
 
 

 

  

Abstract—Adaptive random testing (ART) techniques have 
been proposed in the literature to improve the effectiveness of 
random testing (RT) by evenly distributing test cases over the 
input space. Simulations and mutation analyses of various ART 
techniques have demonstrated their improvements on fault 
detecting ability when measured by the number of test cases 
required to detect the first fault. In this paper, we report an 
experiment with ART using mutants to evaluate ART’s 
reliability in fault detecting ability. Our experiment discovered 
that ART is more reliable than RT in the sense that its degree of 
variation in fault detecting ability is significantly lower than RT. 
It is also recognized from the experiment data that the two main 
factors that affect ART’s reliability are the failure rate of the 
system under test and the regularity of the failure domain 
measured by the standard deviation of random test results.  

I. INTRODUCTION 
Generally speaking, software testing methods can be 
classified into two types: random testing (RT) and selective 
testing, which is also called systematic testing in the literature. 
Selective testing methods require careful analysis of source 
code and/or the specification and design documents [1]. In 
contrast, random testing produces or selects test cases in the 
input domain through random sampling [2]. It is proven that 
RT can be as effective as selective testing methods to detect 
software faults using only a fraction of resource to generate a 
large number of test cases [3, 4, 5, 6]. It has been an active 
research topic in software testing [7, 8] and also possesses a 
niche in IT industry. Recently, adaptive random testing (ART) 
methods were proposed to further improve the effectiveness 
and efficiency of random testing [9,10,11,12,13, 14]. This 
paper is concerned with the comparison of ART to RT.  

As Goodenough and Gerhart pointed out [15], a testing 
method needs to satisfy two criteria: validity and reliability. 
Informally, a test method’s validity means that for all 
software under test (SUT) there is a test set generated by the 
method that can detect faults if any. The reliability of a testing 
method means that if one such test set detects a fault, then 
ideally any test set of the method will also detect the fault. 
The reliability of a testing method indicates how stable the 
testing method is and how consistent the test result can be. In 
the research on RT and ART methods, focus has been on fault 
detecting abilities. However, unfortunately, their reliabilities 
in fault detecting ability have not been investigated 
systematically.  

This paper reports an experiment that uses mutation 
analysis to compare two ART methods and the traditional RT 

method to evaluate their reliabilities. Mutation analysis is 
used because, statistically speaking, mutants systematically 
generated by the application of a mutation testing tool seem 
capture the behaviour of real faults very well [16].  

The remainder of the paper is organized as follows. Section 
2 briefly reviews the basic concepts and related works and 
defines the notions and notations uses in the paper. Section 3 
describes the process and design of the experiment. Section 4 
reports the main findings of the experiment.  Finally, Section 
5 concludes the paper with a summary of the main findings of 
the experiment, a discussion of the threats to the validity of 
the conclusions and the directions for future work.  

II. PRELIMINARIES AND RELATED WORK 
In this section, we review the basic concept and define the 

notions and notations used in this paper.  

A. Random Testing and Adaptive Random Testing  
Generally speaking, random testing (RT) is a software testing 
method that selects or generates test cases through random 
sampling over the input domain of the SUT according to a 
given probability distribution [2]. As discussed in [1], RT 
techniques can be classified into two types, representative 
random testing and non-representative random testing. The 
former uses the probabilistic distribution on the input domain 
same as the input distribution in the operation of the SUT. A 
typical example of such testing techniques is to sample at 
random in an operation profile of the software under test [17]. 
Another example is to develop a Markov model of human 
computer interaction process and to use the model to generate 
random test cases [18]. In contrast, the non-representative RT 
uses a distribution irrelevant to the operation of the software. 
The ART methods studied in this paper belong to this type. 
Representative RT has the advantage that test results 
naturally lead to an estimate of software reliability, while the 
other aims at improve fault detecting ability. ART methods 
have been proven more effective to detect faults than RT with 
uniform distribution [14, 21].  

The basic idea of ART is to generate and/or select random 
test cases that spread more evenly over the input space than 
the ordinary RT. The even spread is achieved through 
manipulations of randomly generated test sets. A number of 
such manipulation techniques have been developed and 
evaluated [9-13]. Before summarizing these manipulations, 
we first define some basic notions and notations.  
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Let D be the input domain, i.e. the set of valid input data to 
the SUT. A test set T=<a1, a2, …, an>, n≥0,  on domain D is a 
finite sequence of elements in D, i.e. ai∈D, for all i=1, 2, …, 
n.(a) The number n of elements in a test set is called the size of 
the test set. A SUT is tested on a test set T=<a1, a2, …, an> 
means that the software is executed on inputs a1, a2, …, an 
one by one with necessary initialization before each 
execution. When n=0, the test set is called empty test, which 
means the software is not executed at all. Without loss of 
generality, we assume that test sets considered in this paper 
are non-empty.  

A test set T=<a1, a2, …, an> is a random test set if the 
elements are selected or generated at random independently 
according to a given probability distribution on the input 
domain D. If the same input is allowed to occur more than 
once in a test set, we say that the random test sets are with 
replacement; otherwise, the test sets are called without 
replacement. In the experiment reported in this paper, the 
random test sets are with replacement.  

Now, we formally define the manipulations on random test 
sets used in ART techniques.  
Mirror. Let D0, D1, D2, …, Dk (k>0) be a disjoint partition of 
the input domain D. The sub-domains D0, …, Dk are of equal 
size and there is an one-to-one mapping μi from D0 to Di, 
i=1, …, k. The sub-domain D0 is called the original 
sub-domain. The other sub-domains are called the mirror 
sub-domains. The mappings μi are called the mirror functions.  
Let T0 =<a0

1, a0
2, …, a0

n>  be a random test set on D0. The 
mirror of the original test sets T0 in a mirror sub-domain Di 
through μ i is a test set Ti, written μi(T0), defined as follows.  

μi(<a0
1, a0

2, …, a0
n>)=<ai

1, ai
2, …, ai

n>, 
where μi(a0

j ) = ai
j, i=1, …, k, j=1, …, n.  The mirror test set of 

T0 , written Mirror(T0), is a test set on D that  
Mirror(T0) = <a0

1, a1
1, a2

1, …, ak
1,  a0

2, a1
2, …, ak

2,  
…, a0

n, a1
n,  …, ak

n >.  
Distance. Let || x, y || be a distance measure defined on input 
domain D.(b) It is extended to the distance between an element 
x and a set Y of elements as || x, Y|| = min(||x, y||, y∈Y). A test 
set T=<a0, a1, a2, …, an> is maximally distanced if for all i=1, 
2, …, n,  

|| ai, {a0, …, ai-1}|| ≥ || aj, {a0, …, ai-1} ||, for all j > i.  
Let T be any given test set. The distance manipulation of T is 
a re-ordering of T’s elements in the sequence so that it is 
maximally distanced, written Distance(T).  
Filter. Let || x , y || be a distance measure defined on the input 
domain D. Let T be any given non-empty test set. Test set T’ 
=<a1, a2, …, an> is said to be ordered according to the 
distance to T, if  for all i=1, 2,. …, n−1, ||ai, T|| ≥ ||ai+1, T||. Let  
S and C be two given natural numbers such that S > C > 0, and 
T0, T1, …, Tk be a sequence of test sets of size S>1. Let U0=T0. 
 
a Strictly speaking, it should not be called test set as elements are ordered. But, 
it is a convention in the literature of ART to call them test set.  
b A distance measure on a domain D is a function ||  || from D2 to real numbers 
in [0,∞) such that for all x, y, z∈D, || x, x || = 0; || x, y|| = ||y, x || and ||x , y || ≤ ||x , 
z || + || z, y||.  

Assume that Ui=<a1, …, aki> and Ti+1=<c1, …, cS>. We define 
T’i+1=<b1, …, bS> be a test set obtained from Ti+1 by 
permutation its elements so that T’i+1 is ordered according to 
the distance to Ui. Then, we inductively define Ui+1=<a1, …, 
aki, b1, …, bC>, for i=0, 1, …, k−1. The test set Uk is called the 
test set obtained by filtering C out of S test cases.  

It is worth noting that, first, strictly speaking, the results of 
the above manipulations are not random test sets even if the 
test sets before manipulation are random. Second, these 
manipulations can be combined together to obtain more 
sophisticated adaptive random testing. For example, in mirror 
adaptive random testing [10], the input domain is partitioned. 
A random test set is first generated on the original 
sub-domain. It is then manipulated by the Distance operation 
and then Mirrored into the mirror sub-domain. Third, the set 
of manipulations defined above may not be complete. There 
are also other manipulations on random test set; see [9-13]. 
Finally, in the literature, ART methods are usually described 
in the form of test case generation algorithms rather than 
manipulation operators. The filter manipulation is not used in 
the experiments reported in this paper. It is defined here to 
demonstrate that testing methods defined in the form of an 
algorithm can also be defined formally as manipulations. This 
not only simplifies the descriptions of ART testing methods 
concisely and formally, but also enables us to recognise easily 
the various different ways in which they can be combined.  

B. Measurements of fault-detecting ability 
A fault is a defect in a software system. The execution of 
faulty software on a test case may result in a failure, i.e. the 
output and/or the behaviour of the software do not meet 
user’s expectation according to a given criterion (which is 
called test oracle). When a failure occurs, the test detects a 
fault in the SUT. Testing methods and techniques differ from 
each other in the way that test cases are selected as well as the 
correctness of the execution is judged.  In this paper, we focus 
on the issue related to test case selection. It is assumed that the 
correctness is judged with a same given criterion in the 
comparison of different testing techniques.   

In experimental evaluation and comparison of testing 
methods, the fault detecting ability of a testing method can be 
measured in a number of different ways; see, for example, 
[19]. The following are among the most widely used in the 
literature of software testing.  

Let M be a testing method and S a given SUT. Let T1, 
T2, …, Tk be k>0 non-empty test sets generated by the testing 
method M  for testing S in the experiment.  

P-measure -- Probability of detecting at least one fault  
The P-measure of the k tests T1, T2, …, Tk is defined as 
follows. 

P(T1, T2, …, Tk)=d/k,   k>0 
where { (  fails on ), 1 }i id T a T S a i k= ∃ ∈ ⋅ = … .  

Informally, d is the number of test sets Tx in T1, T2, …, Tk 

that Tx contains at least one test case a such that S fails on a.  



 
 

 

It is obvious that when k→∞, P(T1, T2, …, Tk) approaches 
the probability that a test set T detects at least one fault. 
Therefore, P-measure is an estimation of the probability that a 
test set T detects at least one fault.  

When the test cases in each test set T are generated at 
random independently using the same distribution of the 
operation profile, the probability that a test set of size w 
detects at least one fault is 1−(1−θ)w, where θ is the failure  
probability of the software. In other words, the P-measure of 
random testing is an estimation of the value 1−(1−θ)w, where 
w is the test size. Formally, for random testing, we have that  

 P(T) ≈1−(1−θ)w, where w = | T |.  

E-measure -- Average number of failures  
The E-measure of k tests T1, T2, …, Tk is defined as follows.  

M(T1, T2, …, Tk)=
1

1 k

i
i

u
k =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ,  k>0 

where {  fails on }i iu a T S a= ∈ , i=1,…, k.  

Informally, ui is the number of test cases in test set Ti on 
which S fails. It is obvious that when k→∞, M(T1, T2, …, Tk) 
approaches the expected number of test cases in a test set T on 
which S fails. Therefore, it is an estimation of the expected 
number of failures on a test set generated by the testing 
method M.  

When the test sets Ti are of the same size, say w, and the 
test cases are selected at random independently using the 
same distribution as the operation profile, the E-measure 
approaches θw, when k→∞. Here, θ is the failure probability 
of the SUT. In other words, the E-measure of random testing 
is the estimation of θw, where w is the test size. Formally, for 
random testing we have that M(T) ≈ θw, where w = | T | . 

It is worth noting that, when test size is 1, for random 
testing, P-measure equals to E-measure.  

F-measure – The First failure.  
The F-measure is defined as follows.  

F(T1, T2, …, Tk)=
1

1 k

i
i

v
k =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ,    k>0 

where Ti=<a1, a2, …, aki>, vi is a natural number such that S 
fails on the test case 

iva and for all 0<n<vi, S is correct on test 

case an. It is assumed that the sizes of the test sets Ti, i=1,…, k, 
are large enough so that vi exists.  

Obviously, when k→∞, F(T1, T2, …, Tk) approaches the 
expected number of test cases to be executed before the 
software fails. Therefore, F-measure is an estimation of the 
number of test cases required to detect the first fault. This 
measure only applies when the test cases are ordered in a 
linear sequence as what we do in this paper.  

As pointed out in [10], under the condition that the test 
cases ai in each test set T are selected at random 
independently using the same distribution of the operation 
profile, the F-measure is in fact a random variable of 
geometric distribution, i.e. the distribution of first success 
Bernoulli trial.  Therefore, when k→∞, F(T1, T2, …, Tk) 

approaches 1/θ, where θ is the probability of failure because 
the expectation of geometric distribution is 1/θ. In other 
words, for random testing, F-measure is an estimate of 1/θ. 
Formally, F(T) ≈ 1/θ, if | T | is large enough.  

Note that, we also use the same measurement defined 
above to measure the test result on one test set T. This is the 
case when k=1 in the above definition.  

An important property of P-measure and E-measure is that, 
for all test sets T1 and T2, if T1 is a permutation of T2, then 
P(T1)=P(T2), and M(T1)=M(T2), provided that the software is 
initialized before every execution on each test case. In other 
words, they are independent of the order in which test cases 
are executed. This property is not true for the F-measure. 
Therefore, F-measure is suitable for the evaluation of testing 
methods that the order in which test cases are executed is 
important.  

A common feature of the above measurements is that they 
are independent of the order in which test sets T1, T2, …, Tk 
are listed provided that the software is properly initialized 
after experiment on each test set.  

C. Measurements of testing methods’ reliability 
As discussed in section 1, an important and desirable property 
of software testing methods is the reliability in their fault 
detecting abilities in the sense that its performance is 
consistent and stable. In other words, when the method is 
applied many times, the fault detecting abilities should not 
vary too much. However, the reliability of software testing 
methods in fault detecting ability has not been investigated in 
software testing literature. In this subsection, we propose to 
use standard deviation as a reliability measure because it is 
the most important indicator of the variation of random 
variables.  

Let T1, T2, …, Tk be a number of test sets generated 
according to a testing method and φ be a given measurement 
of fault detecting ability, such as one of the above mentioned. 
Assume that m1, m2, …, mk are the fault detecting abilities of 
T1, T2, …, Tk as measured by φ  in testing SUTs S1, S2, …, Sk, 
where Si can be the same as or different from Sj.  

S-measure – The variation of fault detecting ability 
The S-measure S(T1, T2, …, Tk) of tests T1, T2, …, Tk is 
formally defined as follows. 

S(T1, T2, …, Tk)= 2

1

1 ( )
1

k

i
i

m m
k =

−
− ∑ ,   k>1 

where mi=φ(Ti), i=1,…, k, 
1

/
k

i
i

m m k
=

=∑ .  

In other words, the S-measure is the sample standard 
deviation of the values m1, m2, …, mk  of the φ-measure on 
each test set. The smaller the S-measure, the more reliable the 
testing method is.   

III. THE EXPERIMENT 
The main goal of the experiment is to evaluate ART methods 
on their reliabilities of fault-detecting abilities with respect to 



 
 

 

realistic faults. As reported in [16], mutants systematically 
generated by using mutation testing tools can represent very 
well the real faults. Thus, we use mutants in our experiments 
to achieve this goal rather than simulation, which is based on 
idealistic assumptions on the shapes of failure domains.  

The secondary goal of the experiment is to identify the 
factors that influence the reliability of fault detecting ability. 
We identified two main candidate factors: the reliability (or 
equivalently the failure probability) of the SUT and the 
regularity of failure domains. This secondary goal is achieved 
through the design of experiment with repetition of testing on 
a number of test sets.  

The experiment consists of the following activities. 

A. Selection of subject programs 
We selected two programs with integer input to simplify the 
random generation of test cases and the calculation of 
distances between the test cases. They are programs that 
calculate the greatest common divisor (GCD) and the least 
common multiplier (LCM). Both of them have a two 
dimensional input space on natural numbers. The programs 
are written in Java.  

B. Generation of mutants of the subject program 
For each of the subject program, mutants were generated 
systematically by using the MuJava testing tool [20]. A total 
of 187 mutants were generated. There are 49 mutants that are 
equivalent to the original program. To identify equivalent 
mutants, we first executed all the mutants on random test 
cases. When a mutant is still alive after being executed on 
5000 random test cases, it is manually examined to see if it is 
equivalent to the original. There are also trivial mutants, 
which fail on every test case. Their failure domain is the same 
as the input domain, thus they are useless in our experiment. 
Therefore, both equivalent and trivial mutants were removed 
from statistical analysis. Table 1 gives the distribution of 
mutants. Readers are referred to [20] for how mutants are 
classified.   

TABLE 1. DISTRIBUTION OF MUTANTS. 
Mutant Type GCD LCM Total 

AOIS 54 52 106
AOIU 9 6 15
AORB 4 4 8
AORS 0 1 1
LOI 14 14 28
ROR 15 15 30
Total 96 92 187
Equivalent Mutants 28 21 49
Trivial Mutants 27 29 56
Used in experiment 41 52 93

C. Generation of test sets. 
For each testing method, five test sets were generated 
according to the algorithm given below. Each test set consists 
of 1000 test cases.  
Algorithm: Test Set Generation  
Step 1. The input domain is divided into two sub-domains. 
The original sub-domain D0={1..5000} × {1..10000}, The 

mirror sub-domain D1={5001..10000} × {1.. 10000}.  
That is, the input for variable x is an integer in the range 

from 1 to 5000 and the input for variable y is in the range from 
1 to 10000. The total input domain is D=D0 ∪ D1 = {1..10000} 
× {1..10000}, which is of a size 108.  
Step 2. Use pseudo-random function of the Java language 
with different seeds to generate 500 random test cases in the 
domain D0. Let T1 be the set of these test cases, where the 
elements are ordered in the order that they are generated.  
Step 3. The mirror test set T2 is generated by applying the 
following mirror mapping μ: D0 → D1.  

μ(<x,y>)=<x+5000, y>.            (*) 
The test set RT is obtained by merging T1 with T2, i.e. adding 
the elements of T2 at the end of T1.  
Step 4. Let T=T1∪T2. The test set DMART is obtained by 
applying the Distance manipulation on T, i.e. 

DMART=Distance(T).  
Step 5. Let T3 be the result of applying the distance 
manipulation on T1, i.e. T3=Distance(T1). The test set MDART 
is obtained by applying the Mirror manipulation on T3 with 
the mirror mapping μ as defined in (*) above, i.e.  

MDART=Mirror(T3)=Mirror(Distance(T1)).      
Note that, the test sets RT, DMART and MDART contain 

exactly the same elements, but in different order. As a 
consequence, the P-measure and E-measure of each RT test 
set T are identical to the P-measure and E-measure of the 
corresponding DMART and MDART test sets. Only the 
F-measure on these test sets will be different. Therefore, the 
F-measure reflects the ART testing methods’ differences in 
fault detecting abilities; while the E-measure provides the 
background information about the mutants’ failure 
probability. The P-measure is not used in this paper.   

D. Test the mutants  
The mutants are tested on each test case in each test set one by 
one in the order. The outputs of the mutants are compared 
with the output of the original program. If the output of a 
mutant on a test case is different from the output of the 
original program on the same test case, the mutant is killed by 
the test case. During this testing process, the first test case that 
kills the mutant and the total number of test cases on which a 
mutant fails are recorded for statistical analysis. In other 
words, the F-measures and E-measures are taken during the 
test executions.  

E. Analysis of the test results 
The test data were analyzed statistically to compare the 
testing methods according to the F-measures and E-measures. 
The fault-detecting ability is measured by the F-measure. The 
reliabilities of the different testing methods are obtained with 
the S-measure of the results on the five repeating test sets. The 
factors that affect the fault detecting ability and reliability are 
also analyzed.  

It is worth noting that, in the statistical analysis, no 
distinction is made between the mutants that are generated 



 
 

 

from GCD or LCM. This is because RT and ART methods are 
black box testing methods. Their fault detecting abilities only 
depend on the failure domain of the SUT regardless of the 
program’s internal structure and/or the application domain. 
Each mutant represents one SUT with its own failure 
probability and its own regularity of the failure domain. All 
the mutants in our experiment have the same input domain. 
Thus, there is no need to treat them differently.   

The main findings are discussed in the next section. 

IV. MAIN FINDINGS 
This section reports the main findings of the experiment.  

A. Characteristics of the mutants 
The mutants generated by the MuJava tool vary on their 

failure probabilities. In contrast to the experiments reported 
in [21], where a large proportion of mutants have a failure 
probability lower than 0.05, there are very few mutants in our 
experiment that have low failure probabilities. In fact, no 
mutant in our experiment has failure probability lower than 
0.2, which is equivalent to the E-measure less than 200 for a 
test set of size 1000. Table 2 shows how the mutants are 
distributed according to their failure rates, i.e. the E-measure, 
where the test size is 1000. It is also visually depicted in 
Figure 1.  

TABLE 2. THE DISTRIBUTION OF MUTANTS W.R.T THEIR FAILURE RATES 
Number of Mutants Ranges of Avg 

E-measure GCD LCM Total 
1--49 0 0 0 
50-99 0 0 0 

100-149 0 0 0 
150-199 0 0 0 
200-249 1 0 1 
250-299 3 0 3 
300-349 7 0 7 
350-399 1 4 5 
400-449 4 0 4 
450-499 2 7 9 
500-549 1 7 8 
550-599 0 0 0 
600-649 1 0 1 
650-699 12 4 16 
700-749 0 2 2 
750-799 1 0 1 
800-849 2 0 2 
850-899 1 0 1 
900-949 3 0 3 
950-999 1 17 18 

In the existing research on ART techniques, the subject 
samples (i.e. the SUT) are always selected with very low 
failure rates. For example, in [21, 22], mutants with a failure 
rate higher than 0.05 were dismissed. All the mutants of 
failure rates at most 0.05 were treated equally in statistical 
analysis in the comparison of RT and ART techniques. In the 
simulation experiments on ART, the focuses are also on low 
failure rate situations. For example, in [10], the performances 
of ART testing techniques were evaluated by simulating the 
failure rates of 0.01, 0.005, 0.001 and 0.0005. In [14], a more 
systematic simulation of the fault detecting abilities of ART 

techniques is reported. However, most of the simulations are 
for failure rates less then 25%. There are only three sets of 
simulation data for failure rates higher than 25%, i.e. the 
failure rates of 2 / 2 , 1/2 and 2 / 4 . Thus, it is an open 
question that how ART perform on SUT that have higher 
failure rates.  

 
 
 
 
 
 
 
 
 

 
 

Figure 1. The distribution of mutants w.r.t. to the E-measure 
The second statistical property of the mutants used in our 

experimentations is characterized by the distribution of the 
variations of the E-measures of the mutants in five different 
tests. As shown in Figure 2, this distribution is not uniform.  

 
 
 
 
 
 
 
 

 
Figure 2. The distribution of mutants w.r.t. to the standard deviation of 

E-measures over five test sets 
There is also a relationship between the average 

E-measures and the standard deviation of the E-measures on 
the mutants. As shown in Figure 3, when the average 
E-measures is very small or very large, the standard 
deviations of the E-measures tend to be small. In the middle, 
the standard deviations are larger than those on the two ends. 

 
  
 
 
 
 
 

 
 

 
Figure 3. The relationship between average E-measures and the standard 

deviation of the E-measures 
These statistical characteristics of mutants were not given 

in existing literature in the evaluation of ART methods [21, 
22]. Therefore, we cannot compare our samples with the 
existing work on these properties.  



 
 

 

B. ART methods’ fault detecting abilities 
To compare the fault detecting ability of ART methods with 
RT, we use the F-measure. The distribution of the data is 
shown in Figure 4. 

 
 
 
 
 
 
 
 
 

Figure 4. Distribution of F-measures w.r.t. to E-measures 
As stated in the previous sub-section, there are a large 

number of trivial mutants that fail on all inputs. As in [21, 22], 
we calculated the average F-measures of RT, MDART and 
DMART on non-trivial mutants. The result is shown in 
Figure 5. Using these average F-measures one can infer that 
DMART improves RT by 17.64%, which is much more than 
MDART does, which is 3.75%; see equations below.  

( ) ( ) 1.973 1.901 3.65%
( ) 1.973

F RT F MDART
F RT
− −= = ,         

( ) ( ) 1.973 1.625 17.64%
( ) 1.973

F RT F DMART
F RT
− −= =    

In [10, 14], MART and DART were of similar fault 
detecting abilities in terms of average F-measures. They only 
differ from each other in the time needed to generate test 
cases. The results we obtained seem inconsistent with their 
simulation results.  

 
 
 
 
 
 
 
 

 
Figure 5. Average F-measures over all non-trivial mutants.  

 
 
 
 
 
 
 
 

 
 

Figure 6. Distribution of DMART’s F-measure 
One of the main factors that affect the fault detecting 

ability of ART techniques is the failure rate of the SUT. This 
is also confirmed in our experiments. Figure 6 shows the 
distribution of DMART’s F-measures against the average of 

E-measures.  
From Figure 6, it is apparent that there are three levels of 

F-measures (>2.5, 1.5 ~ 2.5 and <1.5) and the E-measures can 
be divided into three areas (240~340, 340 ~ 680, >680). The 
average F-measures in each area is shown in Figure 7.  

 
 
 
 
 
 
 
 
 
 

Figure 7. F-measures of DMART in different ranges of E-measures 
A similar phenomenon can be observed on the distribution 

of F-measures on MDART tests, but less obvious and the 
areas for each level of F-measures are wider; see Figure 8.  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. F-measures of MDART in different ranges of E-measures 

These results are consistent with existing work on ART 
although the scales are different, which is probably because 
our mutants have higher failure rates. In all studies including 
ours, ART’s fault detecting abilities increase as SUT’s failure 
rate decreases.  

C. Reliability of ART methods 
Now, let’s analyze the reliability of ART methods and the 
main discovery of the experiment.  

Similar to the calculation of average F-measures for each 
testing methods, we calculate the average standard deviation 
for each testing methods, which reveals the differences in the 
reliabilities of the methods as shown in Figure 9.  

From Figure 9, DMART made a significant improvement 
in reliability over RT, which is 32.70%. In contrast, the 
improvement that MDART made is much smaller, which is 
only 6.30%. The formulas for the calculation are given in eq. 
(1) and (2) below. In other words, DMART not only has 
better fault detecting ability than MDART, but also more 
consistent. 

 ( ) ( ) 1.413 1.324 6.30%
( ) 1.413

S RT S MDART
S RT
− −= =  (1) 

 ( ) ( ) 1.413 0.951 32.70%
( ) 1.413

S RT S DMART
S RT
− −= =  (2) 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Average S-measures over all non-trivial mutants  
To further identify the factors that affect the reliability of 

ART methods, the relationship between the variations of 
F-measure and the variation of the corresponding mutants’ 
failure rates on the five test sets are investigated. Figure 10 
shows the relationship between the standard deviation of the 
F-measures on DMART tests and the average failure rate. 
Here, the standard deviations are calculated from the test 
results on five different test cases on each mutant.  

 
 
 
 
 
 
 
 
 
 

 
Figure 10. The Standard Deviation of F-measures vs Average Failure Rates 

From Figure 10, it is clear that the variation of DMART 
tests’ F-measure decreases as the average failure rates 
increases. That is, when the software under test is of high 
reliability (or, equally, low failure rate), the F-measure is 
more consistent. Again, we can identify three levels of the 
standard deviations of F-measures on three areas of average 
failure rates as shown in Figure 11. The correlation 
coefficients between the average E-measure and the average 
standard deviations of F-measure of RT, MDART and 
DMART on all mutants are -0.735, -0.645 and -0.615, 
respectively. Therefore, it is clearly that the reliabilities of 
these testing methods depend on SUT’s failure rate. 

Figure 12 shows the relationship between the standard 
deviations of F-measures and the standard deviation of 
E-measures (i.e. failure rates). Note that, when a number of 
random tests of the same size are applied to a SUT, the 
standard deviation of the E-measures of these tests reveals a 
property, i.e. the variation, of the SUT’s failure domain. The 
more regular the failure domain is, the smaller the standard 
deviation of the E-measure should be. Therefore, the standard 
deviation of E-measure reflects the regularity of the SUT’s 
failure domain.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. StdDev of F-measures on different ranges of E-measures 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 12. The Standard Deviation of F-measures vs Standard Deviation of 

Failure Rates over five test sets 
Figure 12 shows that as the standard deviations of 

E-measures increases, the standard deviations of F-measures 
tend to increase. In other words, when a SUT’s failure 
domain is more regular (the standard deviation of the 
E-measures is small), the consistency of F-measure is higher. 
This relationship becomes clearer when the average standard 
deviation is calculated on mutants in various ranges of 
standard deviations of E-measures, as shown Figure 13. 
Moreover, the correlation coefficients between the standard 
deviations of F-measures of RT, MDART and DMART and 
the standard deviations of E-measures for all mutants are 
0.574, 0.464 and 0.430, respectively. Therefore, we can 
conclude that the reliabilities of these testing methods are 
related to the standard deviation of E-measures, i.e. the 
regularity of failure domains.  

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 13. Average Standard Deviations of F-measure over Mutants in 

Various Ranges of the Standard Deviation of Failure Rates  



 
 

 

V. CONCLUSION 
Our experiment results described above confirm the main 
results of existing work on ART methods [9~14, 21~22]. In 
particular, we confirm that ART method can improve the 
fault detecting ability over random testing. However, the 
scale of improvement is much smaller than that demonstrated 
in existing work, which could be up to 40% increase in 
F-measures while we have shown that the average 
improvement is less than 20%.  

Our experiments differs from the existing work in that our 
mutants have higher failure rates than those used in [21~22]. 
As far as we know, the performances of ART methods have 
not been systematically investigated for SUTs that have high 
failures rate as those in our experiment. In [21~22], only a 
subset of mutants that have very low failure rates are used in 
the experiment. We believe that, for mutation analysis of 
testing methods, the whole set of mutants should be used 
because the set of mutants collectively models the real faults 
in software systems.  

In addition, this is the first time that the reliabilities of ART 
methods are investigated. We discovered that ART not only 
improves the fault detecting ability, but also significantly 
improves the reliability of fault detecting ability in the sense 
that the variations on F-measures are significantly smaller 
than random testing, where variation is measured by the 
standard deviation of F-measures. We also analyzed the 
factors that affect ART’s reliability. The main factors are the 
failure rate of the software under test and the regularity of the 
failure domain when measured by the standard deviation of 
E-measures. The experiment data demonstrated that when the 
SUT’s failure rate increases, the test method’s reliability 
increases. Moreover, when the regularity increases, the 
reliability also increases.  

The main threats to the validity of our experiment and its 
conclusions come from two aspects. First, our subject 
programs were selected at random. They are of small scale 
and are of rather low computation and structural complexity. 
They may or may not represent the real software systems. As 
a consequence, the failure domains represented by their 
mutants could be simpler than the real faults. However, since 
ART and RT are black box testing methods, the impact of the 
complexity of the program is limited. Moreover, the validity 
of the failure domains represented by mutants should be no 
less than simulations where ideal assumptions on failure 
domains were made. We plan to repeat our experiment with 
more subject programs, especially those more complicated 
and more complex. By doing so, the validity of the 
experiment will be validated.  

Second, the number of repeated test sets for each test 
method is small. We only used 5 test sets for each test method. 
This is due to the restriction on the resource available. We are 
now repeating the experiment with more test sets. However, 
although using more test sets will improve our confidences in 
the conclusions, we don’t see any reason why the conclusions 
drawn from the experiment could be significantly different. 

In particular, we believe that the qualitative conclusions 
should not be threatened by the sample size.  

Another direction of future work is to further investigate 
the factors that affect the fault detecting ability as well as their 
reliability. In [23], the compactness of failure domains is 
proven to be an important factor that affects fault detecting 
ability. An open question is how to measure the compactness 
of failure domains that are not in regular geometry shapes.  
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