CAOPLE: A Programming Language for Microservices SaaS

Chengzhi Xu"", Hong Zhu®, Ian Bayley®, David Lightfoot'”, Mark Green® and Peter Marshall®

W School of Computer Science, Hubei University of Technology, Wuhan, China. Email: xcz911@gmail.com
@ Dept. of Comp. & Comm. Tech., Oxford Brookes Univ., Oxford, UK. E-mail: hzhu@brookes.ac.uk

Abstract

The microservices architecture is widely regarded as a
promising approach to service-oriented systems. However,
developing applications in the microservices architecture
presents three main challenges: (a) how to program systems
that consists of a large number of services running in paral-
lel and distributed over a cluster of computers; (b) how to
reduce the communication overhead caused by executing a
large number of small services; (c) how to support the flexi-
ble deployment of services to a network to achieve system
load balance. This paper presents a programming language
called CAOPLE and reports the implementation of the lan-
guage on a virtual machine called CAVM-2. The paper
demonstrates how this approach meets these challenges.

Keywords -- Service-oriented software; Microservices
architecture; Virtual machine; Programming languages,
Cloud computing, Parallel programming model; Agent
orientation.

1 Introduction

Microservices (MS), as a software architecture style, has
sprung up over the last few years, and attracted more and
more attention from researchers and companies [1]. It is
widely considered as the best way to structure SaaS systems
[2].

Since the early years of service-oriented architectures, the
monolithic architectural style has been the dominant ap-
proach to structuring web-based applications [3]. Such an
application runs in a few processes of coarse granularity.
Each process implements a large block of functionality,
such as receiving service requests, executing some business
logic, retrieving and updating data from a database, and
sending out response messages. To startup companies, the
monolithic style may be a good choice. However, as user
numbers increase, the domain logic grows in complexity
and the databases expand. The monolithic style becomes
less and less suitable for large-scale applications.

One of the main barriers to the development of service
oriented applications is the scalability problem. Among
many dimensions of scalability, horizontal scaling plays a
crucial role in cloud computing, which means replicating
multiple identical copies of the processes of the application
behind a load balancer [4]. This kind of scaling can be too
expensive for a monolithic architecture because if one of the
components overloads the whole process has to be duplicat-

ed. Another barrier is system updating. When a system
grows in scale and complexity, making changes to an appli-
cation in a monolithic architecture become problematic for
programmers and customers, because redeploying a new
version means to restart the server, which will take a long
time. This is particularly problematic when the application
is located in the cloud, where a large customer base cannot
tolerate being off line frequently.

Facing these challenges, Lewis and Fowler pointed out
that the MS architecture is a promising solution to meet the
requirement of cloud computing and big data [1]. Instead of
building a single monstrous, monolithic service, the idea is
to split a SaaS application into a set of smaller, intercon-
nected services [5]. Lewis and Fowler defined MS as an
architectural style in which a single application consists of
“a suite of small services, each running in its own process
and communicating with lightweight mechanisms”. These
services are “independently deployable by fully automated
deployment machinery” [1].

MS address the above barriers by decomposing a system
into a large number of fine-grained services that are con-
nected together through a communication mechanism and
supported by a deployment mechanism for replicating and
relocating MS in a cluster of servers. One MS’s collapse or
going off line will be less likely to have devastating effect
on the whole system. A change that takes place in one MS
only needs the MS to be rebuilt, tested and redeployed. It
often has less disruption to the whole system. The update
process could be much faster such that customers do not
even recognize that the service is off line, because a MS is
very simple and lightweight.

However, developing service-oriented applications in the
MS architecture faces three challenges. The first is how to
program a large set of fine-grained services running in par-
allel. The second is the need for a lightweight facility to
enable MS to communicate with each other. And, finally, it
needs a deployment mechanism and facility that enable ser-
vices to be deployed flexibly and uninterruptively. This pa-
per proposes a programming language solution to all these
problems.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work about MS. Section 3 introduces
a novel programming language called CAOPLE. Section 4
presents a virtual machine called CAVM-2 on which the
CAOPLE language is implemented. Section 5 gives a few
examples of CAOPLE programs to illustrate its program-

ming style. Section 6 concludes the paper with a discussion
of future work.

2 Related Work

Chong and Carraro proposed a maturity model of SaaS
applications and classified them into four levels according
to their architectures [6]. At Level 1, which is the lowest in
maturity, each customer has their own version of the appli-
cation customized and tailored to meet their requirements,
and their application runs on a dedicated server. At the se-
cond level, the vendor provides the same copy of a configu-
rable application to all customers. Each customer runs one
instance of the software on a dedicated server and config-
ures their application instance to meet their requirements. At
the third level, all tenants share one instance of the software,
and the vendor provides a virtual separation between the
tenants. In this case, the configuration and customization of
the software is achieved through using metadata. At the
highest level, multiple instances of the software serve the
tenants through a load balancer. As Chong and Carraro
pointed out [6], the evolution of SaaS applications from
lower level to higher level brings with it improvements in
scalability, efficiency and configurability. The MS architec-
ture can be regarded as a maturity level on top of Chong and
Carraro’s level 4. In the MS architecture, instead of dupli-
cating the identical instances of the whole SaaS application,
only the components of a SaaS application, i.e. the fine-
grained small-scale services called MS, are duplicated and
distributed to different servers. This further improves the
scalability and efficiency, but requires ever more flexibility
for configuration and customization.

As moving to cloud computing and big data having be-
come the main tendency in recent years, the IT industry ur-
gently needs a new approach to meet the challenges of Big
SaaS [7]. Many companies and organizations have adopted
MS, such as Amazon, eBay, and Netflix. However, prob-
lems remain in how to develop applications in the MS archi-
tecture and how to improve the efficiency of running a large
number of MS in a cluster of servers.

For a long time, the virtual machine (VM) has been the
main protagonist of cloud computing. A VM is a heavy-
weight solution. It virtualizes hardware, such as disk storage,
memory, CPUs and networks, and gives the customer phys-
ical separation [8]. Its main advantage is flexibility. It ena-
bles services to be executed on a VM regardless of the
operating system and hardware platform beneath it. Howev-
er, a VM consumes system resources, so that it becomes
inefficient to deploy many VMs on one server. In other
words, the VM has become a bottleneck for MS.

Container is a new technology, which overcomes the
shortage of VMs. Compared with VM, container is a kind of
lightweight virtualization, which shares system memory,
system processes and the file system, but provides separa-
tion to customers [9]. Thousands of containers can be de-
ployed on one host easily and can restart quickly.

In the last two years, many kinds of containers have

emerged. Docker is an open-source project that automates
the deployment of applications inside containers by provid-
ing an additional layer of abstraction and automation of op-
erating-system-level virtualization on Linux [10]. Many
companies have adopted Docker. Amazon has published
Container Service (Amazon ECS), which is a highly scala-
ble and fast container management service that makes it
easy to run, stop and manage Docker containers on a cluster
of Amazon EC2 instances [11]. Google has published an
open-source platform, Kubernetes, for automating deploy-
ment, scaling and operations of applications on Linux con-
tainers across clusters of hosts [12]. Oracle provides Solaris
Zones as Container for Oracle Solaris 11 OS [13]. Microsoft
has also started to work on the container technology.

In summary, existing work on supporting MS has been
focused on the deployment mechanism that enables MS to
be easily duplicated and relocated on different servers to
achieve system efficiency. These container technologies are
more efficient than virtual machines because running thou-
sands of containers on one virtual machine has less runtime
overhead than running thousands of virtual machines, as
shown in Figure 1(a) and (b). However, running a large
number of containers still has a heavy runtime overhead.

Ml M Ml m
S s|...|sl[s
;H; wl-{ull e N
S S|..sl1ls
VM VM Virtual machine M M| e MM
s|s s|s
Hypervisor Hypervisor RE

Operating system Operating system Operating sys-

Hardware Hardware Hardware

(a) VM (b) Container (c) Proposed solution
‘VM: Virtual Machine, CN: Container, RE: Runtime Environment

Figure 1. Architectures of MS Technology

Our proposed solution is to develop a programming lan-
guage that constructs service-oriented systems with MS as
the basic building blocks that can be easily deployed to dif-
ferent servers with a light-weight runtime environment simi-
lar to the Java Virtual Machine. In this approach, the MS
can be run across different platforms without the need for
virtual machines and containers, as shown in Figure 1(c).
Therefore, the runtime overhead can be further reduced.

In this paper, we present a programming language called
CAOPLE and its runtime environment in the form of a lan-
guage virtual machine called CAVM-2. We demonstrate
how the language supports programming SaaS applications
that consist of a large number of services executing in paral-
lel and communicating with each other, and how to deploy
the MS seamlessly in a cluster of servers.

3 The CAOPLE Programming Language

This section presents a novel programming language and

discusses how it supports programming MS.
3.1 The Conceptual Model

CAOPLE stands for Caste-centric Agent-Oriented Pro-
gramming Language and Environment [14]. Here, agents
means service providers just like in the real world where
estate agents provide services in buying and selling proper-
ties, and travel agents provide services in buying and selling
air-tickets. It is worth noting that agents are not just service
providers, they can also be service requesters. They are the
basic building blocks of service-oriented systems in our
agent-oriented approach. Our approach is a purely agent-
oriented one because the agent is the only building block of
a software system.

In the literature, the word “service” in service-oriented
architectures, and similarly its corresponding notion of “mi-
croservice” in the MS architecture, has two meanings. First,
a service is the functionality provided by a computer system
and delivered to the users [15]. Second, the word service
also refers to the computational entities that provide the ser-
vices in the first sense. Here, we separate these two concepts
by using the word service only to refer to the functionalities
that a computational system provides, while the computa-
tional entities that provide such functionality are called
“agents”. By doing so, an analogy between service-
orientation and object-orientation can be made clearly. Con-
sequently, our programming language bears a similarity to
OO programming languages.

In particular, agents can be classified in a similar way
that objects in OO programming languages are classified. In
our CAOPLE language, the classifier of agents is called
caste. Therefore, agents are runtime instances of castes just
like objects are runtime instances of classes, while a caste is
a template for agents just as a class is a template for objects.

Moreover, by separating these two meanings of the word
service, it facilitates the study of service-oriented software
architectures as concerned with the composition of entities
into a certain structure. This is particularly important in the
study of MS architecture.

In the context of the MS architecture, the notion of “MS”
also bears two further meanings: first, MS are identical cop-
ies of a service where each copy is a runtime computational
entity. Second, a MS is a template from which instances can
be generated and deployed to different servers. As we will
see below, our agents are autonomous, encapsulating data,
operations and behavior rules, executing in parallel and co-
operating with each other via asynchronous communications
through a set of well-defined communication channels. The-
se characteristics are exactly what MS services are when the
word bears the meaning of computational entities. Castes,
on the other hand, capture the meaning of a template from
which runtime instance are instantiated. Each caste can have
a number of instances. These instances can run on the same
machine, but, more often are spread over a computer net-
work. Therefore, the notion of agents and their classifier
caste provides a perfect conceptual model of MS.

The following is the Hello world example of caste decla-
ration in the CAOPLE language.

caste Peer() {

action speak(words: string){print words;}
init {speak("Hello world");}
body {}

}

The above caste declaration defines the structure of
agents called peers, which are capable of performing an
action called speak. When an agent of the caste peer is
created, it will take an action of speak("Hello world").
The affect of such an action is to print out the string “Hello
world” on the console and to generate an event of speak
with parameter “Hello world”.

Like OO programming languages, CAOPLE also pro-
vides an inheritance mechanism to enable “polymorphism”,
i.e. agents with a number of variant functions, internal struc-
tures and behaviors. The following are two sub-castes of
peer, which reply to a Peer agent’s speak("Hello world")
action with different responses: one says “Welcome”, the
other says “Good morning”.

caste Peer WC() extend Peer {

observe all x in Peer;
var str: string;
init {super();}
body{
when exist x : speak("Hello world"){

speak("Welcome");}}
}

caste Peer GM() extend Peer {
observe all x in Peer;
init { super();}
body{
when exist x: speak("Hello world")({
speak("Good morning");}}

}

The observe-causes in the above castes declare commu-
nication channels so that an agent of Peer_wC or Peer_GM
listens to the events of all agents of the peer caste, including
agents of peer wc and Peer_cM, due to the inheritance rela-
tionships.

Similar to OO, an agent may have a number of other
agents (i.e. MS) as its components. The following is a caste
declaration that defines a system called community that cre-
ates and instantiates 100 agents of peer_wc caste and 100 of
agents of Peer_GM caste.

caste Community() {

observe all x in Peer;
var cnt: int;
init{
cnt:=0;
for (i:=0 to 99){ create Peer WC();};
for (i:=0 to 99){ create Peer GM();}}
body{

when exist x: speak("Hello world")({
cnt:= cnt+ 1;}

}
}

An important difference between caste and class is that
an agent can join into a caste and quit from a caste dynami-
cally, even suspending and resuming its caste membership
at runtime. Moreover, an agent can be a member of multiple
castes and a caste can extend multiple castes.

3.2 Overall Structure of CAOPLE Programs

The overall structure of a CAOPLE program consists of a
set of caste declarations plus a set of data-type declarations,
which serve the purpose of defining standards for the format
of data exchanged between agents. Our approach is caste-
centric in the sense that every agent must be an instance of
one or more caste.

In general, a caste declaration has the following syntax in

EBNF, where terminal symbols are in bold font.
CasteDec ::=
caste CasteName[(Parameters)][Inheritances] {
{EnvDec | StateDec | ActionDec}

InitPart
BodyPart
}
Parameters ::= { ParamID : TypeName, }
Inheritances ::= extend {CasteName, };
EnvDec ::=

observe (all | const | some) AgentVar
in CasteName ;
StateDec ::=
var (public|internal) StateVar: TypeName ;
ActionDec ::=
action (public|internal) ActionId ([Params])
{Statements};
InitPart ::= init { Statements }
BodyPart ::= body { Statements }

An action declaration starts with the keyword action fol-
lowed by an optional list of parameters and the body, which
is a sequence of statements. An action can be modified by a
visibility keyword public or internal. When an agent per-
forms the action, the associated body statements will be
executed and when it finishes the action, an event will be
generated with the action name as the event name and the
value of the parameters as the event’s parameter. If the ac-
tion is public, the event will be issued to the environment
and delivered to those agents who observe the behavior of
this agent. However, when the visibility of the action is in-
ternal, the event will not be issued to the environment out-
side the agent. When the visibility modifier is missing in an
action declaration, the default is public.

A state declaration starts with the keyword var followed
by a variable identifier and its data type. It can also be modi-
fied by a visibility keyword public or internal. The for-
mer declares a state variable that other agents can observe;
while the latter declares an internal state variable that other
agents cannot observe. Note that for both internal and public
state variables, only the agent itself can change their values.
As other agents cannot modify an agent’s variables, the
write-write type of data racing is eliminated. When the visi-
bility modifier is omitted, the default is public.

The observe-clauses in a caste declaration define the
ports of the communication channels that the agent listens to
by defining the set of agents it observes. These can be es-
tablished flexibly and updated at runtime; see Table 1.

For example, the communication channels between dif-
ferent types of peers in the above examples are statically
declared in the caste declaration that an agent of peer_wc
can listen to events from all visible actions of all agents of
the caste peer and its subcastes.

Table 1 Various Formats of Environment Declarations

Format Meanings
observe all x | The agent observes all the agents in the caste C ex-
in C; cept itself if the agent is also a member of C.

observe some | When an agent A in caste C is bound to the variable

xin C; x, the agent observes agent A.
observe const | The agent will observe the agent A in caste C. Here,
AinC; A is a constant agent ID.

The init-clause consists of a sequence of statements,
which are executed once when the agent is created or when
an existing agent joins the caste. It serves the purpose of
initialization of the agent’s state variables.

The body of an agent is a sequence of statements. It is
executed repeatedly after the initialization until the agent
finishes its casteship, i.e. when it is destroyed or it quits the
caste. For example, in the reer_wc caste, the when statement
is executed as if it is inside an indefinite loop so that it can
reply to every Peer agent’s action of speak("Hello
world") with an action speak("Welcome"), rather than just
reply to one peer agent. This again gives the event-driven
feeling of the code.

3.3 Communication Mechanism

As pointed out in Section 1, the communication mecha-
nism plays a crucial role in the support of service-oriented
applications in the MS architecture. CAOPLE provides a set
of language facilities that support flexible and secure, but
lightweight, communications for event-driven parallel and
distributed programming that are transparent to the network
structure.

CAOPLE’s language facility supports the following
communication and concurrent programming mechanisms.

* Subscribe-and-Publish

The observe-clauses in a caste declaration actually define
the communication ports that an agent listens to. It is similar
to the subscribing part of the widely used subscribe-and-
publish communication mechanism. Such a port can be a
one-to-one port that is dedicated to observing a particular
agent if it is in the form of “observe const A in C”. It can
also be a port that is configurable to listen to an agent of a
given caste, if it is in the form of “observe var x in C”. The
agent can assign the variable to different agents at runtime,
thus changing the subscription. Moreover, it can be a port to
listen to all agents of a caste, if it is in the form of “observe
all in C”. Because the agents can change their caste mem-
bership dynamically, such a definition of the environment
that an agent observes is not static, not closed, but also not
completely open. It allows type checking of the uses of such
ports, for example, when they are used in the when-
statement and #i//-statement.

* Event-Driven Computation

An event is generated and a “message” is sent out by an
agent when it performs a public action. The basic syntax of
performing an action is the same as a procedure call as
shown in the peer example. This promotes a programming
style in which the developers simulate how people collabo-
rate with each other through taking actions. Such an event

can be broadcast to a large number of agents in the system
to trigger a variety of different reactions. For example, in
the peers example, when one agent takes the action
speak(“Hello world”), a public event will be generated
and delivered to all the agents of peer’s subcastes who ob-
serves this agent’s behavior. Consequently, they will re-
spond by saying either “Welcome” or “Good morning”. The
community agent will also react to this event by increasing
its state variable cnt by 1. Such a mechanism is at a high
level of abstraction.

CAOPLE provides two statements to enable event-driven
computation. The first statement is the when-statement,

which has the following syntax structure.
WhenStatement ::=
when { scenario { statements } ;
[else { statements }] }
scenario ::=
(AgentExp | exist AgentVar) in CasteName :
ActionID([Params])

The execution of a when-statement checks whether the
scenarios are true. When a scenario is true, the correspond-
ing statements of the scenario are executed. If no scenario is
true, the body statements of the else branch are executed. If
the else-clause is omitted, the statement is skipped.

Here, CAOPLE allows two forms of scenarios. In the
first, a scenario is specified in the form of “4 in C:
Act(params)” meaning the particular agent 4 in caste C
takes the action Act(params). In the second, the scenario is
specified in the form of “exist x in C: Act(params)”, where x
is a variable ranging over the caste C, means that if there is
an agent in the caste C that takes the action then the variable
x will be bound to the agent that took the action in the exe-
cution of its body statements.

The second statement that CAOPLE provides for event-
driven computation is the till-statement, which has the fol-

lowing syntax structure.
TillStatement ::=
till { scenario { Statements } ; }

The till-statement is very similar to the when-statement,
but when no scenario is true, instead of skipping the body
statements, the till-statement will wait until one of the sce-
narios becomes true, then execute the corresponding body.

* Prevention of Data Race

As mentioned in Section 3.2, an agent’s state variables
can only be modified by the agent itself. Because each agent
is one thread, this prevents write-write type of data race.

To help prevent write-read type data racing, we re-
defined the semantics of the with-statement in traditional

programming languages such as Pascal.
WithStatement::= with expr { statements }

where the expression expr evaluates to a value d of a struc-
tured data type. Although the body statements of a with-
statement apparently modify the elements of d, the actual
update of the value of d will only take place when the exe-
cution of the body-statements finishes. Therefore, the
changes to the various elements of a structured data d inside
the with-statement will not be interrupted by reading its val-
ue. Thus, the atomic property of updating structured data

can be ensured.
* Control of Communication Security

In the introduction to the CAOPLE language in the pre-
vious sub-section, we have already seen that each action and
state variable can be declared to be either public or internal.
Only the message/event associated with performing a public
action or the value of a public state variable are observable
by other agents in the environment. To support the control
of communication security, an action statement can specify
a restriction on the target agents that the event is to be deliv-
ered to. The general syntax structure is as follows.

actionStatement::=
actionID([params]) [to target]
target ::=
{(all in casteName | AgentExps in casteName),}

This not only limits the range over which events are de-
livered, but also reduces the communication cost.

3.4 Deployment Mechanism

An automated deployment mechanism is one of the key
features of container technology. It aims at enabling services
to be placed on the servers dynamically. Our agents can be
created on any computer in the network. Figure 2 below
illustrates the process of how castes are compiled, released
and instantiated.

e N
;———I Repository

Edit ~< Source Files Th——»

)
Obj Code Files ,D

. J
Server clease //

v
s/ _--%| Server
-
Create Instances |f\

~
~

Compile

Figure 2 CAOPLE’s Compilation, Release & Instantiation Process

Here, castes can be gradually added into the system and
agents created on various machines at different times. This
makes CAOPLE differ from traditional programming lan-
guages such as Java that follow a linear process of compila-
tion, link and installation.

Figure 3 is a screen snapshot of a simple development,
deployment, and debugging tool that enables CAOPLE
source code to be edited and compiled into object code, then
the object code loaded to servers, and its instances, i.e.
agents, created on various machines in a cluster of comput-
ers and integrated into the system while it is already up and
running. Thus, the agents are executed, tested and debugged.
It is not just a deployment tool, but supports the whole
lifecycle of programming MS in a continuous integration
and continuous evolution agile process.

[F=18 Fol o)

Deploy Panel \ LEE Panel

|2 CVAM Control Panel
Editor & Compiler | Object File Viewer

CE Panel

Source Code: New Open ‘ [Save Save As ‘

caste Monitor() extend Manager { [4]
observe all p in Peer,
state var cnt:int,
var out: string;
vari:int,
var lastPeer: Peer,

action updateCnt()}{
cnt=cnt+1;
out="cnt update to "+cnt
print out,

Kl

Compile Result: Compile ‘

Compile success.

rows:columns[78:1]

Figure 3 Screen Snapshot of CAOPLE’s Simple Deployment Tool

Moreover, not only can deployment be done through
such a tool, or by using a script language or command line
commands, but also through the execution of code written in
the same programming language CAOPLE, as shown in the
example of community. The general form of agent creation

statement is in the form of
AgentCreationStatement ::=
create [AgentVar of] casteName ([params])
[@ locationExp]

where the locationExp evaluates to a string representing a
location in the computer network such as an ip address. The
parameters of an agent-creation statement are used to initial-
ize the agent. The execution of an agent-creation statement
will create a new agent on the machine at the location and
assign the agent ID to the agent variable, which is used to
refer to the agent, for example, to establish communication
channels.

In addition to the agent-creation statement, CAOPLE also
provides the following set of agent-operation statements that
operate on the status of the agents.

JoinStatement ::= join casteName ([params])
QuitStatement ::= quit [casteName]
SuspendStatement ::= suspend casteName
ResumeStatement ::= resume casteName
EvolveToStatement::=

evolve [casteName] to casteName([params])

These statements change the agent’s caste membership
state. The suspend-statement suspends the agent’s casteship
to a caste. The agent will still hold the values of the state
variables of the caste, but not execute the body statements
until it resumes the casteship. Executing a quit-statement,
means the agent quits from the caste. Consequently, it will
lose all components of the caste, including the state varia-
bles, actions, environment, and the body. The evolve-
statement is logically equivalent to first quit the caste then
move to another caste, but it will preserve the internal states
declared in the common super-castes.

4 The Virtual Machine CAVM-2

CAVM-2 stands for CAOPLE Virtual Machine version 2.
It is an improved version of CAVM reported in [16]. This
section describes the architecture and function of CAVM-2.

It has been implemented in Java. A substantial subset of the
CAOPLE programming language has been implemented
through compilation of source code into object code inter-
preted by the CAVM-2 virtual machine. This section gives a
brief description of the architecture and operation of the
virtual machine.

4.1 The Overall Architecture of CAVM-2

CAVM-2 is the runtime environment of CAOPLE pro-
grams just as the JVM is the runtime environment for Java
programs. Its overall structure is shown in Figure 4.

Like its previous version [16], CAVM-2 consists of two
parts: a Communication Engine (CE) and a Local Execution
Engine (LEE). As their names indicate, the CE is responsi-
ble for the communications and the LEE is responsible for
execution of object code instructions. In a cluster of com-
puters, a complete CAOPLE runtime environment must
have at least one CE, but may have many CEs running on
different machines. Similarly it must have at least one LEE,
but may have many LEEs running on different machines.
The numbers of CEs and LEEs depend on the needs of the
application. A CE and an LEE can also run on the same ma-
chine, thus a single machine can also form a complete
runtime environment to execute CAOPLE programs. For
example, in Figure 4 CE, and LEE, are within the same dot-
ted rectangle. This means they are located in computer C;.
However, CE,, LEE, and LEE, are located in different com-
puters.

1

Computer C, ' ! Computer C, '
1 1 1
L ! 1 L. 1
Communication ! | Communication :
Engine CE,) | Engine CE, i
1 1
1 . 1
A | —_—h———— - - = 4

U

Ll ol - r _____________

! | Computer C,

Local Execution
Engine LEE,

Local Execution

|
1
Engine LEE '
1
1

1

|

1

! Local Execution
I Engine LEE

1

1

Figure 4. Overall Architecture of CAVM-2

Messages generated by LEEs are transmitted to a CE first,
and then transmitted to other LEEs or CEs. A caste’s object-
code file is deployed on one of the CEs in the cluster. The
LEEs download the object file from the CE when the first
agent of the caste is created on the machine. Each CE serves
as a message distribution center and a caste repository. A
LEE uses the object code of a caste as a template to create
agents, and executes the object code. It maintains a list of
agents running on the LEE. In this sense, LEEs are agent
drivers and containers.

4.2 Message Format and Semantics

The communication facility of the CAOPLE program-
ming language is supported by CAVM-2. It implements a
lightweight communication mechanism.

Each message generated and processed by CAVM-2 con-
sists of four parts, as shown in Figure 5.

INSTR CONTENT

SRC_IP

DEST_IP

Figure 5. Message format

SRC IP is the source-machine IP where the message is
generated. DEST IP is the destination-machine IP, where
the message will be sent to. If DEST IP is a broadcast IP,
the message will be broadcast in network accordingly.
INSTR is an instruction code, which defines how the mes-
sage should be processed. CONTENT is the contents of the
message. Table 2 lists all the instruction codes and gives
their meanings. All messages are represented as JSON ob-
jects in the form of name-value pairs. Table 3 lists the name
and the meanings of the message contents.

4.3 The Communication Engine

Shown as Figure 6, a CE has three main functional mod-
ules, namely, Receiver, Sender and CE Message Processor.
It operates on four main data structures, namely, Receive
Queue, Send Queue, Caste List and Agent Info List.

I v)
=) Sender Receiver
Send CE Rev
Queue Queue
CE Message
¢ Processor i
Agent Info List Caste List

Figure 6. The structure of CE

When the Receiver collects a message from the network,
the message will be added into the Receive Queue. The CE
Message Processor reads messages from the Receive Queue
one by one and removes each one after processing it. Each
message is processed according to the instruction code of
the message, and sometimes the message contents as well.
The following describes how the CE processes some key
messages.

(1) Store A Caste into Caste List

When the instruction code is DEPLOYMENT CASTE, the
message content contains the object code for a caste. The
CE will store the object code into the caste list. If there al-
ready exists an object code for the caste, the old object code
will be replaced by the new one.

(2) Download A Caste from Caste List

If a LEE wants to download a caste from a CE, it will
send a REQUEST CASTE message to the CE where the object
code is stored. After receiving the request, the CE will re-
trieve the object code of the caste from its Caste List and

wraps it in a reply message. Then, the message will be sent
back to the LEE.

Table 2. Instruction Code of Messages

Name Meaning

DEPLOYMENT CASTE Deploy caste to CE or LEE

DEPLOYMENT CASTE

REPLY Reply to message sender after deployment

DETECT CE Detect CE in network

DETECT CE REPLY Reply to message source after detecting

REQUEST CASTE Request caste from CE

REQUEST CASTE REPLY | Reply the request to message source

CREATE AGENT Telling CE an agent is created on LEE

Reply to LEE that CE has known the creat-

CREATE AGENT REPLY . .
- - ing action

OBSERVE STATE Want to visit one agent state value

OBSERVE STATE REPLY | Reply state value to message source

Agent telling network that it has invoked

INVOKE ACTION .
- an action

INVOKE ACTION RELAY | Relay INVOKE ACTION message via CE

DELETE AGENT Telling CE an agent is deleted on LEE

DELETE AGENT REPLY | Reply to LEE that CE has deleted the agent

CREATE AGENT REMOTE | Create agent on remote LEE

CREATE AGENT REMOTE | Reply to LEE that the agent has been cre-

REPLY ated remotely
Table 3. Elements of Message Contents
Name Meaning
MSG_UUID Message ID
VARIABLE NAME Variable name
STATE _NAME State name

STATE _DATA_TYPE
STATE _VALUE
CASTE NAME
AGENT _UUID
ACTION_NAME

State data type

State value

Caste name

Agent ID

Action name

ACTION_PARAM VALUES | Action parameters values

OBSERVE AGENT UUID
OBSERVED _AGENT _UUID

Agent ID who wants to observe others

Agent ID who is observed by others

IP of LEE where observing agent
locates in

IP of CE which observing agent com-
municates to

CE IP where the message comes from
LEE IP where the message comes
from

Agent ID who create a new agent
remotely

CE IP where is destination of re-
mote_create message

LEE IP where is destination of re-
mote_create message

Agent ID who is created remotely
Initial parameter list of creating an
agent

Initial parameter name

Initial parameter value

The mark indicates the message is
from LEE to CE or from CE to CE

OBSERVE_LEE_IP

OBSERVE_CE_IP
SOURCE _CE_IP
SOURCE_LEE_IP

SOURCE_AGENT UUID

REMOTE_CE_IP

REMOTE_LEE_IP
REMOTE _AGENT UUID
AGENT PARAM _LIST

AGENT PARAM NAME
AGENT PARAM VALUE

RETRANSMIT

(3) Store an Agent’s Information into The Agent Info List

When an agent of a caste is created on an LEE, the
agent’s basic information will be wrapped up into a
CREATE_AGENT message and sent to the CE where the caste
is stored. When the CE receives such a message, the agent’s
information will be stored into its Agent Info List.
(4) Delete an Agent’s Information from Agent Info List

When an agent of a caste C is deleted from a LEE, the
agent’s data must be deleted from the CE, too. The LEE
sends a DELETE_AGENT message to the CE where the agents
of caste C are maintained. When it receives such a message,
the CE searches for the agent in its Agent Info List and de-
letes the agent from the list.

After finishing a task, the CE Message Processor will add
a corresponding reply message into the Send Queue.

The sender component reads a message in the Send
Queue one by one, sends it to the network and then removes
the message from the queue.

4.4 The Local Execution Engine

A LEE consists of two components: The first is the local
communication element (LCE) which processes the mes-
sages received from CEs and further distributes them to the
agents running on the LEE. It also sends messages generat-
ed by its agents to CEs. The second, the logic-processing
element (LPE) executes the object code instructions.

Sender Receiver r
Send LCE Rev
Queue Queue
LEE Message
= Processor K——
Agent List (LPE) Caste List

Figure 7. LEE’s Message Processing Structure

A LCE has a similar structure to that of a CE, as shown
in Figure 7. It also has three main functional modules,
namely, Receiver, Sender, and LEE Message Processor. A
LCE also operates on four main data structures, which are
also called Receive Queue, Send Queue, Caste List and
Agent List. When the Receiver collects a message from the
network, it will be added into the Receive Queue. Similarly
to a CE, the LEE Message Processor processes the messages
in the Receive Queue one by one and removes them after
processing. However, it processes messages differently as
shown below:

(1) Deploy A Caste’s Object Code into Caste List

When receiving a DEPLOY_CASTE message, the LEE
will store the object code contained in the message to its
Caste List.

(2) Request A Caste’s Object Code

When an agent of a caste C is to be created, the object
code of the caste is required. The LEE first searches for the
object code in its Caste List. If it is not found, a message is
generated and sent to a CE to request the object code.

Instruction
Processor

< Code

List LPE List

Stack Heap

Figure 8. Agent message loop

The structure of a LPE is shown in Figure 8. Each agent
is associated with an instance of a LPE, which executes as a
thread. According to the value of PC, the Instruction Proces-
sor reads instructions from a caste’s object code stored in
the Code List and performs the corresponding processing of
the data, such as retrieving data stored in the Stack or Heap
at a location, or getting an event in the Event Queue, etc.
Note that, the events are placed into the Event Queue by the
LCE, and removed by the LPE. The LPE also generates new
events/messages according to the instructions executed. In
such a case, the message is placed in the Send Queue in the
LCE for processing. There are two sets of instructions cor-
responding to taking a public action and visiting other
agent’s public states that generate events/messages and trig-
ger communication. For the sake of space, the details of the
instructions are omitted.

5 Examples

In this section, we give a few examples to demonstrate
CAOPLE’s programming style and its expressiveness in
developing distributed applications.

5.1 Example 1: Service to Generate A Random Number

The following is a pair of castes where the first defines a
service that generates a random number when requested,
while the second defines the interface for making such a

request.
caste RanIntGenerator(req : RanIntRequestor) {
observe y in RanIntRequestor;
var randomInt : int;
action RanIntGenerated(rd:int){
(* Omitted code for generating a random num-
ber and assigning it to rd. *)}
init { y:= req;}
body {
when y: RequestRanInt() {
RanIntGenerated(randomInt);}
P}
caste RanIntRequestor(Loc: string) {
observe x in RanIntGenerator;
var myGenerator : RanIntGenerator;
action RequestRanInt(){ }

init{
create myGenerator of RanIntGenerator(self);
X := myGenerator;

}
body{}

The caste RanIntGenerator can be regarded as a server-
side program, while the caste RanIntRequestor is similar to
an API, thus the body is empty. The former implements the
function of the service, while that latter defines the interface
between the service provider and the service requestor.

RanIntGenerator in the above example only serves one
particular service requestor, which is the parameter of the
caste and initialized when it is created. The body of the
caste contains a when-statement, which states that when
receiving a request from its dedicated requestor, the agent
generates a random number and send it back. The following
is an example CAOPLE caste that uses the random number
generator.
caste RanIntUser() extend RanIntRequestor {

var str: string;

var ranInt: int;

init{

super("192.168.0.9");

caste RanIntReduce() extend RanIntMap {
var str: string;

var myServers: string[];

var total: int;

var cnt:int;

var ranInt: int;

init{

}

total := 0;

cnt :=0;

myServers:= .. (* omitted*);
super (myServers) ;
RequestRanInt();

}
Body {
when
exist x: RanIntGenerated(rcv ranlInt)
{ total := total + ranInt;
cnt := cnt+l;
if (cnt = length(myServers)){
str:= "The sum is: " + total;
create MessageBox("Message", str);
quit; };};
}

5.3 Example 3: Chat Room

ranInt:=0;
RequestRanInt();

Chat room is a typical Internet-based application. Here,
we write a simple chat room in CAOPLE to demonstrate its
programming style and its expressiveness in writing distrib-
uted systems. Our chat-room consists of two castes: the

}

body{
till x: RanIntGenerated(rcv ranInt);
str := "Random number is: " + ranInt;

create MessageBox("My Message", str);

}

It extends the RanIntRequestor. Its initialization state-
ments set the location where the generator is to be located
and sends out a message to request a random number. In its
body statements, the random-number user waits for the ran-
dom number to be generated using the till-statement, and
then displays it in a message box, which is an interface
agent that displays a message box on the screen.

5.2 Example 2: Map-Reduce Style of Parallelism

We now demonstrate how to program a map-reduce kind

Chatter defines the function of chatting, while chatcur
implements a simple graphic interface as shown in Figure 9.

(E=8 Holl =x=

|= Let's chat up!

Jerry: Hello everybody!
Tom: Welcome Jerry. 'm Tom
Jerry: Hi Tom, nice to meetyou

‘ ’ Send J

Figure 9 Chat Room GUI

of parallel computation in CAOPLE. We will use the same
caste of RanIntGenerator, but write a new caste RanIntMap
as follows.

caste RanIntMap(Locs: string[]) {
observe all x in RanIntGenerator;
action RequestRanInt(){ }
init{
for (i:=0 to length(Locs)-1){

create RanIntGenerator(self)@Locs[i];

}
}
body{}
}

The RanIntMap creates a number of instances of
RanIntGenerator on a collection of servers given in the
parameter Locs. The following code in CAOPLE sends a
broadcast message requesting random numbers to all these
generators, collects the results using a when-statement, sums
up the values of these random numbers, and finally displays
the sum in a message box.

caste Chatter(name: string) extend Peer {
observe all x in Chatter;
observe some myGUI in ChatGUI;
var sentence: string;
var chatterName: string;
action showSentenceInGUI(x: string){}
init{
chatterName:=name;
create myGUI of ChatGUI(self, chatterName);
}
body{
when myGUI: enter(rcv sentence){
sentence:=chatterName+”: "+sentence;
speak(sentence); };
when exist x: speak(rcv sentence){
showSentenceInGUI (sentence);
}
}
}
caste ChatGUI (cht:Chatter,nm:string) extend GUI {
observe var ct in Chatter;
observe var bt in Button;
var internal content: string;
var internal myFrame: Frame;

var internal myTextArea: TextArea;

var internal myTextField: TextField;

var internal myButton: Button;

action enter(x: string){}

action addToTextArea(x: string){}

action clearField(){}

init{ /* create and initialize gui elements */

bt :

= myButton;
ct := chatter; }
body{

when bt:click(){
content:=myTextField.text;
enter (content);
clearField();}

when ct:showSentenceInGUI(rcv x){
addToTextArea(x);

}
}
}

A user can start a chat with all the other users over the In-
ternet by creating an agent of the caste BootChatter, which

will create a chatter agent and a graphic user interface.
caste BootChatter(){
observe x in InputBox;
var IB: InputBox;
var chatter: Chatter;
var inputText: string;
init{
create IB of InputBox(
"Please Enter Chatter’s Name: ");
till IB: click(rcv inputText) {
create chatter of Chatter(inputText);

}
body{}

}
Note that, with a slight change of the caste BootChatter,

we can generate a Chatter agent and a ChatterGUI agent on
different machines, for example, the chatter on a server and
the GUI on a notebook or other mobile device.

6 Conclusion

In this paper, we presented a novel programming lan-
guage for programming MS. It is based on an agent-oriented
conceptual model of software systems. Its language facili-
ties are designed for creating, operating and managing large
numbers of agents, which are instances of MS, and execut-
ing them in a distributed computer network. It provides
strong support to SaaS in MS architecture by programming
at a high level of abstraction. We have also designed a vir-
tual machine called CAVM-2 for CAOPLE language and
implemented it with Java. The architecture of our approach
enables a large number of MS executing in a distributed
environment with a low runtime overhead of communica-
tion, and high flexibility of agent deployment to the network
environment.

The key features of the language demonstrated in this pa-
per have been implemented. We are currently working on
advanced programming-language features, thus as a com-
plete library of GUI package and structured datatypes. We
will also conduct experiments to evaluate the runtime over-
head and optimize the efficiency of the virtual machine.
Future research directions include how to support big-data

applications by providing a library package that links to
various NoSQL databases, etc.

Acknowledgement

The work reported in this paper is partially supported by
EU FP7 project MONICA on Mobile Cloud Computing
(Grant No.: PIRSES-GA-2011-295222), National Natural
Science Foundation of China (Grant No. 61170025), and
Natural Science Foundation of Hubei Province, China
(Grant No. 2013CFB021).

References

[1] Lewis, J., and Fowler, M., Microservices, URL:http:
//martinfowler.com/articles/microservices.html#footnote-
monolith, 25 Mar. 2014. (Last access on 2 Nov. 2015)

[2] High Scalability, The Great Microservices Vs Monolithic
Apps Twitter Melee. URL: http://highscalability.com/blog/
2014/7/28/the-great-microservices-vs-monolithic-apps-
twitter-melee.html. Jul.28,2014.(Last access on 2 Nov. 2015)

[3] SSA Research, Service Oriented Architectures, Part 1 and 2,
SSA Research Note SPA-401-068, 12 April 1996.

[4] Abbott, M. L., and Fisher, M. T., The Art of Scalability:
Scalable Web Architecture, Processes, And Organizations
for The Modern Enterprise. Pearson Education, 2009.

[5] Richardson C., Introduction to Microservices. ~ URL: https:
//www .nginx.com/blog/introduction-to-microservices/ May
19,2015. (Last access on 2 Nov. 2015)

[6] Chong, F. and Carraro, G., Architecture Strategies for
Catching the Long Tail, Microsoft Corporation, April 2006.
URL: https://msdn.microsoft.com/en-us/library/aa479069.
aspx. (Last access on 2 Nov. 2015)

[7]1 Zhu, H., Bayley, 1., Younas, M., Lightfoot, D., Yousef, B.,
Liu, D., Big SaaS: The Next Step Beyond Big Data, in Proc.
of IEEE CLOUD 2015, Jun. 2015, p1131-1140.

[8] Letaifa, A. B., Haji, A., Jebalia, M., Tabbane, S., State of the
Art and Research Challenges of New Services Architecture
Technologies: Virtualization, SOA and Cloud Computing.
International Journal of Grid and Distributed Computing.
Vol. 3, No. 4, p69-88, Dec., 2010.

[9] Pahl, C., Containerization and the PaaS Cloud. IEEE Cloud
Computing, Vol.2, No. 3, pp. 24-31, May-Jun. 2015.

[10] Merkel, D., Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment. Linux Journal, Vol.
2014, No. 239, p2,2014.

[11] Amazon Products & Services, Amazon EC2 Container Ser-
vice. URL: https://aws.amazon.com/ecs/. (Last access on 2
Nov. 2015)

[12] Brewer, E. A., Kubernetes And The Path To Cloud Native.
Proc. of SoCC’15,2015, ppl67-167.

[13] Van Surksum, K., Release: Oracle Solaris 11. URL:
http://virtualization.info/en/news/2011/11/release-oracle-
solaris-11.html. (Last access on 2 Nov. 2015)

[14] Zhu, H., Towards An Agent-Oriented Paradigm of Infor-
mation Systems. Handbook of Research on Nature Inspired
Computing for Economy and Management, Jean-Philippe
Rennard (Ed), Chapter XLIV, pp679-691, 2006.

[15] Singh, P. M., and Huhns, N. M., Service-Oriented Compu-
ting: Semantics, Processes, Agents. Wiley, 2005.

[16] Zhou, B., Zhu, H., A Virtual Machine for Distributed Agent-
Oriented Programming. Proc.of SEKE’08, pp.729-734, 2008.

