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Abstract

This paper proposes a scenario-based functional testing approach
for enhancing the performance of machine learning (ML) applica-
tions. The proposed method is an iterative process that starts with
testing the ML model on various scenarios to identify areas of
weakness. It follows by a further testing on the suspected weak
scenarios and statistically evaluate the model’s performance on
the scenarios to confirm the diagnosis. Once the diagnosis of weak
scenarios is confirmed by test results, the treatment of the model
is performed by retraining the model using a transfer learning
technique with the original model as the base and applying a set
of training data specifically targeting the treated scenarios plus a
subset of training data selected at random from the original train
dataset to prevent the so-call catastrophic forgetting effect. Fi-
nally, after the treatment, the model is assessed and evaluated
again by testing on the treated scenarios as well as other scenarios
to check if the treatment is effective and no side-effect caused.
The paper reports a case study with a real ML deep neural network
(DNN) model, which is the perception system of an autonomous
racing car. It is demonstrated that the method is effective in the
sense that DNN model’s performance can be improved. It pro-
vides an efficient method of enhancing ML model’s performance
with much less human and compute resource than retrain from
scratch.

Keywords: Machine learning, Neural network, Performance,
Software testing, Scenario-based testing, Quality improvement

1  Introduction

In recent years, machine learning (ML), especially deep
neural networks (DNNs), has been increasingly employed
by critical applications such as security protection, autono-
mous vehicles, communication, medical research etc. In or-
der to understand the performance and limitations of the
system, it is necessary to perform extensive testing cover-
ing the complete variety of possible scenarios that the sys-
tem may encounter. The basic idea of scenario-based test-
ing (SBT) is to split test cases into a number of subsets so
that each subset tests the system on one possible operation
scenario and the performance of the system is assessed and
evaluated on one scenario at a time. It has been widely used
in traditional software engineering and proven to be effi-
cient and effective. However, its application to testing
DNN is still very limited because of DNN’s fundamental
differences from the traditional software. The only excep-
tion is perhaps in the testing of autonomous vehicles (AV),
where SBT is required by ISO 26262 standard for road ve-
hicle functional safety [1] and pursued as the state of art in
the AV testing community [2]. However, the research on
SBT for AV is limited to the validation, verification and
safety assessment of AV rather than quality improvement
[3]. A problem that remains open is how to improve ML
model’s performance based on the results of testing.
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Traditionally, faults in program detected by testing can
be fixed through debugging (i.e., by modifying the program
code), and therefore improving the quality of the software
under test. However, ML models like DNN cannot be de-
bugged through manually modifying the weights of the
links between neurons and adding/removing neurons in the
network [4]. To improve the performance of a neural net-
work, one has to retrain the model with additional training
data. Typically, the erroneous behaviours of a DNN once
detected can be fixed by adding the error-inducing inputs
to the training data set and/or possibly by changing the
model structure and hyperparameters. However, such error-
inducing test cases are rare and insufficient to improve the
model’s performance. It can be a labour intensive and ex-
pensive process to acquire and label such data. As Tian et
al pointed out [5], how to use data obtained from testing to
improve ML models is still a challenging problem, which
has been noted by large IT companies like Google and
Tesla [6, 7].

In this paper we address this problem at two levels of
abstraction. At the methodology level, we propose an ex-
ploratory iterative process model of SBT, which includes
statistical scenarios analysis for diagnosing ML model’s
weakness and treatment of the ML model targeting the di-
agnosed weak scenarios in order to improve its quality. At
the technology level, we propose the uses of a combination
of ML methods and techniques to treat ML models on weak
scenarios, which include employing transfer learning tech-
niques and data augmentation.

The paper is organised as follows. Section 2 reviews
related work. Section 3 presents the proposed SBT method.
Section 4 reports a case study to demonstrate the effective-
ness and efficiency of the proposed method. It is a real ML
model of the perception system of an autonomous racing
car. Section 5 concludes the paper with a discussion of fu-
ture work.

2 Related Work

Testing ML applications has been an active research topic
in recent years. This section briefly reviews the current
state of art with focus on functional testing. The research
on testing other quality attributes of ML applications, such
as robustness and fairness, etc., are omitted.

2.1 Testing Process Models

The proposed methodology is partly inspired by the use
case driven methodology of Object-Oriented (OO) soft-
ware development [8], in which SBT plays the central role.
The notion of scenario is defined as a linear sequence of
interactions (i.e., input/output) between the system and its



user as an instance of a use case. SBT is performed manu-
ally by designing test cases, generating test data and check-
ing system’s output against the excepted outputs according
to the specifications of scenarios. Scenarios are usually in-
formally or semi-formally represented, for example, in use
case diagrams, activity diagrams and/or state machines in
UML. The quality of the software under test are improved
by debugging program code according to the bug reports. It
has been proven to be an effective and efficient software
quality assurance methodology. Unfortunately, this cannot
be straightforwardly applied to the development of ML
based computer applications because ML models cannot be
debugged by editing the model parameters.

SBT has been pursued as the state of art in the AV test-
ing community. The ISO standard 26262 for road vehicle
functional safety [1] evolved from its early versions that are
based on the best practice of traditional software engineer-
ing. The current version inherited from its earlier versions
to include scenario as one of the key concepts in its frame-
work for AV safety assurance. In particular, SBT is re-
quired by its waterfall (or V) model of functional safety en-
gineering [1, 9-11]. In the AV testing community, it is
widely accepted that the notion of scenario can be defined
as a temporal sequence of scenes while a scene is a snapshot
of the environment of the AV. For a scenario to be used as
a test case, it is also associated with the expected behaviour
of the system. In [12], Menzel, Bagschik and Maurer ana-
lysed the notion of scenarios in ISO standard 26262 and the
requirements on scenario representations at different stages
of development process. They distinguished the notion of
scenarios at three different levels of abstraction:

e functional scenarios, which are described in natural
language by domain experts at the requirements stage,

e Jogic scenarios, which are formally specified by a set
of state variables and their value ranges, and

e  concrete scenarios, in which each state variable is as-
signed a specific value in the corresponding range of
the logic scenario. They are the test data for executing
tests of the scenario.

In the waterfall development process, at requirements
stage, the functional scenarios are elicited and hazardous
scenarios are identified. From functional scenarios, logical
scenarios are derived and finally transformed or converted
into concrete scenarios for the test executions. The distinc-
tion between these notions of scenarios is now widely
adopted by the AV testing community. Based on this, in
[11], Neurohr et al analysed the considerations around sce-
nario-based testing at each stage of a waterfall framework
and reviewed how these considerations are addressed in the
literature.

In recent years, much work has been reported in the lit-
erature to derive scenarios for testing AV manually and
generate them automatically [13-19]. All of these ap-
proaches proposed and studied in the literature belong to
confirmatory testing methods. That is, they apply scenario-
based testing to validate and verify the system’s confor-
mation to requirements, such as meeting the functional
safety requirements.

In [20], based on datamorphic testing methodology,
Zhu et al proposed a more general waterfall model of SBT
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of ML applications. The notion of scenario is defined as
operation conditions of the system, which is more general
than the notion in AV testing because many ML applica-
tions are not interactive. Its process model consists of three
stages. At the first state, scenario analysis, the normal sce-
narios as well as abnormal scenarios are identified and de-
fined. Where normal scenarios are the operation conditions
that occurs most frequently, while abnormal scenarios
rarely occur, such as hazardous situations. Thus, adequate
test data can be obtained relatively easier for normal sce-
narios, while more difficult for abnormal scenarios. At the
second stage, realisation, a test system is designed and im-
plemented to actually build test datasets for all scenarios
and to perform testing and analyse test results. Typically,
test data for normal scenarios are collected, while for ab-
normal scenarios, test datasets are generated via implemen-
tation and application of datamorphisms (i.e., data augmen-
tations) that transform test data for normal scenarios to
those for abnormal scenarios. The final stage is test execu-
tion in which the ML model is actually tested on all scenar-
ios and the performance of the model is evaluated.

In contrast to the above SBT methods, the method pro-
posed in this paper belongs to exploratory testing, which
aims at discovering unknow problems of the system under
test. The idea is to organise the whole process as iterative
cycles of exploring the ML model under test to discover the
scenarios in which its performances are unsatisfactory and
then improving the performances on such scenarios. Alt-
hough our process is in analogue to the cycles of testing and
debugging for traditional software, it is widely recognised
as a challenge for how this can be done [5].

2.2 Test Oracle Problem

One of the most challenging problems for functional testing
of ML models is the so-called test oracles problem, i.e. how
to check the correctness of the output from a ML model on
test cases. A solution that has been pursued by many re-
searchers in recent years is metamorphic testing, where a
metamorphic relation is an assertion about software’s be-
haviour on multiple interrelated test cases. They are used to
check software correctness as well as to generate test cases.
However, how to find metamorphic relations has been a
hard problem. The datamorphic approach to deriving met-
amorphic relations was proposed in [21] and further devel-
oped in [22, 23]. The basic idea is to first identify operation
scenarios of the system, then develop semantic preserving
or semantic transforming datamorphisms to transform test
data between the scenarios. The metamorphisms can then
be easily derived from the datamorphisms.

2.3 Test Data Generation

Another challenging problem of functional testing is how
to generate test data. For most machine learning applica-
tions, a large volume of real data is available for the com-
mon operation scenarios. However, real data can be diffi-
cult and expensive to obtain on adverse operation
conditions, such as in hazardous scenarios. For example,
for testing AV, sufficient test data on good weather and
traffic conditions can be obtained by recording real world
uses of vehicles. However, such recorded data are far from



sufficient for rare weather and traffic situations or in dan-
gerous scenarios involving accidents. A solution to this
problem explored by researchers and reported in the litera-
ture is to employ data augmentations to generate synthetic
test data from real data. For example, Tian et al’s DeepTest
system [24] employed nine different image transformations
to augment data for testing AV. Their augmentations were
changing brightness, changing contrast, translation, scal-
ing, horizontal shearing, rotation, blurring, adding fog ef-
fect, and adding rain effect. They used photoshop functions
to implement the augmentations of adding fog and rain ef-
fects, while other augmentations were implemented
through simple image processing algorithms. Hasirlioglu
and Riener [25] developed a digital augmentation algorithm
based on a theoretical model of the effect of rain on images
and sensors. The technique is extended by Musat et al. [41]
to simulate the combinations of multiple weather condi-
tions.

The uses of generative adversarial networks have also
been explored to generate test cases. Among the earliest at-
tempts are Zhang et al. and Zhu et al.’s work [20, 26].
Zhang et al. trained a GAN to generate test data for snowy
and rainy scenarios from sunny conditions. Zhu et al. also
employed a generative adversarial network (GAN) AttGan
[20] to change the features of face images in testing face
recognition ML models. They conducted experiments to
compare the test results using synthetic images against the
test results of using real images. They concluded that such
synthetic images are valid test cases that produced test re-
sults consistent with those using real images.

2.4 Test Adequacy and Coverage

Requirements coverage and scenario coverage are the most
widely used adequacy criteria in testing AV [2], where re-
quirements coverage means all functional requirements are
tested, while scenario coverage means all scenarios identi-
fied in safety requirements analysis are tested. When test
cases are generated by applying data augmentations that
each represents a different operation scenario, more com-
plicated scenario coverage criteria can be defined. Zhu et
al. [20] proposed a set of such adequacy criteria for cover-
age mutant test cases, where a seed test case is the original
test data, while a mutant test case is the test data generated
by applying a data augmentation operator. The First Order
Mutant Coverage requires a test set to contain all seed test
cases and the first order mutant test cases. The Second Or-
der Mutant Coverage requires to contain all seed test cases,
1* and 2" order mutants. In general, a K’th Order Mutant
Coverage requires that a test set contains all n’th order mu-
tants for all K > n > 0, where K > 1. The Mutation Com-
bination Complete criterion requires the test set contain all
combinations of high order mutants, which is equivalent to
the exhaustive test if the datamorphisms satisfy certain al-
gebraic laws. They also devised algorithms to generate test
datasets that meets these adequacy criteria. Considering the
combinations of augmentations to be too expensive because
a large number of test cases can be generated, Tian et al.
[5] proposed an algorithm that searches for those combina-
tions that can increase neuron coverage best.

A number of test adequacy criteria have also been
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proposed and studied in the literature inspired by structural
testing of traditional programs. Among the most well-
known are Pei ef al.’s neuron coverage [24] inspired by
statement coverage, Ma et al.’s neuron output range cover-
age [27], Ma et al.’s neuron output combination coverage
inspired by combinatorial testing [28], Sun ef al. decision
influence coverage inspired by the MC/DC adequacy crite-
rion [29, 30], and Xie et al.’s neuron path coverage criteria
[31] inspired by control flow and data flow testing methods.

In [32], Kim et al. proposed surprise-based approach to
structural testing of neural networks, which requires test
cases to be spread far from each other and far away from
the training data where the distances are measured by the
distances between the neuron activation traces of the test
data and the training data.

These adequacy criteria have been empirically evalu-
ated on whether the coverage metric is a reliable predictor
of the correctness of the ML model under test, whether the
coverage metric is correlated to the output impartiality,
whether the calculation of the coverage metric is efficient
and scalable, and whether using the coverage criterion as
the guide to generate test cases can help to detect error of
the ML model, etc. However, Harel-Canada et al. con-
ducted experiments with neuron coverage criterion and
demonstrated that such test cases are not natural. They
questioned if neuron coverage is meaningful in testing [33].
The same question remains for all other structural test ade-
quacy criteria.

3

This section presents the proposed methodology for sce-

nario-based functional testing of ML models.

The proposed testing process is an iterative cycle of the
following steps.

o Assumption: identifying scenarios in which system’s
performance needs improvement. This means testing
the ML model and evaluating its performances. The
goal is to identify the scenarios in which the model’s
performance is unsatisfactory. Typically, weak scenar-
ios are identified through manual inspections of test
cases on which the system fails. Assumptions on sys-
tem’s weakness are formed and represented as scenar-
ios, which are called suspected weak scenarios.

e Diagnosis: confirming the assumptions via further
testing ML model on the suspected scenarios and sta-
tistically analyse ML model’s performance on these
scenarios so that the assumption can be confirmed
based on test results. Once confirmed, such a scenario
is called a diagnosed weak scenario.

e Treatment: retraining the ML model with additional
training data that target the diagnosed weak scenarios.
This will involve either collecting additional training
data or generating data from existing ones by applying
data augmentations. Attention should be paid to pre-
vent side-effects of the treatment, such as the forget
phenomenon that the performance on other scenarios,
even the overall performance on whole input space, de-
creases. Such scenarios are called treated scenarios of
the result model.

e Evaluation: testing the treated ML model after

The Proposed Methodology



retraining and evaluating the effect of the treatment.
This means testing the model on the treated scenarios
as well as other scenarios. The evaluation should aim
at two goals: (a) checking the effectiveness of treat-
ment, i.e., whether the result model actually improves
performance on treated scenarios; (b) checking if there
is any side-effect, i.e., if the result model improves
overall performance and remain in good performances
on other scenarios. The failure test cases will feed into
the next cycle of the process.

The key technical problem of the above process is how
to treat a ML model on a specific weak scenario without
causing side-effects. Our proposed solution is:

e Transfer learning: to apply a transfer learning tech-
nique, i.e., to use the existing model as the base for re-
training.

e Targeted training: to use a set of training data that rep-
resent the scenarios to be treated.

e Prevention of side-effect: to include a subset of the
original training data in the retraining dataset to pre-
vent the so-called forget effect.

4  Case Study

To demonstrate the applicability of the proposed method,
this section reports a case study with the perception system
of an autonomous racing car.

4.1 Background

94% of all road traffic accidents are caused by driver error
[34], and thus replacing the driver with autonomous control
offers the potential for a significant improvement in road
safety. However, safe deployment of AV on the road re-
quires significant testing in a controlled environment to en-
sure that they will operate in a reliable, robust, and safe
manner.

The advent of autonomous racing provides an ideal
test-bed for testing and developing AV technologies. The
fierce competition of motorsport demands the highest lev-
els of accuracy from every element of the system while run-
ning at the high speeds involved in racing. Small perfor-
mance margins (e.g., due to changing weather conditions)
can make the difference between winning and losing a race
- thus requiring detailed analysis of the performance of
every subsystem within the vehicle in every possible con-
dition. The closed nature of the racetrack provides the per-
fect ‘sandboxed’ environment, where errors or failures
within development of the hardware or software systems do
not result in catastrophic consequences [35].

Whilst the sandboxed testing environment provides a
safe place to test AV systems, there remain challenges to
testing the vehicle. Real-world testing is expensive, time-
consuming, and the weather cannot be scheduled. Thus, the
ability to virtually test the AV control system components
in a variety of conditions provides significant efficiency po-
tential.

The majority of AV and autonomous racing control

"' URL: https://www.formulapi.com/rules
2 URL: https://iros2021.fltenth.org/rules.html
3 URL: https://roborace.com/

202

systems operate using a pipeline of subsystems - typically
comprising perception, decision making, path planning and
control [36-38]. Since the perception system is the first sub-
system in the pipeline, it is critical to ensure the highest
level of performance to mitigate the propagation of errors
through the pipeline.

This case study focuses upon the use of the scenario
based functional testing methodology to test and develop
the Al perception subsystem of an autonomous racing ve-
hicle, thereby identifying potential areas of weakness. This
enables the development of strategic, targeted improve-
ments to the Al component, thereby improving perfor-
mance of the whole system in a highly efficient manner.

4.2 Formula SAE Competition

Numerous autonomous vehicle competitions exist - ranging
from small-scale racing cars like FormulaPi' and FITenth?
to controlling fleets of self-navigating, lane-changing
model ducks [39], and finally RoboRace® - a high-speed big
budget racing in specially designed race cars on full size
circuits around the world. However, the most popular AV
competition rooted firmly in the automotive industry is the
international Formula SAE Autonomous competition* -
with annual AV competitions taking place in different
countries.

The competition comprises designing and building a
fully autonomous vehicle from the ground up including a
custom array of sensors and software to a base vehicle pro-
vided by the competition.

The driving tasks include: (a) straight-line acceleration;
(b) a single lap of a track; (c) figure-of-eight (where the ve-
hicle must handle an intersection; and (d) a 10-lap timed
event, where the vehicle can learn from each lap in order to
increase speed on the subsequent laps.

Each of the events involve following a course which is
marked out by coloured traffic cones demarcating the cir-
cuit boundaries - with yellow and blue cones on left and
right respectively, and orange cones to dictate other fea-
tures (e.g., start/finish lines, stopping areas etc).

The task for the AV’s perception system is to accu-
rately detect and correctly identify the location and colour
of each cone. It must do so in the wide range of weather and
lighting conditions that could occur at the racetrack. A mis-
detection, or incorrect detection, could result in (a) a slow
lap, (b) hitting a cone, which automatically earns a time
penalty and makes a subsequent lap more challenging due
to the misplaced or knocked-over cone, or (c) the vehicle
veering off course resulting in failure to complete the event
altogether.

It is therefore imperative to build a detailed understand-
ing of how the AV’s perception system will perform in all
possible conditions that could occur at the racetrack, iden-
tifying and subsequently addressing the weaknesses within
the ML model.

This case study demonstrates the potential of the use of
the method proposed in this paper by testing, evaluating,
and ultimately enhancing the performance of the ML object

4 URL: https://www.imeche.org/events/formula-student/team-infor-
mation/fs-ai



detector used in an autonomous racing vehicle in a real-
world setting on a racetrack.

4.3 The ML Model Under Test

The ML model used in this case study is the perception sys-
tem of an autonomous racing car with input from a camera
fitted on the vehicle. It is a custom trained YOLOVS in-
stance of “S” scale.

The YOLO models treat an object detection task as a
multivariate regression problem. It outputs a sequence of
detected instances with their classes and the coordinates of
the bounding boxes after filtered by a confidence level and
IOU (intersection over union). Being a regression task on
those terms also means this model remains sensitive to
changes in position within an image as well as bounding
box size.

As shown in Figure 1, the architecture of YOLO neural
network can be broken down into three sections. The Back-
bone is in charge of extracting feature maps of increasing
contextual information and decreasing resolution from the
input. The Neck then aggregates feature maps from differ-
ent depths within the Backbone to retain as much of the
contextual and pixel information as possible, resulting in
three different levels of feature maps by default of different
sizes. Finally, these aggregate feature maps are fed to the
Head, which performs the multivariate inference and gen-
erates an output. In this step, several anchor combinations
are used as per the default settings. Anchor sizes can how-

Backbone | Neck Head
3 BottieNeckCSP | Detect |
3 BottleNeckCSP
3 BottleNeckCSP
O Bomsecor A
9 BottleNeckCSP
3 BottleNeckCSP | Detect |
SPP
1

Figure 1. Architecture of the ML Model

ever be auto generated to better adapt to the data used.

The particular YOLO model used by the OBR Auton-
omous team as the image perception system is YOLOVS,
which was originally pre-trained using the COCO dataset,
but it is further fine-tuned or trained with custom data sam-
ples to specialise for the given task.

The training dataset contains 644 images, which were
collected by the OBR Autonomous team through setting up
cones around various scenarios with blurry scenes, confus-
ing-colour objects in the background, dark lighting, slanted
cones, and bright light but in a small ratio. The test dataset
contains 100 images collected during the early stage of the
project from a setup track on the campus with some dark
images, objects in shadow, sun beam, etc.

5 URL: https://github.com/UjjwalSaxena/Automold--Road-Augmenta-
tion-Library
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4.4 Testing Process

The testing process started with an evaluation of the perfor-
mance of the above ML model (referred to as model M, in
the sequel) using three performance metrics: precision, re-
call and mean average precision (mAP); see Table 1 for

their definitions.
4.4.1  Testing and Improving Model M,

The testing of model M, shows that the model’s perfor-
mance reached 93.01% on precision, 92.12% on recall and
90.13% on mAP@50, which is a fairly good performance.

Table 1. Definitions of the Performance Metrics

Metric Definition

Precision | The percentage of recognised cones that are correct
with ToU = 0.5.

Recall The percentage of cones that are recognised with IoU =
0.5

mAP The average precisions over all images, which the area
under the precision-recall curve with IoU = 0.5

To further improve its performance, the errors made by the
model were manually inspected and the problem is identi-
fied that many of the errors were in the situation when the
picture was taken in a poor lighting condition and weather
conditions.

Based on the analysis, we defined the following eight
scenarios as suspected weak scenarios.

e  Bright. The input image to the perception system is in
a very bright lighting condition.

Dark. The input image is in dark light condition.
Flare. The input image is of flaring lights.

Rain. The image is in a raining weather condition.
Fog. The image is in a fog weather condition.

Water. The image is in the situation when water is
splashed on the camera lens.

Speed. The input image is when the vehicle is moving
fast.

These operation conditions were insufficiently repre-
sented in the training and testing datasets due to difficulty
in the collection of such data and the expense in labelling.

To test the ML model on these scenarios, we developed
a set of datamorphisms to transform normal images into im-
ages that have the corresponding features. They are imple-
mented by using the library code developed by the open-
source projects Automold® with some customisations to
achieve required augmentation effect. Table 2 gives the de-
tails about how augmentations are implemented. Figure 2
shows some examples of the generated images using these
image augmentations.

These datamorphisms are applied to the original test
data that consists of 100 images and generated 700 mutant
test cases. It is worth noting that, theoretically speaking,
these datamorphisms preserves the semantics of the percep-
tion system in the sense that a cone in the original image
should be recognised as the same cone in the augmented
image. Therefore, the labels on the test cases should remain
the same after augmenting the image. However, in reality,



(5) Fog (6) Rain

(7) Speed (8) Water

Figure 2. Effects of Datamorphisms

some of the cones in the original image may not be recog-
nisable because, for example, completely disappeared be-
hind thick fog. Therefore, for each mutant image, the labels
were filtered manually. That is, if a label on a cone is not
recognisable by a human tester, it was removed.

The ML model M,, were tested on these filtered mutant
test cases. The test data showed that the model’s perfor-
mance on such scenarios is less satisfactory that its preci-
sion, recall and mAP were 92.41%, 91.36%, 87.91%, re-
spectively. Figure 3 shows M, ’s performance on each

scenario.

Dark Fog
m Precision  m Recall

Figure 3. Performance of M gon Different Scenarios (in mAP%)

To improve the performances on these scenarios, the
datamorphisms are applied to 10% of the M,,’s training data
selected at random and selected another 10% original train-
ing data also at random to form a new training dataset. It is
applied to model M, and obtained model M;.

The model M; was then tested on these scenarios with
the mutant test cases. The test data showed that M; im-
proved overall performance by 1.62 percentage points on
mAP and in most of the scenarios except Speed and Water;
see Figure 5.
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Figure 5. My ’s Improvement w.r.t. My (in mAP%,)
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Table 2. Datamorphisms of the Test System

Oper- | Specification Implementation

ator

Bright | Change the brightness of the | Set the bright coefficient =
image upwards 0.9

Dark Change the brightness of the | Set the darkness coefficient
image downwards =04

Flare Add flare areas to the image | Add a flare layer

Fog Add fog effect to the image Set the fog coefficient =

0.4

Rain Add rain effect to the image | Add raining effect

Speed | Blur the image as if shot Add a speedy effect
when camera is moving

Water | Add water splash effect to Add blurry effect and a
the image layer of water drops

4.4.2  Testing and Improving Model M,

Although model M, improved the overall performance but
its performance slightly decreased on the scenarios of
Speed and Water. Further investigation of the reasons why
no improvements was made on these scenarios. Manual in-
spections of the test cases on which the model fails indi-
cated that the models did not detect orange-coloured cones
so well as other coloured cones.

To confirm this assumption, M;’s performances on de-
tecting different types of cones were statistically analysed.
The results are shown in Figure 4. It clearly indicates that
M,’s performance on detecting orange cones was weaker
than detecting other types of cones.

bright  dark flare fog rain
mOverall mBlue mOrange OYellow

Figure 4. M; Performances on Different Types of Cones (in mAP%)
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The reason why the model is weaker on detecting or-
ange cones is that the training data contained significantly
fewer orange cones than other types of cones; see Table 3.

Table 3. Numbers of Cones in Test and Training Datasets

Dataset Yellow Blue Orange Total
Train 2324 2349 65 4738
Test 77 347 96 520




In order to generate training data that contains suffi-
cient orange cones, a datamorphism called OrangeCone
was developed to transform blue cones in images into or-
ange cones. It modifies all the blue pixels into orange in the
detect box of blue cones.

A number versions of new model M,, were build
based on M, by further training with M, as the base. The
OrangeCone datamorphism was applied to a subset of the
images in the original training dataset selected at random to
generate a set of synthetic data. The training used variable
numbers of these synthetic data varying from 10% to 50%
of the original training data plus 10% of the original train-
ing data also selected at random. Figure 6 shows the perfor-
mances of the result models over M, , when tested on 100
original test cases plus 700 mutant test cases with labels
manually checked and corrected.

The data show that the performance peaked when the
training data reaches 30% of the original training data. The
performance of the model on detecting orange cones was
significantly improved by 30% from model M; (50.05%) to
M, 5 (65.84%) at essentially zero cost.

While synthetic training data were used to improve the
model, real data were collected by a different team through
taking pictures of the orange cones. A total of 145 images
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Figure 6. Comparison of Different Versions M, (in mAP%)
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were taken plus 10% of the original training data in the
training of a new model based on M;. The result model
M, g was tested in the same setting as other M,.x models.
The results showed that M, ; outperforms M, 5.

4.5 Discussion

In our case study, we observed a number of interesting phe-
nomena that worth pointing out.

First, the case study demonstrated that the performance
of DNN models can be improved through SBT following
the iterative evolution process proposed in this paper. It is
worth noting that ML models can never be perfect because
of its inductive inference nature. In our case study, model
M, is not perfect and there is still space for further improve-
ment. Select a right scenario to improve performance is an
important step of the test-evaluate-improve cycles. As-
sumptions made during the manual inspection of failed test
cases may not lead to performance improvement. Statistical
analysis of the assumption through SBT is necessary.

Second, our case study has also demonstrated that us-
ing synthetic data generated by applying augmentation to
train machine learning models can achieve a performance
as good as natural data. Development of datamorphisms to
generate training data and test data is a cost-efficient and
effective approach. Even if the datamorphism does not
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preserve the semantics completely, it can still significantly
reduce the workload on labelling the data as show in our
case study.

Third, it is widely believed that, the more training data
the higher performance the model will achieve. However,
in our case study, it is observed that the performance
reaches the peak when the number of additional training
data is at 30% of the size of original training data.

Finally, we applied a simple transfer learning tech-
nique to improve the ML model’s performance on a spe-
cific scenario, i.e., using the existing model as the start
point for training. A well-known phenomenon of this tech-
nique is “catastrophic forgetting (aka catastrophic infer-
ence)”, which is the tendency for a model to compromise
performance on previously learned data in favour of a
higher performance in new data. It happens commonly in
continual learning, reinforcement learning and transfer
learning. In our case, the result model may demonstrate
lower performance on other scenarios. Our approach to deal
with this is to include a subset (10%) of the original training
data in the re-training. This type of mitigation is called a
rehearsal-based method in literature. Our experiment data
shows that this is successful since the performances on
other scenarios remain at the same level.

5

In this paper, we proposed a scenario-based functional test-
ing methodology for improving ML models performances.
The process emphasises on an iterative exploration testing
of the model that each cycle consists of testing, diagnosing,
treatment and testing again. The key factor of success in
this process is how to improve a ML model’s performance
on a specific scenario without causing the side-effect of
“forgetting” on other scenarios. Our solution is to apply a
transfer learning technique with training dataset contains
not only the data representing the treated scenario but also
a subset of data from the original training dataset.

Our case study demonstrated that the approach is effec-
tive in the sense that DNN model’s performance can be im-
proved not only on the treated scenarios, but also the overall
performance and side-effects can be prevented. It is also
cost efficient that much less computation resources are re-
quired for preparing training and testing data and training
the model in comparison with re-training the model from
scratch.

The development of the perception system employed
in the case study is still going on. The ML model M, still
has a space to improve its performance. We are further an-
alysing its weakness and improving it. The methodology
will also be applied to test and improve other ML compo-
nents of the autonomous racing car, which include a path
planning system and a vehicle control system [40].

The case study is carried out by using the Morphy test
automation tool. The identification of the weakness of the
ML model in the case study largely relied on manual in-
spection of the erroneous test cases. It is supported by the
Morphy’s test case filtering facility, which enables errone-
ous test cases are collected and displayed easily. A test sys-
tem including datamorphisms, metamorphisms and analys-
ers are also implemented and in the Morphy, which enables

Conclusion



repeated testing and evaluation automated. It is worth stud-
ying how the test system can be generalised and further
supported by automated testing tools.

How to improve a ML model’s performance is the
heart of ML research problems. This paper proposed a sce-
nario-based functional testing approach which identifies
and then targets on weak scenarios in order to gain overall
performance increases. The case study shows that employ-
ment of transfer learning is promising. It is worth further
research. How to preserve the performances on other sce-
narios is an interesting and important problem for research
of ML techniques.
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