
SOFIA: An Algebraic Specification Language for Developing Services

Dongmei Liu

School of Computer Science and Technology

Nanjing University of Science and Technology

Nanjing, 210094, P.R. China

dmliukz@njust.edu.cn

Hong Zhu and Ian Bayley

Dept of Comp. and Comm. Technologies

Oxford Brookes University

Oxford OX33 1HX, UK

hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract—Describing the semantics of services accurately
plays a crucial role in service discovery, execution, compo-
sition and interaction. Formal specification techniques, having
evolved over the past 30 years, can define the semantics of
software systems in a verifiable and testable manner. This
paper presents a new algebraic specification language called
SOFIA for describing the semantics of services. It unifies
the approaches using algebras and co-algebras for software
specifications. A case study with a real industry example, the
GoGrid cloud’s resource management services, demonstrates
that the semantics of services can be specified in SOFIA.

Keywords-formal specification; algebraic specification;
service-oriented formalism in algebras (SOFIA); semantics of
services

I. INTRODUCTION

Service-oriented computing (SOC) is a computing

paradigm that utilizes services as the fundamental elements

for distributed computing. In this paradigm, the discovery

and dynamic composition of services must be based on

accurate computational understanding of their syntax and

semantics. Most work in the description of service seman-

tics, such as OWL-S [1] for the so-called Big Web Services

and WADL [2] for the RESTful web services, has been

based on ontology. In this approach, the semantics of a

service is described by annotating its functions, and their

input and output parameters, using a vocabulary defined in

an ontology. Such descriptions have the advantages of being

easy for human developers to understand and efficient for

computers to process. However, most of these approaches

are inadequate for providing a verifiable and testable defini-

tion of the functions of a service, because an ontology can

do no more than define a vocabulary through the stereotypes

of relationships between the concepts and their instances.

Algebraic specification was first proposed in the 1970s

as an implementation-independent specification technique

for abstract data types [3]. Over these years, it has been

advanced to specify concurrent systems, state-based sys-

tems and software components based on the theories of

behavioural algebras [4] and co-algebras [5]–[7].

In comparison with other formal approaches, algebraic

specifications are at a very high level of abstraction and

are thereby independent of implementation details. Another

attractive feature they have is that they can be used directly

in automated software testing [8]–[12]. This feature is par-

ticularly important for service engineering, because when

services are composed together dynamically, testing must

be performed automatically on-the-fly.

In our previous work, we extended and combined the

behavioural algebra and co-algebra techniques, to apply

them to service-oriented systems, and revised the algebraic

specification language CASOCC, which was originally de-

signed for traditional software entities such as abstract data

types, classes and components [11], [12]. Its revised version

CASOCC-WS was applied to the formal specification of

Big Web Services [13]. A tool that can automatically gen-

erate the signatures of algebraic specifications from WSDL

description of Big Web Services was also reported. More

recently, we have also applied CASOCC-WS to the formal

specification of RESTful Web Services and developed a tool

to perform syntax-level consistency checking [14]. A case

study with algebraic specification of a real industrial system

GoGrid has been conducted [15]. Based on these works,

we now propose a new algebraic specification language

called SOFIA to improve the practical usability of algebraic

specifications.

The remainder of this paper is organized as follows. In

Section II, we present the algebraic specification language

SOFIA. Section III reports a case study of a real industry

example. Section IV concludes the paper with a discussion

of future work.

II. ALGEBRAIC SPECIFICATION LANGUAGE SOFIA

The SOFIA language is designed for specifying the

semantics of services in an accurate and machine-

understandable manner. It is based on the theories of be-

havioural algebras and co-algebras. This section presents the

syntax of the language, explains its semantics informally,

discusses its design principles, and illustrates the style of

specification with some examples. A formal definition of

its semantics is beyond the scope of this paper and will be

reported elsewhere.

1

A. Overall Structure of SOFIA Specifications

We regard a service-oriented system as consisting of a

collection of software entities, which can be documents,

XML document schemas, datatypes, classes, components,

and most importantly, services. These software entities are

linked to the real world through physical objects and equip-

ment, data, abstract concepts, business processes, communi-

cation protocols, etc. All these varieties of objects, concepts,

and processes are abstracted into various types of entities.

Each type of entity is then specified by a specification unit.

Therefore, the overall structure of a SOFIA specification

is a collection of specification units, reflecting the structure

both of software systems and of the real world, conceptually.

This also supports modular development of specifications,

which is further enhanced by the splitting of each specifi-

cation unit into two partial units: a signature unit, to define

its syntax with a signature, and an axiom unit, to define the

entity’s semantics with a set of axioms that it must satisfy.

The users can also define auxiliary functions and concepts

in a Definition unit, which is particularly useful for defining

concepts and functions that are common to many units.

<Specification> ::= <Unit>*
<Unit> ::= <Spec Unit> | <Signature Unit>

| <Axiom Unit> | <Definition Unit>

Each specification unit contains two main parts: a signa-

ture to define the syntax and a set of axioms to define the

semantics, as shown in the BNF rules below.

<Spec unit> ::= Spec <Sort Name> [<Observability>];

[extends <Sort Names>] [uses <Sort Names>]

<Signature>; [<Axioms>] End

where <Sort Name> is an identifier that names the unit. It

corresponds to the type of software entities to be specified

and is called the main sort of the unit.

A Signature Unit and an Axiom Unit with shared sort

name, but supplied separately, is equivalent to a complete

specification unit with corresponding signature and axiom

parts.

<Signature unit> ::= Signature <Sort Name>

[<Observability>];[extends <Sort Names>]

[uses <Sort Names>] <Signature> End

<Axiom Unit> ::= Axioms <Sort Name>; <Axioms> End

In addition to specification units, a Definition Unit defines

a set of auxiliary functions or concepts that are used in the

specification.

<Definition unit> ::= Definition [uses <Sort Names>]

<Signature>; [<Axioms>] End

We recognise two different ways in which a new unit

can be constructed from existing ones, extension and usage.

They are specified in the <extends> and <uses> clauses,

respectively.

A unit can be extended with additional elements, in a man-

ner similar to the inheritance relation of object-orientation. If

a specification unit of sort A extends sort B, then it includes

all constants, attributes, operations and axioms (explained

later) in the specification unit of sort B together with the

additional contents as specified.

A unit can use another unit, e.g. as a component, or as a

parameter or a result from an operator, etc., just like the

association relation of object-orientation. The list of sort

names separated by a comma after the keyword uses gives

the sorts that are used by the unit currently being specified.

SOFIA declares if a software entity is observable in the

sense that its states or values can be directly tested for

equality; otherwise, its states or values have to be checked

by other means, e.g. through observers. The specification of

observability has the following syntax:

<Observability> ::= is unobservable

| is observable by <Op Id>

where the operator for an observable entity must be a binary

function that returns a Boolean value. This function must be

defined in the signature of the sort.

B. Signature

The signature specifies the syntactic elements of the

software entity. SOFIA explicitly declares three kinds of

operators: constants, attributes and operators. A constant is

indicated by the keyword Const. Each constant identifier

defines a specific constant of the sort.

<Signature> ::=

{[<Constant>]|[<Attribute>]|[<Operator>]}*
<Constant> ::= Const : <ConstList>;

<ConstList> ::= <Const ID> [, <ConstList>]

<Const ID> ::= <Identifer>

An attribute is an element of the entity that represents its

state. It is indicated by the keyword Attr.

<Attribute> ::= Attr <AttrList>;

<AttrList> ::= <AttributeType> [; <AttrList>]

<AttributeType> ::= <Attr IDs> : <Sort Name>

<Attr IDs> ::= <Attr ID> [, <Attr IDs>]

<Attr ID> ::= <Identifier> [<index>]

where when an attribute has an index, it actually specifies a

set of attributes indexed by the index values. The Index set

can be: (a) a consecutive set of natural numbers between an

lower bound and an upper bound, which is either a specific

natural number or ”*”, meaning indefinite, (b) an enumerated

set of identifiers representing constants, and (c) a Cartesian

product of the above two.

<Index> ::= "[" <Index set> "]"

<Index set> ::= <Single index> [, <Index set>]

<Single index> ::= <Enumerated set>

| <Lower bound> ".." <Upper bound>

<Lower bound> ::= <Natural number>

<Upper bound> ::= <Natural number> | "*"

<Enumerated set> ::=

<Enumerated ID> [, <Enumerated set>]

<Enumerated ID> ::= <Identifier>

An operator defines an operation on the entity. It changes

the state of the entity when invoked, and may produce

2

outputs, too. The input parameters of an operator are given in

the domain type and the outputs produced by an invocation

are given in the co-domain. An operation always has access

to the state of the entity and may change it.

<Operators> ::= Operation <OpList>;

<OpList> ::= <Operation> [; <OpList>]

<Operation> ::= <Operator ID>

"(" <Domain Type> ")" ":" <Co-domain Type>

<Operator ID> ::= <Identifier>

<Domain Type> ::= <Type> | void

<Co-domain Type> ::= <Type> | void

<Type> ::= <Sort Name>[, <Type>]

Take STACK of natural numbers, for example, with the
signature.

Spec STACK; uses BOOL, NAT;

Const nilStack;

Attr isNilStack: BOOL,

top: NAT;

Operation

push(STACK, NAT): STACK;

pop(STACK): STACK;

End

This means that STACK depends on BOOL for Boolean

values and NAT for natural numbers. nilStack is a constant

(a stack without any element), isNilStack and top are

attributes, push and pop are operators.

Note that, in a traditional algebraic specification language,

the co-domain of an operator must be a singleton. Such a

signature is called algebraic; STACK has such a signature.

More recent languages, based on co-algebras, require instead

the domain to be singleton; such signatures are called co-

algebraic. SOFIA extends the algebraic and co-algebraic

approaches by allowing both the domain and the co-domain

of an operator to be non-singleton at the same time. This

makes it possible to specify stateful services naturally.

C. Axiom

Each specification unit contains logical axioms describing

the properties that are required to satisfy. An axiom consists

of a variable declaration block and a list of conditional

equations.

<Axioms> ::= Axiom: <Axiom List>

<Axiom List> ::= <Axiom> [<Axiom List>]

<Axiom> ::= <Var Declarations> <Equations> End

<Equations> ::= <Equation> [<Equations>]

Variable declarations declare a list of variables and their

types. Variables are declared ”globally” to all equations in

the axiom using the ”For all” keyword.

<Var Declarations> ::= For all <Var-Sort Pairs> that

<Var-Sort Pairs> ::=

<Var IDs> : <Sort Name> [, <Var-Sort Pairs>]

<Var IDs> ::= <Var ID> [, <Var IDs>]

<Var ID> ::= <Identifier>

where the sort name can only be the main sort or a sort listed

in the uses clause. The variable identifiers must be unique:

they must not clash with sort names, operator names nor

with any such names in any used sorts nor with variables in

this axiom.

The syntax rules for terms are as follows.

<Term> ::= <Var ID> | <Constant ID>

|<Op ID> ["("[<Parameters>]")"]

|<Term> "." <Term> | "[" <term> "]"

|<sort name> "<" <Term List> ">"

|<Term> "#" <Number>

<Parameters> ::= <Term List>

<Term List> ::= <Term> ["," <Term List>]

Any operator in a term must either be declared in the

signature part of the sort being specified or in the signature

of an used sort. For example, if s is a variable of the

STACK sort, m and n are variables of the NAT sort, then

the following are STACK-terms of the STACK sort.

push(s, n), pop(push(pop(push(s,n)),m))

Let ϕ(w) : w′ be an operator declared in a unit of sort

s. The application of an operator ϕ to an entity e with

parameters p is written in the form e.ϕ(p). In particular,

if w is VOID, we write e.ϕ.

Equations declare a list of conditional equations. The

syntax rule for an equation is as follows.

<Equation> ::= <Condition> [, if <Conditions>]

| Let <Var Definitions> in <Equation> End

<Conditions> ::=

<Condition>[(","|"or")<Conditions>]

<Condition> ::= <BOOL Term> |

<Term> = <Term> | <Term> <> <Term>

<Var Definitions> ::=

<Var Assignment> [, <Var Definitions>]

<Var Assignment> ::= <Var ID> = <Term>

The basic form of an equation is t1 = t2. Here is an

example of sort STACK.

For all s: STACK, n: NAT That

isNilStack(push(s,n)) = False;

pop(push(s, n)) = s;

top(push(s, n)) = n;

End

The second syntax rule for equations is designed to allow

local variable definitions, and these have the form:

Let x1 = τ1, · · · , xn = τn in equs End

where x1, · · ·xn are local variables, limited in scope to

equs, and τ1, · · · , τn are terms denoting the values that are

assigned to the variables. Local variables must have unique

names, must not clash with other variables in this equation,

nor with any other names, just as with global variables. The

above example can be specified as follows.

For all s: STACK, n: NAT that

Let s1 = push(s,n) in

isNilStack(s1) = False;

pop(s1) = s;

top(s1) = n;

End

End

3

III. CASE STUDY

In this section, we report a case study of specifications

written in SOFIA. We will specify a real industry RESTful

web services provided by GoGrid.

GoGrid [16] is the world’s largest pure-play

Infrastructure-as-a-Service (IaaS) provider specializing

in Cloud Infrastructure solutions. It provides an API,

defined by an open document, with which its customers can

easily and dynamically deploy and manage their applications

and workloads through a programmatic interface.

A. GoGrid API

The GoGrid API is a REST-like query interface. RESTful

web services are based on the HTTP protocol, so each

GoGrid API call is an individual HTTP query. The newest

GoGrid API version 1.8 has 11 different types of objects.

There are 5 types of common operators which can be applied

to 8 objects. Some of the operators are not applicable to all

types of objects, while some objects have their own special

operators. Table I gives the applicable operators for each

type of object.

Table I
APPLICABLE OPERATORS ON OBJECTS

Object List Get Add Delete Edit Other Ops

Server Yes Yes Yes Yes Yes Power
Server image Yes Yes Yes Yes Save,Restore
Load Balancer Yes Yes Yes Yes Yes
Job Yes Yes
IP Yes
Password Yes Yes
Billing Yes
Option Yes

It is worth noting that some operators in GoGrid have

different meanings for different types of objects. So, in our

specification of GoGrid, the definitions were grouped by

object rather than by operator. For the sake of space, here

we only give the specification of the server objects because

they are one of the most important types of object and they

also have the most operators.

For each type of object in GoGrid API, the formal spec-

ification in SOFIA consists of three types of specification

units:

• Units that specify the valid requests, including their

structures and constraints on how their components may

be combined;

• Units that specify the responses with structures and

constraints as above;

• Units that specify the objects of certain types, in terms

of signatures and axioms, the latter to express semantics

of operations

The specification of GoGrid API is based on the frame-

work for specifying RESTful web services [17]. The frame-

work consists of a collection of specification units that define

Table II
NUMBER OF UNITS IN GOGRID SPECIFICATION

Type of unit No.

Framework of RESTful web service 10
Common features 37
Definition of Server operations 13
Definition of Server image operations 13
Definition of Load Balancer operations 11
Definition of Job operations 5
Definition of operations on other objects 14

Total 103

the general structure of HTTP requests and responses so that

a specific RESTful WS can be specified as extensions to

these units. The details of the framework are omitted for the

sake of space.

B. Objects and Collections

There are some objects that are related to server object

including Option, IP, Server Image, Billing and Customer.

Here we only give the specifications of server object and

its collection ListofServer. From the specification of Listof-

Server, we can get each server object from the list and count

the number of server objects in the list.

Spec Server; uses Option, IPO, ServerImage;

Attr id: Long; name, description: String;

ip: IPO; image: ServerImage;

ram, state, type, os, datacenter: Option;

isSandbox: Boolean;

Axiom

For all s: Server that s.id <> Null; End

End

Spec ListofServer; uses Server;

Attr length: Integer;

Operation

items(Integer): Server;

insert(Server);

End

C. Requests and Responses

1) List Requests: There are four query parameters that

are common to all GoGrid API calls, and they are specified

as follows:

Spec CommonParameter;

Attr api_Key, sig, v, format: String;

Axiom

For all cp: CommonParameter that cp.v <> Null;

cp.sig <> Null; cp.api_Key <> Null;

End

End

where api key is a key generated by GoGrid for security in

the access of resources, sig is an MD5 signature of the API

request data, v is the version id of the API, and format is

an optional field to indicate the response format required.

Some parameters are common to all types of requests,

but there are also further parameters depending on the type

of request. So we first specify the structure of each type

of request as one sort e.g. ListRequest, GetRequest and so

on. Then the structure of each object’s request is specified as

4

the extension of each type of request e.g. ServerListRequest,

LoadBalanceListRequest etc. For the sake of space, here we

give just the specification of list operation. A server list

method call returns a list of server objects of a certain

type in the GoGrid system. It is implemented using the

HTTP request method GET. Note that such operations are

the only way to determine the internal state of a service. We

specify the list request and the list request of server object

as follows.

Spec ListRequest;

extends HTTPRequest;

uses CommonParameter;

Attr para: CommonParameter;

num_items, page: Integer;

Axiom

For all lr: ListRequest that lr.num_items >= 0;

lr.page >=0, if lr.num_items > 0;

End

End

Spec ServerListRequest;

extends ListRequest;

uses ListofString;

Attr server_type: String;

isSandbox: Boolean;

datacentre: ListofString;

End

where para denotes the common query parameters defined in

last subsection, num items is the number of items to return

so that this value will effectively paginate the results into a

number of pages with this number of items per page, and

page is the page index to return for paginated results, in-

dexed from 0. This parameter is ignored if num items is not

specified. The sort ServerListRequest extends ListRequest

with an additional three parameters server type, isSandbox,

datacenter which are used to filter server objects.

2) List Responses: The GoGrid API responses can be in

three different formats: JSON (JavaScript Object Notation),

XML, and CSV (Comma Separated Values). The default for-

mat, used when the optional format parameter is omitted, is

JSON. However, one benefit of using algebraic specification

is that we need only one formal specification for all output

formats.

The response to a list call contains a summary, which can

be specified as follows:

Signature ResponseSummary;

Attr total, start, returned, numpages: Integer;

End

where total is the total number of objects in the list, start is

the current start index for this list of objects, returned is the

number of objects returned in this list, and numpages is the

total number of pages available given the current num-items

value.

In addition to summary of the list, the response to a list

call contains status, request method, status code and a list

of returned objects. The meaning of the status code is as

follows: 200 means that the call was successful, 4xx means

there was an error in the client’s request, of which 400

means the argument is illegal, 401 means unauthorised, 403

means authentication failed, and 404 means not found. If the

status code is 5XX, it means a server error occurred. We first

specify the structure of the list response, then the structure

of the list response of server object can be extended with a

list of returned server objects.

Spec ListResponse;

extends HTTPResponse;

uses ResponseSummary;

Attr summary: ResponseSummary;

status, request_method: String;

statusCode: Integer;

Axiom

For all lr: ListResponse that

lr.summary.total >=0; lr.summary.start >=0;

lr.summary.returned >=0; lr.summary.numpages >=0;

End

End

Spec ServerListResponse;

extends ListResponse;

uses ListofServer;

Attr objects: ListofServer;

End

D. Semantics of the operations

For each type of request, we define an operator that takes

request as input and produces a response as the output. All

such operators have GoGrid as the context. We also need to

know the clock time on the grid, the shared secret chosen

by each user and the timestamp for checking the access

authentication. Thus, we have the following signature for the

sort ServerGoGrid, which represents the Server web service

of GoGrid cloud computing system.

Spec GServer;

uses ServerListRequest, ServerListResponse,

ServerGetRequest, ServerGetResponse,

ServerAddRequest, ServerAddResponse,

ServerEditRequest, ServerEditResponse,

ServerDeleteRequest, ServerDeleteResponse,

ServerPowerRequest, ServerPowerResponse;

Attr sharedSecrte: String;

clockTime, timeStamp: Integer;

Operation

List(ServerListRequest): ServerListResponse;

Get(ServerGetRequest): ServerGetResponse;

Add(ServerAddRequest): ServerAddResponse;

Edit(ServerEditRequest): ServerEditResponse;

Delete(ServerDeleteRequest): ServerDeleteResponse;

Power(ServerPowerRequest): ServerPowerResponse;

End

For each operator, the semantics can be characterised by

a set of axioms, but for the sake of space, we shall give two

axioms to illustrate the style of specification with the list

operator.

An important feature of the List operator is that it is an

observer. So applying it will not change the state of the

context sort ServerGoGrid. This property can be expressed

by axioms of the following form, though note that in this

case it is unnecessary as we have already declared the

operator as an observer.

For all G: ServerGoGrid, X: ServerListRequest,

5

X1: ServerXOpRequest that

[G.List(X)].XOp(X1) = G.XOp(X1);

End

where XOp is any of the operators List, Get, Add, Edit,

Delete, etc.

The following axiom states that when an operation

changes the state of the server, e.g. by adding, deleting,

editing and powering a server, the List operator should be

able to observe the difference accordingly. In fact, these

axioms also define the semantics of the operators that change

the state of the system.

For all G: GServer, X1: ServerDeleteRequest,

X2: ServerListRequest that

[G.Delete(X1)].List(X2).statusCode = 500,

if search(X2.name, X1.name) = True,

G.Delete(X1).statusCode = 200;

[G.Delete(X1)].List(X2).objects = G.List(X2).objects,

if search(X2.name, X1.name) = False,

G.Delete(X1).statusCode = 200,

G.List(X2).statusCode = 200;

End

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented the design of the algebraic

specification language SOFIA and illustrated its style of

formal specification with examples. We also reported a case

study of a real industry cloud system GoGrid to demonstrate

the value of algebraic approach in the development of

services.

We have already implemented the SOFIA language for

checking the syntax correctness and type consistency of

specification units. We have also developed a tool to translate

algebraic specifications in SOFIA into ontological descrip-

tions of service semantics [17].

We are currently developing a tool that uses specifications

in SOFIA as input to perform automated testing and verifi-

cation of web services. Another future work is to check the

consistency of specification based on ontological reasoning

as well as equational logic inferences.

ACKNOWLEDGEMENT

The work reported in this paper is partially supported

by EU FP7 project MONICA on Mobile Cloud Comput-

ing (Grant No.: PIRSES-GA-2011-295222), National Nat-

ural Science Foundation of China (Grant No. 61272420),

National Natural Science Foundation of Jiangsu Province

(Grant No. BK2011022), and the Jiangsu Qinglan Project.

REFERENCES

[1] D. Martin, et al., OWL-S: Semantic Markup for Web Ser-
vices, member submission 22 ed., W3C, http://www.w3.org/
Submission/OWL-S/, November 2004, last access: May 25,
2012.

[2] M. J. Hadley, “Web application description language
(WADL),” Sun Microsystems Inc., CA, USA, Tech. Rep.
SMLI TR-2006-153, March 2006.

[3] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright,
“Initial algebra semantics and continuous algebras,” Journal
of ACM, vol. 24, no. 1, pp. 68–95, 1977.

[4] J.A. Goguen and G. Malcolm, “A hidden agenda,” Theorec-
tical Computer Science, vol. 245, no.1, pp.55–101, 2000.

[5] C. Cı̂rstea, “Coalgebra semantics for hidden algebra: Param-
eterised objects and inheritance,” in Recent Trends in Alge-
braic Development Techniques, 12th International Workshop
(WADT’97), 1997, pp.174–189.

[6] J. M. Rutten, “Universal coalgebra: a theory of systems,”
Theor. Comput. Sci., vol. 249, no. 1, pp. 3–80, 2000.

[7] F. Bonchi and U. Montanari, “A coalgebraic theory of reactive
systems,” Electr. Notes Theor. Comput. Sci., vol. 209, pp.
201–215, 2008.

[8] M.-C. Gaudel and P. L. Gall, “Testing data types im-
plementations from algebraic specifications,” CoRR, vol.
abs/0804.0970, 2008.

[9] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, “In
black and white: An integrated approach to class-level test-
ing of object-oriented programs,” ACM Trans. Softw. Eng.
Methodol., vol. 7, no. 3, pp. 250–295, 1998.

[10] H. Y. Chen, T. H. Tse, and T. Y. Chen, “Taccle: a methodology
for object-oriented software testing at the class and cluster
levels,” ACM Trans. Softw. Eng. Methodol., vol. 10, no. 1,
pp. 56–109, 2001.

[11] L. Kong, H. Zhu, and B. Zhou, “Automated testing ejb com-
ponents based on algebraic specifications,” in Proceedings
of the 31th IEEE International Conference on Computer
Software and Applications (COMPSAC’07), vol. 2. Beijing,
China: IEEE CS Press, July 2007, pp. 717–722.

[12] B. Yu, L. Kong, Y. Zhang, and H. Zhu, “Testing java com-
ponents based on algebraic specifications,” in Proceedings of
the First International Conference on Software Testing, Veri-
fication, and Validation (ICST 2008), Lillehammer, Norway,
April 9-11 2008, pp. 190–199.

[13] H. Zhu and B. Yu, “Algebraic specification of web services,”
in Proc. of the 10th International Conference on Quality
Software (QSIC 2010). IEEE CS Press, 2010, pp.457–464.

[14] D. Liu, H. Zhu, and I. Bayley, “Applying algebraic speci-
fication to cloud computing–a case study of infrastructure-
as-a-service gogrid,” in Proceeding of The Seventh Interna-
tional Conference on Software Engineering Advances (ICSEA
2012), 2012, pp. 407–414.

[15] ——, “A case study on algebraic specification of cloud
computing,” in Proc. of the 21st Enuromicro International
Conference on Parallel, Distributed and network-Based Pro-
cessing (PDP 2013), Queens University Belfast, Northern
Ireland, Feb. 2013, pp. 269-273.

[16] GoGrid.com, “Gogrid website,” http://www.gogrid.com/, last
Access: Nov, 2013.

[17] D. Liu, H. Zhu, and I. Bayley, “From Algebraic Specification
to Ontological Description of Service Semantics, Proceedings
of the 20th International Conference on Web Services (ICWS
2013), Santa Clara, USA, Jun. 2013, pp.579-586.

6

