
Unifying Domain Ontology with Agent-Oriented Modeling of Services

Zhi Jin
Key Lab. of High Confidence Software Tech.

School of Elect. Eng. and Comp. Sci., Peking University
Beijing 100871, China

Email: zhijin@sei.pku.edu.cn

Hong Zhu
Dept. of Comp. & Comm. Technologies

Oxford Brookes University
Oxford OX33 1HX, UK

Email: hzhu@brookes.ac.uk

Abstract— Modeling plays a crucial role in model-driven
development of service-oriented systems. This paper proposes
a framework for service-oriented modeling that combines an
agent-oriented software development methodology with an
ontology-based domain analysis technique. It aims at
improving the dynamic composability of services at
requirements and design stages through modeling. The
framework consists of an architectural structure of service
models and a process of modeling. The architecture combines
agent-oriented models of software systems in which service
providers and requesters are regarded as autonomous entities
(and called agents), and domain ontology, which specifies the
entities in the application domain and their dynamic behaviors.
The domain ontology extends classic ontology by including
causal and symbolic entities as well as autonomous entities.
The approach is illustrated by an example of online auction
service.

Keywords—Service-oriented computing, Software modeling,
Service engineering, Software agents, Domain ontology.

I. INTRODUCTION
Service-oriented computing (SOC) aims at realizing

distributed applications through developing services as basic
computing entities and composing available services
dynamically with highest flexibility [1]. The one of the key
characteristics of service-oriented architectures is the
dynamic service composition through discovering and
invoking available services that are published and registered.
How to develop services to achieve this mission is still one
of the main challenges in service-oriented system
engineering.

A. Related Work
Among various approaches proposed in the literature of

service-oriented engineering, the model-driven approach
offers a high degree of automation and high level of
abstraction [2,3,4,5]. The past few years have seen a rapid
growth of research in this area. Existing works fall into the
following two classes.
• Extension of object-oriented and component-based

modeling.
Among the most well-known works of this type, Levi

and Arsanjani [6] and Endrei, Ang and Arsanjani [7] used
goals to guide behavioral specification for components and
extend component-based analysis beyond traditional object-
oriented analysis and design to model service-oriented
applications. Zimmermann, Krohdaul and Gee [8]

considered service-oriented modeling as a hybrid approach
including a set of traditional techniques that incorporate
object-oriented analysis and design, business process
modeling and enterprise architecture description. Arsanjani
[9] advocated an iterative and incremental SOA modeling
process that consists of identification, specification and
realization of services, components as well as workflows.
Zhang et al. have also developed a software development
environment and tools SOMA-ME [2] that facilitate model-
driven development of services based on the SOMA
methodology [2]. It extends UML 2.0 by a profile that
defines the concepts related to services and extends the IBM
Rational Software Architect product to provide a
development environment for designing SOA solutions in a
model-driven fashion.
• Workflow models for service choreography and

orchestration.
Modeling languages have been proposed and

standardized for service choreography and orchestration,
such as WS-BPEL (Web Services Business Process
Execution Language) [10], WS-CDL (Web Services
Choreography Description Language) [11], etc. These
languages directly aim at the composition of web services.
However, although they are widely regarded as process
modeling languages, strictly speaking, they are not suitable
for model driven service development due to their relatively
low level of abstraction. A number of researchers have
investigated workflow specification and modeling based on
various formal notations, such as Petri-nets, process algebra,
finite state machine and automata.

B. The Open Problems
Despite of these efforts, existing works on service-

oriented modeling (SOM) have not adequately addressed the
following important issues of SOC.

First of all, as Stal pointed out [12], service oriented
architecture (SOA) is fundamentally different from the
traditional distributed computing technologies. Many
researchers have further argued (C.f. [13 , 14]) that the
services in a service-oriented system differ from traditional
components by their autonomous and social behaviors. They
are autonomous in the sense that they control their own
resources and their own behaviors. They may demonstrate
social ability by collaborating with each other through
dynamic discovery and invocation of services unknown at
design time. Therefore, they should be regarded as agents.
Here, by the word agent we mean a computational entity that
encapsulates its states, operations, behavior rules and an

Proceedings of The 6th IEEE International Symposium on Service Oriented System Engineering (SOSE 2011)

978-1-4673-0412-2/11/$26.00 ©2011 IEEE 31

Hong
Stamp

explicitly described environment. They are the
computational entities that provide services, and often are
also consumers of other services. This is just like estate
agents provide services of buying and selling estate
properties, and travel agents provide services of buying and
selling air tickets, tourism products, etc.

Secondly, to realize the full power of SOC, it does not
only require the interfaces between integrated entities
syntactically compatible, but more importantly, the
interactions must be semantically correct. It is currently a
major problem in the development of service-oriented
applications to enable dynamic search of semantically
correct services and to understand required services with
correct meanings. The domain knowledge of the application
shared by services is essential to the semantic correctness of
dynamic discovery and invocation of services. Much
research has been reported in the development of
infrastructure and enabling technologies addressing this issue
under the title of Semantic Web Services [15]. However,
little has been done in the research on modeling SOA that
takes ontology and domain knowledge into consideration.

Finally, how to develop new services efficiently, say by
reusing existing software components or services, have not
been taken into consideration, too. In general, existing work
on service development only focuses on enabling dynamic
service composition at runtime. Languages for business
process modeling including WS-BPEL and WS-CDL have
been proposed to support runtime compositions. But, how to
model service composition at a high level of abstraction
remains a challenge to the development of service oriented
applications.

C. Previous Work
In our previous work, we have addressed these issues

separately. In particular, considering services as the
functionality provided by agents, Zhu and Shan [16]
proposed an agent-oriented approach to SOM based on an
agent-oriented software development methodology [17]. The
agent-oriented modeling language CAMLE and its
supporting automated modeling tool is applied to the
construction of models, the checking of consistency between
the models of different vendors and the transformation of
graphic models into formal specifications. However, it relies
on formal notations to specify the semantics of each
operations provided by the services. Its main drawback is
that using and developing the standardized domain ontology
were not taken into account. They are of vital importance for
SOC.

To address the semantics issue, Wang and Jin et al.
[18 ,19] proposed an ontology-based domain knowledge
approach to the specification of service capabilities. The
semantics of the operations can be specified at a high level of
abstraction. It addressed the development and uses of domain
ontology issue and extended the traditional vocabulary
oriented ontologies to domain ontologies for effective
definition of the semantics of services. However, modeling
the structure of service-oriented applications, the dynamic
behavior of services and service interactions is left open.

More recently, in [20], Wu and Jin et al. proposed a
reuse-based approach to the development of services. It
emphasizes on identifying and collecting reusable assets
contained in service-oriented systems, specifying these
reusable assets in an ontology, and reusing those assets
whenever possible during service-oriented software
development. Their experiments show that this modeling
approach is effective in facilitating software asset reuse and
reducing the modeling time. However, modeling
collaborations between services owned by different vendors
is still an open problem.

D. Contributions of This Paper
This paper intends to unify our previous work and aims

at providing a systematic methodology, which includes a
controllable process and a modeling language. The main
essences of the approach proposed in this paper include:
• Using agents to capture the autonomy and activeness of

the participants in service-oriented computing so that the
corresponding language facilities, such as caste, which
is the classifier of agents [21] just like class is the
classifier of objects, can be used as the basic building
block for the construction of service oriented
applications;

• Employing domain ontology to provide sharable
knowledge and terminology for defining the semantics
of services at a high level of abstraction and to provide a
standardized vocabulary to facilitate the
communications between these participants from
different vendors; and

• Devising a process model to provide guidelines to the
model-driven development of service oriented
applications.

This paper is organized as follows. A framework of
agent-based SOM is outlined in Section II, which includes a
discussion of the general principles of SOM, the architecture
of models and the process of modeling. The modeling of
service capability based on domain ontology is addressed in
Section III. Section IV integrates the ontology-based service
capability modeling into the agent-oriented structural and
behavioral service modeling. Section V discusses the
consistency and completeness checking of models. Two sets
of constraints on model's consistency and completeness are
presented. Section VI concludes the paper with a summary
of the contributions of the paper.

II. OVERVIEW OF THE FRAMEWORK
In this section, we extend the framework of agent

oriented service modeling [13,16] to incorporate domain
ontology. The framework includes an architecture of models
and a modeling process.

A. Architecture of Service Models
The original architecture of agent oriented service models

contains three types of models, which are structural model,
collaboration model and behavior model. Each model is
divided into three parts: (a) Specification of provided
services; (b) Specification of expected collaborators; and (c)
Specification of internal designs. There is no reference to

32

domain ontology in this architecture. Here, we extend it by
adding domain ontology as a new type of model and revise
the behavior model. As shown in Figure 1, the new
architecture consists of the following views.

Figure 1 Architecture of Service Models

• Domain Model: It is a model of the application domain
of the services. It defines the types of entities in an
application domain and their state spaces and life cycles
so that a standard vocabulary of the domain can be
defined as the base for specifying the semantics of
services. A service application may involve more than
one domain, thus the domain model may contain
multiple domain ontologies.

• Structure Model: It is a model of the service oriented
system. It consists of a set of entities involved in the
service application, which include autonomous entities
(such as other services), causal entities (such as the
objects and equipments in the real world that the service
operates) and symbolic entities (such as values that
represent the states of objects and services). The static
relationships between them are depicted in two
diagrams: a caste diagram for the relationships between
service roles and an entity relationship diagram for the
effects of service operations on the real world entities.

• Capability Model: It defines the capabilities of the
services by specifying the effects imposed by the service
on the entities in the system. The definitions of the
capabilities are based on the domain model.

• Collaboration Model: It specifies the collaborations
between the participants of the service. It may include
an overall model of collaborations and a number of
scenario-specific collaboration models. The overall
collaboration model defines the interaction messages
among services. The meanings of the messages are
defined based on the domain model. Each scenario-
specific model defines the interaction process in a
specific scenario by indicating the sequence of messages
passing between the participants of the collaboration.

• Behavior Model: It provides detailed specification of
each service's behavior from an individual perspective in
the form of a set of behavior rules. These rules specify
how the participant should behave in the interaction with
others. A behavior model can also be divided into two

parts: internal behavior model and external behavior
model. The former is to define the service provider's
internal decision making process and hidden from the
outside. The external behavior model specifies the
behavior of the provided service as the others can
expect. It also specifies the expected behaviors of the
outside services that it relies on.

B. Modeling Process
To incorporate domain ontology into service modeling,

the overall framework of model-driven service development
proposed in [16] is extended by adding domain analysis and
revised by modifying other activities as shown in Figure 2,
where modified and new activities are in grey boxes.

Figure 2 Overall framework of model-driven development of SOCA

Accordingly, as depicted in Figure 3, the original
modeling process in [13,16] is now extended with two
additional phases domain analysis and modeling and
capability modeling. The original activities in structure
modeling, collaboration modeling and behavior modeling
phases are also revised.

The new process starts with domain analysis and
modeling activities. The first is to identify the application
domains involved in the service under development. Then,
for each application domain, its standard domain ontology is
searched for in a repository. If a suitable ontology is not
available, further domain analysis and modeling activities
must be carried out, which is described in more detail in
Section III.

The original structure modeling activities are now
supported by the results of domain analysis and modeling,
which provides a standard vocabulary of the application
domains and the common models of the entities and agents
in the application domain so that the structural model of a

Domain
Ontology D1

Domain
Ontology D2

Domain
Ontology Dn

Structure
Model S

Capability Model E
Capability Model
for Agent/Caste Ai

Capability Model
for Agent/Caste Ai

Capability Model
for Agent/Caste Ai

Scenario Specific
Collaboration

Models Ci

Scenario Specific
Collaboration

Models Ci

Behaviour Rule
Model Bi for

Agent/Caste Ai

Behaviour Model B
Collaboration Model C

Scenario Specific
Collaboration

Models Ci

Scenario Specific
Collaboration

Models Ci

Scenario Specific
Collaboration

Models Ci

General
Collaboration

Model CG

Domain Model D

…

Transformation of
model into formal

specification

Formal
analysis and

proof of
properties

Implementation Model-driven Test

Program
code

Test cases, Test oracle
Test harness

Testing

Verification

Feedback

Feedback

Feedback

Application
domain
analysis

Domain entity
ontology

Model validation and
property checking (e.g.
consistency checking)

Service
requirements
elicitation and

analysis via
modelling

Formal specification of
required services

Feedback

Models of services
and its environment

33

service conforms to the
existing ontologies of the
application domain(s). On the
other hand, the domain
ontology does not match the
requirements of the service
under development,
feedbacks to further domain
analysis and modeling
activities will be passed to
domain analysis to revise the
domain ontology. For
example, when a new type of
agents or entities is identified
as essential and necessary for
an application, but not in the
ontology, a revision of the
domain ontology will take
place.

In the original process
model, behavior modeling
has two goals: to define
behavior rules for each caste
of agents and to define the
semantics of each action that
an agent can take. These two
goals are now divided into
two iterative phases. The
capability modeling phase
defines the semantics of
actions, while behavior
modeling now focus on
behavior rules that determine
when an action is to be taken.

The capability modeling
activities depend on
collaboration modeling to
find the set of actions that the
agents of a caste can take,
and then to define their
semantics according to the
domain ontology by
specifying the effects of each
action; see Section III.B for
details. Feedbacks on domain
analysis and modeling can be
obtained from capability
modeling if the required
capability of an action cannot
be defined on the basis of the
domain entity ontologies. In such a case, the domain
ontology must be revised accordingly. If such revision is not
practical, it means that the required collaboration among
agents is not feasible, thus needs modification.

The behavior modeling activities use both capability
model and collaboration model to define behavior rules. It
can give feedback to collaboration modeling if behavior rules
cannot be defined based on the capability definition due to,
for example, an infeasible collaboration among agents is

required. Therefore, by using domain ontology and
capability modeling, we provide a practical guideline for the
iteration of collaboration modeling and behavior modeling.

III. MODELING DOMAIN ENTITIES
As discussed in the previous section, modeling domain

entities plays a vital role in specification of the semantics of
services, especially in defining service capabilities.
However, existing frameworks of ontology are insufficient to

Analyse agent’s
environment scenarios

Scenario
diagrams

Scenario
diagrams

Scenario
diagrams

Analyse and specify agent’s
behaviours in environment

scenarios

Behaviour
diagram

Behaviour
modelling

For each
caste in caste

model

If
th

e
ag

en
t i

s d
ec

om
po

se
d

in
to

 c
om

po
ne

nt
s

Collaboration modelling

Scenario-specific
collaboration diagrams

Scenario-specific
collaboration diagrams

Scenario-specific
collaboration diagrams

Identify and analyze
collaboration scenarios

General collaboration diagram

Synthesize general
collaboration diagram

Identify agents/castes

Analyse relations between agents/castes

Caste model

Agents/castes that
realize the systems

services

Agents/castes that
represents the

service requesters

Agents/castes that
provide the

required services

Service Provider’s
Perspective

Service Requester’s
Perspective

Structure modelling

Figure 3. The process of modeling

Extract service
operations

Capability modelling

Operations
associated to
agents/castes

Define operation/
service effects

Agent/caste
capability model

For each
caste in caste

model

If any new autonomous
entity of the domain is

identified Agent-Oriented Modelling Identify application domains

Application domain(s)

Search for domain entity
ontology standards

If found
ontology

If no ontology
found

Domain analysis & modelling

Identify domain
entities

Autonomous
entities

Causal
entities

Symbolic
entities

Relationship
analysis

Life cycle
analysis

Entity-Rel
model

State Transition
model

Domain entity ontology

If
th

e
be

ha
vi

ou
r r

ul
e

ca
nn

ot
 b

e
de

fin
ed

 o
n

th
e

ba
se

s
of

 d
om

ai
n

en
tit

y
on

to
lo

gy
 a

nd
 c

ap
ab

ili
ty

 m
od

el

If
th

e
se

m
an

tic
s o

f a
n

op
er

at
io

n
ca

nn
ot

 b
e

de
fin

ed

on
 th

e
ba

se
s o

f d
om

ai
n

en
tit

y
on

to
lo

gy

34

achieve these goals. Therefore, we extend the existing
framework to an environment-based approach. This section
elaborates this approach to domain modeling in the context
of service engineering.

A. Requirements of Domain Modeling in Service
Engineering
In order to enable the definition of the semantics of

services, we extend the structure of domain ontology. The
reason for the extension is due to the following requirements
on the domain ontologies.
1) To specify the effects on the entities in real world that
software services exhibit their capabilities.

The semantics of a software service is its effect on those
entities that it interacts with. Hence, the capability of a
software service can be best expressed by the changes it
brings onto the entities in the real world. The characteristics
of these entities in the real world and their interconnections
with the service are what we need to know when specifying
the capability of the software service. The ontology
framework must support the definition of services’ capability
in terms of their effect on external entities.
2) To specify the entities in the real world that are shared
among services and mediate the interactions among these
services.

Software services are distributed and loosely coupled.
Sharing information about the syntax and semantics of
services is a precondition for the services to interact with
each other. The domain entities in the real world are outside
the boundary of software system. They are shared by the
services and they mediate the collaborations between
services of different vendors. Moreover, they are
independent to any specific application and specific
implementation. Hence, their specifications can be and
should be standardized and published as a part of ontology
rather than as a part of services. The ontology framework
must support the definition of such common knowledge of
the domain.
3) To specify domain entities that are stable even if the
requirements on the services change frequently.

The main driving force for changes in an open software
system is the changing requirements on the processing of the
domain entities in the real world. In other words, changes in
desired effects on the domain entities in the real world cause
the evolution of software. To a particular software service,
while its effects on the real world entities evolve with the
changing requirements, the real world entities themselves are
comparatively stable. The modeling of domain entities
should recognize the stable aspects of domain entities so that
the model can facilitate the evolution of services on a
relatively stable foundation.

The current general ontological structure only supports
the declarations of the concepts of a domain and the relations
between them [22 , 23]. This structure is inadequate to
specify the life cycle and operations on domain entities, and
thus inadequate in specifying the effects that services can
impose on them. Therefore, in the next subsection, we
extend the general ontological structure by including entity's

dynamic features. In the sequel, a specific ontology in this
new framework is called a domain ontology.

B. A Meta-Model of Domain Ontology
Our meta-model of domain ontology is an environment-

based approach to service capability specification [19]. In
this approach, we specify the capabilities of services by
defining their effects on the real world entities, such as the
tickets, the credit cards, the hotel rooms, etc. These effects
are modeled by a state transition system in which the state
transitions of the real world entities are the results of service
operations applied to the entities. Therefore, in domain
modeling, these real world entities are the objects and
concepts to be modeled in the ontology. They are domain-
specific, but independent of any particular service.

The environment-based view has its origin in the
research on requirements engineering [24,25]. In this area, it
is widely recognized that the requirements of a software
system act as the meeting point between an internal world
and an external world. Here, the internal world refers to the
“machine” (the software's internal construction) and the
external world refers to the “world” (the environment in
which the software will operate).

Along this viewpoint, we conceptualize an application
domain by considering the following two aspects.

First, we follow the principles of the Problem Frames
method [25] to identify and classify the entities in an
application domain. According to the method, a
conceptualization of an application domain consists of two
parts. The first part is a set of concepts that are captured in
the identification of phenomena in reality and can be used to
identify and specify explicitly the real world entities. The
concept hierarchy is shown in Figure 4(a). It includes the
concepts and the hierarchical relationships among them. The
meaning of each phenomena-related concept is given in
Table 1.

Figure 4 Conceptual Hierarchical Structure of Domain Ontology

The second part of conceptualization is the classification
of phenomena into a number of types. Each type
characterizes a set of phenomena by certain features (see
Figure 4(b)). There are three types, which are causal,
autonomous, and symbolic. That is, a phenomenon can be
causal, autonomous or symbolic.
• Causal phenomena are phenomena that can be controlled

and can cause other phenomena in turn.

35

• Autonomous phenomena are phenomena that are used to
represent the physical autonomous entities.

• Symbolic phenomena are phenomena that are used to
symbolize other phenomena and relationships between
them.

Table 1 Meanings of the Phenomena Related Concepts

Concept Meaning
Individual Something that can be identified, be named and be

distinguished from each other
Event An individual that is an occurrence at some point in time, and

regarded as atomic and instantaneous
Entity An individual that persists over time and can change its

properties and states from one point in time to another
Value An individual that exists outside time and space and is not

subject to change, including numbers and characters
Relation A set of associations among individuals
State A relation among individual entities and values. It can change

over time
State-Of-
Entity

A state of an entity

State-Of-
Value

A state of a value

Truth A relation among individual that cannot possibly change over
time

Role A relation between an event and individuals that participant in
it in a particular way

For example, event, role and state of entity are causal.

And, value, truth and state of value are symbolic.
It is worth noting that an entity can be an interactive or

operating individual. It is an instance of its type. It can be
seen as a set of related phenomena that are usefully treated as
a unit. The classification of phenomena also applies to the
classification of entities. This implies that an entity can be
causal, autonomous, or symbolic.
• A causal entity has predictable causal relationship among

its causal phenomena.
• An autonomous entity can autonomously decide what it

wants to do.
• A symbolic entity is a physical representation of data.

Second, we identify and model domain entities in the
context of service capability specification and modeling. In
particular, a service exhibits its capability through its
interaction with its environment and imposing effects on
entities in the environment. Therefore, the domain ontology
must contain the set of real world entities that interact with
the services. Moreover, for each entity, the changes of its
states are caused by the operations performed by the
services. The ontology must define the state space for each
entity as well as its state transitions so that service
capabilities can be defined. This led us to the meta-model of
service capability specification depicted in Figure 5. It gives
the ontological structure of service capability specification.
The meanings of the concepts and their relationships in the
meta-model are as follows.
• Each service has one or more capabilities.
• Each capability exhibits some effects upon a set of

domain entities.
• Each effect is the changes of the states of a set of the

domain entities.

• Each occurrence of a scenario causes at least an effect.
• Each scenario is an interaction flow, which is an ordered

sequence of interactions.
• Each interaction is a shared phenomenon between a

service and a domain entity and represents one
individual action that the service performs.

• An interaction has one initiator and one receiver that
could be a service or a domain entity.

Figure 5 Service Capability Ontology

Note that, a scenario is a sequence of individual
interactions into an interaction flow, which realizes a
meaningful change to the environment of the service. The
effect of an interaction must be understood in the context of
such scenarios. Without such a scenario, an interaction or
operation of a service may be meaningless.

C. Example: Online Auction
We now use online auction as an example to illustrate

various domain modeling activities discussed above. The
example will also be used throughout the remainder of the
paper. The online auction ontology developed in this
subsection will be the basis of modeling auction services.

First of all, we identify the domain entities, which are
real world entities and could be concrete or abstract. For the
auction domain, we have buyer, seller, auction, item, bid and
so on. Among them, item, bid and auction are causal, while
buyer and seller are autonomous. These domain entity types
can be further specified. For example, auction has several
symbolic entities, e.g. starting date, ending date and price. A
causal entity, e.g. item, may have its attributes.

There are two types of static relationship between entities
in domain ontology. The first is the classifications of entities,
i.e. the inheritance relation, and the second is the whole-part
relationship. Such relationships can be represented in the
Caste diagram of CAMLE modeling language [27], in which
a double rectangle represents a caste, an arrow indicates an
inheritance relation, and a diamond indicates a whole-part
relation.

For example, for the auction domain, as shown in Figure
6, the caste nodes in a hierarchical structure within the
dashed rectangle represent these domain entities.

The entity-relationship diagram given in Figure 7 shows
how these entities are related to each other. Then, for each
causal entity in the model, domain ontology further specifies
its dynamic features by a state transition diagram to describe

36

its life cycle. Figure 8 shows the state transition diagram for
some causal entities in the online auction domain.

Figure 6 Structure Hierarchy Diagram of Auction Service

Auction Identifer

StartingDate

EndingDate

Price

Initiate IsOf Event
joinAuction[Auction]

makeBid[Bid]
IsOfHasValue

Initiate IsOf Event

initiateAuction[Auction]

acceptBid[Bid]
IsOfHasValue

Client

Bid
Has IsOf IsOf Price

HasID IsOf Identifer

HasID IsOf Identifer

Date

Item
State

Identifer

Seller

Buyer

InitiatedBy IsOf

HasMember SetOf

HasID IsOf

Has IsOf

Has IsOf IsOf

Has IsOf

HasID IsOf

HasState IsOf

StateHasState IsOf

StateHasState IsOf

Figure 7 Auction Domain Entity Relation Diagram

Auction

Item for auction

Bid

Submitted

Failed

Received Accepted Paid

Proposed

Sold

In auction
Bid ReceivedNo Bid

Requested

Set Open Closed

Rejected
Figure 8 State Transition Diagram for Entities in the Auction Domain

As discussed above, from an environment-based
perspective, a service capability can be featured by the
entities it operates and the changes it makes upon these
entities. With the above domain ontology of online auction,
some standard service capabilities can be defined. The
following (Figure 9) gives two examples, ApproveJoinAuction
and ApproveWithdrawAuction, in the auction domain.

The capability definition of ApproveJoinAuction is for the
service MembershipManager. It involves two entity instances,
i.e. auction, which is an instance of Auction, and client, where
client is an instance of Buyer. The capability of
ApproveJoinAuction is the ability that any instance mg of the
service role MembershipManager should have. It states that in
the scenario when a client (in the role of	
 Buyer) takes an
action of Join(auction) and the message is sent to mg, the

service instance mg should take the action of
acceptTo(auction) and send the message to the client. After
completing the action, the client will become a member of
auction (changed from being a non-member) and a new
association hasMember will be added between the auction and
client. The capability definition of ApproveWithdrawAuction is
similar.

Figure 9 Examples of Capability Definitions

Figure 10 is an example of a service's capability
definition. It defines the capability of service
MembershipManager by referring to the capability definitions
given in Figure 9. An alternative format for service
capability definition is to replace the references by the body
of capability definition.

Figure 10 Example of Service Capability Definition

A capability model sets the scope of the service by
naming the engaged domain entities and the requests that the

Capability	
 Profile	
 MembershipManager	
 {	

	
 	
 	
 Capability:	
 	

	
 	
 ApproveJoinAuction;	

	
 	
 	
 	
 	
 ApproveWithdrawAuction;	

}	

Capability	
 Definition	
 ApproveJoinAuction	
 	
 	

{	
 For	
 Service	
 all	
 mg:	
 MembershipManager	

	
 	
 	
 	
 Participants	

	
 	
 	
 	
 	
 	
 	
 client:	
 Buyer,	
 auction:	
 Auction,	

	
 	
 	
 	
 Scenario	

	
 	
 	
 	
 	
 	
 	
 client:	
 join(auction)→mg	

	
 	
 	
 	
 Action	

	
 	
 	
 	
 	
 	
 	
 mg:	
 acceptTo(auction→client	

	
 	
 	
 	
 Effects	

	
 	
 	
 	
 	
 	
 	
 client:StateChange	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pre:	
 	
 beInState(non-­‐member(auction))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 post:	
 beInState(member(auction))	

	
 	
 	
 	
 	
 	
 	
 auction:AssociationCreation	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pre:	
 	
 not(hasMember(auction,client))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 post:	
 hasMember(auction,client)	

}	

Capability	
 Definition	
 ApproveWithdrawAuction	

{	
 For	
 service	
 all	
 mg:	
 MembershipManager	

	
 	
 	
 	
 Participants	

	
 	
 	
 	
 	
 	
 	
 client:	
 Buyer,	
 auction:	
 Auction,	

	
 	
 	
 	
 Scenario	

	
 	
 	
 	
 	
 	
 	
 client:	
 withdraw(auction→mg	

	
 	
 	
 	
 Action	

	
 	
 	
 	
 	
 	
 	
 mg:	
 withdrawOK(auction)→client	

	
 	
 	
 	
 Effects	

	
 	
 	
 	
 	
 	
 	
 client:StateChange	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pre:	
 	
 beInState(member(auction))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 post:	
 beInState(non-­‐member(auction))	

	
 	
 	
 	
 	
 	
 	
 auction:AssociationElimination	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pre:	
 	
 hasMember(auction,client)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 post:	
 not(hasMember(auction,client))	

}	

37

service can process. It defines the functionality provided by
the service.

IV. INTEGRATION OF DOMAIN ONTOLOGY WITH AGENT-
ORIENTED MODELING

In this section, we revise and extend the agent-oriented
modeling of services [16] to incorporate domain analysis.
We will demonstrate how to use the domain ontology to
support structure modeling by providing sharable
terminology and common knowledge of the application
domain. We also show how capability modeling of services
based on domain ontology supports the definition of the
semantics of services. This supports the explicit
representation of services and improves the model's
readability and understandability.

A. Structure Modeling
Structure modeling aims at identifying various types

domain entities involved in the modeled service and
clarifying the relationships among them. Normally, a
collection of domain entities involved in the services should
have been identified, defined and classified in domain
analysis. However, the domain ontology usually only
contains the common entities that all services of the domain
will recognize. Therefore, structure modeling needs to
further analyze as the constituents of the specific services
under development. Particularly, at the highest level of
abstraction, we inherit the domain entity hierarchy and
extend it by including the software services, such as the
service manages auction processes, as a kind of autonomous
entities.

The inheritance and whole-part relationships between
entities in structure modeling must observe the following
points.

First, the entities and the relationships in the structure
model must be consistent with the entities and the
relationships specified in the domain ontologies. In
particular, the inheritance and whole-part relations specified
in the ontologies must be preserved in the structure model.

Second, a structure model may contain entities from
multiple domain ontologies. For example, Figure 6 contains
entities from the auction domain ontology and the banking
domain ontology. Consistency between the ontologies must
be maintained and conflicts resolved.

Third, a structural model may also have additional
entities that are not in the domain ontologies. In particular, it
may contain entities to represent the services to be
implemented as well as new entities to be created and
processed by the service. For example, in the structural
model of auction services shown in Figure 6, we add a new
abstract autonomous entity, i.e. AuctionService, and attach to it
the concrete auction services Service to Buyer, Service to Seller
and Finance Manager as it components.

Finally, entities in a domain ontology may be excluded
from the structure model if the entity is not involved in the
service under development. For example, in the banking
domain ontology, we probably will have entities like saving
account, current account, etc. as subclass of account. In the

context of online auction services, we will not deal with
saving account, thus it is excluded from the structure model.

The second type of static relationships between entities
that structure modeling deals with is between autonomous
entities and causal/symbolic entities. This type is similar to
the association relations between objects in object-oriented
modeling. We model such relations in an entity relationship
diagram; see Figure 11 for the example of online auction
service.

Note that, in object-oriented modeling, this type of static
relationships together with inheritance and whole-part
relations are usually represented in one class diagram.
However, in our approach they are split into two diagrams,
one only contain information about inheritance and whole-
part relationships and the other only represent associations.
One reason for this is to avoid over crowded diagrams as
service oriented applications are often too complicated to be
represented on one diagram. Another reason is that the
associations between services and domain entities can be
dynamically established. Thus, the associations need to be
modeled separately. Normally, such entities relationship
diagrams can be derived from domain ontology. For the
auction service example, the entity relationship diagram
given in Figure 11 can be derived from the domain ontology
given in Figure 7.

Auction

joinAuction

Item

Seller

Buyer

makeBid

Bid
Price

RequestAuction

AcceptBid

HasMemberSetOf

Seller
Service

Initiate

SetAuction

Date

Initiate

has

Buyer
Service

ApproveJoin

Initiate
Initiate

Initiate

ReceiveBid

Initiate

Finance
Manager

CollectPaymentAmount

Account

has

Banker Initiate

DepositPayment

Account

Amount

has

Banker

Initiate

Initiate

Process Transaction ActionSeqOf

has

SetBy IsOf

Initiate

Figure 11 Auction Entity Relationship Diagram

B. Collaboration modeling

A collaboration model specifies the interactions between

the participants of a service. It must be consistent with the
structural model and the domain ontology in the following
two senses.

First, the participants of the collaboration must be entities
identified in the caste diagram.

Second, the actions must be those that have been
explicitly defined in the domain ontology. For example, in
the online auction example, a Buyer can initiate events, e.g.
join[Auction] and make[Bid]. And, the buyer who made the
successful bid will obtain the item after making the payment.

As discussed in Section 3, scenarios provide the context
in which capabilities and interactions can be understood. We
use scenario analysis to develop collaboration models.
Informally, a scenario is typical situation of service usage in

38

which a sequence of interactions between participants takes
place.

The first step in scenario analysis is to identify a set of
scenarios in the operation of the service under development.
For example, we can identify the following list of the
scenarios in the operation of the online auction service.

1. Join	
 an	
 auction	

a. successful;	

b. failed	
 due	
 to	
 wrong	
 manager;	

c. failed	
 due	
 to	
 state	
 is	
 not	
 open;	

d. failed	
 due	
 to	
 the	
 membership	
 already	
 exists.	

2. Set	
 up	
 an	
 auction	

a. successful;	

b. failed	
 due	
 to	
 manager	
 busy;	

c. failed	
 due	
 to	
 item	
 not	
 valid.	

3. Make	
 a	
 bid	

a. successful;	

b. failed	
 due	
 to	
 low	
 bidding	
 price;	

c. failed	
 due	
 to	
 auction	
 closed.	

4. Complete	
 an	
 auction	

a. successful;	

b. failed	
 auction	
 with	
 no	
 bid.	

A scenario can be specified as a sequence of interactions

between participants, where each interaction is an action
taken by the participants, and the assertions on the states of
the entities before and/or after each action. It can be
represented in the CAMLE modeling language using
scenario diagrams. Figure 12 is an example of scenario
diagram that defines the scenario Join	
 Auction	
 Successfully.

Figure 12 Scenario Diagram for Join Auction

As shown in above example, in a scenario diagram, each
participant has a swim lane with the name and its caste in the
top compartment. Its actions and state assertions are placed
in the swim pool, i.e. the lower compartment. The assertions
about the states of the entities are represented by predicate
nodes, which are depicted as oval circles. These assertions
reflect the effects of the actions in the scenario in terms of
the state changes. The actions taken by a participant are
represented in action nodes, which are depicted as boxes, and
placed in the swim lane of the participant. The temporal
ordering of the state changes and actions are indicated by
arrows between them.

From a scenario diagram, we can derive a scenario
specific collaboration diagram to describe the
communications between the participants in a scenario. For
example, Figure 13 shows the collaboration diagram for the
Join Auction scenario.

Figure 13 Collaboration Diagram for Join Auction Scenario

The collaboration model of a service contains a set of
scenario specific collaboration diagrams and a general
communication diagram, which is also in the notation of
collaboration diagram, but specifies all the communications
between castes and other entities. The general
communication diagram can be derived from the scenario
specific collaboration diagrams fairly straightforwardly.
Figure 14 shows the general communication diagram for the
online auction service.

Figure 14 General Collaboration Diagrams of Online Auction Service

During the development of a collaboration model, new
entities may be discovered. In such cases, the process will be
backtracked iteratively to the domain analysis and capability
modeling for the new entities and updating the structural
model by including the new entities.

C. Behavior Modeling
The next phase of the agent-oriented modeling of service

application is behavior modeling. It aims at defining a
behavior model for the service and a model for each
participant of the interactions with the service. A behavior
model consists of a set of behavior rules that determine the
actions to be taken in certain scenarios.

In the agent-oriented modeling language CAMLE, a
behavior model is a behavior diagram that depicts behavior
rules. Each behavior rule consists of the following elements:
• the scenario in the environment that will trigger the

agent to take an action;
• the precondition on the agent's internal state for the

action to be performed;
• the action to be taken by the agent together with the

parameters of the action.

39

Figure 15 shows a segment of the behavior diagram for

the Buyer Service of the online auction system. It defines
how the service processes a membership request made by a
buyer.

Figure 15 Behavior Rules to Process Membership Requests

V. CONSISTENCY AND COMPLETENESS
As discussed above, consistency and completeness

between service models and domain ontologies plays a vital
role in our approach. This section discusses how to check the
consistency and completeness between service models and
domain ontologies.

A. The Framework
The automated modeling tool CAMLE is capable of

checking the consistency and completeness of agent-oriented
models against a set of rules [26,27]. Zhu and Shan [16]
employed this facility to check service oriented models
developed by different vendors. Here, we extend the
framework proposed by Zhu and Shan so that domain
ontologies can be taken into consideration.

As illustrated in Figure 16, the original approach to

checking of service-oriented models requires the models of
services to be divided into the following three parts.
a. The specification of provided services. This part is

published;
b. The specification of expected behavior of service

requesters. This part is also published;
c. The internal design of the services provided by the

vendor. This part is hidden from the public.
When checking a service model’s consistency with

models of the services that it requests, all parts of its model
is first merged together with the second part of the models of
other services. Then, the consistency and completeness
constraints are applied. This approach solves the problem of

model consistency and completeness checking, but it has the
following drawbacks.

Figure 16 Zhu and Shan's Approach to Consistency Checking

First, the models of the invoked services may be not
available. For many reasons, a vendor may be reluctant to
publish its models such as for protecting intellectual
properties. Second, when a service is discovered and linked
dynamically, checking consistency at run-time may be too
late. Without a standard of the design of services, it is
unlikely to develop services that are consistent with each
other.

Figure 17 Proposed Approach to Consistency Checking

As illustrated in Figure 17, the approach proposed in this
paper solves these problems by requiring all services of a
particular application domain to follow a standard of domain
ontology. When a service is developed, its consistency is
checked against the standard and thus the applications are
consistent with each other. Once the consistency is checked,
there is no need to check at run-time dynamically. Moreover,
it does not require the other vendors to publish their models
or even a part of their models. Such consistency and
completeness checking can also be supported by automated
modeling tools like CAMLE.

B. Consistency constraints
However, we do need new consistency constraints since

the existing constraints are only on CAMLE models rather
than between CAMLE models and domain ontologies [26].
Here, we propose the following consistency constraints.

Model for Developing Service A

Model of the agents
that provide service A

Model of the agents
that request service A

Model of the
agents that

implement the
internal

business logic
of service A

Model of the agents
that provide service B

Model of the agents
that provide service C

Model of the
agents that

implement the
internal

business logic
of service C

Model of the agents
that request service C Model for Developing

Service B

Model of the
agents that

implement the
internal business
logic of service B

Model of the agents
that request service B

Model for Developing Service C

Model of Service A
(Provides services in domain P
Requests services in domain Q)

Model of Service B
(Requests services in

domain P)

Model of Service C
(Provides services in

domain Q)

Domain Entity
Ontology for

Domain P

Domain Entity
Ontology for

Domain Q

40

• Rule SE: The values of a symbolic entity that are passed
between services must be within the valid range of
values of the entity.

• Rule SV: Every state of a causal entity in the domain
ontology that is referred to in the communications
between a service provider and a service requester must
be defined in the domain ontology.

• Rule ST: Every state transition make by a service
provider on a causal domain entity must be consistent
with the definition of the entity in the domain ontology.

• Rule RB: Every action taken by a service requester that
plays a role of autonomous entity in the domain
ontology must be consistent with the expected behavior
as defined by the domain ontology.

• Rule PB: Every service provider that plays the role of an
autonomous entity in the domain ontology must behave
consistently with respect to the expected behavior as
defined by the domain ontology.

It is worth noting that, first, in the above consistency
constraints, Rule SV, where SV stands for State Values, does
not require every state that a service provider set to a causal
entity is defined by the ontology. An exception is when the
state is only for the internal uses by the service. For example,
a temporal state `pending for approval' could be set to an
auction after it is requested by a seller but before it is
formally approved by the service. Similarly, Rule ST, which
stands for State Transition, does not apply to transitions only
for internal uses, such as transitions to and from an internal
state. However, it does require the external observation of
the state transitions to be consistent to the domain ontology.

Second, Rule RB, where RB stands for Requester's
Behavior, and Rule PB, where PB stands for Provider's
Behavior, actually refer to a large set of consistency
constraints that have been proposed and implemented by
CAMLE [26,27]. Because the models of these expected
behaviors of autonomous entities are modeled in CAMLE,
the consistency between the domain ontology is a special
case of inter-diagram consistency between CAMLE
diagrams. Readers are referred to [26] for details.

Finally, Rule SE stands for rule for Symbolic Values.

C. Completeness constraints
In addition to the above consistency constraints, one may

also want models to be complete if a service has the full
capability to process certain domain entities. The following
are some examples of completeness constraints.
• Rule SE-C: For every value of a symbolic entity that are

passed between a service requester and a service
provider, the receiver side must be able to process the
value.

• Rule SV-C: Every possible state value of a causal entity
defined by a domain ontology must be processed by the
service.

• Rule ST-C: Every possible state transitions of a causal
entity defined by a domain ontology must be processed
by the service.

• Rule RB-C: A service requester must be able to process
every actions taken by a service provider if the action is

consistent with the expected behavior of the role that
service provider is playing.

• Rule PB-C: A service provider must be able to process
every action taken by a service requester that is
consistent with the expected behavior of the role of the
autonomous entity that the requester is playing.

Note that completeness constraints are not compulsory in
the sense that a service does not satisfy the completeness
constraints may still be regarded as a valid system although
completeness are very desirable.

VI. CONCLUSIONS
Along the line of the work in [16], this paper goes deeper

in the agent-oriented approach to the service-oriented
modeling. The main contributions of this effort are
summarized as follows.

This approach extends the agent-oriented flavor of our
previous work by explicitly capturing the capability and
knowledge of service agents. This is achieved by employing
the domain ontologies, which facilitates modeling the
changes that the service agents impose on its environment,
i.e. a set of real world entities. This also helps to address a
main concern of service developers on how to identify
services and how to realize them. By employing domain
ontology, it is natural to recognize services by considering
the required changes to the domain entities in various
scenarios, and to realize services by considering the
implementations of the required changes of domain entities
through collaborations with other autonomous entities
embodied by other services.

Domain ontology is independent of the specific services,
but shared by all applications of a specific domain.
Employing domain ontology means that the knowledge of
service agents can be based on standards of domain
ontologies. This is another advantage of this approach
because it addresses yet another key issue in the
development of services, i.e. services owned by different
vendors are often developed without sharing documents but
expected to interact at run time. By including domain
ontology, a service agent can have the ability to understand
the meaning of the terminology used by other services. The
consistency between a service and the domain ontology can
be checked automatically, which implies that services based
on the same ontology should be consistent with each other.
Moreover, the formal reasoning of the models is possible and
the properties of services can be proved.

An iterative process of service oriented modeling has
been advanced, which is obviously urgently needed for
developing service-oriented applications. This process is set
in the context of model-driven development of services. It
covers many important aspects of service-oriented
development and supported by the modeling language
CAMLE and its automated modeling environment. The
example models used in this paper were constructed by the
tool.

There are a number of issues worthy further research. We
are investigating more facilities for conducting the model
analysis and the verification and validation of modeled
services. We are also developing facilities for model-based

41

testing of services to incorporate domain ontologies and
formal specifications. More efforts should also be made on
the development of more domain ontology for capturing the
precise meanings of the service capability and other models.

REFERENCES

[1] C. M. MacKenzie, K. Laskey, F. McCabe, and et al., OASIS

reference model for service oriented architecture 1.0,
Available online at URL: http://www.oasis-
open.org/committees/tc-home.php?wg-abbrev=soa-rm.

[2] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S.
Ganapathy, and K. Holley, SOMA: A method for developing
service-oriented solutions, IBM Systems Journal, vol. 47, no.
3, pp. 377--396, 2008.

[3] L.-J. Zhang, N. Zhou, Y.-M. Chee, A. Jalaldeen, K.
Ponnalagu, R. R. Sindhgatta, A. Arsanjani, and F.
Bernardini, SOMA-ME: A platform for the model-driven
design of soa solutions, IBM SYSTEMS JOURNAL, vol. 47,
no. 3, pp. 397--413, 2008.

[4] B. Michael, Introduction to Service-Oriented Modeling:
Service Analysis, Design, and Architecture. John Wiley and
Sons, 2008.

[5] M. P. Papazoglou and W. J. van den Heuvel, Business
process development lifecycle methodology: Bridging
together the world of business processes and web services,
University of Tilburg, Tech. Rep., 2006.

[6] K. Levi and A. Arsanjani, A goal-driven approach to
enterprise component identification and specification,
Communications of The ACM, vol. 45, no. 10, pp. 45--52,
2002.

[7] M. Endrei, J. Ang, and A. Arsanjani, Patterns: Service
oriented architecture and web services, IBM, Tech. Rep.,
2004.

[8] O. Zimmermann, P. Krogdahl, and C. Gee, Elements of
service-oriented analysis and design, IBM, Tech. Rep., 2004.

[9] A. Arsanjani, Service-oriented modeling and architecture,
2004, Available online at URL: http://www-128.ibm.com/
developerworks/ webservices/library/ws-soa-design1/.

[10] OASIS, OASIS standard WS BPEL 2.0, Available online at
URL:http://download.boulder.ibm.com/ibmdl/pub/software/
dw/specs/ws-bpel/ws-bpel.pdf.

[11] W3C, Web services choreography description language 1.0,
Available online at URL: http://www.w3.org/TR/ws-cdl-10.

[12] M. Stal, Web services: beyond component-based computing,
Communications of ACM, vol. 45, no. 10, pp. 71--76, 2002.

[13] H. Zhu and L. Shan, Agent-oriented modelling and
specification of Web services, in Proceedings of 10th IEEE
International Workshop on Object-oriented Real-time
Dependable Systems (WORDS 2005), Sedona, Arizona,
USA, February 2005, pp. 152--159.

[14] M. P. Singh and M. N. Huhns, Service-Oriented Computing:

Semantics, Process, Agents. Wiley, 2005.
[15] S. A. McIlraith, T. C. Son, and H. Zeng, Semantic web

services, IEEE Intelligent Systems, vol. 16, no. 2, pp. 46--53,
2001.

[16] H. Zhu and L. Shan, Modelling Web Services in the Agent-
Oriented Modelling Language and Environment CAMLE,
International Journal of Simulation and Process Modeling,
vol. 3, no. 1&2, pp. 26--77, 2007.

[17] H. Zhu, Towards an Agent-oriented paradigm of Information
systems. Idea Group Inc., 2006, in Handbook of Research on
Nature Inspired Computing for Economy and Management,
pp. 679--691.

[18] P. Wang, Z. Jin, and L. Liu, An approach for specifying
capability of web services based on environment ontology, in
Proceedings of 2006 IEEE International Conference on Web
Services (ICWS'06), 2006, pp. 365--372.

[19] P. Wang, Z. Jin, L. Liu, and G. Cai, Building towards
capability specifications of web services based on an
environment ontology, IEEE Transactions on Knowledge
and Data Engineering, vol. 20, no. 4, pp.547--561, 2008.

[20] B. Wu, Z. Jin, and B. Zhao, A modeling approach for
service-oriented application based on extensive reuse, in
Proceedings of 2008 IEEE International Conference on Web
Services (ICWS'08), 2008, pp. 754--757.

[21] L. Shan and H. Zhu, CAMLE: a caste-centric agent-oriented
modelling language and environment, in Proc. of
SELMAS'04 at ICSE'04, Edinburgh, UK: IEE, 2004, pp. 66--
73.

[22] T. R. Gruber, A translation approach to portable ontology
specifications, Knowledge Acquisition, vol. 5, no. 2, pp. 199-
-220, 1993.

[23] A. Maedche, Ontology Learning for the Semantic Web.
Kluwer Adademic Publisher, 2002.

[24] D. L. Parnas and J. Madey, Functional documents for
computer systems, Science of Computer Programming, vol.
25, no. 1, pp. 41--61, 1995.

[25] M. Jackson, Problem Frames: Analyzing and Structuring
Software Development Problems. Addison-Wesley, 2001.

[26] L. Shan and H. Zhu, Specifying consistency constraints for
modelling languages, in Proceedings of the Eighteenth
International Conference on Software Engineering &
Knowledge Engineering (SEKE'06), July 5-7, 2006, pp. 578-
-583.

[27] H. Zhu and L. Shan, Caste-centric modelling of multi-agent
systems: The CAMLE modelling language and automated
tools, in Model-driven Software Development, Research and
Practice in Software Engineering, Vol. II, S. Beydeda, M.
Book, and V. Gruhn, Eds. Springer, 2005, pp. 57--89.

42

