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Abstract
A modelling language can be defined by a meta-
model in UML class diagram. This paper defines the
semantics of such metamodels through two mappings:
a signature mapping from metamodels to signatures of
first order languages and an axiom mapping from
metamodels to sets of axioms over the signature. Valid
models, i.e. instances of the metamodel, are therefore
mathematical structures in the signature that satisfies
the axioms. This semantics definition enables us to
analyse the logical consistency and completeness of
metamodels. A software tool called LAMBDES is im-
plemented to translate metamodels into first order
logic systems and analyse them by employing the theo-
rem prover SPASS. Case studies with the tool detected
inconsistency and incompleteness in the metamodel of

UML 2.0 and an AspectJ profile.

1. Introduction

A metamodel defines a modelling language in the
form of a model, e.g. UML class diagram. In particular,
metaclasses define a classification of model elements,
and associations between metaclasses define the rela-
tionships between model elements. However, the se-
mantics of UML is informally defined. Thus, formali-
sation of the semantics of metamodels is essential for
the study of modelling languages. In particular,
through formalisation of metamodels, we aim to
achieve two goals. The first is a clear definition of the
logical relationship between models and metamodels,
thus lay the foundation for logically proving whether a
model is a valid instance of a metamodel. The second
is to facilitate the analysis of the properties of language
definitions, such as their consistency and completeness.

In our previous work [2], an approach called de-
scriptive semantics to formalising diagrammatic mod-
els in first order logic was proposed. It defines a map-
ping from models to first order logic systems so that a
system is an instance of a model if and only if it satis-
fies the logic description of the model. The formalisa-
tion of models enables to analyse properties of models
through logical inference. This paper will further pre-
sent the formal semantics of metamodels. We will de-
fine two mappings from metamodels to first order logic
systems: a signature mapping from metamodels to
signatures of first order languages, and an axiom map-
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ping from metamodels to sets of sentences over the
signatures. Given a metamodel, the signature derived
from the metamodel specifies a type of mathematical
structures of valid models, and the sentences derived
are axioms to be satisfied by all valid models. Proper-
ties of a language definition, e.g. consistency and com-
pleteness, can be inferred from the formalised seman-
tics of the metamodel. Note that, our approach is appli-
cable to any metamodel depicted in UML class dia-
grams, no matter what modelling language it defines.
The metamodel of UML 2.0 [3] is taken as a running
example to illustrate the approach throughout the paper.

The remainder of the paper is organised as follows.
Section 2 discusses related work. Section 3 reviews our
previous work on the formalisation of UML. Section 4
presents our formalisation of the semantics of meta-
models. Section 5 defines the notion of well-defined
metamodels in the framework of formal semantics.
Section 6 describes a software tool called LAMBDES
that supports the logic analysis of metamodels based
on the formal semantics. Section 7 reports two case
studies. Section 8 concludes the paper with a discus-
sion of future work.

2. Related work

The formal definition of modelling language BON
in [5] is similar to our approach. In [5], the metamodel
of BON is depicted in BON notation and then specified
in formal specification language PVS. Modelling con-
cepts of BON, including abstractions such as Class and
Feature and relationships such as Aggregation and
Association, are specified as types in PVS. Inheritance
hierarchy in the metamodel are mimicked by subtype
relations. The semantic relations between the model-
ling concepts are defined as functions in PVS. The
signature of a PVS system is manually defined accord-
ing to the metamodel. Then, well-formedness con-
straints on BON models are specified as axioms in
PVS. When BON models are formalised in PVS, their
well-formedness with respect to the metamodel can be
checked using PVS theorem prover. It is reported that
the BON metamodel was analysed and debugged
through the formalisation. In comparison, we view a
metamodel as more than the definition of the signature
of the modelling language. For example, from an in-
heritance hierarchy in a metamodel, not only types of
model elements and subtype relations can be generated,



but also axioms on the classification of model elements.

Moreover, our method is applicable to all metamodels.
In other words, the domain of the semantics mapping is
the set of metamodels in UML class diagrams rather
than a specific metamodel for a specific language.

Various researches have been conducted in the for-
malisation of class diagrams in first order logic or de-
scription logic. Our rules of formalising metamodels
look similar to them. For example, in [4] classes and
attributes in a class diagram are translated into unary
and binary predicates respectively, and a generalisation
between two classes is translated into a formula with
an implication between two predicates. Such formalisa-
tion enables logical reasoning about UML class dia-
grams as model of OO systems. In contrast, here we
exploit the formalisation of UML class diagrams for
the formal analysis of metamodel in the definition of
modelling languages.

3. Descriptive Semantics of Models

Seidewitz pointed out that a model is ‘a set of state-
ments about some system under study’, and the mean-
ing of a model is the set of systems that satisfy the
statements [6]. In our previous work [2], we proposed
to formally define the semantics of a model as a set of
first order logic (FOL) sentences, taking UML as an
example of modelling languages. A model is satisfied
by a system if all the FOL sentences derived from the
model are true in the system.

Our approach to formalising semantics of models
separates descriptive semantics from functional seman-
tics. The former determines whether a system satisfies
a model, while the latter interprets basic concepts of
the modelling language in the domain of modelled sys-
tems. The descriptive semantics of a modelling lan-
guage is defined as a mapping from models to first
order sentences, which are constructed from a set of
predicates and functions via logic connectives and
quantifiers. The predicates and functions represent the
basic concepts of the modelling language. Satisfaction
of a model by a system is the truth of the sentences
representing the model’s descriptive semantics with
respect to the system, provided that how to evaluate the
predicates and functions is known.

Formally, the descriptive semantics for a modelling
language has the following structure.

Definition 1 (Semantic definition of modelling lan-
guage) A semantic definition of a modelling language
consists of the following elements.

— A signature X that defines a formal logic language;
— A set Axm), of axioms about the descriptive seman-

tics, which are first order sentences in X;

— A set Axmy of axioms about the functional seman-

tics, which are also sentences in X;

— A translation mapping Fy from models to a set of
formulas in X that describes the model;

— A hypothesis mapping Hy from models to a set of
formulas in X that represent the context in which the
model is used.

Definition 2 (Semantics of a model) Given a semantic

definition of a modelling language, the semantics of a

model m under a hypothesis H, written Semg(m), is

defined as follows.
Semp(m) = Axmp U Axmp OFs(m), UHs(m),

where Fs(m) and Hs(m) are the sets of statements ob-

tained by applying the semantic mappings Fy and Hy,

on model m, respectively. The descriptive semantics of

a model m under the hypothesis Hy, written Des-

Semp(m), is defined as follows.

DesSemy(m) = Axmp UFs(m), UHs(m),

The translation rules and hypothesis rules have been
implemented in a software tool, which translates UML
models into first order logic systems in the input for-
mat of the theorem prover SPASS. Case studies were
conducted to check models’ consistency using SPASS.

4. Semantics of Metamodels

When a modeling language is defined by a meta-
model, the semantics of the metamodel is therefore a
logic system in the structure given in Section 3. The
formalisation of metamodels is defined by a mapping
from metamodels in UML class diagrams to the se-
mantic domain of first order logic systems.

Note that a metamodel in UML means a metamodel
depicted in UML class diagrams, while the metamodel
for UML is just one of such metamodels. Examples of
metamodels in UML include those profiles for plat-
form-specific models (PSM), which defines an exten-
sion to the UML language. In our semantics definition,
a metamodel is an input variable to the semantic map-
ping rather than a constant.

4.1. The framework in institution theory

Regarding a modelling language as a specification
language, our approach to the formal semantics of a
modelling language outlined in Section 3 can be gener-
alised to define the semantics of metamodels as shown
in Fig. 1.
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Fig. 1 Framework of the formal semantics




From a metamodel, we derive a signature X that de-
fines a first order language (FOL) in which statements
about systems can be written. The mapping from
metamodels to signatures is called signature mapping
S. As briefly described in Section 3, models can be
translated into Z-sentences by systematically applying
a set of rules, called translation mapping &. The Z-
sentences can be evaluated on systems in a subject do-
main 2, which corresponds to the ‘collection of mod-
els’ in the institution framework. The satisfaction |= of
a system to a model is defined as the truth of all sen-
tences derived from the model evaluated on the system.
The set of rules that derive axioms about models from
a metamodel is called axiom mapping &

The following subsections define the mappings S,
and @ and the satisfaction relation |=.

4.2. Signature mapping

Metamodelling in UML class diagrams uses the
concepts of metaclass, meta-association and meta-
attribute. Metaclasses are classifications of model ele-
ments. We use a unary predicate to represent a meta-
class, and hence the following signature rule.

SR, (Unary predicates). For each metaclass named
MC in a metamodel, we define a unary atomic
predicate MC(x).

A unary predicate MC(x) means that x is of type MC.

A meta-association and a meta-attribute defines a
relationship between model elements. We use a binary
predicate to represent a meta-association or meta-
attribute, hence the following rule.

SR, (Binary predicates). For each meta-attribute
MA of metaclass X with Y as the data type, or each
meta-association from metaclass X to metaclass Y
with MA as the association end name on Y, a bi-
nary predicate MA(x, y) is defined to represent the
relation between elements of type X and Y.

A binary predicate MA(x, y) means that x and y are
in the relation MA.

For example, the upper part of Fig. 2 shows a frag-
ment of the UML 2.0 metamodel, and the lower part is
an instance of the metamodel. The dashed arrows indi-
cate instance-of relations between elements in the
model and elements in the metamodel. From the
metamodel, unary predicates Class(x), Classifier(x)
and Generalisation(x) can be derived by applying the
signature rule SR;, and binary predicates general(x, y)
and specific(x, y) can be derived by applying the SR,.
These predicates are used to construct sentences that
represent descriptive semantics of instances of the
metamodel. For example, by applying the translation
rules given in [2] on the model shown in the lower part
of Fig. 2, a set of sentences can be generated, e.g.
Class(Woman), Class(Person), Generalisation(wp),

specific(wp, Woman), general (wp, Person), where wp
represents the unnamed generalisation relation from
class Woman to class Person.
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Fig. 2 Example 1 of metamodel and model

Each enumeration metaclass defines a data type,
whose values are enumeration literals. We use a con-
stant to represent an enumeration value, hence the fol-
lowing signature rule.

SR; (Constants). For each enumeration value EV
given in an enumeration metaclass ME in a meta-
model, a constant EV is defined.

+memberEnd
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Fig. 3 Example 2 of metamodel and model

In metamodels, enumeration metaclasses are used as
data types of meta-attributes. For example, in the
metamodel given in the upper part of Fig. 3, enumera-
tion metaclass AggregationKind is the data type of
meta-attribute aggregation of metaclass Property.
Constants none, shared and composite are derived
from the enumeration values by applying SR;. These
constants are used in sentences which represent de-
scriptive semantics of instances of the metamodel. For
example, by applying the translation rules on the model
in the lower part of Fig. 3, we can generate a set of
sentences including memberEnd(pc, affiliation), ag-
gregation(affiliation, shared), where pc represents the
unnamed association between Person and Company.

4.3. Axiom mapping

Besides defining types of model elements through a
set of metaclasses, a metamodel also specifies semantic
relationships between the model elements through
meta-attributes, meta-associations and generalisations.
These relationships are satisfied by all valid instances
of the metamodel. They can be represented as formulas
in the derived signature. They must be satisfied by all
valid models, hence called axioms on models. We will
define a set of axiom mapping rules that systematically



derive such axioms from a metamodel.

A. Classification of model elements.

The UML specification states that “the main lan-
guage constructs are reified into metaclasses in the
metamodel” [7]. Two kinds of metaclasses may be con-
tained in a metamodel: concrete metaclasses and ab-
stract metaclasses. The former classifies model ele-
ments. Such a classification must be complete in the
sense that every model element must be an instance of
a concrete metaclass. This constraint on the relation-
ship between metaclasses and elements in a model is
made explicit by the following axiom rule.
AR\(Completeness of classification). Let MC,,
MGC,, ..., MC, be the set of concrete metaclasses in
a metamodel. We have an axiom in the form of

Vx. MCi(x) v MCy(x) ... v MCy(x)

1
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Fig. 4 Example 3 of metamodel

For example, given a metamodel in Fig. 4, the fol-
lowing axiom is generated by applying AR;.

Vx. (Class(x) v DataType(x) v Interface(x)
v Association(x) v Signal(x))

AR, is necessary because, due to this axiom, any
model containing an element of a undefined type is
invalid. It is easy to see that the above axiom is satis-
fied by the model in Fig. 3, because all three elements
are typed by Class and Association, respectively. But
the axiom is not satisfied by the model in Fig. 2, be-
cause the arrow wp does not belong to either Class,
DataType, Interface, Association or Signal, hence
meaningless in the context of the metamodel in Fig. 4.

The classification of model elements to concrete
metaclasses must be disjoint, because allowing an ele-
ment belonging to more than one type leads to am-
biguous interpretation of the element. Therefore, we
have the following axiom rule.

AR,y(Disjointness of classification) Let MC,
MGC,, ..., MC, be the set of concrete metaclasses in
a metamodel. For each pair of different concrete
metaclasses MC; and MC;, i#j, we have an axiom
Vx. MC(x) = = MCy(x).

For example, the following axioms can be derived
from the metamodel in Fig. 4 by applying AR,.
Vx. (Class(x) — — DataType(x)),
Vx. (Class(x) — — Interface(x)), ...
The above two axioms rules make it explicit that a
model must have its elements completely and uniquely
classified by metaclasses.

B. Inheritance hierarchy on metaclasses.

Inheritance hierarchy of metaclasses represent the
taxonomy of modelling concepts. “Each instance of the
specific classifier is also an indirect instance of the
general classifier”’ [8]. This can be expressed as impli-
cation between the predicates, thus, the following rule.
AR;(Logical implication of inheritance) For a gen-
eralisation relation from metaclass MA to MB in a
metamodel, we have an axiom in the form of

Vx. MA(x) = MB(x).

For example, by applying AR; to the metamodel
shown in Fig. 4, the following axioms can be derived,
stating that if a model element has the type Class or
DataType or Interface or Association or Signal, it also
belongs to the type Classifier.

Vx. Class(x) — Classifier(x),

Vx. DataType(x) — Classifier(x),
Vx. Interface(x) — Classifier(x),
Vx. Association(x) — Classifier(x),
Vx. Signal(x) — Classifier(x).

In current practice of metamodelling, all inheritance
relations between metaclasses are explicitly specified
in the metamodel, thus the following axiom rule.
AR(Completeness of specialisations) Let MA be a
metaclass in a metamodel and MB,, MB,, ..., MBy
be the set of metaclasses specialising MA. We have
an axiom in the form of

Vx. MA(x) -> MB(x) v MBy(x) v ... v MBy(x).

For example, by applying AR, to the metamodel in
Fig. 4, the following axiom can be derived, stating that
if a model element is an instance of Classifier, it must
belong to one of the types: Class, DataType, Interface,
Association or Signal.

Vx.(Classifier(x) = Class(x)v DataType(x) v
Interface(x) v Association(x)v Signal(x))

C. Type constraints
Let A be a meta-association from metaclass MC, to
MC,, MA be the association end on the MC, side. For
the binary predicate MA(x, y) derived from the associa-
tion, if the first parameter is an element of type MC|,
the second must be of type MC,. Thus, we have the
following axiom rule.
ARs(Types of parameters of predicates) For each
binary predicate MA(x, y) derived from an associa-
tion from metaclass MC; to MC, in a metamodel,
we have an axiom in the form of
Vx, y. MA(x, y) A MC(x) = MCy(y).

For each function MAttr, we also have an axiom to
specify its domain and range.
ARg(Domain and range of functions) For each
function MAfrtr(x) derived from a meta-attribute
MAttr of type MT in a metaclass MC, we have an
axiom in the form of




Vx,y. MC(x) A (MAttr(x) = y) — MT(y). |

D. Multiplicity
Meta-association ends and meta-attributes are con-

strained by multiplicity. They “constrains the size of

the collection [...] of instances at the other end’ [8].

Thus, we have the following axiom rule.

AR;(Multiplicity of binary predicate) For each bi-

nary predicate MA(x, y) derived from an associa-

tion from metaclass MC; to MC, in a metamodel,

let Mul be the multicity value specified on the as-

sociation end MA, we have axioms in the form of

If Mul =0..1:

Vx, y, z. (MCi(x) A MA(x, y) A MA(x, 2) — (y=12))

If Mul = 1 or unspecified:

Vx. (MCy(x) — 3 y. MA(x, y)) and

Vx, y, z. (MCi(x) A MA(x, y) A MA(x, 2) — (y=12))

fMul=1.% Vx.(MCi(x) > 3y. MA(x,y))

If Mul =2..*:

Vx.(MCi(x) — 3y,z. MA(x, y) A MA(x, 2) A (y#2))

IfMul=0.2: Vx,y,z u(MCi(x) A MA(x, y) A
MA(x,2) AMA(x,u) > (y=2) v(y=u) v (u=2))
Similarly, for each function MA#tr(x) derived from a

metaattribute MA#tr of type MT in a metaclass MC,, we

have the following axiom rule.

ARg(Multiplicity of function) For each function

MAttr(x) derived from a metaattribute MArtr of

type MT in a metaclass MC, let Mul be the multic-

ity value of the metaattribute MAttr, we have axi-

oms in the following form.

If Mul =0..1: Vx, y, z. (MC(x) A (MAttr(x) =y)

A (MAttr(x) =z) > (y=12))

If Mul = 1: Vx.(MC(x) — 3 y. (MAttr(x) =y)) and

Vx,y, z. (MC(x) A (MAttr(x) = y) A (MAttr(x) = z)

—>0=2)

If Mul =1..*:

Vx.(MC(x) — 3y. (MAttr(x) = y))

E. Properties of enumeration values
We identified three axiom rules to characterise the
information contained in each enumeration metaclass.
ARy(Distinguishability of the literal constants) For
each pair of different literal values a and b of an
enumeration type, we have an axiom a #b.
AR \((Type of the literal constants) For each enu-
meration value a defined in an enumeration meta-
class ME, we have an axiom in the form of ME(a)
stating that the type of a is ME.
AR, (Completeness of the enumeration) An enu-
meration type only contains the listed literal con-
stants as its values, hence for each enumeration
metaclass ME with literal values ay, as, ..., a;, we
have an axiom in the form of Vx. ME(x) — (x = a;)
vVx=a) Vv...v(x=a).

F. Deriving axioms from WFR
UML class diagram is insufficient for fully defining
the abstract syntax of UML. In complementary, well-
formedness constraints are specified in the UML
documentation for restricting valid use of the language.
Some of these well-formedness rules (WFR) are for-
mally defined in OCL, which can also be specified as
axioms.
AR y(Well-formedness rules) For each WFR for-
mally specified in OCL, we have a corresponding
axiom in the first order language.

4.4. Satisfaction Relation

From the perspective of mathematic logics and the
institution theory, a graphic model can also be re-
viewed as a mathematical structure, when a metamodel
is viewed as a formal logic system. The model is a
valid instance of the metamodel, if the mathematical
structure satisfies the formal logic system. Let M be a
metamodel, 2= $(M) be the signature obtained by ap-
plying the signature mapping S to M, .2 =@s(M) be
the set of axioms by applying the axiom mapping to M.
We define the satisfaction relation |= as follows.

Definition 3 (Satisfaction relation) Given a meta-
model M, we say a model m satisfies the metamodel M,
or equivalently m is an instance of M, write m|=M, if

(1) m is an interpretation of the signature £ with the
following structure:
a) aset E™ that consists of model elements in m;
b) for each constant symbol ¢ in X, its interpreta-
tion ¢™ is an element in E™, i.e. ¢™e E™;
c) for each unary predicate P in X, its interpreta-
tion P™ is a subset of E™, i.e. P c E™;
d) for each binary predicate R in Z, its interpreta-
tion R™ is a binary relation on E™ ie. R™ C
E™ x E™,
(2) mis aZ-structure of . 7%, i.e. Vpe 2% m|= @.
For example, the following is the mathematical
structure equivalent to the model depicted in Fig. 2.
E={Woman, Person, wp},
Class={Woman, Person}, Generalisation={wp},
Classifier={ Woman, Person},
general={(wp, Person)}, specific={(wp, Woman)}.
For the sake of space, we omit the definition of the
translation of graphic representation of models to their
equivalent representation in mathematical structures.
The satisfaction relation |= between mathematical
structures and first order logic formulas is defined as
usual and details are also omitted for the sake of space.

5. Well-Definedness of Metamodels

Having defined satisfaction relation between models



and metamodels, one would define the consistency of a
metamodel as the satiability of the metamodel. How-
ever, this does not work because the satisfaction rela-
tion does not require a model to contain instances for
every metaclass. For example, Fig. 5 shows an exam-
ple of a metamodel M satisfied by a model m, where
AssociationClasse S(M) has no interpretation in .

+general
Vs
‘ Class }_‘>‘ Classifier ‘ 1 J Generalisation
A i
+specific

AssociationClass

Fig. 5. Example 4 of metamodel and model

Thus, we have the following definition.

Definition 4 (Well-defined Metamodel) A metamodel
M is well-defined, if there is a non-trivial model m that
satisfies M, where a model is non-trivial if for every
concrete metaclass C in M, m contains at least one
element of C.

Whether a metamodel is well-defined can be deter-
mined according to the consistency of the logical sys-
tem derived from it. The concept of metamodel’s con-
sistency is defined as follows.

Let .7 be the set of axioms obtained by applying
the rules in section 4 and the following.

AR (existence of instance): For each concrete
metaclass MC in metamodel M, an sentence is de-
rived as follows: 3x. MC(x).

Definition 5 (Consistency of metamodel) A meta-
model M is said to be consistent, if the set of axioms
A" is logically consistent in the first order logic; oth-
erwise, we say that M an inconsistent metamodel, i.e.
when .7 |—false.

Theorem 1. A metamodel is well-formed iff it is a
consistent metamodel.

6. The prototype tool LAMBEDS

We have developed a prototype software tool called
LAMBDES, which stands for a Logic Analyser of
Models/Metamodels Based on DEscriptive Semantics.
One of the tool’s main functions is to automatically
generate signature and axioms from a metamodel in
UML according to the theory presented in Section 4.
The tool is integrated with a UML modelling tool
StarUML [11] and a theorem prover SPASS [12].

As shown in Fig. 6, the input to the signature gen-
erator and axiom generator components of LAMBDES
is a metamodel in XMI format generated by StarUML.
The output is a text file readable by SPASS.

LAMBDES also generates the proof goal for the theo-
rem prover to perform the required logical analysis of
the model or metamodel. Details about other compo-
nents and uses of LAMBDES for logic analysis of
UML models can be found in [2].

Metamodel W
\ Modelling tool StarUML
T
(LAMBDES 1
odelhng
Metamodel in XMI Proof Goal Context
Domain Signature Axiom Con]ecture Constant | | Statement | | Hypothesis
Generator| |Generator| | Generator| | Generator | | Generator | | Generator | | Generator

v
|| Auxiliary S]gnature Axmms EM Constants Statements Hypothesns
|| formulas

Logic system for model

Logic system for metamodel

v
‘ Theorem prover SPASS

Fig. 6 Overall structure of LAMBDES
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<?xml version ="1.0" encoding = "UTF-8"?> | | begin_problem(class) L
<XMIxmiversion ="1.1" xmins:UML="href:fforg omg/ list_of_descriptions
<XMI header> name({*class™})
<XM|.documentation> author({*sl*})
<XMI.owner></x<M.owner> status{unsatisfiable)
<M1 contacts<fXM| contacts description({* )
=<XMIexporter>Starl M L XMI-Addin</XMI exportel end_of_list.
<XMlexporterversion>1.0<MXM| exporterversion>
<xXMI notice=<{xXM| notice> list_of_symbols
<fXMl.docurmentation= functions(
<xXMI.metamodel xmi.name = "UML" xmiversion =" % (A) functions: meta-attribute
</XMI| header>
<XMI_content> (body.1).
<UML:Model xmiid="UMLProject 1"> (Name. 1),
<UML:Namespace .ownedElement> (visibility, 1),
<UML:Madel xmi.id="UMLModel.2" name="Use Cz (visibility, 1),
<UML:Namespace.ownedElement> (wisibility, 1),
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</UML:Namespace ownedElement> (visibility, 1),
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<UML:Model xmi.id="UMLModel 8" name="Analysi (isUnique. 1},
<UML:Namespace.ownedElement> (symbol.1).
v v
< 3 || >
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Fig. 7 Screen snapshot of LAMBDES
. N .
Fig. 7 shows a snapshot of the tool’s interface,

where XMI editor on the left displays the input XMI
file and Logic editor on the right displays the generated
first order system in SPASS input format.

7. Case studies

Using the prototype tool LAMBDES, we applied the
proposed method to analyse two metamodels: the UML
2.0 metamodel [8] and an Aspect] profile [13]. Table 2
summarises the scales of the metamodels in terms of
the numbers of various types of symbols in the signa-
ture and the numbers of various types of axioms.

7.1. UML 2.0 metamodel

Evidently, our method can be applied to the full-
fledged UML. In the case study, we investigated the
UML 2.0 metamodel defined in the Classes, Common
Behaviours, Interactions and State Machines packages.
These four packages are selected because they define
the commonly used UML diagrams, covering both the



Table 2. Summary of UML 2.0 and Aspect] metamodels

Table 1. Detected inconsistencies in UML 2.0 metamodel

Types UML | Aspect] Package Super-metaclasses Sub-metaclasses
Unary predicates 126 31 InstanceSpecification  |EnumerationLiteral
Si Binary predicate 255 12 Class AssociationClass
tllgl?:- Functions 58 11 Association AssociationClass
Constants 46 7 Classes DataType PrimitiveType
Total 485 61 Abstraction Realisation
Completeness of classification 1 1 Realisation Substitution
Disjointness of classification 4851 300 Dependency Usage
Implication of inheritance 133 26 OpaqueBehaviour FunctionBehaviour
Axi Completeness of specialisations 42 7 Common Constraint IntervalConstraint
X! Types of binary predicates 255 12 behaviours | IntervalConstraint TimeConstraint
oms - - :
Domain and range of functions 57 11 Class Behaviour
Multiplicity 222 18 . CombinedFragment ConsiderIgnoreFragment
- Interactions - —
Enumeration metaclasses 196 18 InteractionUse PartDecomposition
Total 6119 461 Transition Protocol Transition
State State FinalState
static and dynamic language facilities. hi
Y guag machines StateMachine ProtocolStateMachine

In the case study, we analysed the consistency and
completeness of the metamodel. Two types of prob-
lems were identified, which are incompleteness and
inconsistency problems. Each problem is resolved by
modifications to the metamodel and finally we ob-
tained a consistent and complete metamodel.

An example of incompleteness in UML 2.0 meta-
model is the missing definition of enumeration meta-
classes. In the metamodel, data types of meta-attributes
are either enumeration types e.g. VisibilityKind, or
primitive types e.g. String and Boolean. The enumera-
tion types are defined in the metamodel, while the
primitive types are used in the metamodel without
definition. This is contradicted to the statement in [8]
that “each metaclass is completely described’. This
problem is resolved by adding the primitive types as
metaclasses to the metamodel.

The inconsistency of a metamodel can be detected
in the first order logic by proving false from the gener-
ated axioms.

StateMachine

R

StateMachine

Prot hine

Behaviour i ‘

ProtocolStateMachine

(A) Original metamodel  (B) Modified metamodel
Fig. 8 A fragment of the metamodel for State Machine

For example, Fig. 8(A) depicts is a part of Figure
15.5 in UML 2.0 specification [8] of state machine
models, where StateMachine is defined as a concrete
metaclass specialised by a concrete metaclass Proto-
colStateMachine. A contradiction is inferred from the
axioms (1) (2) (3) below, which are derived from Fig.
8(A) by applying AR 2, AR 3 and AR 4, respectively.

Vx. ProtocolStateMachine(x) = — StateMachine(x) (1)

Vx. ProtocolStateMachine(x) — StateMachine(x) 2

Vx. StateMachine(x) — ProtocolStateMachine(x) (3)

This inconsistency occurs because a concrete meta-
class is specialised by other metaclasses, thus violates

the ‘strict metamodelling’ principle.

Sixteen such inconsistencies were discovered in our
case study as summarised in Table 1. To resolve this
type of problems, non-leaf nodes in the inheritance
hierarchy must be changed into abstract metaclasses.
For example, StateMachine is modified as an abstract
metaclass specialised by BehaviouralStateMachine and
ProtocolStateMachine, as shown in Fig 8(B).

Another error found in our case study is that Occur-
enceSpecification is specified inconsistently as abstract
and concrete metaclass in different diagrams. This er-
ror has been corrected in UML 2.1 [3].

7.2. AspectJ profile

UML provides extension mechanism so that a
metamodel can be tailored for different platforms or
domains. Stereotypes that extend metaclasses comprise
a profile, which becomes a new package of metamodel.
In the paradigm of model-driven architecture, one can
use the extension mechanism to define profiles as
metamodels of PSM. However, as pointed out in [14],
question remains if the different metamodels as UML
profiles are consistent or not. Our method can be ap-
plied on profile metamodels to derive axioms and ver-
ify their consistency. A case study was made on an
Aspect] metamodel proposed in [13]. It is designed to
provide aspect-oriented modelling facilities.

The profile enables to specify a PSM, i.e. a model
specific to the Java and Aspect] platform. Same as in
the case study of UML 2.0, we detected both incom-
pleteness and inconsistency in the metamodel.

As a metamodel, the profile is found incomplete in
the sense that the metaclasses Property, Type, Opera-
tion, Boolean, InterfaceRealisation, Generalisation and
String are used as data types of metaattributes without
declaration. This incompleteness is acceptable because
profiles are supposed to be used together with the
original metamodel rather than self-contained.



<<stereotype>> <<stereotype>>
PreinitialisationPointCut InitialisationPointCut

<<stereotype>>
ExecutionPointCut

Fig. 9 Segment of Aspect] profile [13]

Two inconsistencies are detected in the Aspect]
metamodel. One is because the concrete stereotype
ExecutionPointCut is specialised by two other meta-
classes, as shown in Fig. 9. Another contradiction is
inferred from the axioms (4) (5) (6) below, where (4) is
derived by applying AR 2, and (5) and (6) by AR 6.
Yx.PointCutConjunction(x) —>—PointCutDisjunction (x) (4)

Vx.PointCut(x) A composee(x, y) 5
— PointCutConjunction(x)
Vx.PointCut(x) A composee(x, y) (6)

— PointCutDisjunction(x)

This inconsistency occurs because both associations
from PointCut to PointCutConjunction and from
PointCut to PointCutDisjunction have an end named as
compose. An end name enables navigation between
elements. Thus, the identical end name from the same
node but leading to different ends causes ambiguity in
the direction of navigation. To resolve this problem,
one of the association ends is renamed.

8. Conclusion

Based on our previous work that formalises the se-
mantics of UML models in FOL, in this paper we pro-
posed a method for formalising the semantics of
metamodels in UML by formally defining the signature
and axiom mappings. A prototype tool has been im-
plemented to automatically translate metamodels into
first order logic systems in SPASS format. Case studies
on UML 2.0 metamodel and the Aspect] profile. Dem-
onstrate that, through the formalisation of the seman-
tics of metamodels, the logic properties of metamodels
such as consistency and completeness can be verified.
Our method is effective in detecting inconsistency and
incompleteness errors in metamodels.

Using the tool LAMBDES that implements the sig-
nature rules and axiom rules, we have obtained the
formal semantics of UML 2.0 metamodel defined in
four packages, which comprises the main part of UML.
As shown in [2], this enables us to proof that a UML
model is an instance of a metamodel by demonstrate
that the model satisfies the axioms generated from the
metamodel and also additional consistency constraints,
if any.

In future work, we will incorporate the full set of
well-formedness rules defined in the UML documenta-
tion into the formal metamodel, which needs manual
work to translate OCL formulas to the format of
SPASS. The combination of the formal metamodel and
well-formedness rules will provide a complete formal

language specification for UML. We also plan to apply
the method of deriving descriptive semantics from M;
level and axioms from M, level to the four-level meta-
modelling framework of UML language.

The language extension mechanisms used in the
UML metamodel, especially subset and union, are in-
vestigated in [15]. The authors concluded that ‘prop-
erty redefinitions are not safe while package merge
does not influence the relationship between model
elements. It is interesting to see how such conclusions
can be formally derived from formal semantics of
metamodel in our framework. It is worth noting that
our framework is consistent with Goguen and
Burstall’s theory of institution [1], thus the institution
theory about the integration of multiple logics could be
applied.
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