An Experimental Evaluation of the Reliability of Adaptive Random
Testing Methods

Yu Liu
North China Institute of Computing Technology
Beijing, P. R. China, 100083
Email: liuyu.9855@yahoo.com.cn

Abstract—Adaptive random testing (ART) techniques have
been proposed in the literature to improve the effectiveness of
random testing (RT) by evenly distributing test cases over the
input space. Simulations and mutation analyses of various ART
techniques have demonstrated their improvements on fault
detecting ability when measured by the number of test cases
required to detect the first fault. In this paper, we report an
experiment with ART using mutants to evaluate ART’s
reliability in fault detecting ability. Our experiment discovered
that ART is more reliable than RT in the sense that its degree of
variation in fault detecting ability is significantly lower than RT.
It is also recognized from the experiment data that the two main
factors that affect ART’s reliability are the failure rate of the
system under test and the regularity of the failure domain
measured by the standard deviation of random test results.

I. INTRODUCTION

Generally speaking, software testing methods can be
classified into two types: random testing (RT) and selective
testing, which is also called systematic testing in the literature.
Selective testing methods require careful analysis of source
code and/or the specification and design documents [1]. In
contrast, random testing produces or selects test cases in the
input domain through random sampling [2]. It is proven that
RT can be as effective as selective testing methods to detect
software faults using only a fraction of resource to generate a
large number of test cases [3, 4, 5, 6]. It has been an active
research topic in software testing [7, 8] and also possesses a
niche in IT industry. Recently, adaptive random testing (ART)
methods were proposed to further improve the effectiveness
and efficiency of random testing [9,10,11,12,13, 14]. This
paper is concerned with the comparison of ART to RT.

As Goodenough and Gerhart pointed out [15], a testing
method needs to satisfy two criteria: validity and reliability.
Informally, a test method’s validity means that for all
software under test (SUT) there is a test set generated by the
method that can detect faults if any. The reliability of a testing
method means that if one such test set detects a fault, then
ideally any test set of the method will also detect the fault.
The reliability of a testing method indicates how stable the
testing method is and how consistent the test result can be. In
the research on RT and ART methods, focus has been on fault
detecting abilities. However, unfortunately, their reliabilities
in fault detecting ability have not been investigated
systematically.

This paper reports an experiment that uses mutation
analysis to compare two ART methods and the traditional RT

Hong Zhu
School of Technology, Oxford Brookes University
Oxford, 0X33 1HX, UK
e-mail: hzhu@brookes.ac.uk

method to evaluate their reliabilities. Mutation analysis is
used because, statistically speaking, mutants systematically
generated by the application of a mutation testing tool seem
capture the behaviour of real faults very well [16].

The remainder of the paper is organized as follows. Section
2 briefly reviews the basic concepts and related works and
defines the notions and notations uses in the paper. Section 3
describes the process and design of the experiment. Section 4
reports the main findings of the experiment. Finally, Section
5 concludes the paper with a summary of the main findings of
the experiment, a discussion of the threats to the validity of
the conclusions and the directions for future work.

II. PRELIMINARIES AND RELATED WORK

In this section, we review the basic concept and define the
notions and notations used in this paper.

A. Random Testing and Adaptive Random Testing

Generally speaking, random testing (RT) is a software testing
method that selects or generates test cases through random
sampling over the input domain of the SUT according to a
given probability distribution [2]. As discussed in [1], RT
techniques can be classified into two types, representative
random testing and non-representative random testing. The
former uses the probabilistic distribution on the input domain
same as the input distribution in the operation of the SUT. A
typical example of such testing techniques is to sample at
random in an operation profile of the software under test [17].
Another example is to develop a Markov model of human
computer interaction process and to use the model to generate
random test cases [18]. In contrast, the non-representative RT
uses a distribution irrelevant to the operation of the software.
The ART methods studied in this paper belong to this type.
Representative RT has the advantage that test results
naturally lead to an estimate of software reliability, while the
other aims at improve fault detecting ability. ART methods
have been proven more effective to detect faults than RT with
uniform distribution [14, 21].

The basic idea of ART is to generate and/or select random
test cases that spread more evenly over the input space than
the ordinary RT. The even spread is achieved through
manipulations of randomly generated test sets. A number of
such manipulation techniques have been developed and
evaluated [9-13]. Before summarizing these manipulations,
we first define some basic notions and notations.

Let D be the input domain, i.e. the set of valid input data to
the SUT. A test set T=<a,, a, ..., a,>, n=0, on domain D is a
finite sequence of elements in D, i.e. ¢, D, for all i=1, 2, ...,
.Y The number 7 of elements in a test set is called the size of
the test set. A SUT is tested on a test set 7=<a,, ao, ..., a,>
means that the software is executed on inputs ay, as, ..., a,
one by one with necessary initialization before each
execution. When n=0, the test set is called empty test, which
means the software is not executed at all. Without loss of
generality, we assume that test sets considered in this paper
are non-empty.

A test set 7=<ay, a,, ..., a,> 1S a random test set if the
elements are selected or generated at random independently
according to a given probability distribution on the input
domain D. If the same input is allowed to occur more than
once in a test set, we say that the random test sets are with
replacement; otherwise, the test sets are called without
replacement. In the experiment reported in this paper, the
random test sets are with replacement.

Now, we formally define the manipulations on random test

sets used in ART techniques.
Mirror. Let Dy, Dy, D,, ..., D; (k>0) be a disjoint partition of
the input domain D. The sub-domains D,, ..., D; are of equal
size and there is an one-to-one mapping g from Dy to D,
i=1, ..., k. The sub-domain D, is called the original
sub-domain. The other sub-domains are called the mirror
sub-domains. The mappings £ are called the mirror functions.
Let 7° =<d",, d’, ..., a’;> be a random test set on D,. The
mirror of the original test sets 7° in a mirror sub-domain D;
through u; is a test set 7', written /1,-(70), defined as follows.

,u,-(<a01, a’s, ..., a0n>)=<ai1, as, ..., d\>,
where ,u,-(aoj)= aij, i=1l, ...,k j=1, ..., n. The mirror test set of
7°, written Mirror(1°), is a test set on D that
MiFI’OI’(TO) = <Cl01, Cl]], CZZ], N akl, aoz, alz, ceey akz,
ceey aon, aln, ey ak,, >,

Distance. Let || x, y || be a distance measure defined on input
domain D.® It is extended to the distance between an element
x and a set Y of elements as || x, Y|| = min(||x, ||, y€ Y). A test
set T=<ay, a1, as, ..., a,> is maximally distanced if for all i=1,
2,...,n,
Il a;, {ao, ..., a1}l 2 || a;, {ao, ..., ai1} ||, forall j > i.

Let T be any given test set. The distance manipulation of T is
a re-ordering of 7”s elements in the sequence so that it is
maximally distanced, written Distance(T).

Filter. Let || x , y || be a distance measure defined on the input
domain D. Let 7 be any given non-empty test set. Test set 7
=<ay, a,, ..., a,> is said to be ordered according to the
distance to T, if for all i=1, 2,. ..., n—1, ||a;, T]| = ||a;+1, T]|. Let
Sand C be two given natural numbers such that S> C> 0, and
Ty, T}, ..., T;, be a sequence of test sets of size S>1. Let Uy=T.

* Strictly speaking, it should not be called test set as elements are ordered. But,
it is a convention in the literature of ART to call them test set.

® A distance measure on a domain D is a function || || from D? to real numbers
in [0,00) such that for all x, y, ze D, || x, x || = 0; || x, y|| = |y, x || and ||x , y || < ||,
[+ 1z

Assume that U=<a,, ..., a;> and T;.1=<cy, ..., cs>. We define
T’w1=<by, ..., bg> be a test set obtained from T, by
permutation its elements so that 7;;; is ordered according to
the distance to U;. Then, we inductively define U;,1=<aj, ...,
aw, by, ..., bc>, fori=0, 1, ..., k—1. The test set U, is called the
test set obtained by filtering C out of S test cases.

It is worth noting that, first, strictly speaking, the results of
the above manipulations are not random test sets even if the
test sets before manipulation are random. Second, these
manipulations can be combined together to obtain more
sophisticated adaptive random testing. For example, in mirror
adaptive random testing [10], the input domain is partitioned.
A random test set is first generated on the original
sub-domain. It is then manipulated by the Distance operation
and then Mirrored into the mirror sub-domain. Third, the set
of manipulations defined above may not be complete. There
are also other manipulations on random test set; see [9-13].
Finally, in the literature, ART methods are usually described
in the form of test case generation algorithms rather than
manipulation operators. The filter manipulation is not used in
the experiments reported in this paper. It is defined here to
demonstrate that testing methods defined in the form of an
algorithm can also be defined formally as manipulations. This
not only simplifies the descriptions of ART testing methods
concisely and formally, but also enables us to recognise easily
the various different ways in which they can be combined.

B. Measurements of fault-detecting ability

A fault is a defect in a software system. The execution of
faulty software on a test case may result in a failure, i.e. the
output and/or the behaviour of the software do not meet
user’s expectation according to a given criterion (which is
called test oracle). When a failure occurs, the test detects a
fault in the SUT. Testing methods and techniques differ from
each other in the way that test cases are selected as well as the
correctness of the execution is judged. In this paper, we focus
on the issue related to test case selection. It is assumed that the
correctness is judged with a same given criterion in the
comparison of different testing techniques.

In experimental evaluation and comparison of testing
methods, the fault detecting ability of a testing method can be
measured in a number of different ways; see, for example,
[19]. The following are among the most widely used in the
literature of software testing.

Let 9% be a testing method and S a given SUT. Let T,
T, ..., T be k>0 non-empty test sets generated by the testing
method 9% for testing S in the experiment.

P-measure -- Probability of detecting at least one fault
The P-measure of the k tests T), T», ..., Ty is defined as
follows.
P(T],Tz, ...,Tk):d/k, >0
where d =|{T;[3a e T,-(S fails on a),i =1...k}.

Informally, d is the number of test sets 7, in T}, 7>, ..., T}
that 7, contains at least one test case a such that S fails on a.

It is obvious that when k—oo, P(T}, T, ..., T}) approaches
the probability that a test set T detects at least one fault.
Therefore, P-measure is an estimation of the probability that a
test set 7 detects at least one fault.

When the test cases in each test set T are generated at
random independently using the same distribution of the
operation profile, the probability that a test set of size w
detects at least one fault is 1-(1-6)", where 8 is the failure
probability of the software. In other words, the P-measure of
random testing is an estimation of the value 1-(1—6)", where
w is the test size. Formally, for random testing, we have that

P(T) =1-(1-6)", where w=| T'|.

E-measure -- Average number of failures
The E-measure of k tests Ty, T, ..., T, is defined as follows.

k
M(Ty, Ty, ..., Tk)=]1€(2u,,j, >0
i=1

where u, =|{ae T[|S fails on a}| ,i=1,.. k.

Informally, u; is the number of test cases in test set 7; on
which S fails. It is obvious that when k—eo, M(Ty, T, ..., T})
approaches the expected number of test cases in a test set 7 on
which S fails. Therefore, it is an estimation of the expected
number of failures on a test set generated by the testing
method 9.

When the test sets 7; are of the same size, say w, and the
test cases are selected at random independently using the
same distribution as the operation profile, the E-measure
approaches 6w, when k—oo. Here, @1is the failure probability
of the SUT. In other words, the E-measure of random testing
is the estimation of 6w, where w is the test size. Formally, for
random testing we have that M(7) = &w, wherew = | T|.

It is worth noting that, when test size is 1, for random
testing, P-measure equals to E-measure.

F-measure — The First failure.
The F-measure is defined as follows.

1 k
F(Th T23 (EES Tk)_k(zvija
iml

..., Q;>, v; 1s a natural number such that .S
fails on the test case a, and for all 0<n<v,, Sis correct on test

>0

where T=<a,, a,,

case a,,. It is assumed that the sizes of the test sets T}, i=1,.. ., k,
are large enough so that v; exists.

Obviously, when k—eo, F(Ty, T5, ..., T}) approaches the
expected number of test cases to be executed before the
software fails. Therefore, F-measure is an estimation of the
number of test cases required to detect the first fault. This
measure only applies when the test cases are ordered in a
linear sequence as what we do in this paper.

As pointed out in [10], under the condition that the test
cases a; in each test set T are selected at random
independently using the same distribution of the operation
profile, the F-measure is in fact a random variable of
geometric distribution, i.e. the distribution of first success
Bernoulli trial. Therefore, when k—oo, F(Ty, Ts, ..., T})

approaches 1/6, where @is the probability of failure because
the expectation of geometric distribution is 1/6. In other
words, for random testing, F-measure is an estimate of 1/6.
Formally, F(T) = 1/6, if | T'| is large enough.

Note that, we also use the same measurement defined
above to measure the test result on one test set 7. This is the
case when k=1 in the above definition.

An important property of P-measure and E-measure is that,
for all test sets 77 and 75, if T; is a permutation of 73, then
P(T))=P(T,), and M(T,)=M(T), provided that the software is
initialized before every execution on each test case. In other
words, they are independent of the order in which test cases
are executed. This property is not true for the F-measure.
Therefore, F-measure is suitable for the evaluation of testing
methods that the order in which test cases are executed is
important.

A common feature of the above measurements is that they
are independent of the order in which test sets T}, 75, ..., T}
are listed provided that the software is properly initialized
after experiment on each test set.

C. Measurements of testing methods’ reliability

As discussed in section 1, an important and desirable property
of software testing methods is the reliability in their fault
detecting abilities in the sense that its performance is
consistent and stable. In other words, when the method is
applied many times, the fault detecting abilities should not
vary too much. However, the reliability of software testing
methods in fault detecting ability has not been investigated in
software testing literature. In this subsection, we propose to
use standard deviation as a reliability measure because it is
the most important indicator of the variation of random
variables.

Let T\, T5, ..., T be a number of test sets generated
according to a testing method and ¢ be a given measurement
of fault detecting ability, such as one of the above mentioned.
Assume that m,, m, ..., m; are the fault detecting abilities of

Ty, T», ..., T as measured by ¢ in testing SUTs S}, Sy, ..., Sk,
where S; can be the same as or different from S;.

S-measure — The variation of fault detecting ability

The S-measure S(Ty, T, ..., Ty) of tests Ty, T», ..., T} is

formally defined as follows.

k
S(Ty, T, ..., T)= /ﬁz(mi _my kel
1=

]
where m=q(T)), i=1,.... k, m=Y"m,/k.

i=1
In other words, the S-measure is the sample standard
deviation of the values m,, m,, ..., m; of the ¢-measure on
each test set. The smaller the S-measure, the more reliable the
testing method is.

III. THE EXPERIMENT

The main goal of the experiment is to evaluate ART methods
on their reliabilities of fault-detecting abilities with respect to

realistic faults. As reported in [16], mutants systematically
generated by using mutation testing tools can represent very
well the real faults. Thus, we use mutants in our experiments
to achieve this goal rather than simulation, which is based on
idealistic assumptions on the shapes of failure domains.

The secondary goal of the experiment is to identify the
factors that influence the reliability of fault detecting ability.
We identified two main candidate factors: the reliability (or
equivalently the failure probability) of the SUT and the
regularity of failure domains. This secondary goal is achieved
through the design of experiment with repetition of testing on
a number of test sets.

The experiment consists of the following activities.

A. Selection of subject programs

We selected two programs with integer input to simplify the
random generation of test cases and the calculation of
distances between the test cases. They are programs that
calculate the greatest common divisor (GCD) and the least
common multiplier (LCM). Both of them have a two
dimensional input space on natural numbers. The programs
are written in Java.

B. Generation of mutants of the subject program

For each of the subject program, mutants were generated
systematically by using the MulJava testing tool [20]. A total
of 187 mutants were generated. There are 49 mutants that are
equivalent to the original program. To identify equivalent
mutants, we first executed all the mutants on random test
cases. When a mutant is still alive after being executed on
5000 random test cases, it is manually examined to see if it is
equivalent to the original. There are also trivial mutants,
which fail on every test case. Their failure domain is the same
as the input domain, thus they are useless in our experiment.
Therefore, both equivalent and trivial mutants were removed
from statistical analysis. Table 1 gives the distribution of
mutants. Readers are referred to [20] for how mutants are

classified.
TABLE 1. DISTRIBUTION OF MUTANTS.

Mutant Type GCD LCM Total
AOIS 54 52 106
AOIU 9 6 15
AORB 4 4 8
AORS 0 1 1
LOI 14 14 28
ROR 15 15 30
Total 96 92 187
Equivalent Mutants 28 21 49
Trivial Mutants 27 29 56
Used in experiment 41 52 93

C. Generation of test sets.

For each testing method, five test sets were generated
according to the algorithm given below. Each test set consists
of 1000 test cases.

Algorithm: Test Set Generation

Step 1. The input domain is divided into two sub-domains.
The original sub-domain Dyg={1..5000} x {1..10000}, The

mirror sub-domain D;={5001..10000} x {1.. 10000}.

That is, the input for variable x is an integer in the range
from 1 to 5000 and the input for variable y is in the range from
1 to 10000. The total input domain is D=Dy L D; = {1..10000}
x {1..10000}, which is of a size 10°.

Step 2. Use pseudo-random function of the Java language
with different seeds to generate 500 random test cases in the
domain D,. Let T; be the set of these test cases, where the
elements are ordered in the order that they are generated.
Step 3. The mirror test set 7, is generated by applying the
following mirror mapping : Dy — D;.
H(<xy>)=<x+5000, y>. *)
The test set RT is obtained by merging 7 with 75, i.e. adding
the elements of T, at the end of 7.
Step 4. Let 7=T,UT,. The test set DMART is obtained by
applying the Distance manipulation on 7, i.e.
DMART=Distance(T).
Step 5. Let 75 be the result of applying the distance
manipulation on Ty, i.e. T3=Distance(T}). The test set MDART
is obtained by applying the Mirror manipulation on 73 with
the mirror mapping # as defined in (*) above, i.e.
MDART=Mirror(T5)=Mirror(Distance(T)). [

Note that, the test sets RT, DMART and MDART contain
exactly the same elements, but in different order. As a
consequence, the P-measure and E-measure of each RT test
set T are identical to the P-measure and E-measure of the
corresponding DMART and MDART test sets. Only the
F-measure on these test sets will be different. Therefore, the
F-measure reflects the ART testing methods’ differences in
fault detecting abilities; while the E-measure provides the
background information about the mutants’ failure
probability. The P-measure is not used in this paper.

D. Test the mutants

The mutants are tested on each test case in each test set one by
one in the order. The outputs of the mutants are compared
with the output of the original program. If the output of a
mutant on a test case is different from the output of the
original program on the same test case, the mutant is killed by
the test case. During this testing process, the first test case that
kills the mutant and the total number of test cases on which a
mutant fails are recorded for statistical analysis. In other
words, the F-measures and E-measures are taken during the
test executions.

E. Analysis of the test results

The test data were analyzed statistically to compare the
testing methods according to the F-measures and E-measures.
The fault-detecting ability is measured by the F-measure. The
reliabilities of the different testing methods are obtained with
the S-measure of the results on the five repeating test sets. The
factors that affect the fault detecting ability and reliability are
also analyzed.

It is worth noting that, in the statistical analysis, no
distinction is made between the mutants that are generated

from GCD or LCM. This is because RT and ART methods are
black box testing methods. Their fault detecting abilities only
depend on the failure domain of the SUT regardless of the
program’s internal structure and/or the application domain.
Each mutant represents one SUT with its own failure
probability and its own regularity of the failure domain. All
the mutants in our experiment have the same input domain.
Thus, there is no need to treat them differently.
The main findings are discussed in the next section.

IV. MAIN FINDINGS

This section reports the main findings of the experiment.

A. Characteristics of the mutants

The mutants generated by the MuJava tool vary on their
failure probabilities. In contrast to the experiments reported
in [21], where a large proportion of mutants have a failure
probability lower than 0.05, there are very few mutants in our
experiment that have low failure probabilities. In fact, no
mutant in our experiment has failure probability lower than
0.2, which is equivalent to the E-measure less than 200 for a
test set of size 1000. Table 2 shows how the mutants are
distributed according to their failure rates, i.e. the E-measure,
where the test size is 1000. It is also visually depicted in

Figure 1.
TABLE 2. THE DISTRIBUTION OF MUTANTS W.R.T THEIR FAILURE RATES
Ranges of Avg Number of Mutants

E-measure

GCD

LCM

Total

techniques is reported. However, most of the simulations are
for failure rates less then 25%. There are only three sets of
simulation data for failure rates higher than 25%, i.e. the
failure rates of ~/2/2, 1/2 and +/2/4 . Thus, it is an open
question that how ART perform on SUT that have higher
failure rates.

60
—+-GCD
-=LCM
=total

/]
/

=
=}
e}
I
=3
=) re)
< [t}

Average M-measure
Figure 1. The distribution of mutants w.r.t. to the E-measure
The second statistical property of the mutants used in our
experimentations is characterized by the distribution of the
variations of the E-measures of the mutants in five different

tests. As shown in Figure 2, this distribution is not uniform.
18
16
14
12
10
8

[S)
o

'S
(=

[
=

Number of Mutants
w
f =

=
>

=]

49
50-99
100-149 §

150-199
200-249
250-299
300-349
350-399
400-449

0-499
500-549
600-649
650-699
700-749
750799
800-849
850-899
900-949
950-999
1000

oo

Number of Mutants

[

1--49

0

50-99

o

.

|

o

1=

100-149

150-199

200-249

250-299

300-349

350-399

400-449

450-499

500-549

550-599

600-649

— o= |N[a=[wlw—=|lo|lo|lo|o

— ol |O[h|lnV|wW I—|lOO|O

650-699

—_
[\

—_
(=2}

700-749

750-799

800-849

850-899

(=N E=j Fal |) AN el kel BN I EN I Fll BN [l (=2 =1 [=3 [l k)l o]

— =

900-949

W= [N —= D

(=]

W

950-999

1

17

18

In the existing research on ART techniques, the subject
samples (i.e. the SUT) are always selected with very low
failure rates. For example, in [21, 22], mutants with a failure
rate higher than 0.05 were dismissed. All the mutants of
failure rates at most 0.05 were treated equally in statistical
analysis in the comparison of RT and ART techniques. In the
simulation experiments on ART, the focuses are also on low
failure rate situations. For example, in [10], the performances
of ART testing techniques were evaluated by simulating the
failure rates of 0.01, 0.005, 0.001 and 0.0005. In [14], a more
systematic simulation of the fault detecting abilities of ART

» R P e

S R CO

"
v

Lad

o L Y
alow el g

StdDev of M-measures over 5 test sets
Figure 2. The distribution of mutants w.r.t. to the standard deviation of
E-measures over five test sets

There is also a relationship between the average
E-measures and the standard deviation of the E-measures on
the mutants. As shown in Figure 3, when the average
E-measures is very small or very large, the standard
deviations of the E-measures tend to be small. In the middle,
the standard deviations are larger than those on the two ends.

30

25
20 — T —

15

0 (£ ~N

StdDev of M-measure
/

5 N

N\

200 300 400 500 600 700 800 9200 1000

Average M-measure
Figure 3. The relationship between average E-measures and the standard
deviation of the E-measures

These statistical characteristics of mutants were not given
in existing literature in the evaluation of ART methods [21,
22]. Therefore, we cannot compare our samples with the
existing work on these properties.

B. ART methods’ fault detecting abilities

To compare the fault detecting ability of ART methods with
RT, we use the F-measure. The distribution of the data is
shown in Figure 4.

N
6 m 1 :—_g;RT
e L - WART
: LA A
AW L A A
I I V" N e
: N e e

9
[
@
6‘06’

SEFe T R ‘0@2@»% b@'z\%?' & %"’?\@P‘ @\%Q@ o
F-measure

Figure 4. Distribution of F-measures w.r.t. to E-measures
As stated in the previous sub-section, there are a large
number of trivial mutants that fail on all inputs. As in [21, 22],
we calculated the average F-measures of RT, MDART and
DMART on non-trivial mutants. The result is shown in
Figure 5. Using these average F-measures one can infer that
DMART improves RT by 17.64%, which is much more than

MDART does, which is 3.75%; see equations below.
F(RT)— F(MDART) _1.973-1.901

=3.65%,
F(RT) 1.973
F(RT)— F(DMART) _ 1.973-1.625 —17.64%
F(RT) 1.973

In [10, 14], MART and DART were of similar fault
detecting abilities in terms of average F-measures. They only
differ from each other in the time needed to generate test
cases. The results we obtained seem inconsistent with their
simulation results.

2.000 1978 1901

1.625
1. 500
1.000
0. 500
0.000 : -
RT

MDART DART
Figure 5. Average F-measures over all non-trivial mutants.

Average F-measures over mutants

4.

b

A i
A o] |

Al
[\A!
[N A

Average F-measure
no

© LV D Y Y

€ € > O 4
D QS
DY Y S
RO

S gl0° Fate®
Average M-measure
Figure 6. Distribution of DMART’s F-measure
One of the main factors that affect the fault detecting
ability of ART techniques is the failure rate of the SUT. This
is also confirmed in our experiments. Figure 6 shows the
distribution of DMART’s F-measures against the average of

E-measures.

From Figure 6, it is apparent that there are three levels of
F-measures (>2.5, 1.5 ~2.5 and <1.5) and the E-measures can
be divided into three areas (240~340, 340 ~ 680, >680). The

average F-measures in each area is shown in Figure 7.
4. 000

3,725
[DVART
3. 500
g 3.000 .
Z 2.500 N
3 ~
‘E . ~
< 2. 000 ~ L 66z
£ 1.500 <= ‘
4 =~ _1.032
= 1.000
0. 500
0. 000 : :
240-340 340-680 680-1000

Ranges of M-measure
Figure 7. F-measures of DMART in different ranges of E-measures
A similar phenomenon can be observed on the distribution
of F-measures on MDART tests, but less obvious and the
areas for each level of F-measures are wider; see Figure 8.

3.500 3959
EVDART
3.000
o2} \\
E?:’ 2. 500 S
1] N
[}
2 2,000 489t
L
o 1.500 <
o0
g TSl
1,000
-
0. 500
0. 000
240-420 420-740 740-1000

Ranges of M-measures
Figure 8. F-measures of MDART in different ranges of E-measures
These results are consistent with existing work on ART
although the scales are different, which is probably because
our mutants have higher failure rates. In all studies including
ours, ART’s fault detecting abilities increase as SUT’s failure
rate decreases.

C. Reliability of ART methods

Now, let’s analyze the reliability of ART methods and the
main discovery of the experiment.

Similar to the calculation of average F-measures for each
testing methods, we calculate the average standard deviation
for each testing methods, which reveals the differences in the
reliabilities of the methods as shown in Figure 9.

From Figure 9, DMART made a significant improvement
in reliability over RT, which is 32.70%. In contrast, the
improvement that MDART made is much smaller, which is
only 6.30%. The formulas for the calculation are given in eq.
(1) and (2) below. In other words, DMART not only has
better fault detecting ability than MDART, but also more
consistent.

S(RT) - S(MDART) _1.413—1.324
S(RT) T 1413

S(RT)—S(DMART) _1.413—0.951
S(RT) T 1413

=6.30% (1)

=32.70%)

1. 600

Haverage stdDev

1.413

1. 400

1200 s

1. 000

0. 800

0.600 [

0.400 -t

Average Standard Deviation over All Mutants

=) =]
=])
S =3
S S

RT MDART DMART

Figure 9. Average S-measures over all non-trivial mutants
To further identify the factors that affect the reliability of
ART methods, the relationship between the variations of
F-measure and the variation of the corresponding mutants’
failure rates on the five test sets are investigated. Figure 10
shows the relationship between the standard deviation of the
F-measures on DMART tests and the average failure rate.
Here, the standard deviations are calculated from the test
results on five different test cases on each mutant.
6. 000 T T

5. 000

oo ||
oo |1
|

2. 000

StdDev of F-measures

1.000

LA M
MV e W it

0 10 20 30 40 50 60 70 80 90

Average Failure rates
Figure 10. The Standard Deviation of F-measures vs Average Failure Rates

From Figure 10, it is clear that the variation of DMART
tests’ F-measure decreases as the average failure rates
increases. That is, when the software under test is of high
reliability (or, equally, low failure rate), the F-measure is
more consistent. Again, we can identify three levels of the
standard deviations of F-measures on three areas of average
failure rates as shown in Figure 11. The correlation
coefficients between the average E-measure and the average
standard deviations of F-measure of RT, MDART and
DMART on all mutants are -0.735, -0.645 and -0.615,
respectively. Therefore, it is clearly that the reliabilities of
these testing methods depend on SUT’s failure rate.

Figure 12 shows the relationship between the standard
deviations of F-measures and the standard deviation of
E-measures (i.e. failure rates). Note that, when a number of
random tests of the same size are applied to a SUT, the
standard deviation of the E-measures of these tests reveals a
property, i.e. the variation, of the SUT’s failure domain. The
more regular the failure domain is, the smaller the standard
deviation of the E-measure should be. Therefore, the standard
deviation of E-measure reflects the regularity of the SUT’s
failure domain.

0. 000

4. 000

3. 500

E DMART
W MDART
ORT

3. 000

[N
o
=
=

2. 000

1. 500

StdDev of F-measure

1. 000

0. 500
0.143 0.148

0.061
0. 000

340--680

Ranges of Failure rates

240--340 680—1000

Figure 11. StdDev of F-measures on different ranges of E-measures

6. 000

4,000 I

N
p— | 11
S VLA LA

0 5 10 15 20 25 30
SedDev of Failure Rates

Figure 12. The Standard Deviation of F-measures vs Standard Deviation of
Failure Rates over five test sets

Figure 12 shows that as the standard deviations of
E-measures increases, the standard deviations of F-measures
tend to increase. In other words, when a SUT’s failure
domain is more regular (the standard deviation of the
E-measures is small), the consistency of F-measure is higher.
This relationship becomes clearer when the average standard
deviation is calculated on mutants in various ranges of
standard deviations of E-measures, as shown Figure 13.
Moreover, the correlation coefficients between the standard
deviations of F-measures of RT, MDART and DMART and
the standard deviations of E-measures for all mutants are
0.574, 0.464 and 0.430, respectively. Therefore, we can
conclude that the reliabilities of these testing methods are
related to the standard deviation of E-measures, i.e. the
regularity of failure domains.

StdDev of F-measures
w

Average StdDev of F-Measures

4--6 68 8-10 10--12 12--14 14--16 16--18 18--20 20--22 22--24 >24
Average StdDev of Failure Rates

<2 2--4

Figure 13. Average Standard Deviations of F-measure over Mutants in
Various Ranges of the Standard Deviation of Failure Rates

V. CONCLUSION

Our experiment results described above confirm the main
results of existing work on ART methods [9~14, 21~22]. In
particular, we confirm that ART method can improve the
fault detecting ability over random testing. However, the
scale of improvement is much smaller than that demonstrated
in existing work, which could be up to 40% increase in
F-measures while we have shown that the average
improvement is less than 20%.

Our experiments differs from the existing work in that our
mutants have higher failure rates than those used in [21~22].
As far as we know, the performances of ART methods have
not been systematically investigated for SUTs that have high
failures rate as those in our experiment. In [21~22], only a
subset of mutants that have very low failure rates are used in
the experiment. We believe that, for mutation analysis of
testing methods, the whole set of mutants should be used
because the set of mutants collectively models the real faults
in software systems.

In addition, this is the first time that the reliabilities of ART
methods are investigated. We discovered that ART not only
improves the fault detecting ability, but also significantly
improves the reliability of fault detecting ability in the sense
that the variations on F-measures are significantly smaller
than random testing, where variation is measured by the
standard deviation of F-measures. We also analyzed the
factors that affect ART’s reliability. The main factors are the
failure rate of the software under test and the regularity of the
failure domain when measured by the standard deviation of
E-measures. The experiment data demonstrated that when the
SUT’s failure rate increases, the test method’s reliability
increases. Moreover, when the regularity increases, the
reliability also increases.

The main threats to the validity of our experiment and its
conclusions come from two aspects. First, our subject
programs were selected at random. They are of small scale
and are of rather low computation and structural complexity.
They may or may not represent the real software systems. As
a consequence, the failure domains represented by their
mutants could be simpler than the real faults. However, since
ART and RT are black box testing methods, the impact of the
complexity of the program is limited. Moreover, the validity
of the failure domains represented by mutants should be no
less than simulations where ideal assumptions on failure
domains were made. We plan to repeat our experiment with
more subject programs, especially those more complicated
and more complex. By doing so, the validity of the
experiment will be validated.

Second, the number of repeated test sets for each test

method is small. We only used 5 test sets for each test method.

This is due to the restriction on the resource available. We are
now repeating the experiment with more test sets. However,
although using more test sets will improve our confidences in
the conclusions, we don’t see any reason why the conclusions
drawn from the experiment could be significantly different.

In particular, we believe that the qualitative conclusions
should not be threatened by the sample size.

Another direction of future work is to further investigate
the factors that affect the fault detecting ability as well as their
reliability. In [23], the compactness of failure domains is
proven to be an important factor that affects fault detecting
ability. An open question is how to measure the compactness
of failure domains that are not in regular geometry shapes.

ACKNOWLEDGEMENT

The work reported in this paper was carried out while Y. Liu
is visiting the Oxford Brookes University, which was funded
by the China Scholars Council.

REFERENCES

[1] H. Zhu, P. Hall, and J. May, Software unit test coverage and adequacy,
ACM Computing Surveys, Vol. 29, No. 4, Dec. 1997, pp366~427.

[2] D.Hamlet, Random testing, in Encyclopedia of Software Engineering, J.
Marciniak, ed., Wiley, 1994, 970-978.

[3] S. Ntafos, On random and partition testing, Proc. of ISSTA '98, ACM
SIGSOFT Software Engineering Notes, Vol. 23 Issue 2, pp42-48.

[4] J.W. Duran, & S. Ntafos, An evaluation of random testing, IEEE TSE,
Vol. SE_10, No. 4, pp438-444, July 1984.

[5] D. Hamlet, and R.Taylor, Partition testing does not inspire confidence,
IEEE TSE, Vol. 16, pp206~215, Dec. 1990.

[6] M.Z., Tsoukalas, J.W. Duran, and S.C. Ntafos, On some reliability
estimation problems in random and partition testing, IEEE TSE, Vol. 19,
No.7, July 1993, pp687~697.

[71 RT 2006, Proceedings of the Ist international workshop on random
testing 2006, Portland, Maine, July 20 - 20, 2006, ACM Press.

[8] RT 2007, Proceedings of the 2nd international workshop on random
testing 2007, Atlanta, Georgia, November 06 - 06, 2007, ACM Press.

[9] T.Y.Chen, H. Leung, and I. K. Mak. Adaptive random testing. Proc. of
the 9th Asian Computing Science Conf., LNCS 3321, pp320-329, 2004.

[10] T.Y. Chen, F.-C. Kuo, R. G. Merkel and S. P. Ng, Mirror Adaptive
Random Testing, Inf. & Software Tech. 46(15), pp1001-1010, 2004.

[11] K. P. Chan, T. Y. Chen, D. Towey, Adaptive Random Testing with
Filtering: An Overhead Reduction Technique, pp292-299

[12] T.Y. Chen, De Hao Huang, F.-C Kuo, Adaptive random testing by
balancing, in [7], pp2 — 9.

[13] J. Mayer, Lattice-based adaptive random testing, Proc. of ASE '05,
November 2005, pp333-336.

[14] T.Y. Chen, F.-C. Kuo: Is adaptive random testing really better than
random testing. In [8], pp64-69.

[15] J.B. Goodenough & S.L. Gerhart, Toward a theory of test data
selection, IEEE TSE, Vol.SE_3, June 1975.

[16] J. H. Andrews, L. C. Briand, Y. Labiche, Is mutation an appropriate
tool for testing experiments? Proc. of ICSE 2005, pp 402 —411.

[17] G.J. Myers. The Art of Software Testing. Wiley, 2™ edition, 1979.

[18] J.A. Whittaker, and M.G. Thomason, A Markov Chain Model for
Statistical Software Testing, IEEE TSE 20(10), 1994, pp812-824.

[19] H. Zhu, A formal analysis of the subsume relation between software
test adequacy criteria, IEEE TSE 22(4), 1996, pp248~255.

[20] Y-S Ma, J. Offutt and Y-R. Kwon. MuJava: An Automated Class
Mutation System, JSTVR 15(2), June 2005, pp97-133.

[21] J. Mayer, C. Schneckenburger, An Empirical Analysis and Comparison
of Random Testing Techniques. Proc. of ISESE 2006, pp105-114.

[22] J. Mayer, T. Y. Chen, D. H. Huang, Adaptive Random Testing with
Iterative Partitioning Revisited, Proc. of SOQUA 2006, pp22-29.

[23] T.Y.Chen, F.-C. Kuo and C.A. Sun, The impact of the compactness of
failure regions on the performance of adaptive random testing, Journal of
software, 17 (12), 2006, pp2438-2449.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

