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Abstract 

A modelling language can be defined by a meta-
model in UML class diagram. This paper defines the 
semantics of such metamodels through two mappings: 
a signature mapping from metamodels to signatures of 
first order languages and an axiom mapping from 
metamodels to sets of axioms over the signature. Valid 
models, i.e. instances of the metamodel, are therefore 
mathematical structures in the signature that satisfies 
the axioms. This semantics definition enables us to 
analyse the logical consistency and completeness of 
metamodels. A software tool called LAMBDES is im-
plemented to translate metamodels into first order 
logic systems and analyse them by employing the theo-
rem prover SPASS. Case studies with the tool detected 
inconsistency and incompleteness in the metamodel of 
UML 2.0 and an AspectJ profile.  

1. Introduction 
A metamodel defines a modelling language in the 

form of a model, e.g. UML class diagram. In particular, 
metaclasses define a classification of model elements, 
and associations between metaclasses define the rela-
tionships between model elements. However, the se-
mantics of UML is informally defined. Thus, formali-
sation of the semantics of metamodels is essential for 
the study of modelling languages. In particular, 
through formalisation of metamodels, we aim to 
achieve two goals. The first is a clear definition of the 
logical relationship between models and metamodels, 
thus lay the foundation for logically proving whether a 
model is a valid instance of a metamodel. The second 
is to facilitate the analysis of the properties of language 
definitions, such as their consistency and completeness. 

In our previous work [2], an approach called de-
scriptive semantics to formalising diagrammatic mod-
els in first order logic was proposed. It defines a map-
ping from models to first order logic systems so that a 
system is an instance of a model if and only if it satis-
fies the logic description of the model. The formalisa-
tion of models enables to analyse properties of models 
through logical inference. This paper will further pre-
sent the formal semantics of metamodels. We will de-
fine two mappings from metamodels to first order logic 
systems: a signature mapping from metamodels to 
signatures of first order languages, and an axiom map-

ping from metamodels to sets of sentences over the 
signatures. Given a metamodel, the signature derived 
from the metamodel specifies a type of mathematical 
structures of valid models, and the sentences derived 
are axioms to be satisfied by all valid models. Proper-
ties of a language definition, e.g. consistency and com-
pleteness, can be inferred from the formalised seman-
tics of the metamodel. Note that, our approach is appli-
cable to any metamodel depicted in UML class dia-
grams, no matter what modelling language it defines. 
The metamodel of UML 2.0 [3] is taken as a running 
example to illustrate the approach throughout the paper.   

The remainder of the paper is organised as follows. 
Section 2 discusses related work. Section 3 reviews our 
previous work on the formalisation of UML. Section 4 
presents our formalisation of the semantics of meta-
models. Section 5 defines the notion of well-defined 
metamodels in the framework of formal semantics. 
Section 6 describes a software tool called LAMBDES 
that supports the logic analysis of metamodels based 
on the formal semantics. Section 7 reports two case 
studies. Section 8 concludes the paper with a discus-
sion of future work.   

2. Related work  
The formal definition of modelling language BON 

in [5] is similar to our approach. In [5], the metamodel 
of BON is depicted in BON notation and then specified 
in formal specification language PVS. Modelling con-
cepts of BON, including abstractions such as Class and 
Feature and relationships such as Aggregation and 
Association, are specified as types in PVS. Inheritance 
hierarchy in the metamodel are mimicked by subtype 
relations. The semantic relations between the model-
ling concepts are defined as functions in PVS. The 
signature of a PVS system is manually defined accord-
ing to the metamodel. Then, well-formedness con-
straints on BON models are specified as axioms in 
PVS. When BON models are formalised in PVS, their 
well-formedness with respect to the metamodel can be 
checked using PVS theorem prover. It is reported that 
the BON metamodel was analysed and debugged 
through the formalisation. In comparison, we view a 
metamodel as more than the definition of the signature 
of the modelling language. For example, from an in-
heritance hierarchy in a metamodel, not only types of 
model elements and subtype relations can be generated, 



but also axioms on the classification of model elements. 
Moreover, our method is applicable to all metamodels. 
In other words, the domain of the semantics mapping is 
the set of metamodels in UML class diagrams rather 
than a specific metamodel for a specific language.   

Various researches have been conducted in the for-
malisation of class diagrams in first order logic or de-
scription logic. Our rules of formalising metamodels 
look similar to them. For example, in [4] classes and 
attributes in a class diagram are translated into unary 
and binary predicates respectively, and a generalisation 
between two classes is translated into a formula with 
an implication between two predicates. Such formalisa-
tion enables logical reasoning about UML class dia-
grams as model of OO systems. In contrast, here we 
exploit the formalisation of UML class diagrams for 
the formal analysis of metamodel in the definition of 
modelling languages.  

3. Descriptive Semantics of Models 
Seidewitz pointed out that a model is ‘a set of state-

ments about some system under study’, and the mean-
ing of a model is the set of systems that satisfy the 
statements [6]. In our previous work [2], we proposed 
to formally define the semantics of a model as a set of 
first order logic (FOL) sentences, taking UML as an 
example of modelling languages. A model is satisfied 
by a system if all the FOL sentences derived from the 
model are true in the system.  

Our approach to formalising semantics of models 
separates descriptive semantics from functional seman-
tics. The former determines whether a system satisfies 
a model, while the latter interprets basic concepts of 
the modelling language in the domain of modelled sys-
tems. The descriptive semantics of a modelling lan-
guage is defined as a mapping from models to first 
order sentences, which are constructed from a set of 
predicates and functions via logic connectives and 
quantifiers. The predicates and functions represent the 
basic concepts of the modelling language. Satisfaction 
of a model by a system is the truth of the sentences 
representing the model’s descriptive semantics with 
respect to the system, provided that how to evaluate the 
predicates and functions is known.  

Formally, the descriptive semantics for a modelling 
language has the following structure.  
Definition 1 (Semantic definition of modelling lan-
guage) A semantic definition of a modelling language 
consists of the following elements. 
− A signature Σ that defines a formal logic language; 
− A set AxmD of axioms about the descriptive seman-

tics, which are first order sentences in Σ;  
− A set AxmF of axioms about the functional seman-

tics, which are also sentences in Σ;  

− A translation mapping FΣ from models to a set of 
formulas in Σ that describes  the model; 

− A hypothesis mapping HΣ from models to a set of 
formulas in Σ that represent the context in which the 
model is used.  

Definition 2 (Semantics of a model) Given a semantic 
definition of a modelling language, the semantics of a 
model m under a hypothesis H, written SemH(m), is 
defined as follows.  

SemH(m) = AxmD ∪ AxmF ∪FΣ(m), ∪HΣ(m), 
where FΣ(m) and HΣ(m) are the sets of statements ob-
tained by applying the semantic mappings FΣ and HΣ, 
on model m, respectively. The descriptive semantics of 
a model m under the hypothesis HΣ, written Des-
SemH(m), is defined as follows. 

DesSemH(m) = AxmD ∪FΣ(m), ∪HΣ(m),  
The translation rules and hypothesis rules have been 

implemented in a software tool, which translates UML 
models into first order logic systems in the input for-
mat of the theorem prover SPASS. Case studies were 
conducted to check models’ consistency using SPASS.  

4. Semantics of Metamodels  
When a modeling language is defined by a meta-

model, the semantics of the metamodel is therefore a 
logic system in the structure given in Section 3. The 
formalisation of metamodels is defined by a mapping 
from metamodels in UML class diagrams to the se-
mantic domain of first order logic systems.  

Note that a metamodel in UML means a metamodel 
depicted in UML class diagrams, while the metamodel 
for UML is just one of such metamodels. Examples of 
metamodels in UML include those profiles for plat-
form-specific models (PSM), which defines an exten-
sion to the UML language. In our semantics definition, 
a metamodel is an input variable to the semantic map-
ping rather than a constant.  

4.1. The framework in institution theory 
Regarding a modelling language as a specification 

language, our approach to the formal semantics of a 
modelling language outlined in Section 3 can be gener-
alised to define the semantics of metamodels as shown 
in Fig. 1.  

 
 

 
 
 
 
 
 

 

Fig. 1 Framework of the formal semantics 
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From a metamodel, we derive a signature Σ that de-
fines a first order language (FOL) in which statements 
about systems can be written. The mapping from 
metamodels to signatures is called signature mapping 
S. As briefly described in Section 3, models can be 
translated into Σ-sentences by systematically applying 
a set of rules, called translation mapping TΣ. The Σ-
sentences can be evaluated on systems in a subject do-
main D, which corresponds to the ‘collection of mod-
els’ in the institution framework. The satisfaction |= of 
a system to a model is defined as the truth of all sen-
tences derived from the model evaluated on the system. 
The set of rules that derive axioms about models from 
a metamodel is called axiom mapping A.  

The following subsections define the mappings S, 
and A, and the satisfaction relation |=.  

4.2. Signature mapping  
Metamodelling in UML class diagrams uses the 

concepts of metaclass, meta-association and meta-
attribute. Metaclasses are classifications of model ele-
ments. We use a unary predicate to represent a meta-
class, and hence the following signature rule.   

SR1 (Unary predicates). For each metaclass named 
MC in a metamodel, we define a unary atomic 
predicate MC(x).  

A unary predicate MC(x) means that x is of type MC.  
A meta-association and a meta-attribute defines a 

relationship between model elements. We use a binary 
predicate to represent a meta-association or meta-
attribute, hence the following rule.   

SR2 (Binary predicates). For each meta-attribute 
MA of metaclass X with Y as the data type, or each 
meta-association from metaclass X to metaclass Y 
with MA as the association end name on Y, a bi-
nary predicate MA(x, y) is defined to represent the 
relation between elements of type X and Y.   

A binary predicate MA(x, y) means that x and y are 
in the relation MA.  

 For example, the upper part of Fig. 2 shows a frag-
ment of the UML 2.0 metamodel, and the lower part is 
an instance of the metamodel. The dashed arrows indi-
cate instance-of relations between elements in the 
model and elements in the metamodel. From the 
metamodel, unary predicates Class(x), Classifier(x) 
and Generalisation(x) can be derived by applying the 
signature rule SR1, and binary predicates general(x, y) 
and specific(x, y) can be derived by applying the SR2. 
These predicates are used to construct sentences that 
represent descriptive semantics of instances of the 
metamodel. For example, by applying the translation 
rules given in [2] on the model shown in the lower part 
of Fig. 2, a set of sentences can be generated, e.g. 
Class(Woman), Class(Person), Generalisation(wp), 

specific(wp, Woman), general (wp, Person), where wp 
represents the unnamed generalisation relation from 
class Woman to class Person.  

Classifier GeneralisationClass

+general

+specific

PersonWoman

Fig. 2 Example 1 of metamodel and model 

Each enumeration metaclass defines a data type, 
whose values are enumeration literals. We use a con-
stant to represent an enumeration value, hence the fol-
lowing signature rule.  

SR3 (Constants). For each enumeration value EV 
given in an enumeration metaclass ME in a meta-
model, a constant EV is defined.  

 

Person Company

+affiliation

AggregationKind
<<enumeration>>

+none
+shared
+composite

Association
Property

+aggregation: AggregationKind

+memberEnd

 

Fig. 3 Example 2 of metamodel and model 

In metamodels, enumeration metaclasses are used as 
data types of meta-attributes. For example, in the 
metamodel given in the upper part of Fig. 3, enumera-
tion metaclass AggregationKind is the data type of 
meta-attribute aggregation of metaclass Property. 
Constants none, shared and composite are derived 
from the enumeration values by applying SR3. These 
constants are used in sentences which represent de-
scriptive semantics of instances of the metamodel. For 
example, by applying the translation rules on the model 
in the lower part of Fig. 3, we can generate a set of 
sentences including memberEnd(pc, affiliation), ag-
gregation(affiliation, shared), where pc represents the 
unnamed association between Person and Company.  

4.3. Axiom mapping 
Besides defining types of model elements through a 

set of metaclasses, a metamodel also specifies semantic 
relationships between the model elements through 
meta-attributes, meta-associations and generalisations. 
These relationships are satisfied by all valid instances 
of the metamodel. They can be represented as formulas 
in the derived signature. They must be satisfied by all 
valid models, hence called axioms on models. We will 
define a set of axiom mapping rules that systematically 

Metamodel

Model 

Metamodel

Model



derive such axioms from a metamodel.   

A. Classification of model elements.  
The UML specification states that “the main lan-

guage constructs are reified into metaclasses in the 
metamodel” [7]. Two kinds of metaclasses may be con-
tained in a metamodel: concrete metaclasses and ab-
stract metaclasses. The former classifies model ele-
ments. Such a classification must be complete in the 
sense that every model element must be an instance of 
a concrete metaclass. This constraint on the relation-
ship between metaclasses and elements in a model is 
made explicit by the following axiom rule.  

AR1(Completeness of classification). Let MC1, 
MC2, …, MCn be the set of concrete metaclasses in 
a metamodel. We have an axiom in the form of 

∀x. MC1(x) ∨ MC2(x) … ∨  MCn(x) 
Classifier

Class DataType Interface SignalAssociation

 
Fig. 4 Example 3 of metamodel 

For example, given a metamodel in Fig. 4, the fol-
lowing axiom is generated by applying AR1. 

∀x. (Class(x) ∨ DataType(x) ∨ Interface(x)  
∨ Association(x) ∨ Signal(x)) 

AR1 is necessary because, due to this axiom, any 
model containing an element of a undefined type is 
invalid. It is easy to see that the above axiom is satis-
fied by the model in Fig. 3, because all three elements 
are typed by Class and Association, respectively. But 
the axiom is not satisfied by the model in Fig. 2, be-
cause the arrow wp does not belong to either Class, 
DataType, Interface, Association or Signal, hence 
meaningless in the context of the metamodel in Fig. 4.  

The classification of model elements to concrete 
metaclasses must be disjoint, because allowing an ele-
ment belonging to more than one type leads to am-
biguous interpretation of the element. Therefore, we 
have the following axiom rule. 

 
AR2(Disjointness of classification) Let MC1, 
MC2, …, MCn be the set of concrete metaclasses in 
a metamodel. For each pair of different concrete 
metaclasses MCi and MCj, i≠j, we have an axiom 
∀x. MCi(x) → ¬ MCj(x). 
 
For example, the following axioms can be derived 

from the metamodel in Fig. 4 by applying AR2. 
∀x. (Class(x) → ¬ DataType(x)), 

∀x. (Class(x) → ¬ Interface(x)), … 
The above two axioms rules make it explicit that a 

model must have its elements completely and uniquely 
classified by metaclasses.  

B. Inheritance hierarchy on metaclasses.   
Inheritance hierarchy of metaclasses represent the 

taxonomy of modelling concepts. “Each instance of the 
specific classifier is also an indirect instance of the 
general classifier” [8]. This can be expressed as impli-
cation between the predicates, thus, the following rule.  

AR3(Logical implication of inheritance) For a gen-
eralisation relation from metaclass MA to MB in a 
metamodel, we have an axiom in the form of  

∀x. MA(x) → MB(x). 
For example, by applying AR3 to the metamodel 

shown in Fig. 4, the following axioms can be derived, 
stating that if a model element has the type Class or 
DataType or Interface or Association or Signal, it also 
belongs to the type Classifier. 

∀x. Class(x) → Classifier(x),  
∀x. DataType(x) → Classifier(x),  
∀x. Interface(x) → Classifier(x),  
∀x. Association(x) → Classifier(x),  
∀x. Signal(x) → Classifier(x).  

In current practice of metamodelling, all inheritance 
relations between metaclasses are explicitly specified 
in the metamodel, thus the following axiom rule.  

AR4(Completeness of specialisations) Let MA be a 
metaclass in a metamodel and MB1, MB2, …, MBk 
be the set of metaclasses specialising MA. We have 
an axiom in the form of  

∀x. MA(x) -> MB1(x) ∨ MB2(x) ∨ … ∨ MBk(x). 
For example, by applying AR4 to the metamodel in 

Fig. 4, the following axiom can be derived, stating that 
if a model element is an instance of Classifier, it must 
belong to one of the types: Class, DataType, Interface, 
Association or Signal. 

∀x.(Classifier(x) → Class(x)∨ DataType(x) ∨  
Interface(x) ∨ Association(x)∨ Signal(x)) 

C. Type constraints  
Let A be a meta-association from metaclass MC1 to 

MC2, MA be the association end on the MC2 side. For 
the binary predicate MA(x, y) derived from the associa-
tion, if the first parameter is an element of type MC1, 
the second must be of type MC2. Thus, we have the 
following axiom rule. 

AR5(Types of parameters of predicates) For each 
binary predicate MA(x, y) derived from an associa-
tion from metaclass MC1 to MC2 in a metamodel, 
we have an axiom in the form of  

∀x, y. MA(x, y) ∧ MC1(x) → MC2(y). 
For each function MAttr, we also have an axiom to 

specify its domain and range.  
AR6(Domain and range of functions) For each 
function MAttr(x) derived from a meta-attribute 
MAttr of type MT in a metaclass MC, we have an 
axiom in the form of   



∀x,y. MC(x) ∧ (MAttr(x) = y) → MT(y). 

D. Multiplicity  
Meta-association ends and meta-attributes are con-

strained by multiplicity. They “constrains the size of 
the collection […] of instances at the other end” [8]. 
Thus, we have the following axiom rule. 

AR7(Multiplicity of binary predicate) For each bi-
nary predicate MA(x, y) derived from an associa-
tion from metaclass MC1 to MC2 in a metamodel, 
let Mul be the multicity value specified on the as-
sociation end MA, we have axioms in the form of 
If Mul = 0..1:   
∀x, y, z. (MC1(x) ∧ MA(x, y) ∧ MA(x, z)  → (y = z)) 
If Mul = 1 or unspecified:  
∀x. (MC1(x)  → ∃ y. MA(x, y)) and 
∀x, y, z. (MC1(x) ∧ MA(x, y) ∧ MA(x, z)  → (y = z)) 
If Mul = 1..*:  ∀x.(MC1(x)  → ∃ y. MA(x, y)) 
If Mul = 2..*:     
∀x.(MC1(x)  → ∃y,z. MA(x, y) ∧ MA(x, z) ∧ (y≠ z)) 
If Mul = 0..2:  ∀x, y, z, u.( MC1(x) ∧ MA(x, y) ∧ 
 MA(x, z) ∧ MA(x, u) → (y = z) ∨ (y = u) ∨ (u = z))  

 Similarly, for each function MAttr(x) derived from a 
metaattribute MAttr of type MT in a metaclass MC1, we 
have the following axiom rule.  

AR8(Multiplicity of function) For each function 
MAttr(x) derived from a metaattribute MAttr of 
type MT in a metaclass MC, let Mul be the multic-
ity value of the metaattribute MAttr, we have axi-
oms in the following form. 
If Mul = 0..1: ∀x, y, z. (MC(x) ∧ (MAttr(x) = y)  
∧ (MAttr(x) = z) → (y = z)) 
If Mul = 1: ∀x.(MC(x)  → ∃ y. (MAttr(x) = y)) and  
∀x, y, z. (MC(x) ∧ (MAttr(x) = y) ∧ (MAttr(x) = z)  
→ (y = z)) 
If Mul = 1..*:  ∀x.(MC(x)  → ∃ y. (MAttr(x) = y)) 

E. Properties of enumeration values  
We identified three axiom rules to characterise the 

information contained in each enumeration metaclass.  
AR9(Distinguishability of the literal constants) For 
each pair of different literal values a and b of an 
enumeration type, we have an axiom a ≠b.  
AR10(Type of the literal constants) For each enu-
meration value a defined in an enumeration meta-
class ME, we have an axiom in the form of ME(a) 
stating that the type of a is ME.  
AR11(Completeness of the enumeration) An enu-
meration type only contains the listed literal con-
stants as its values, hence for each enumeration 
metaclass ME with literal values a1, a2, …, ak, we 
have an axiom in the form of ∀x. ME(x) → (x = a1) 
∨ (x = a2) ∨…∨ (x = ak). 

F. Deriving axioms from WFR  
UML class diagram is insufficient for fully defining 

the abstract syntax of UML. In complementary, well-
formedness constraints are specified in the UML 
documentation for restricting valid use of the language. 
Some of these well-formedness rules (WFR) are for-
mally defined in OCL, which can also be specified as 
axioms.  

AR12(Well-formedness rules) For each WFR for-
mally specified in OCL, we have a corresponding 
axiom in the first order language.   

4.4. Satisfaction Relation  
From the perspective of mathematic logics and the 

institution theory, a graphic model can also be re-
viewed as a mathematical structure, when a metamodel 
is viewed as a formal logic system. The model is a 
valid instance of the metamodel, if the mathematical 
structure satisfies the formal logic system. Let M be a 
metamodel, Σ= S(M) be the signature obtained by ap-
plying the signature mapping S to M, TΣ =AΣ(Μ) be 
the set of axioms by applying the axiom mapping to M. 
We define the satisfaction relation |= as follows.  

Definition 3 (Satisfaction relation) Given a meta-
model M, we say a model m satisfies the metamodel M, 
or equivalently m is an instance of M, write m|=M, if 

(1) m is an interpretation of the signature Σ with the 
following structure: 

a) a set E(m) that consists of model elements in m; 
b) for each constant symbol c in Σ, its interpreta-

tion c(m) is an element in E(m), i.e. c(m)∈ E(m); 
c) for each unary predicate P in Σ, its interpreta-

tion P(m) is a subset of E(m), i.e. P(m) ⊆ E(m); 
d) for each binary predicate R in Σ, its interpreta-

tion R(m) is a binary relation on E(m), i.e. R(m)  ⊆ 
E(m) × E(m); 

(2) m is a Σ-structure of TΣ, i.e. ∀ϕ ∈ TΣ. m |= ϕ.  
For example, the following is the mathematical 

structure equivalent to the model depicted in Fig. 2.  
E={Woman, Person, wp}, 
Class={Woman, Person}, Generalisation={wp}, 
Classifier={Woman, Person},  
general={(wp, Person)}, specific={(wp, Woman)}.  
For the sake of space, we omit the definition of the 

translation of graphic representation of models to their 
equivalent representation in mathematical structures. 
The satisfaction relation |= between mathematical 
structures and first order logic formulas is defined as 
usual and details are also omitted for the sake of space.  

5. Well-Definedness of Metamodels 
Having defined satisfaction relation between models 



and metamodels, one would define the consistency of a 
metamodel as the satiability of the metamodel. How-
ever, this does not work because the satisfaction rela-
tion does not require a model to contain instances for 
every metaclass. For example, Fig. 5 shows an exam-
ple of a metamodel M satisfied by a model m, where 
AssociationClass∈S(M) has no interpretation in m.  

Class Classifier Generalisation

+general

1

+specific
1

AssociationClass

Woman Person

 
Fig. 5. Example 4 of metamodel and model 

Thus, we have the following definition.  

Definition 4 (Well-defined Metamodel) A metamodel 
M is well-defined, if there is a non-trivial model m that 
satisfies M, where a model is non-trivial if for every 
concrete metaclass C in M, m contains at least one 
element of C.  

Whether a metamodel is well-defined can be deter-
mined according to the consistency of the logical sys-
tem derived from it. The concept of metamodel’s con-
sistency is defined as follows.  

Let T+ be the set of axioms obtained by applying 
the rules in section 4 and the following.  

AR11(existence of instance): For each concrete 
metaclass MC in metamodel M, an sentence is de-
rived as follows: ∃x. MC(x). 

Definition 5 (Consistency of metamodel) A meta-
model M is said to be consistent, if the set of axioms 
T+ is logically consistent in the first order logic; oth-
erwise, we say that M an inconsistent metamodel, i.e. 
when T+ |−false. 

Theorem 1. A metamodel is well-formed iff it is a 
consistent metamodel. 

6. The prototype tool LAMBEDS 
We have developed a prototype software tool called 

LAMBDES, which stands for a Logic Analyser of 
Models/Metamodels Based on DEscriptive Semantics. 
One of the tool’s main functions is to automatically 
generate signature and axioms from a metamodel in 
UML according to the theory presented in Section 4. 
The tool is integrated with a UML modelling tool   
StarUML [11] and a theorem prover SPASS [12].  

As shown in Fig. 6, the input to the signature gen-
erator and axiom generator components of LAMBDES 
is a metamodel in XMI format generated by StarUML. 
The output is a text file readable by SPASS. 

LAMBDES also generates the proof goal for the theo-
rem prover to perform the required logical analysis of 
the model or metamodel. Details about other compo-
nents and uses of LAMBDES for logic analysis of 
UML models can be found in [2]. 

  
Fig. 6 Overall structure of LAMBDES   

 
Fig. 7 Screen snapshot of LAMBDES 

Fig. 7 shows a snapshot of the tool’s interface, 
where XMI editor on the left displays the input XMI 
file and Logic editor on the right displays the generated 
first order system in SPASS input format.  

7. Case studies 
Using the prototype tool LAMBDES, we applied the 

proposed method to analyse two metamodels: the UML 
2.0 metamodel [8] and an AspectJ profile [13]. Table 2 
summarises the scales of the metamodels in terms of 
the numbers of various types of symbols in the signa-
ture and the numbers of various types of axioms. 

7.1. UML 2.0 metamodel 
Evidently, our method can be applied to the full-

fledged UML. In the case study, we investigated the 
UML 2.0 metamodel defined in the Classes, Common 
Behaviours, Interactions and State Machines packages. 
These four packages are selected because they define 
the commonly used UML diagrams, covering both the 



static and dynamic language facilities.  
In the case study, we analysed the consistency and 

completeness of the metamodel. Two types of prob-
lems were identified, which are incompleteness and 
inconsistency problems. Each problem is resolved by 
modifications to the metamodel and finally we ob-
tained a consistent and complete metamodel. 

An example of incompleteness in UML 2.0 meta-
model is the missing definition of enumeration meta-
classes. In the metamodel, data types of meta-attributes 
are either enumeration types e.g. VisibilityKind, or 
primitive types e.g. String and Boolean. The enumera-
tion types are defined in the metamodel, while the 
primitive types are used in the metamodel without 
definition. This is contradicted to the statement in [8] 
that “each metaclass is completely described”. This 
problem is resolved by adding the primitive types as 
metaclasses to the metamodel.  

The inconsistency of a metamodel can be detected 
in the first order logic by proving false from the gener-
ated axioms.  

StateMachine

ProtocolStateMachine

StateMachine

ProtocolStateMachine BehaviouralStateMachine

 
(A) Original metamodel     (B) Modified metamodel 
Fig. 8 A fragment of the metamodel for State Machine  

For example, Fig. 8(A) depicts is a part of Figure 
15.5 in UML 2.0 specification [8] of state machine 
models, where StateMachine is defined as a concrete 
metaclass specialised by a concrete metaclass Proto-
colStateMachine. A contradiction is inferred from the 
axioms (1) (2) (3) below, which are derived from Fig. 
8(A) by applying AR 2, AR 3 and AR 4, respectively.  

∀x. ProtocolStateMachine(x) → ¬ StateMachine(x) (1)

∀x. ProtocolStateMachine(x) → StateMachine(x) (2)

∀x. StateMachine(x) → ProtocolStateMachine(x) (3)

This inconsistency occurs because a concrete meta-
class is specialised by other metaclasses, thus violates 

the ‘strict metamodelling’ principle.    
Sixteen such inconsistencies were discovered in our 

case study as summarised in Table 1. To resolve this 
type of problems, non-leaf nodes in the inheritance 
hierarchy must be changed into abstract metaclasses. 
For example, StateMachine is modified as an abstract 
metaclass specialised by BehaviouralStateMachine and 
ProtocolStateMachine, as shown in Fig 8(B).  

Another error found in our case study is that Occur-
enceSpecification is specified inconsistently as abstract 
and concrete metaclass in different diagrams. This er-
ror has been corrected in UML 2.1 [3].  

7.2. AspectJ profile 
UML provides extension mechanism so that a 

metamodel can be tailored for different platforms or 
domains. Stereotypes that extend metaclasses comprise 
a profile, which becomes a new package of metamodel. 
In the paradigm of model-driven architecture, one can 
use the extension mechanism to define profiles as 
metamodels of PSM. However, as pointed out in [14], 
question remains if the different metamodels as UML 
profiles are consistent or not. Our method can be ap-
plied on profile metamodels to derive axioms and ver-
ify their consistency. A case study was made on an 
AspectJ metamodel proposed in [13]. It is designed to 
provide aspect-oriented modelling facilities.  

The profile enables to specify a PSM, i.e. a model 
specific to the Java and AspectJ platform. Same as in 
the case study of UML 2.0, we detected both incom-
pleteness and inconsistency in the metamodel.  

As a metamodel, the profile is found incomplete in 
the sense that the metaclasses Property, Type, Opera-
tion, Boolean, InterfaceRealisation, Generalisation and 
String are used as data types of metaattributes without 
declaration. This incompleteness is acceptable because 
profiles are supposed to be used together with the 
original metamodel rather than self-contained.  

Table 2.  Summary of UML 2.0 and AspectJ metamodels 
 Types UML AspectJ

Unary predicates 126 31 
Binary predicate 255 12 
Functions 58 11 
Constants 46 7 

Signa-
ture 

Total 485 61 
Completeness of classification 1 1 
Disjointness of classification 4851 300 
Implication of inheritance 133 26 
Completeness of specialisations 42 7 
Types of binary predicates 255 12 
Domain and range of functions 57 11 
Multiplicity 222 18 
Enumeration metaclasses 196 18 

Axi-
oms 

Total 6119 461 

Table 1. Detected inconsistencies in UML 2.0 metamodel 
Package Super-metaclasses Sub-metaclasses 

InstanceSpecification  EnumerationLiteral 
Class AssociationClass 
Association AssociationClass 
DataType PrimitiveType 
Abstraction Realisation 
Realisation Substitution 

Classes  

Dependency Usage 
OpaqueBehaviour FunctionBehaviour 
Constraint IntervalConstraint 
IntervalConstraint TimeConstraint 

Common 
behaviours 

Class Behaviour 
CombinedFragment ConsiderIgnoreFragmentInteractions
InteractionUse PartDecomposition 
Transition ProtocolTransition 
State FinalState 

State  
machines 

StateMachine ProtocolStateMachine 



ExecutionPointCut
<<stereotype>>

PreinitialisationPointCut
<<stereotype>>

InitialisationPointCut
<<stereotype>>

 
Fig. 9  Segment of AspectJ profile [13] 

Two inconsistencies are detected in the AspectJ 
metamodel. One is because the concrete stereotype 
ExecutionPointCut is specialised by two other meta-
classes, as shown in Fig. 9. Another contradiction is 
inferred from the axioms (4) (5) (6) below, where (4) is 
derived by applying AR 2, and (5) and (6) by AR 6.  
∀x.PointCutConjunction(x) →¬PointCutDisjunction (x) (4)

∀x.PointCut(x) ∧ composee(x, y)  
→ PointCutConjunction(x)  

(5)

∀x.PointCut(x) ∧ composee(x, y)  
→ PointCutDisjunction(x) 

(6)

This inconsistency occurs because both associations 
from PointCut to PointCutConjunction and from 
PointCut to PointCutDisjunction have an end named as 
compose. An end name enables navigation between 
elements. Thus, the identical end name from the same 
node but leading to different ends causes ambiguity in 
the direction of navigation. To resolve this problem, 
one of the association ends is renamed.   

8. Conclusion 
Based on our previous work that formalises the se-

mantics of UML models in FOL, in this paper we pro-
posed a method for formalising the semantics of 
metamodels in UML by formally defining the signature 
and axiom mappings. A prototype tool has been im-
plemented to automatically translate metamodels into 
first order logic systems in SPASS format. Case studies 
on UML 2.0 metamodel and the AspectJ profile. Dem-
onstrate that, through the formalisation of the seman-
tics of metamodels, the logic properties of metamodels 
such as consistency and completeness can be verified. 
Our method is effective in detecting inconsistency and 
incompleteness errors in metamodels.  

Using the tool LAMBDES that implements the sig-
nature rules and axiom rules, we have obtained the 
formal semantics of UML 2.0 metamodel defined in 
four packages, which comprises the main part of UML. 
As shown in [2], this enables us to proof that a UML 
model is an instance of a metamodel by demonstrate 
that the model satisfies the axioms generated from the 
metamodel and also additional consistency constraints, 
if any.   

In future work, we will incorporate the full set of 
well-formedness rules defined in the UML documenta-
tion into the formal metamodel, which needs manual 
work to translate OCL formulas to the format of 
SPASS. The combination of the formal metamodel and 
well-formedness rules will provide a complete formal 

language specification for UML. We also plan to apply 
the method of deriving descriptive semantics from M1 
level and axioms from M2 level to the four-level meta-
modelling framework of UML language.  

The language extension mechanisms used in the 
UML metamodel, especially subset and union, are in-
vestigated in [15]. The authors concluded that ‘prop-
erty redefinitions are not safe while package merge 
does not influence the relationship between model 
elements. It is interesting to see how such conclusions 
can be formally derived from formal semantics of 
metamodel in our framework. It is worth noting that 
our framework is consistent with Goguen and 
Burstall’s theory of institution [1], thus the institution 
theory about the integration of multiple logics could be 
applied.  
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