal
algebraic specification of the service provided by SB.

Matchmaker
4.Search for testersTii List of testers 4
3.Request test
Bank: FM | service g Test Broker: TB
16.Test report Y Y
6.Request
Intended composition test service | |19-Test
. . 9.Test obs esults
of services resuits
case 10.Request
test service
Stock Market L
Broker: SB j . . 1.Register
74Requestdserwce Testing Service: seré\:[ce
< mela-data TG (Test case
- Generator) 2.Register
Stock Market 8.Testing related : <ervice
Broker: SB 1R meta—datq
(T-Service) : equesctiserwce Testing Service: TE
< mela-data (Test Executor)
12.Testing related >

T meta-data i A
v 13.Test invocation of services
14.Results of test invocation of services
Figure 2. The scenario of testing banker-broker composition

This test task is represented in a message and submit-
ted as service request to a test broker 7B. After receiving
the request submitted by FM, TB makes a test plan ac-
cording to the test requirement and decomposes it into a
sequence of smaller test subtasks if necessary. In this
particular scenario, suppose that 7B decomposes the test
task into two subtasks: (a) the generation of test cases,
and (b) the execution of the test cases and checking the
correctness of test results.

In order to get these two testing tasks performed, the
test broker 7B searches the UDDI registry for each sub-
task through a matchmaker. In this particular scenario,
TB will search for a test case generator and a test execu-

tor and oracle. There may be multiple registered WS that
are capable of performing a certain testing task. One of
these candidates must be selected by the requester ac-
cording to certain criterion, such as its quality of ser-
vices. We suppose that 7B selects 7G for generating test
cases and TE for executing the test cases and checking
the correctness.

In the next step, the test broker constructs a sequence
of requests and submits them to the corresponding se-
lected test services. For example, 7B sends a request of
generating test cases to 7G with the information about
the artefacts involved in the testing, such as an algebraic
specification of SB.

A testing service may perform a test task solely
based on the information contained in the test request, or
contact the related WS to obtain necessary information.
For example, 7G may interact with SB’s T-service for
the information about its source code and the metadata
about the source code such as its language.

It is worth noting that first we assume that 7G can be
trusted by the service provider SB. A mechanism can be
set up for certifying the legitimacy of third party testing
service providers and agreeing on proper dealing with
information privacy and intellectual property rights. Sec-
ond, some testing tasks may need human participation.
Thus, a testing process can be a long transaction and WS
can serve as a human computer interface. In the sequel,
we will not distinguish manual realization of a service
from automatic realization as far as the messages pass-
ing between roles are standard and machine readable.

Once TG completed the task of test case generation,
it sends the generated test cases to 7B. TB will then send
test cases together with other related information to TF
to make a service request. TE will then invoke the test
executions of SB and check the test results. Once fin-
ished the testing task, it will return to 7B with a test re-
port.

Generally speaking, an invocation of a service as a
test should be submitted to the testing services so that it
can be distinguished from a real request of the services.
Otherwise, an invocation of a service must carry a tag to
signal whether the service request is a test. Note that, in
the WS standard stack, there is no mechanism that sup-
ports the distinction of normal service requests from
testing requests. Moreover, there are other testing related
services that are necessary to enable automated on-the-
fly testing of WS. For example, in this particular sce-
nario, we need testing services to grant permissions to
access the source code, formal specification and/or other
metadata of the services, to report the test coverage of
test executions, etc. Here, we assume again that testers
TE and TG are trusted by SB. Checking if a tester is le-
gitimate is also an important function of testing services.
Therefore, in general, to separate testing services from
the functional services is a reasonable design decision.

As illustrated by the above scenario, this collabora-

tion among multiple roles consists of service search,
service invocation and service execution. In this process,
FM eventually achieves its test objectives while the ser-
vice provider SB does not lose its intellectual property
rights because the sensitive information is only released
to trusted third party specialized in testing.

2.3. Analysis of the scenario

From the above illustrative scenario, we can identify the
following key technical issues of the interaction process.
(a) How to describe the capability of a testing service?

Testing services must be searchable according to
their capabilities so that they can be discovered at run-
time. The matching between search request and service
registry is the key to the successful discovery of services.
(b) How to invoke testing services?

Invoking a service at runtime may involve a number
of software artefacts, such as the program/service under
test, the test cases, the specification of the service, the
execution results, etc. The interaction between the ser-
vice provider and the service requester may also be a
complicated process.

These issues can be achieved by using the Semantic
Web Services (SWS) technology, in which the concepts
in the topic domain of software testing, such as tasks,
capabilities, test methods and artefacts can be defined in
the form of ontology. Testing service registration, re-
quests and their results are also represented using the
terminology defined by the ontology. The following will
present such an ontology and its implementation in
OWL.

3. Ontology of Software Testing

Generally, ontology defines the basic terms and relations
comprising the vocabulary of a topic area as well as the
rules for the combination and extension of the vocabu-
lary [10]. It articulates a domain specific knowledge [11].

The Web Ontology Language OWL is a semantic
markup language for publishing and sharing ontologies
on the Web [12]. It is designed for applications that need
to process the content instead of just presenting informa-
tion to humans [13].

We adapt the ontology of software testing STOWS
built in [4, 11], which was originally developed for agent
oriented software testing. Its concrete representation of
many concepts does not fit well into the architecture of
service oriented computing and the OWL-S standard.

The revised ontology includes basic concepts Tester,
Activity, Artefact, Context, Environment and Method.
They are combined together to express compound con-
cepts Capability, and Task, which can be represented in
OWL-S Service Profile. The following describes each
concept one by one.

(1) Tester. A tester refers to a particular party who car-
ries out a testing activity. In general, testers include hu-

man beings, organizations and software systems. In the
context of service orientation, we only consider testing
services as testers. All the testing tasks are performed by
services. A tester can therefore be an atomic test service,
or a composition of testing services. An important at-
tribute of a Tester is its capability, which will be dis-

cussed later.
ES

/\

[

| AtomicService |

CompositeService

Figure 3. Tester

(2) Activity. There are various testing activities including
test planning, test case generation, test execution, result
validation, adequacy measurement and test report gen-
eration, etc. [11].

—| Test planning |

Test Case Generation |

Test Execution |

Result validation |

_|
_|
.
_|

Adequacy measurement |

—| Report generation |

Figure 4. Test activities

(3) Artefact. A test task performed by a service may in-
volve multiple kinds of artefacts. The Artefact possesses
an attribute Location expressed by a URL or a URI to
give the location of the artefact on the Internet.

(4) Method. For each test activity, there may be multiple
testing methods applicable. Method is a part of the capa-
bility and also an optional part of test task. Test methods
can be classified in a number of different ways. Figure 5
show two typical classifications of the concept Method.
Both of them are represented in the hierarchy of test
methods in the ontology.

| Method |

[]
| SpecificationBased | | ProgramBased

| UsageBased |

| Method |

[]
| FaultBased | | ErrorBased |

| StructuralTesting |

[]
| ControlFlowTesting | | DataFlowTesting |

Figure 5. Concept of Method (b)
(5) Context. Testing activities may occur in different
software development stages and have various testing

purposes. Testing contexts typically include unit testing,
integration testing, system testing, regression testing, etc.
(6) Environment. The testing environment is the hard-
ware and software configurations in which a testing is to
be performed.

These concepts in the ontology are managed by the
ontology management module in the framework. Details
are omitted for the sake of space.

4. Implementation

This section describes how the key technical aspects are
implemented using SWS technology.

4.1 Description of capability and task

Generally speaking, there are two basic capability repre-
sentation approaches for WS [16, 17]. The first is based
on hierarchical classification of services in which each
class represents a set of services capable of performing
the similar task (i.e., of the similar capability). The sec-
ond implicitly describes the capability of a service by its
state transformation and the information transfers.
OWL-S combines these two and uses ontology of ser-
vices. It describes services in three main parts: Service
Profile, Service Model and Service Grounding [18]. Ser-
vice Profile represents the capability of a service by de-
scribing its category and IOPE (Input, Output, Precondi-
tion and Effects) [18]. The registration of and search for
a service are all based on the Service Profile.

| Capability |

[\
1 1 0-*

Activity Method | Capability Data |

0-1 0-1
| Context | | Environment | \L
1-%

<<enumeration>>
Capability Data Type
Input
Output

Figure 6. Structure of capability in the ontology of [11]

Conceptually, the search of a test service is to match
service’s capability with the required test task. In the
STOWS ontology of software testing, as shown in Fig-
ure 6, Capability includes basic concepts activity, con-
text, environment, method and artefacts. To enable the
search of test services using SWS technology, all these
aspects of capability must be represented in the structure
of Service Profile. We classify the Service Category
according to test activity. The test method, context and
environment are represented as special input parameters
of Profile. The artefacts are represented as the Input and
Output of the Profile. The mapping between the concept
capability in ontology and the Service Profile is shown
in Figure 7.

To support flexible service search, the MorePowerful
relations between capabilities is defined such that capa-

bility C; is more powerful than C, if and only if

a) C; and C, have the same activities.

b) C; and C, have the same context.

¢) Environment of C; is the enhancement of the envi-
ronment of C,.

d) The method of C, is implemented by C;.

e) The input artefacts of C, are included by input arte-
facts of C; and the output artefacts of C, are in-
cluded by output artefacts of C;.

The description of tasks is similar to the Capability.
However, it has different meanings and usages. It de-
scribes what is required to be done and specifies how it
should be done. Moreover, it includes some meta-data of
the test objective such as the services description of the
services that to be tested and so on. It is used in the
search for testing service and the invocation of testing
service. A relation Capableof between capability C and
task T is also defined such that C CapableOf T means
service of capability C is capable of performing task 7.

4.2 Matching of Services

The OWL-S/UDDI Matchmaker [19] is the services

capability matching engine. It extends the UDDI Regis-

try and enables the capability search [20] at three levels

of matching between capability and request [21].

— Exact matching: the capabilities in the registry and
in the request match exactly.

— Plug-in matching: the service provided is more gen-
eral than that in the request.

— Relaxed matching: there is a similarity between ser-
vices provided and that in the request.

The Matchmaker provides five filters for users to con-

struct discovery profile: which are namespace filter,

domain filter, text filter, I/O type filter and constraint

filter [21]. With these filters, users can construct neces-

sary compound filters to control the precision of match-

ing. The representation of tasks and capabilities as Pro-

files enables the Capable Of relation between capability

and task to be implemented by the matchmaker.

The matching engine Matchmaker implemented the
capability matching in a general way, the result of the
matching may include multiple candidates. Selection
from the candidates is based on two considerations. First,

Capability data

Input Artefacts ————T— Artefacts..
OUTPUT PARAMETERS

1
Output Artefacts \
! Artefacts...

! 1 1 . . 1
! Capability i ! Service profile !
1

I Activity ! — ServiceCategory .
i Context \E\Lﬂn PARAMETERS i
I Environment \ContextMark !
1 1 1
i Method i ! EnvironmentMark !
| : i MethodMark |
| ! : !
! 1
1 1 1
1 1 1
1 1 1
1 1 1

1

Figure 7. Mapping between Capability and Service Profile

the matchmaker tags a score for each candidate service
in the result list, the higher the score, the more similar
between the candidate and the request. Second, multiple
candidates may have the same score, further comparison
of the capabilities of the candidates is necessary. The
relation MorePowerful between capabilities is used here.

5. Case Study

We have conducted a case study to demonstrate the fea-
sibility of the approach.

In the case study, we wrapped an automated compo-
nent testing tool CASCAT [22] into a web service. We
described its capability in the form of Service Profile as
described in the previous section. The Web Service ver-
sion of the tool is then hosted on a server and opened to
the public for invocation. Experiments with search for
the service and invocation of the tool as Web Service
were carried out successfully.

CASCAT is an automated tool for testing Enterprise
Java Beans based on algebraic specification. It can
automatically generate test cases from formal specifica-
tions written in an algebraic specification language
CASOCC. It can also automatically execute the test
cases and to check if the equations in the algebraic
specification are violated. In the case study, we wrapped
the test case generation part to demonstrate the feasibil-
ity of the approach. The result Web Service is called CS
in the sequel.

5.1. Registration

We have built a UDDI registry server using OWL-
S/UDDI Matchmaker (Matchmaker). The environment
consists of Windows XP running on Intel Core Duo
CPU 2.16GHz with Jdk 1.5, Tomcat 5.5 and Mysql 5.0.

The WS CS is registered on this UDDI registry. In its
Service Profile, the ServiceCategory is “TestCaseGen-
erationServices”. The Input artefact is specified by the
class CasoccSpecification, which is a subclass of Speci-
fication and stands for algebraic specification in CA-
SOCC. The context of CS is “ComponentTest”. Its envi-
ronment is ‘not limited’. Its method is CASOCC-method,
which is a subclass of SpecificationBased method. The
output artefact is test case.

The registration of CS is through the Matchmaker
Client API with the above as input datum.

5.2 Submitting test tasks

In the experiment, we also built a service that plays the
role of test requester. It constructs test tasks and submits
them to the test broker which generates requests accord-
ing to the test tasks and submits them to Matchmaker to
search for test services. The particular test task that it
produced is to generate test case from CASOCC specifi-
cation in the context of the test as component test.

5.3. Search and discovery

Once the test broker receives the test task, it generates a
capability description from the test task and constructs a
Service Profile according to the mapping in Figure 7. It
then calls the API of the Matchmaker Client to search
for test service providers.

5.4. Invocation

To test the invocation of the service, we deployed a En-
terprise Java Bean on Jboss platform and wrote a formal
specification of the bean in CASOCC. The CS is in-
voked to generate test case of the component. The result
is an instance of the OWL class TestCase. The Location
attribute of the instance contains the URL of the file that
contains the test cases generated by the service.

6. Conclusion

In this paper, we presented a service oriented framework
for testing Web Services. In this framework, various
parties interoperate with each other to complete testing
tasks. We adapted ontology to describe the concepts and
their relations in the domain of software testing. Based
on the ontology, the interoperation between services are
specified and implemented in Semantic Web Services
technology. The analysis of the framework in a typical
scenario shows that the approach has the advantages of
supporting dynamic discovery and invocation of testing
services without compromise security, privacy and intel-
lectual property rights. It also helps to reduce the risk of
unnecessary disturbances to the normal operations of
services due to testing activities. The framework is flexi-
ble and extendable. Our case study with the WS wrap-
ping of the testing tool CASCAT [22] demonstrated that
the framework is technically feasible.

References

[1] Gottschalk, K., Graham, S., Kreger, H. and Snell, J., In-
troduction to Web Services architecture, At URL:
http://www.research.ibm.com/journal/sj/412/gottschalk.ht
ml.

[2] Stal, M., Web Services: beyond component-based comput-
ing, C. ACM, Vol.45, No.10, 2002, pp71-76.

[3] Berners-Lee, T., Hendler, J. and Lassila, O., The Semantic
Web, Scientific American, 2001, 284(5): 34~43.

[4] Zhu, H., A Framework for Service-Oriented Testing of
Web Services, Proc. of COMPSAC’06, Sept. 2006, pp679-
691.

[5] Chan, W. K., Cheung, S. C. and Leung, K., Towards a
metamorphic testing methodology for service oriented soft-
ware applications, Proc. of QSIC2005, 2005, pp. 470-476.

[6] Tsai, W.T, Paul, R, Wang, Y., Fan, C., Wang, D., Extend-
ing WSDL to Facilitate Web Services Testing. Proceedings
of the 7th IEEE International Symposium on High Assur-
ance Systems Engineering, 2002, pp. 171-172.

[7] Looker, N., Xu, J., Assessing the Dependability of SOAP
RPC Based Web Services by Fault Injection, Proc. of
WORDS’03, IEEE CS Press, 2003, pp163-170.

[8] Jeff Offutt, J., and Xu, W., Generating test cases for Web
services using data perturbation, ACM SIGSOFT Software
Engineering Notes, Vol. 29, No. 5, 2004, pp127-130.

[9] Jian Bing Li and Miller, J., Testing the semantics of W3C
XML schema, Proc. of COMPSAC’05, 2005, pp443- 448.

[10] Uschold, M. and Gruninger, M., Ontologies: Principles,
Methods, and Applications, Knowledge Engineering Re-
view, Vol. 11, No.2, 1996, pp93-155.

[11] Zhu, H., Huo, Q. and Greenwood, S., A Multi-Agent Soft-
ware Environment for Testing Web-based Applications,
Proc. of COMPSAC’03, 2003, pp210-215.

[12] OWL Web Ontology Language Reference. at URL:
http://www.w3.0org/TR/2004/REC-owl-ref-20040210/,
2004.

[13] OWL Web Ontology Language Overview. Available on-
line at URL: http://www.w3.org/TR/owl-features/, 2004.
[14] Zhu, H., Hall, P. A. V. and May, J. H. R., Software unit
test coverage and adequacy, ACM Computing Surveys,

Vol. 29, No. 4, Dec. 1997, pp336-427.

[15] protégé-owl api, Available online at URL:
http://protege.stanford.edu/plugins/owl/api/

[16] Sycara, K., Paolucci, M., Ankolekar, A. and Srinivasan,
N., Automated Discovery, Interaction and Composition of
Semantic Web services, Journal of Web Semantics, Vol. 1,
No. 1, Dec. 2003, pp27-46.

[17] Martin, D., Burstein, M., McDermott, D., Mcllraith, S.,
Paolucci, M., Sycara, K., McGuinness, D., Sirin, E. and
Srinivasan, N., Bringing Semantics to Web Services: The
OWL-S Approach, at URL: http://www.cs.cmu.edu/
~softagents//papers/OWL-S-SWSWPC2004-final.pdf

[18] OWL-S: Semantic Markup for Web Services. at URL:
http://www.w3.org/Submission/OWL-S/, 2004.

[19] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K.,
Semantic Matching of Web Services Capabilities, Proc. of
ISWC’02, 2002, pp333-347.

[20] Paolucci, M., Kawamura, T., Payne, T.R. & Katia Sycara.
Importing the Semantic Web in UDDI, Proc. of Web Ser-
vices, E-business & Sem. Web Workshop, 2002, pp225-
236

[21] Kawamura, T., De Blasio, J-A., Hasegawa, T., Paolucci,
M. and Sycara, K., A Preliminary Report of a Public Ex-
periment of a Semantic Service Matchmaker combined
with a UDDI Business Registry, Proc. of ICSOC’03, Tren-
to, Italy, Dec. 2003, pp208-224.

[22] Yu, B., Kong, L., Zhang, Y. and Zhu, H., Testing Java
Components Based on Algebraic Specifications, Proc. of
ICST’08, April 2008, pp190-199.

[23] Srinivasan, N., Paolucci, M. and Sycara, K., An Efficient
Algorithm for OWL-S based Semantic Search in UDDI,
Proc. of SWSWPC’04, 2005, pp96-110.

[24] OWL-S API, at URL: http://www.mindswap.org/2004/
owl-s/api/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

