
A Methodology of Component Integration
Testing

Hong Zhu1 and Xudong He2

1 Department of Computing
Oxford Brookes University
Wheatley campus
Oxford OX33 1HX, UK
hzhu@brookes.ac.uk

2 School of Computer Science
Florida International University
University Park
Miami, FL 33199, USA
hex@cs.fiu.edu

Summary. Integration testing plays a crucial role in component-based software de-
velopment. It is also very difficult due to the common problem of lack of information
about the design of the components and the unavailability of source code of com-
mercial off-the-shelf (COTS) components. Addressing this problem, we investigate
how to observe system’s dynamic behavior in component integration testing. Based
on a theory of behavioral observation developed in our previous work, this chapter
proposes a formal model of component integration testing methods and a hierarchy
of behavioral observation schemes suitable for component integration testing. Their
properties and interrelations are studied. Incremental integration testing strategies
are also investigated. The requirements for proper uses of test drivers and component
stubs in incremental integration are analyzed.

1 Introduction

In recent years, software component technology has emerged as a key element
of modularity in the development of large and complicated systems [1, 2, 3].
Ensuring the correct integration of software components is a critical prob-
lem in component-based software development(CBSD). Industrial practices
in CBSD have shown a clear shift of development focus from design and cod-
ing to requirements analysis, testing, and integration, especially from unit
testing to integration testing [4, 5, 6]. However, traditional testing methods
have to be adapted to meet the new requirements of CBSD.

Generally speaking, software integration testing can be based on the re-
quirements specification, the design or the code of the system under test,



2 Hong Zhu and Xudong He

or, ideally, a combination of these. Most existing methods are based on the
functional requirement specifications, e.g., [7, 8]. Their major weakness is
that program structure and design information are not utilized in the testing.
Design-based methods have been proposed to utilize the information contained
in design documents, such as in UML models [9, 10], software architecture de-
scriptions [11, 12], and structural design diagrams [13, 14]. However, in the
context of CBSD, the design information of the components is usually not
available in testing when components are commercial off-the-shelf (COTS)
packages. Among code-based methods are inter-procedural data flow testing
methods [15, 16, 17, 18], their extensions to coupling-based methods [19], and,
more recently, interface mutation testing methods [20]. A weakness of code-
based methods is that they rely on the availability of the source code of the
components. This weakness becomes a serious problem when the component
is a COTS package because source code is not usually available for compo-
nent users. Moreover, these methods do not support incremental integration
strategies. Consequently, even if the source code is available, analyzing the
complete set of code becomes impractical when the software system is large.
Therefore, their applicability to CBSD is also limited.

It is widely recognized that the lack of information flows between com-
ponent developers and component users is one of the main causes of the dif-
ficulties of software testing in CBSD [21]. In particular, as discussed above,
component users have limited access to information about component design
and implementation details in the integration of components into their sys-
tems. This implies that testers as component users have very limited ability to
observe the internal behavior of the components. On the other hand, compo-
nent developers, in the design and implementation as well as in the testing of
components, have very limited knowledge about their uses. Hence, they have
limited knowledge about what should be provided to the component’s users
to observe the behaviors of the components. Therefore, how to observe the
behaviors of components becomes a crucial problem of testing in CBSD.

This chapter addresses this problem based on a general theory of behav-
ioral observation in software testing that we proposed in [22, 23, 24, 25]. We
study the aspect of software testing in which a system’s dynamic behaviors
are observed and recorded so that the system’s properties can be inferred.
The focus of behavioral observation is one of the most important character-
istics that distinguishes software testing activities at different development
stages. For example, integration testing focuses its observation on the inter-
actions between the components of the system, while unit testing focuses
on the internal behaviors of the components. The former represents compo-
nent users’ view toward testing software components and the latter represents
component developers’ view. This chapter will take the component users’ view
toward testing in the integration of components into a system. However, the
theory can be applied equally to the testing of components from the devel-
opers’ view if the components are compositions of other components. It also
sheds new light on what component developers should provide to component



A Methodology of Component Integration Testing 3

users in order to help integration testing of components. Based on our formal
theory of behavioral observation, especially the ‘design patterns’ of software
testing methods obtained in the study of existing testing methods [24], we
can derive a number of testing methods suitable for component integration
testing. Moreover, a collection of guidelines for the proper uses of incremental
integration testing strategies can also be developed from the theory.

The remainder of the chapter is organized as follows. Section 2 briefly
reviews our theory of behavioral observation and presents a set of design pat-
terns of software testing methods. Section 3 applies the theory to component
integration testing. We propose a formal model of white-box integration test-
ing in which components can be treated as black boxes while the code that
glues components together are treated as a white box. We then apply de-
sign patterns to derive a collection of testing methods that are suitable for
white-box component integration testing. The effective uses of test drivers and
component stubs in incremental integration testing will also be investigated.
Section 4 concludes the paper with a summary of the work reported in this
chapter and a brief discussion of the directions for further work.

2 Overview of the Observation Theory

In software testing practices, observations on a system’s dynamic behavior
can be made on a number of different aspects of the execution of the system.
For example, in addition to the correctness of the output, one can also observe
the following:

(1) The set of executed statements, as in statement testing method;
(2) The set of exercised branches, as in branch testing method;
(3) The set of executed paths, as in path testing methods;
(6) The set of dead mutants, as in mutation testing;
(4) The sequences of communications between processes, as in the testing of

communication protocols;
(5) The sequences of synchronization events, as in testing concurrent systems

[26].

To render observed and recorded information meaningful, we require that
observations be systematic and consistent. For example, it is not acceptable if
sometimes we record executed statements, sometimes don’t. We use the term
‘observation schemes’ to denote a systematic and consistent way of observing
and recording a system’s dynamic behavior in software testing. Here, a dis-
tinction must be made between an observed phenomenon and the dynamic
behavior itself. A phenomenon is the result of an observation on a certain
aspect of the dynamic behavior during a specific test execution of a software
system. Employing different observation methods may result in observing dif-
ferent phenomena of the same behavior. Therefore, each observation method



4 Hong Zhu and Xudong He

determines a universe of phenomena of the system’s dynamic behavior ob-
servable from testing.

In this section, we review the theory that we developed in [22, 23, 24, 25]
about the mathematical structure of the universe of observable phenomena,
the mathematical properties of observation schemes, and the common struc-
tures of existing observation schemes in various software testing methods.

2.1 The Structure of Observable Phenomena

As argued in [22], the observable phenomena in testing a particular software
system p using a well-defined testing method constitute an algebraic structure
called Complete Partially Ordered set (CPO set). Formally, CPO sets are
defined as follows.

Definition 1. (CPO sets)
A CPO set 〈D,≤〉 consists of a nonempty set D and a binary relation ≤ on
D, such that ≤ is a partial ordering and satisfies the following conditions:

(1) D has a least element, written ⊥, i.e., for all x ∈ D, ⊥ ≤ x;
(2) For all directed subsets S ⊆ D, S has a least upper bound, written as

⊔
S,

i.e., for all upper bound u of S,
⊔

S ≤ u;

where a subset S ⊆ D is directed if for all s1, s2 ∈ S there is s ∈ S such that
s1 ≤ s and s2 ≤ s; an element u ∈ D is called an upper bound of S if s ≤ u
for all s ∈ S. ut

The partial ordering ≤ on observable phenomena represents the fact that
different observed phenomena contain different information of the dynamic
behavior of the system. The relation α ≤p β means that phenomenon α con-
tains less information than phenomenon β in testing system p.

Example 1. (The universe of observable phenomena in statement testing)
For example, in statement testing, the set of statements in the program exe-
cuted during testing is observed in addition to the correctness of the output.
A phenomenon of the dynamic behavior of a system is the set of statements
executed during testing. All such sets constitute a universe of phenomena and
the partial ordering relation on the universe is the set inclusion relation ⊆.
The more a program is tested, the larger the set of statements executed. ut

Within a CPO set, for all directed subsets S of elements, there is the least
upper bound

⊔
S. In the context of software testing, the least upper bound

of a set of observed phenomena serves as an operation that summarizes the
observations and draws a general conclusion about the testing. The result is
a phenomenon that puts information from all the independent observations
together. It contains all the information in the individual observations and
nothing more. For example, in statement testing, the union of the sets of
executed statements is the summation operation on observable phenomena.



A Methodology of Component Integration Testing 5

The set union operation is the least upper bound of two sets with respect to
the set inclusion relation. This is consistent with the intuition that if two sets
of statements are executed in two independent tests, the union of the sets of
statements contains exactly all the tested statements.

The least element ⊥p in the universe of observable phenomena in testing
program p represents the phenomenon that can be observed if the system is
not executed at all. Therefore, it usually is the phenomenon that contains no
information about the dynamic behavior of a system. For example, in state-
ment testing, the least element is the empty set, which means no statement is
executed. Of course, any set of statements observed in a testing includes the
empty set.

CPO sets have been well studied in denotational semantics of programming
languages, and constitute domain theory. Readers are referred to [27] for a
concise treatment of domain theory and its uses in the studies of the semantics
of programming languages.

Note that, in many software testing methods, there is also a greatest ele-
ment of observable phenomena in testing a software system p, written as >p.
That is, for all phenomena α, we have that α ≤p >p. For example, the set of
all feasible statements in a program is the greatest element in the observable
phenomena in statement testing. In many cases, the greatest element can be
observed only by testing on an infinite number of test cases. For example, the
set of all feasible paths in a program is the greatest observable phenomenon
in path testing. Usually, it can be covered only by infinite tests if the pro-
gram contains loops. While such a greatest element might be useful, it does
not necessarily exist in all testing methods. For the sake of generality, our
theory does not assume its existence. The results obtained subsequently can
also be applied to all phenomenon spaces, including those having the greatest
elements.

2.2 The Notion of Observation Schemes

The notion of observation schemes is formally defined as a mathematical struc-
ture to represent systematic behavioral observation methods of software test-
ing.

Definition 2. (Observation scheme)
A scheme B of behavioral observation and recording, or simply an observation
scheme, is a mapping from software systems p to ordered pairs 〈Bp, µp〉, where
Bp = 〈Bp,≤p〉 is a CPO set that represents the universe of observable phe-
nomena of p. Function µp is called the recording function, which is a mapping
from test sets T to nonempty subsets of Bp.ut

Informally, µp(T ) is the set of all possible phenomena observable by test-
ing p on test set T . In other words, σ ∈ µp(T ) means that σ is a phenomenon
that is observable by an execution of p on test set T . Note that, in testing a
concurrent system, two executions of the same system p on the same test set



6 Hong Zhu and Xudong He

T may demonstrate two different behaviors due to nondeterminism. Conse-
quently, one can observe more than one phenomenon in two executions of p
on the same test set, say, σ and σ′. Both σ and σ′ belong to the set of such
observable phenomena for testing p on test set T , which is denoted by µp(T ).

Note also that, to test concurrent systems, a test set T can be a multiple
set (or bag) so that multiple executions of the system on the same test case can
be described. In this chapter, the set of all multiple sets on a set X is denoted
by bag(X). We write Ŷ to denote the set obtained by removing duplicated
elements in a multiple set Y . The traditional set operators are used to denote
their multiple set variants as well. Moreover, in the test of interactive or
process control systems, a test case can be a sequence of input data without
an upper limit on the lengths. In such cases, a partial ordering on the test
cases of the system can be defined and the input space of the system forms a
CPO set. Therefore, test sets can be elements of a power domain of the input
CPO set. For the sake of generality, we assume that there is only a partial
ordering on test sets and the collection of all test sets of a program forms a
complete partially ordered set. The least element of the test sets means that
the software is not dynamically tested. The greatest test set is the exhaust
test, if it exists. For the sake of readability, we use the set inclusion symbol ⊆
as the partial ordering relation between test sets, the empty set ∅ as the least
element of the test sets, and the set union ∪ and intersection ∩ symbols as the
least upper bound and the greatest lower bound of test sets, respectively. We
also use the set membership symbol ∈ to denote that a test case is contained
in a test set. We will use P to denote the set of all software systems. The
input domain of a software system p is denoted by Dp.

The following examples illustrate the notion of observation schemes.

Example 2. (Input/output observation scheme)
Let IOp = {〈x, y〉|x ∈ Dp ∧ y ∈ p(x)}, where y ∈ p(x) means that y is a
possible output of p when executed on input data x. The universe of observable
phenomena is defined to be the power set of IOp, and the partial ordering is
set inclusion. The recording function µp(T ) is defined to be the collection of
sets of input/output pairs observable from testing p on T .

For instance, assume that Dp = {0, 1}, p(1) = {1}, and p(0) = {0, 1}
due to non-determinism. Let test data t = 0 and test set T1 = {t}; then,
µp(T1) = {{〈0, 0〉}, {〈0, 1〉}}, i.e., one may observe either {〈0, 0〉} or {〈0, 1〉}
by executing p on input 0 once. Let test set T2 = {2t}; then, µp(T2) =
{{〈0, 0〉}, {〈0, 1〉}, {〈0, 0〉, 〈0, 1〉}}, i.e., one of the following three different phe-
nomena can be observed by executing p twice on the same input 0:

{〈0, 0〉} / p outputs 0 in two executions on input 0;
{〈0, 1〉} / p outputs 1 in two executions on input 0;
{〈0, 0〉, 〈0, 1〉} / p outputs 0 in one execution and outputs 1 in another exe-

cution on the same input 0. ut



A Methodology of Component Integration Testing 7

Example 3. (Dead mutant observation scheme)
Consider the observation scheme for mutation testing [28, 29, 30]. Let Φ be a
set of mutation operators. The application of Φ to a program p produces a set
of mutants of p. Let Φ(p) be the set of such mutants that are not equivalent to
p. Define the universe of phenomena to be the power set of Φ(p). The partial
ordering is defined to be the set inclusion relation. For all test sets T , the
recording function µp(T ) is defined to be the collection of sets of mutants.
Each element in µp(T ) is a set of mutants that can be killed by one test of p
on T . ut
Example 4. (Output diversity observation scheme)
The observation scheme in this example records the number of different out-
puts on each input data. A phenomenon observable from testing a concurrent
system on a set of test cases consists of a set of records. Each record has two
parts, 〈t, n〉, where t is a valid input, and n is the number of different out-
puts on the input data observed from the testing. Formally, an element of the
universe of phenomena is a set in the form of {〈ti, ni〉|ti ∈ Dp, ni > 0, i ∈ I}.
The partial ordering relation on phenomena is defined as follows:

σ ≤ σ′ ⇔ ∀〈t, n〉 ∈ σ.∃〈t′, n′〉 ∈ σ′.(t = t′ ∧ n ≤ n′).

The least upper bound of σ1 and σ2 is a set, written as σ1+σ2, which contains
elements in the form of 〈t, n〉 and satisfies the following conditions.

(a) 〈t,max(n1, n2)〉 ∈ σ1 + σ2, if ∃n1, n2 > 0.(〈t, n1〉 ∈ σ1 ∧ 〈t, n2〉 ∈ σ2);
(b) 〈t, n1〉 ∈ σ1 + σ2, if ∃n1 > 0.(〈t, n1〉 ∈ σ1) ∧ ¬∃n2 > 0.(〈t, n2〉 ∈ σ2);
(c) 〈t, n2〉 ∈ σ1 + σ2, if ∃n2 > 0.(〈t, n2〉 ∈ σ2) ∧ ¬∃n1 > 0.(〈t, n1〉 ∈ σ1).

ut

2.3 Test Adequacy Criteria

One of the most important elements of all software testing methods is the
concept of test adequacy criteria. Since the introduction of the concept in
1970s [28], a large amount of research on test adequacy criteria has been
reported in the literature; see, e.g., [38] for a survey.

Software test adequacy criteria can play at least two significant roles in
software testing [38]. First, a test adequacy criterion provides an objective
guideline to select test cases so that adequate testing can be performed.
Many software test criteria have been proposed as such guidelines or test
case generation and selection methods. A test set generated according to such
a guideline or by using such a method is therefore adequate according to the
criterion. In the research on the theories of software testing, test adequacy
criteria are, therefore, usually formally defined as predicates on the space T
of test sets and software systems P , i.e., as mappings C : T× P → Bool, (cf.
[29, ?, 31, 32, 33, 34, 35, 36]). Second, a test adequacy criterion also provides
a stop rule to determine whether a testing is adequate and can stop. Such



8 Hong Zhu and Xudong He

a stop rule is often used together with a metric to determine how much has
been achieved by the testing so far. For example, the percentage of state-
ments covered by testing is a metric for statement coverage criterion. Theo-
retically speaking, such a metric is a function that gives a mapping from test
sets and software systems to a numerical scale such as the unit interval, i.e.,
C : T× P → [0, 1] (see, e.g., [37]).

A common feature of existing theories of test adequacy criteria is that
they consider test adequacy as a property of test sets. However, as discussed
in the previous sections, in the testing of concurrent and non-deterministic
systems, the behavior of the system under test is not uniquely determined
by the input test cases. Test adequacy is a property of the dynamic behavior
demonstrated in the testing process. Therefore, we redefine the notion of test
adequacy criteria as predicates of observed phenomena or as measurements
on observed phenomena. Formally, let B : p → 〈Bp, µp〉 be an observation
scheme. An adequacy criterion C as a stop rule is a mapping from software
system p to a predicate Cp defined on Bp, such that, for any phenomenon,
σ ∈ µp, Cp(σ) = true means that the testing is adequate if phenomenon σ
is observed. An adequacy criterion C as a measurement is a mapping from
software system p to a function Mp from Bp to the unit interval [0, 1] of real
numbers. For any phenomenon, σ ∈ µp, Mp(σ) = ρ ∈ [0, 1] means that the
adequacy measurement of the testing is ρ if the phenomenon observed is σ.

In this framework, a software test method can be defined as an ordered
pair 〈B, C〉 of a behavioral observation scheme B and a test adequacy criterion
C. In this chapter, we will focus on the observation schema because it is a
difficult issue of testing in CBSD.

2.4 Properties and Axioms of Behavioral Observations

Having recognized that observation schemes are an essential part of all test-
ing methods, we now discuss what a good observation scheme is. In [22],
we proposed a set of desirable properties of observation schemes and studied
the interrelationships between the properties. We now list the axioms. Their
rationales can be found in [22].

Axiom 1. (Empty set property)
Nothing can be observed from the empty testing. Formally,

∀p ∈ P, (µp(∅) = {⊥p}) . (1)

ut
Axiom 2. (Observability)
If a software system is tested on at least one valid input, some nontrivial
phenomenon of the system’s behavior can always be observed. Formally,

∀p ∈ P, (T ∩Dp 6= ∅ ⇒ ⊥p /∈ µp(T )) . (2)

ut



A Methodology of Component Integration Testing 9

A testing process is often incremental in the sense that more and more
test cases are executed and observations are made cumulatively. Suppose that
a system p is tested on test set T , and a phenomenon σ1 is observed. Later
on, some additional test cases are executed and a new observation σ2 is made
as the result of testing on T ′, where T ⊆ T ′. The following axioms state
the required properties for an observation scheme to be used in incremental
testing:

Axiom 3. (Extensibility)
Every phenomenon observable from testing a system on a test set is part of a
phenomenon observable from testing on any of its supersets. Formally,

∀p ∈ P, (σ ∈ µp(T ) ∧ T ⊆ T ′ ⇒ ∃σ′ ∈ µp(T ′), (σ ≤p σ′)) . (3)

ut
Axiom 4. (Tractability)
Every phenomenon observable from testing a system on a test set T contains
a phenomenon observable from testing on any subset T ′. Formally,

∀p ∈ P, (σ ∈ µp(T ) ∧ T ⊇ T ′ ⇒ ∃σ′ ∈ µp(T ′), (σ ≥p σ′)) . (4)

ut
A special case of incremental testing is to repeatedly execute a system

on the same test cases. For testing concurrent systems, such repetition often
reveals new behavior. However, the same phenomenon should be observable
when repeating a test. Hence, we have the following axiom:

Axiom 5. (Repeatability)
Every phenomenon observable from testing a system p on a test set T can be
observed from repeating the test of p on the same test set T . Formally,

∀p ∈ P, (σ ∈ µp(T ) ⇒ σ ∈ µp(T ∪ T )). (5)

ut
Note that, in the above axiom, when the test set T is a multiple set of test

cases, T ∪ T represents that all test cases in T are executed twice; hence, we
may have that T ∪ T 6= T .

Axiom 6. (Consistency)
For any given system p, any two phenomena observed from two tests of the
system must be consistent. Formally,

∀p ∈ P, (µp(T ) ↑ µp(T ′)), (6)

where σ1 ↑ σ2 means that the phenomena σ1 and σ2 are consistent, i.e., they
have a common upper bound; Γ1 ↑ Γ2 means that the sets Γ1 and Γ2 are
consistent, i.e., for all σ1 ∈ Γ1 and σ2 ∈ Γ2, σ1 ↑ σ2 . ut



10 Hong Zhu and Xudong He

In software testing practices, a testing task is often divided into several
subtasks and performed separately. Such a testing strategy can be considered
as testing on several subsets of test cases, and observations are made indepen-
dently by executing on the subsets. These observations are then put together
as the result of the whole testing effort. The following axioms are concerned
with such testing processes:

Axiom 7. (Completeness)
Every phenomenon observable from testing a system on a subset is contained
in a phenomenon observable from testing on the superset. Formally,

∀p ∈ P,

(
∀

i∈I
σi ∈ µp(Ti), (∃σ ∈ µp (T ) , (σ ≥p σi))

)
, (7)

where T =
⋃
i∈I

Ti. ut

Axiom 8. (Composability)
The phenomena observable by testing a system p on a number of test sets can
be put together to form a phenomenon that is observable by executing p on the
union of the test sets. Formally,

∀p ∈ P,

(
∀

i∈I
σi ∈ µp(Ti),

(⊔

i∈I

σi ∈ µp(
⋃

i∈I

Ti)

))
. (8)

ut
Axiom 9. (Decomposability)
For all test sets T and its partitions into subsets, every phenomenon observ-
able from testing a system p on the test set T can be decomposed into the
summation of the phenomena observable from testing on the subsets of the
partition. Formally, let T =

⋃
i∈I

Ti; we have,

∀p ∈ P,

(
σ ∈ µp(T ) ⇒ ∃

i∈I
σi ∈ µp(Ti), (σ

⊔

i∈I

σi)

)
. (9)

ut
Figure 1 below summarizes the relationships between the axioms, where

arrows are logic implications. Proofs of these relationships can be found in
[22].

2.5 Extraction Relation Between Schemes

From a phenomenon observed under a given scheme, one can often derive what
is observable under another scheme. For example, we can derive the set of
executed statements from the set of executed paths. The following extraction
relation formally defines such relationships between observation schemes:

Let A : p → 〈Ap, µ
A
p 〉 and B : p → 〈Bp, µ

B
p 〉 be two schemes.



A Methodology of Component Integration Testing 11

Consistency

Completeness

Tractability 

Extendibility

ComposabilityDecomposability

Repeatability

&

ObservabilityWell-

foundedness 

Fig. 1. Relationships between the axioms

Definition 3. (Extraction relation between schemes)
Scheme A is an extraction of scheme B, written A / B, if for all p ∈ P , there
is a homomorphism ϕp from 〈Bp,≤B,p〉 to 〈Ap,≤A,p〉, such that

(1) ϕp(σ) = ⊥p if and only if σ = ⊥B,p, and
(2) for all test sets T , µA

p (T ) = ϕp(µB
p (T )).

ut
The extraction relation is a partial ordering on observation schemes.
Informally, scheme A being an extraction of scheme B means that scheme

B observes and records more detailed information about dynamic behaviors
than schemeA. The phenomena that schemeA observes can be extracted from
the phenomena that scheme B observes. Consequently, if a fault in the system
under test can be detected according to an observed phenomenon using A,
the same fault can also be detected by using observation scheme B. In other
words, A being an extraction of B implies that B has better fault detection
ability than A.

Note that, first, extraction relations between observation schemas are sim-
ilar to the subsumption relations on test adequacy criteria. A test adequacy
criterion C1 subsumes criterion C2 if for all tests T , T is adequate according to
C1 implies that T is also adequate according to C2 (cf. [36, 38, 39]). However,
the schema of testing method M1 is an extraction of the schema of method
M2 does not imply that there is a subsumption relation between their ade-
quacy criteria, or vice versa. Counterexamples can be found in [23]. In fact, a
number of different test adequacy criteria can be defined on one observation
schema. Second, subsumption relations between test adequacy criteria have
been intensively investigated to compare testing methods, and are considered
an indication of better fault detection ability. In posterior uses of test ade-
quacy criteria, it does guarantee better fault detection ability [38]. However, it
was proven that a subsumption relation cannot alone always guarantee better



12 Hong Zhu and Xudong He

fault detection ability if the observation method used during testing is not
taken into consideration [36]. In contrast, as discussed above, an extraction
relation between two observation schemas can guarantee that one test method
has a better fault detection ability than the other. Finally, the extraction re-
lation between observation schemas allows us to compare the test methods’
fault detection abilities without assuming that the tests are adequate.

2.6 Design Patterns of Observation Schemes

A great number of software testing methods have been proposed and inves-
tigated in the literature (see, e.g., [39] for a survey of unit testing methods).
Our investigation of the observation schemes of existing testing methods has
shown that there are a number of common structures occurring repeatedly
[24]. These common structures can be considered as design patterns of obser-
vation schemes. They enable us to understand the strengths and weaknesses of
testing methods from a very high level of abstraction, and to develop testing
methods according to the desired features. They, therefore, provide guidelines
for the design of testing methods. This section summarizes the common con-
structions of observation schemes and their properties. Readers are referred
to [24] for details.

A. Set Construction

In statement testing, software testers observe and record the subset of state-
ments in the software source code that are executed (see, e.g., [40, 41]). In
this observation scheme, the execution of a statement is an atomic event to
be observed. An observable phenomenon is a set that consists of such events
that happened during testing. The partial ordering on observable phenomena
is set inclusion. Such construction of a scheme is common to many testing
methods. The following is a formal definition of this construction:

Definition 4. (Regular set scheme)
An observation scheme B : p → 〈Bp, µp〉 is said to be a regular set scheme (or
simply a set scheme) with base Up∈P if, for all software systems p ∈ P , the
elements in the CPO set 〈Bp,≤p〉 are subsets of Up and the partial ordering
≤p is the set inclusion relation ⊆. Moreover, the following conditions hold for
the mapping µp:

(1) Up =
⋃

t∈Dp
(
⋃

µp({t})),
(2) µp(∅) = {∅},
(3) T ∩Dp 6= ∅ ⇒ ∅ /∈ µp(T ),
(4) µp(T ) = µp(T ∩Dp),
(5) µp(

⋃
i∈I Ti) = {⋃i∈I σi|σi ∈ µp(Ti), i ∈ I}.

ut



A Methodology of Component Integration Testing 13

The following theorem about the extraction relations between regular set
observation schemes will be used later in the study of integration testing:

Theorem 1. (Extraction theorem for regular set schemes)
Let B : p → 〈Bp, µ

B
p 〉 be a regular scheme. Let A : p → 〈Ap, µ

A
p 〉. Assume

that, for all software systems p ∈ P , there is a set UA
p such that 〈Ap,≤p〉 is a

CPO set of subsets of UA
p with set inclusion relation ⊆. If, for all p ∈ P , there

is a surjection fp from UB
p to UA

p such that σA ∈ Ap ⇔ ∃σB ∈ Bp, (σA =
{fp(x)|x ∈ σB}), and, for all test sets T , µA

p (T ) = {fp(σ)|σ ∈ µB
p (T )}, then

we have that

(1) A is a regular scheme with base UA
p , and

(2) A is an extraction of B.

We say that A is the regular scheme extracted from B by the extraction map-
ping fp. ut

In particular, observation scheme A is an extraction of scheme B if, for all
programs p, UA

p ⊆ UB
p .

B. Partially Ordered Set Construction

In the set construction, there is no ordering relationship between the basic
events to be observed. However, in some testing methods such as path testing,
the basic events are ordered by a partial ordering.

Let X be a nonempty set and ¿ be a partial ordering on X. A subset
S ⊆ X is said to be downward closed if, for all x ∈ S, y ¿ x ⇒ y ∈ S. Let
p ∈ P . Given a partially ordered set (also called poset) 〈Ap,¿p〉, we define
the universe Bp of phenomena to be the set of downward closed subsets of
Ap. The binary relation ≤B,p on phenomena is defined as follows:

σ1 ≤B,p σ2 ⇔ ∀x ∈ σ1, ∃y ∈ σ2, (x ¿p y) (10)

It is easy to prove that ≤B,p is a partial ordering. Moreover, if the poset
〈Ap,¿p〉 has a least element ⊥p, the poset 〈Bp,≤B,p〉 is a CPO set with the
least element {⊥p}. The least upper bound of σ1 and σ2 is σ1 ∪ σ2.

Definition 5. (Partially ordered set scheme)
An observation scheme B : p → 〈Bp,≤B

p 〉 is said to be a partially ordered set
scheme (or poset scheme) with base 〈Ap,¿p〉 if its universe of phenomena is
defined as above and the recording function has the following properties:

(1) µp(∅) = {{⊥p}},
(2) T ∩Dp 6= ∅ ⇒ {⊥p} /∈ µp(T ),
(3) µp(T ) = µp(T ∩Dp),
(4) µp(

⋃
i∈I Ti) = {⋃i∈I σi|σi ∈ µp(Ti), i ∈ I}. ut



14 Hong Zhu and Xudong He

Example 5. (Observation scheme for path testing [29, 30, 42])
Let p be any given program. A path in p is a sequence of statements in p
executed in the order. Let Ap be the set of paths in p, and the partial ordering
¿p be the sub-path relation. Let s be a set of paths in p. The downward closure
of s is the set of sub-paths covered by s, written as s̄. Let T be a test set. We
define

µp(T ) = {s̄T,p|sT,p},
where sT,p is a set of execution paths in p that may be executed on T .

It is easy to see that the function defined above satisfies conditions (1)
through (4) in the definition of the poset scheme. ut

As in Example 5, we can define observation schemes that observe the
sequences of a type of events that happened during test executions of a system,
such as the sequences of communication and synchronization events. Such
schemes have the same property as the scheme for path testing.

C. Product Construction

Given two observation schemes A and B, we can define a new scheme from
them by including the information observed by both schemes. The following
defines the product scheme of A and B:

Definition 6. (Product construction)
Let A : p → 〈Ap, µ

A
p 〉 and B : p → 〈Bp, µ

B
p 〉. The scheme C : p → 〈Cp, µ

C
p 〉

is said to be the product of A and B, written C = A × B, if for all software
systems p ∈ P ,

(1) Cp = 〈Cp,≤C,p〉 , where

Cp = {〈σA, σB〉|σA ∈ Ap, σB ∈ Bp},

(〈σA, σB〉 ≤C,p 〈σ′A, σ′B〉) ⇔ (σA ≤A,p σ′A) ∧ (σB ≤B,p σ′B);

(2) for all test sets T , µC
p (T ) = µA

p (T )× µB
p (T ). ut

Example 6. (Typed dead mutant observation scheme)
In Example 3, an observation scheme is defined for mutation testing. In soft-
ware testing tools, mutation operators are often divided into a number of
classes to generate different types of mutants (see, e.g., [43]). Dead mutants
of different types are then recorded separately to provide more detailed in-
formation. To define the observation scheme for this, let Φ1, Φ2,· · ·, Φn be
sets of mutation operators. Each Φi, i = 1, 2, · · · , n, defines a dead mutant
observation scheme Mi, as in Example 3. We define the typed dead mutant
observation scheme MTyped = M1 ×M2 × · · ·Mn. ut



A Methodology of Component Integration Testing 15

D. Statistical Constructions

An observation scheme in the set construction or partially ordered set con-
struction observes and records whether certain types of events happen during
the testing process. Another type of observation often used in software testing
is the statistics of the number or frequency of certain events that happened in
testing. Let B : p → 〈Bp, µ

B
p 〉 be an observation scheme and N be any given

set of numbers. Then, 〈N,≤〉 is a totally ordered set under the less than or
equal to relation ≤ on numbers. We can define a scheme A : p → 〈Ap, µ

A
p 〉 as

follows.

Definition 7. (Statistical construction)
An observation scheme A : p → 〈Ap, µ

A
p 〉 is said to be a statistical observation

scheme based on B : p → 〈Bp, µ
B
p 〉 if there exists a set N of numbers and a

collection of mappings sp∈P : Bp → N such that, for all software systems
p ∈ P ,

(1) Ap = N , and ≤A,p is the less than or equal to relation ≤ on N ;
(2) The mapping sp from Bp to the set N preserves the orders in Bp, i.e.,

σ ≤B,p σ′ ⇒ sp(σ) ≤ sp(σ′);
(3) For all test sets T , µA

p (T ) = {sp(σ)|σ ∈ µB
p (T )}. ut

Informally, the observable phenomena in a statistical construction are nu-
merical values ordered as numbers. The mapping sp can be considered as the
measurement of the sizes of the phenomena observed by the base scheme.
This size measurement must be consistent with the ordering on the phenom-
ena in the base scheme. In other words, the more the information contained
in a phenomenon observed by the base scheme, the larger the size of the phe-
nomenon. For example, statement coverage is a statistical construction based
on statement testing:

Example 7. (Statement coverage)
Let B : p → 〈Bp, µ

B
p 〉 be the regular scheme for statement testing, where Bp

is defined in Example 1. Define sp(σ) = ‖σ‖/np, where np is the number of
statements in program p and ‖σ‖ is the size of the set σ. We thus define a sta-
tistical observation scheme for statement coverage. The phenomena observed
by the scheme are the percentages of statements executed during testing. ut
Example 8. (Mutation score)
In mutation testing, mutation score is defined by the following equation and
used as an adequacy degree of a test set [44, 45]:

MutationScore =
DM

NEM
(11)

where DM is the number of dead mutants and NEM is the total number of
non-equivalent mutants.



16 Hong Zhu and Xudong He

The mutation score can be defined as a statistical observation scheme
based on the dead mutant observation scheme, defined in Example 3 with
the mapping sp(σ)‖σ‖/mp, where ‖σ‖ is the size of the set σ and mp is the
number of non-equivalent mutants of p generated by mutation operators. ut

Note that the statement coverage scheme defined above is not decompos-
able, although the observation scheme for statement testing is a regular set
construction that has decomposability according to Theorem 1. Similarly, the
mutation score scheme does not have decomposability, while the dead muta-
tion scheme has decomposability.

In software testing, statistics can also be made on the phenomena observed
from testing on each test case. The following defines the construction of such
schemes:

Definition 8. (Case-wise statistical construction)
An observation scheme A : p → 〈Ap, µ

A
p 〉 is said to be a case-wise statistical

observation scheme based on B : p → 〈Bp, µ
B
p 〉 if there exists a set N of

numbers and a collection of mappings sp∈P : Bp → N such that, for all
systems p ∈ P ,

(1) Ap = Dp → N , where Dp → N is the set of partial functions from Dp to
N , and ≤A,p is defined by the equation

σ1 ≤A,p σ2 ⇔ ∀t ∈ Dp.(σ1(t) = undefined ∨ σ1(t) ≤ σ2(t)),

where ≤ is the less than or equal to relation on N ;
(2) the mapping sp from Bp to the set N preserves the order in Bp, i.e.,

σ ≤B,p σ′ ⇒ sp(σ) ≤ sp(σ′);
(3) for all test sets T = {niti|ti ∈ Dp, ni > 0, i ∈ I, i 6= j ⇒ ti 6= tj}, we have

that σA ∈ µA
p (T ) iff

(a) ∀i ∈ I.∃σi ∈ µB
p ({niti}).(σA(ti) = sp(σi)), and

(b) t /∈ T ⇒ σA(t) = undefined. ut
Informally, a phenomenon in the universe Ap consists of a sequence of

records. Each record represents the size of the phenomenon observed using
the base scheme from the execution(s) of the concurrent system p on one test
case. As in the statistical construction, the size function sp must be consistent
with the partial ordering relation defined on the base scheme.

Example 9. (Output diversity scheme)
The output diversity observation scheme defined in Example 4 is the case-wise
statistical observation scheme based on the input/output observation scheme
with the mapping sp being the set size function. ut

In [25], we studied the properties of the observation schemes defined above.
Table 1 below gives the properties of the above constructions in terms of the
axioms that they satisfy. It also gives a typical example of observation schemes
in existing testing methods. Proofs of these properties can be found in [25].



A Methodology of Component Integration Testing 17

Table 1. Properties of the constructions of observation schemes

Properties (Axioms)
Construction Typical Examples 1 2 3 4 5 6 7 8 9

Statement and branch testing
Strong/weak mutation testing

Regular set Def/Use dataflow testing
√ √ √ √ √ √ √ √ √

Decision/condition testing
Partition testing

Path testing
Partially Interaction chain of dataflow

√ √ √ √ √ √ √ √ √
ordered set Definition context of dataflow

Def/Use dataflow path testing

Product Typed mutation testing
√ √ √ √ √ √ √ √ √

Mutation score
Statistics Statement/branch coverage

√ √ √ √ √ √ √ × ×
Path coverage

Case-wise
√ √ √ √ √ √ √ × ×

statistics

Table 1 presented the properties of product, and statistical and case-wise
statistical constructions proved under the assumption that the base schemes
satisfy the axioms.

3 Behavioral Observation in Component Integration
Testing

In this section, we apply the theory to the integration testing in CBSD. We
study the axioms of behavioral observation for component integration testing,
propose a set of observation schemes inspired by the design patterns of obser-
vation schemes, and investigate how test drivers and component stubs should
be used properly in incremental integrations.

3.1 White-Box Integration Testing

At a high level of abstraction, a component-based software system can be
regarded as a number of software components plugged into an architecture.
Such an architecture can be considered a program constructor. In practice, it
appears in the form of program code called glueware, while components may
be in a number of forms, such as a module, a class, or a library.

In this chapter, we are concerned with white-box integration testing (WIT)
methods in which the code of glueware is available and used in testing. Using



18 Hong Zhu and Xudong He

a WIT method, the tester observes the internal dynamic behavior of the sys-
tem rather than just the input/output. Moreover, the tester should be able
to identify which part of the observation is about the components, and to
separate such information from the rest.

A. Formal Model of White-Box Integration Testing

White-box integration testing methods can be formally defined using the the-
ory of observation schemes as follows:

Definition 9. (White-box integration testing methods)
A white-box integration testing method contains an observation scheme B :
p → 〈Bp, µp〉. For each component c in the system p under test, there exists
a mapping ϕc from observable phenomena of the system in Bp to a universe
Bc,p of observable phenomena of the component c in the context of p. The
mapping ϕc is called the filter for component c. ut

Note that the universe of observable phenomena of a component deter-
mined by a WIT method should also be a CPO set, which may have a different
structure from the whole system. This is because in integration testing we usu-
ally focus on the interaction between the components and their environment
instead of the details of the behavior of the component.

It is worth noting that in Def. 9 we have not assumed whether observations
on the internal behavior of a component are available. As we will see later,
the approach is applicable to situations both when the internal behavior is
observable and when the inside information of the components is hidden.

By a well-defined WIT method, we not only require that the observation
scheme B satisfy the axioms listed in the previous section, but also that the
partial ordering ≤c,p on Bc,p and the filter ϕc satisfy the following axioms:

Axiom 10. (Filter’s well-foundedness)
If no observation on the whole system is made, nothing is known for the
component. Formally,

ϕc(⊥p) = ⊥c,p, (12)

where ⊥p and ⊥c,p are the least elements of 〈Bp,≤p〉 and 〈Bc,p,≤c,p〉 , respec-
tively. ut
Axiom 11. (Filter monotonicity)
The more the behavior observed of the whole system, the more one knows about
the component based on the observation. Formally,

∀σ1, σ2 ∈ Bp, (σ1 ≤p σ2 ⇒ ϕ(σ1) ≤c,p ϕ(σ2)). (13)

ut



A Methodology of Component Integration Testing 19

Axiom 12. (Filter continuity)
The information about a component contained in the sum of a number of
global observations is equal to the sum of the information about the component
contained in each individual global observation. Formally,

∀Θ ⊆ Bp,

(
ϕc(

⊔

σ∈Θ

σ)
⊔

σ∈Θ

ϕc(σ)

)
. (14)

ut
In white-box integration testing, we usually integrate a number of compo-

nents into the system at the same time. Therefore, we generalize the notion
of filter to a set of components. Let C be a set of components. A filter ϕC

for a set C of components is therefore a mapping from the universe of the
observable phenomena of the whole system p to the universes of observable
phenomena of the component set C. We require that ϕC also satisfy the ex-
tended version of the above axioms, which are obtained by replacing ϕc with
ϕC . Moreover, we require that for each c in C, there be a function ϑc such
that ϕc = ϑc ◦ ϕC , where ϕc is the filter for the component c.

B. Some Basic WIT Observation Schemes

The following defines a hierarchy of observation schemes for component in-
tegration testing. Note that, although components may have structures, we
will treat components as black boxes at the moment. We will discuss how the
structure of components can be utilized in integration testing in Sect. 3.2.

(a) Interaction Statement Testing

This method is based on the regular set construction of observation schemes.
We define the atomic events to be observed as executions of the statements
in the glueware. Therefore, the set of statements executed during integration
testing is observed and recorded. These sets of statements include activities
related to interactions with the components, such as

(a) Initiating the execution of a component as a process or thread,
(b) Establishing or destroying a communication channel with a component,
(c) Creating or destroying an instance of a class defined in a component,
(d) Registering or unregistering a component into a system,
(e) Subscribing the data produced by a component,
(f) Publishing data that is subscribed,
(g) Invoking a component, as a function or procedure defined in a component,
(h) Sending a message to a process or thread of a component,
(i) Receiving a message from a process or thread of a component.



20 Hong Zhu and Xudong He

As in statement testing in unit testing, the details of the executed state-
ment and their sequences of executions are not recorded. The method does
not require observing and recording the execution of the statements inside a
component. Therefore, the components are treated as black boxes. Formally,
the interaction statement testing method can be defined as follows:

Definition 10. (Interaction statement testing)
Let Up be the set of statements in the glueware of a component-based software
system p. For each component c in the system, Uc,p ⊆ Up, where Uc,p is the
subset of statements in the glueware that are related to the component c. The
observation scheme ISp of interaction statement testing is the regular set
construction based on Up. The observation scheme ISc,p for a component c
in p is the regular set construction based on Uc,p. The filter function ϕc for
component c removes the statements not related to the component. That is,
for all S ⊆ Up, ϕc(S) = {s|s ∈ S, s ∈ Uc,p}. An adequacy criterion ISCc for
statement coverage of interaction with component c can be defined as follows:

ISCc =
‖ϕc(S)‖
‖Uc,p‖ , (15)

where S is the set of statements in p executed during testing, ISCc is the
interaction statement coverage with respect to c. ut

It is easy to see that this testing method satisfies all the axioms of behav-
ioral observation, as well as the axioms of filters in integration testing.

(b) Parameter Testing

The parameter testing method improves the observation on the dynamic be-
havior of a system by recording the set of component-related events with more
details about the interactions with a component. Atomic activities in the in-
teractions with a component often have parameters. For example, a call of a
function/procedure defined in a component usually has parameters such as
the values passed to the component in value parameters and values received
from the component in variable parameters. Similarly, for a message passing
event, the message also has contents. The values and contents passed across
the interface of a component are not observed and recorded in interaction
statement testing, but rather in parameter testing. In particular, in addition
to what is observed in statement integration testing, parameter testing also
observes and records the following information, and associates the information
with the statements:

(a) The parameters used for initiating the execution of a component as a
process or thread, if any, such as the name of the process, the value used
for initialization of the process, etc.

(b) The parameters used for establishing or destroying a communication
channel with a component, if any, such as the name, the identity number



A Methodology of Component Integration Testing 21

of the communication channel, and the parameters used to set up the
communication channel.

(c) The parameters used for creating or destroying an instance of a class
defined in a component, such as the initial values used as parameters for
the constructor.

(d) The parameters used for registering or unregistering from a component
to a system, such as the name, network address, and any parameters of
the component.

(e) The parameters used to subscribing for the data produced by a compo-
nent, such as the name and/or format of the data.

(f) The details of publishing data that is subscribed to such as the value of
the data, and any meta data such as format.

(g) Parameters used for invoking a component, such as the values of pa-
rameters and the names of the variable parameters in the invocations of
functions or procedures defined in a component.

(h) The contents of messages sent to or received from a process or thread of
a component, as well as any meta data associated with the message.

As with to interaction statement testing, this method itself does not require
that the events happening inside a component be observed. It also treats
components as a black box.

This scheme also has a set construction, but the base set is slightly more
complicated here than in interaction statement testing. An element in the
base set can be in the form of 〈statement label, parameters〉, which indicates
that a statement is executed with its parameters. The observation scheme can
be formally defined as follows:

Definition 11. (Parameter testing)
Let Vp be the set of statement-parameter pairs in the glueware of a component-
based software system p, and Vc,p ⊆ Vp be the subset of statement-parameter
pairs where the statements are related to component c. The observation scheme
PT p of parameter testing is the regular set construction based on the set Vp.
For each component c in the system p, the observation scheme PT c,p for c is
the regular set construction based on Vc,p. The filter function ϕc for component
c removes the statement-parameter pairs that are not related to component c.
That is, for all S ⊆ Vp,

ϕc(S) = {s|s ∈ S ∧ s ∈ Vc,p}.

ut
An adequacy criterion for parameter testing cannot be defined as easily as

interaction statement coverage because the set of statement-parameter pairs
can be infinite if the parameter is, for example, a real number. Various methods
to simplify the adequacy measurement can be applied to define practically
usable adequacy criteria. For example, the domain of a parameter can be



22 Hong Zhu and Xudong He

divided into a finite number of sub-domains so that each sub-domain is covered
by at least one test case.

Note that, first, the observation scheme of statement testing is an extrac-
tion of the parameter observation scheme. This directly follows from Theorem
1. Second, the observation scheme of parameter testing is also a set construc-
tion. Therefore, it satisfies all the axioms of observation schemes. Finally, it
is easy to prove that the filter satisfies the axioms of filters.

(c) Interaction Sequence Testing

Now, let us apply the partially ordered set construction to define a testing
method similar to path testing.

The interaction sequence testing method for component integration test-
ing observes and records the execution sequences of the statements in the
glueware. Note that a component is still regarded as a black box. The base
set is the set of paths in the glueware. Each path is a sequence of statements
in the base set of interaction statement testing. There is a partial ordering
between execution paths, which is the sub-path/super-path relation.

It is worth noting that interaction sequence testing in component integra-
tion can be applied not only to observe the sequences of interactions between
a component and its environment (i.e., the glueware), but also to observe the
interactions among a set of components. Therefore, the following defines the
method in its most general form for integrating a set of components.

Definition 12. (Interaction sequence testing)
Let C be a set of components integrated into a component-based software sys-
tem p, Up be the set of interaction statements in the glueware of the system as
defined in Def. 10 of interaction statement testing, and UC,p be the subset of
Up that is related to components in C as also defined in Def. 10. The observa-
tion scheme ISQp of interaction sequence testing is the partially ordered set
construction based on 〈Seq(Up),v〉, where Seq(X) is the set of finite sequences
of elements in set X, and v is the sub-sequence/super-sequence relation be-
tween the sequences. The observation scheme ISQC,p of the component set
C in p is the partially ordered set construction based on 〈Seq(UC,p),v〉. The
filter function ϕC for component set C removes the statements not related
to the components in C from the sequences of statements. That is, for each
sequence q in Seq(Up), ϕC produces a sequence q′ in Seq(UC,p) by removing
all the statements not in the set UC,p. ut

With this observation scheme, a variety of adequacy criteria can be defined,
such as the coverage of simple sequences, which have no elements that appear
more than once, and various path coverage criteria for loops (see, e.g., [46]).

Note that a finite sequence in the set Seq(Up) is a sequence of statements
in p that represents an execution of the system. A finite sequence in the set
Seq(UC,p) removes any statement that is not related to interaction with the



A Methodology of Component Integration Testing 23

components in C. Therefore, it focuses on the interaction process between the
glueware and the components.

From the properties of partially ordered constructions of observation
schemes, we can prove that the observation scheme of interaction sequence
testing satisfies all the axioms discussed in Sect. 2. It is also easy to prove
that the filter function ϕC satisfies all the axioms of filters.

(d) Information Flow Testing

Similar to the interaction sequence testing method, information flow testing
method is a generalization of parameter testing by applying the partially
ordered set construction. The basic elements of observable phenomena are
sequences of statement-parameter pairs. Each sequence records the execution
of the system with detailed information about what has been passed across
the interface to and/or from the components.

Definition 13. (Information flow testing)
Let C be a set of components integrated into a component-based software sys-
tem p, Vp be the set of statement-parameter pairs in the glueware of the system
as defined in Def. 11 of parameter testing, and VC,p be the subset of Vp that
are related to components in C as defined also in Def. 11. The observation
scheme IFLp of information flow testing is the partially ordered set construc-
tion based on 〈Seq(Vp),v〉. The observation scheme IFLC,p of the component
set C in p is the partially ordered set construction based on 〈Seq(VC,p),v〉.
The filter function ϕC for component set C removes the statements not related
to the components in C from the sequences. That is, for each sequence q in
Seq(Vp), ϕC produces a sequence q′ in Seq(VC,p) by removing all the elements
not in the set VC,p. ut

The following theorem states the extraction relationships between the ob-
servation schemes defined above. They are also show in Fig. 2.

Theorem 2. (Extraction theorem of basic WIT methods)
The following extraction relations hold between the observation schemes de-
fined above.

(1) IS / PT ; (2) IS / ISQ; (3) ISQ / IFL; (4) PT / ISQ. ut
The proof of Theorem 2 is straightforward.

3.2 Hierarchical Integration Testing

In large-scale and complicated component-based software systems, a compo-
nent may also be a composition of other components. We call the components
that directly constitute a software system the 1st order components. We call
the components in a 1st order component the 2nd order components. Simi-
larly, we define 3rd order components as components of 2nd order components,



24 Hong Zhu and Xudong He

Information flow 

testing 

Interaction 

Statement testing

Parameter testingInteraction 

sequence testing

Fig. 2. The extraction relations between the testing methods

and so on. We use high order components to denote all the components of any
order. Therefore, each component can be modeled as a software constructor
that consists of glueware and a number of higher order components. A com-
ponent is called atomic if it does not contain any higher order components.
In this case, the glueware is just the code of the component. Figure 3 below
illustrates this view of a software system’s structure. In the diagram, the over-
all system consists of three 1st order components B1, B2, and B3. Each of
these 1st order components is composed of some 2nd order components. For
example, B1 is composed of components C1,1 and C1,2. Component C1,2 is
composed of another smaller component, while C1,1 is atomic.

A

B1 B2 B3

C1,1 C1,2 C2,1 C2,2 C2,3

D2,2,1

C3,1

D2,2,2D1,2,1

E1 E2 E3

1st order 

components 

2nd order 

components 

3rd order 

components 

4th order 

components 

Component 

relation 

Overall system’s 

glueware code 

Fig. 3. Illustration of system structure from component view

The integration testing methods studied in the previous section treat glue-
ware as a white box and all components as black boxes. We call such a testing
method a ground order white box integration testing method. For each ground
order method, we can generalize it to treat the 1st order components as white
boxes and observe the same aspect of behavior inside the component. Mean-



A Methodology of Component Integration Testing 25

while, the components of higher order than the 1st order are still treated as
black boxes. We call such a generalized method a 1st order WIT method.

For example, the method obtained by generalizing the ground order in-
teraction statement testing to the 1st order observes the statements at the
architectural level glueware executed during testing, as well as the statements
inside the 1st order components. All the statements of the glueware of the
1st order components are considered as related to the component. Therefore,
the interaction statement coverage for integrating the component requires not
only executing all the statements in the glueware of the whole system, but
also all the statements of the glueware of the component.

For the interaction sequence testing of component integration, the gener-
alization of the method from ground order to the 1st order requires testers to
observe the execution paths that cross the interface of the 1st order compo-
nents while treating higher order components as black boxes. Similarly, when
the information flow testing method is generalized from ground order to the
1st order, testers are required to observe the execution paths that represent
information flows between the glueware and the 1st order components. Such
a path may start from the glueware and flow into the body of the 1st order
components, then flow inside the body of the 1st order components, and fi-
nally come out the body, with the information being received and processed
in the glueware. Before the execution path finishes in the glueware, it may
well flow into other 1st order components.

A 1st order WIT method will not observe the same detail in the behavior
of components of the 2nd and higher orders. It can be further generalized to
kth order for any given natural number k > 1 by observing the same detail
in the kth order components, while treating components of (k + 1)th order as
black boxes. The most powerful method is to treat all high order components
equally, as white boxes. Such a method is called an infinite order WIT method.
Figure 4 below illustrates the 2nd order WIT testing method, where all 2nd
order components are treated as white boxes and higher order components as
black boxes, shaded in the diagram.

Let Z be any given ground order WIT testing method. We write Z(k) to
denote the kth order generalization of Z, and Z(∞) to denote the generaliza-
tion of Z to an infinite order. It is easy to see that these observation schemes
have the following extraction relationship. Its proof is omitted.

Theorem 3. (Extraction relations on generalizations)
For all WIT testing methods Z, we have Z/Z(1)/· · ·/Z(K)/Z(K+1)/· · ·/Z(∞),
for all K > 0. ut

The generalization of ground order WIT testing methods also preserves
the extraction relations. Formally, we have the following theorem [47].

Theorem 4. (Preservation of extraction relations by generalizations)
For all WIT testing methods X and Y, we have that for all n = 1, 2, · · · ,∞,
X / Y ⇒ X (n) / Y(n). ut



26 Hong Zhu and Xudong He

A

B1 B2 B3

C1,1 C1,2 C2,1 C2,2 C2,3

D2,2,1

C3,1

D2,2,2D1,2,1

E1 E2 E3

Components 

treated as 

black-box 

Components 

treated as 

white-box 

Fig. 4. Illustration of 2nd order WIT testing method

A ground order WIT testing method can also be generalized heteroge-
neously so that some kth order components are treated as white boxes and
some as black boxes. Figure 5 illustrates a situation in heterogeneous higher
order WIT testing, where shaded components in the diagram are treated as
black boxes and the others are treated as white boxes.

A

B1 B2 B3

C1,1 C1,2 C2,1 C2,2 C2,3

D2,2,1

C3,1

D2,2,2D1,2,1

E1 E2 E3

Components 

treated as 

black-box 

Components treated 

as white-box 

Fig. 5. Illustration of heterogeneous higher order WIT testing

Let C be a subset of a system p’s components that is to be treated as a
white box in testing.

Definition 14. (Consistent subset of components for WIT testing)
A subset C of a system p’s components is said to be consistent for WIT
testing if a component of p being treated as a black box implies that all
its subcomponents are also treated as black boxes. Formally, ∀c ∈ C, (c /∈
C ∧ (x is a subcomponent of c) ⇒ (x /∈ C)). ut



A Methodology of Component Integration Testing 27

We write Z(C) to denote the application of WIT testing method Z on
software system p with a consistent collection C of components as white boxes
and all other components as black boxes. Let C1 and C2 be two collections
of components in a software system p. From Theorem 1, we can prove the
following:

Theorem 5. (Extraction relation on heterogeneous WIT testing)
For all consistent collections C1 and C2 of components of any given software
system p, C1 ⊆ C2 implies Z(C1) /Z(C2), i.e., Z(C1) is an extraction of Z(C2).
ut

3.3 Incremental Integration Testing

In practice, integration testing is often carried out incrementally as compo-
nents are gradually integrated into the system. Integration strategies such as
top-down, bottom-up, and their combinations are employed. Applications of
such strategies involve writing and using test drivers and component stubs.
This section investigates the requirements on test drivers and component stubs
in the light of behavioral observation theory.

For the sake of simplicity, we subsequently assume that program construc-
tors are binary, i.e., they take two components as parameters. The result can
be easily generalized to constructors of any number of components. Let ⊗ be
a binary program constructor; p = c1 ⊗ c2, where c1 and c2 are components.
A component itself may be a composition of some other components, and
formed by applying a program constructor, say, c1 = c1,1 ⊕ c1,2.

A. Bottom-Up Integration Strategy

By applying the bottom-up strategy, we first put c1,1 and c1,2 together to
form c1 = c1,1 ⊗ c1,2 and test c1 with a test driver to replace the constructor
⊗. After successfully testing c1 and c2 in this way, they are put together to
form p = c1 ⊗ c2 and tested. A test driver is in fact a program constructor,
⊗′, which, when applied to c1, forms an executable program p′. During this
testing process, we would like the test driver to act like the environment of
c1, as would be the case in the real program p. This means that if we can
observe the behavior of component c1 in the context of ⊗, we should be able
to observe the same behavior in the context of the test driver ⊗′. Suppose
that we use a WIT method with observation scheme B : p → 〈Bp, µp〉. Hence,
there is a filter ϕ from p to c1 and a filter ϕ′ from p′ to c1. The requirements
for a well developed test driver can be specified by the following axiom:

Axiom 13. (Representativeness of test drivers)
For all test suites T and all phenomena σ of the component that can be ob-
served by executing the system p on T , there exist test suites T ′ for p′ such
that the same phenomena σ can be observed by executing p′ on test suite T ′.
Formally, ∀T ∈ Tp,



28 Hong Zhu and Xudong He

∀σ ∈ µp(T ), ∃T ′ ∈ Tp′ , ∃σ′ ∈ µp′(T ′), (ϕ(σ) ≤c1 ϕ′(σ′)), (16)

where ≤c1 is the partial ordering on Bc1 . ut
Note that Eq. 16 can be equivalently expressed as follows:

∀T ∈ Tc1⊗c2 , ∃T ′ ∈ T⊗′(c1),
(
ϕ(µc1⊗c2(T )) vc1 ϕ′(µ⊗′(c1)(T

′))
)
,

where ϕ(X) = {ϕ(x)|x ∈ X}, and X vc1 Y if and only if ∀x ∈ X, ∃y ∈
Y, (x ≤c1 y).

A test driver may simply pass input data to the component under test and
then execute the component. Such test drivers serve as an interface between
the tester and the component. For an observation scheme that observes only
the functional aspect of behavior, such a test driver satisfies the representa-
tiveness axiom if it can pass all valid inputs to the component and pass out
the result of the component’s execution.

Sometimes, test drivers are written to combine other testing tasks, such
as automatic generation of test cases, or select test cases from a repository of
test data. Such a test driver usually does not have representativeness, because
it generates only input data in a sub-domain. Therefore, it limits the space
of observable phenomena. For all the test cases in the sub-domain, we require
that the test driver be representative. Hence, we have the following weak form
of Axiom 13.

Axiom 14. (Representativeness on a sub-domain)
For all test suites T in a sub-domain S ⊆ Dp of the valid input of a system p,
and all observable phenomena of the component from executing p on T , there
is a test suite T ′ for the test driver for which the same phenomena can be
observed in the context of the test driver. Formally, for all T ∈ TS ⊆ Tp ,

∀σ ∈ µp(T ),∃T ′ ∈ Tp′ , ∃σ′ ∈ µp′(T ′), (ϕ(σ) ≤c1 ϕ′(σ′)) (17)

ut

B. Top-down Integration Strategy

A top-down strategy starts with testing the program constructor ⊗ by re-
placing components cn with stubs c′n, n = 1, 2. The difference between a real
component cn and a stub c′n is that we would not be able to observe the
internal behavior of cn by executing c′n. In fact, the internal behavior of cn

is not the focus of observation in integration testing. However, we would like
that the interaction between the component cn and its environment in p be
faithfully represented by the stub c′n. The requirements of the faithfulness of
a component stub can be formally specified by the following axiom:

Axiom 15. (Faithfulness of component stubs)
For all test suites T and all phenomena σ observable by executing the system p



A Methodology of Component Integration Testing 29

on T , the same observation can be obtained by executing the system p′ obtained
by replacing a component c with a stub c′. Formally,

∀T ∈ Tp, (µp(T ) = µp′(T )). (18)

ut
An implication of the faithfulness axiom is that a stub can replace a com-

ponent, if the observation scheme treats the component as a black box and
if the observation scheme is concerned only with the functional aspect of a
system. In that case, the stub is required to produce functionally correct out-
puts. Therefore, if a kth order WIT method is used, a component of (k +1)th
or higher order can be replaced by a stub.

In software testing practices, stubs tend to provide only partial functional-
ity of the component, and they faithfully represent the components’ behavior
only on a sub-domain of the component. This sub-domain is called the des-
ignated sub-domain of the stub. We require the stub to be faithful on the
sub-domain. Hence, we have a weak form of Axiom 15. Assume that c is a
component in system p, c′ is a stub of c, and p′ is obtained by replacing c in p
with c′. We say that c′ is faithful on a designated sub-domain S, if it satisfies
the following axiom:

Axiom 16. (Faithfulness of stubs on a designated sub-domain)
For all phenomena σ observable by executing the system p on a test suite T ,
σ can also be observed by executing the system p′ obtained by replacing the
component c with a stub c′ if, during the executions of p on T , the component
is executed only on the stub’s designated sub-domain. Formally,

∀T ∈ Tp ↙ (c, S), (µp(T ) = µp′(T )),

where Tp ↙ (c, S) is the subset of Tp on which p calls the component only c
on the designated sub-domain S. ut

The axioms of test stubs can also be extended for replacing a number of
components by their corresponding stubs.

4 Conclusion

In this chapter, we reviewed the theory of behavioral observation in software
testing and applied the theory to integration testing in component-based soft-
ware development. We formalized the notion of white-box integration testing
methods (WIT methods), in which the components can be treated as black
boxes while the glueware of the system is treated as a white box. The ba-
sic properties of such testing methods are studied and a set of axioms is
proposed to characterize well-defined observation schemes for such white box
integration testing. We also proposed four basic observation schemes for WIT,
proved their satisfaction of the axioms, and investigated their interrelation-
ships. These methods of component integration testing are



30 Hong Zhu and Xudong He

(a) interaction statement testing, which focuses on the statements in the
glueware that interact with the components,

(b) interaction sequence testing, which observes the execution sequences of
the statements in the glueware that interact with the components,

(c) parameter testing, which focuses on the interactions between the glue-
ware and the components by observing the parameters of each interactive
action,

(d) information flow testing, which focuses on the information flow in the
glueware in the context of interaction with the components by observing
the sequences of interactive actions and their parameters in each test
execution of the system.

When details of components are available, our white box integration test-
ing methods also allow us to treat components as white boxes. In such cases,
a component consists also of a glueware and a number of smaller compo-
nents, which are called 2nd order or higher order components. In general,
the components that directly comprise a software system are called 1st order
components. The components that directly comprise a kth order component
are called (k + 1)th order components. The basic WIT methods can be gen-
eralized to a kth order testing method, which treats components up to kth
order as white box, while any higher order components are treated as black
boxes. These testing methods and their generalizations fall into a nice hierar-
chical structure according to the extraction relation. Therefore, according to
the availability of the code of components, appropriate testing methods can
be used to achieve required test adequacy.

Integration testing of complicated large-scale software systems must use
appropriate integration strategies. These involve writing and using test drivers
and/or component stubs to enable the integration strategy to be applied. In
this chapter, we also investigated and analyzed the requirements of test drivers
and component stubs in bottom-up and top-down integration strategies.

There are several directions for future work. First, there are a number of
testing methods proposed in the literature to support integration testing. We
will examine whether these testing methods satisfy the axioms proposed in
the paper. Second, based on our understanding of the desirable properties of
behavioral observation in integration, we will further investigate the algebraic
structures of observable phenomena and their corresponding recording func-
tions that satisfy these properties. The constructions of observation schemes
that we proposed and investigated in [24] will also be further studied with
regard to the axioms for integration testing. Finally, in [47] we have stud-
ied integration testing of software systems where components are integrated
by applying parallel system constructors. We are further investigating some
concrete system constructors that integrate components. In particular, we are
applying the theory to specific component techniques.



A Methodology of Component Integration Testing 31

5 Acknowledgements

This work was jointly funded by the NSF of USA under grant INT-0096143
and the NSF of China under grant 69811120643. X. He was also partially
supported by the NSF of USA under grant HRD-0317692 and the NASA of
USA under grant NAG2-1440. H. Zhu was also partially supported by China
High-Technology Program under grant 2002AA116070.

References

1. Hopkins, J., Component primer, C. ACM, Vol. 43, No. 10, Oct. 2000, pp27-30.
2. Szyperski, C., Component Software: Beyond Object-Oriented Programming,

Addison Wesley, 1998.
3. D’Souza, D. and Wills, A. C., Objects, Components and Frameworks with

UML: The Catalysis Approach, Addison Wesley, Reading, MA, 1999.
4. Sparling, M., Lessons learned through six years of component-based develop-

ment, C.ACM, Vol. 43, No. 10, Oct. 2000, pp47-53.
5. Crnkovic, I., Larsson, M., A case study: demands on component-based devel-

opment, Proc. ICSE’2000, June 4-11, 2000, Limerick, Ireland, pp22-30.
6. Morisio, M., Seaman, C. B., Parra, A. T., Basili, V. R., Kraft, S. E. and Condon,

S. E., Investigating and improving a COTS-based software development, Proc.
ICSE’2000, June 2000, Limerick, Ireland, pp32-41.

7. Chen, H. Y. Tse, T. H. and Chen, T. Y., TACCLE: a methodology for object-
oriented software testing at the class and cluster levels, ACM Transactions on
Software Engineering and Methodology, Vol. 10, No. 1, 2001.

8. Zhu, H., A note on test oracles and semantics of algebraic specifications, Proc.
of QSIC’03, Oct. 2003, Dallas, USA, pp91-98.

9. Abdurazik, A. and Offutt, J., Using UML collaboration diagrams for static
checking and test generation, Proc. UML’00, York, UK, Oct. 2000, pp383-395.

10. Barnett, M., Grieskamp, W., Schulte, W., Tillmann, N. and Veanes, M., Val-
idating use-cases with the AsmL test tool, Proc. QSIC03, Oct. 2003, Dallas,
USA, pp238-246.

11. Richardson, D. and Wolf, A., Software Testing at the Architectural Level, Proc.
of the 2nd International Software Architecture Workshop, San Francisco, Cal-
ifornia, October 1996, ACM Press, pp68-71.

12. Bertolino, A., Corradini, F., Inverardi, P. and Muccini, H., Deriving test plans
from architectural descriptions, Proc. ICSE’2000, June 2000, Limerick, Ireland,
pp220-229.

13. Zhu, H., Jin, L., and Diaper, D., Application of Task Analysis to the Valida-
tion of Software Requirements, Proc. SEKE’99, Kaiserslautern, Germany, June
1999, pp239-245.

14. Zhu, H., Jin, L., Diaper, D. and Bai, G., Software requirements validation via
task analysis, Journal of System and Software, March 2002, Vol 61, Issue 2,
pp145-169.

15. Harrold, M,J., and Soffa, M.L., Selecting and Using Data for integration testing,
IEEE Software, March 1991, pp58-65.

16. Frankl, P.G. and Weyuker, J.E., An applicable family of data flow testing cri-
teria, IEEE TSE, Vol.SE 14, No.10, October 1988, pp1483-1498.



32 Hong Zhu and Xudong He

17. Ural, H. and Yang , B., Modeling software for accurate data flow representation,
Proc. ICSE’93, May 1993, pp277-286.

18. Pandi, H. D., Ryder, B. G., Landi, W., Interprocedural Def-Use associations in
C programs, Proc. TAV4, Oct. 1991, pp139-153.

19. Jin, Z. and Offutt, J., Integration testing based on software couplings, Proc.
COMPASS’95, Gaithersburg, Maryland, June 1995, pp13-23.

20. Delamaro, M. E., Maldonado, J. C., and Mathur, A. P., Interface Mutation:
an approach to integration testing, IEEE TSE, Vol. 27, No. 3, March 2001,
pp228-247.

21. Beydeda, S. and Gruhn, V., State of art in testing components, Proc. of QSIC03,
Dallas, USA, Oct. 2003, IEEE Computer Society, pp146-153.

22. Zhu, H. and He, X., A theory of behaviour observation in software testing, Tech-
nical Report, CMS-TR-99-05, School of Computing and Mathematical Sciences,
Oxford Brookes University, Sept. 1999.

23. Zhu H. and He X., A Theory of Testing High-Level Petri Nets, Proc. of the
IFIP 16th World Computer Congress, Beijing, China, Aug. 2000, pp443-450.

24. Zhu, H. and He, X., A methodology of testing high-level Petri nets, Information
and Software Technology, Volume 44, Issue 8, June 2002, Pages 473-489.

25. Zhu H. and He X., Constructions of Behaviour Observation Schemes in Software
Testing, Proc. HASE’00, New Mexico, Nov. 2000, pp2-12.

26. Taylor, R. N. Levine, D. L. and Kelly, C. D., Structural Testing of Concurrent
Programs, IEEE Transaction on Software Engineering, Vol. 18, No. 3, Mar.
1992, pp206-215.

27. Gunter, C. A., Scott, D. S., Semantic domains, In Handbook of Theoretical
Computer Science, Vol. B., Formal Models and Semantics, Ed. J. van Leeuwen,
The MIT Press/Elsevier, 1990, pp633-674.

28. Goodenough, J. B. and Gerhart, S. L., Toward a theory of test data selection,
IEEE TSE, Vol.SE 3, June 1975.

29. Budd, T. A. and Angluin, D., Two notions of correctness and their relation to
testing, Acta Informatica, Vol. 18, 1982, pp31-45.

30. Weyuker, E. J., Axiomatizing software test data adequacy, IEEE TSE,
Vol.SE 12, No.12, December 1986, pp1128-1138.

31. Cherniavsky, J. C. and Smith, C. H., A recursion theoretic approach to program
testing, IEEE TSE, Vol. SE 13,No.7, July 1987, pp777-784.

32. Davis, M. and Weyuker E., Metric space-based test-data adequacy criteria, The
Computer Journal, Vol.13, No.1, February 1988, pp17-24.

33. Weyuker, E.J., The evaluation of program-based software test data adequacy
criteria, Communications of the ACM, Vol.31, No.6, June 1988, pp668-675.

34. Parrish, A. S. and Zweben, S. H., Analysis and refinement of software test data
adequacy properties, IEEE TSE, Vol. SE 17, No. 6, June 1991, pp565-581.

35. Parrish, A. S. and Zweben, S. H., 1993, Clarifying Some fundamental Concepts
in Software Testing, IEEE TSE, Vol. 19, No.7, July 1993, pp742-746.

36. Frankl, P. G. and Weyuker, J. E., A formal analysis of the fault-detecting ability
of testing methods, IEEE TSE, Vol. 19, No. 3, March 1993, pp202- 213.

37. Zhu, H. and Hall, P., Test data adequacy measurement, SEJ, Vol. 8, No.1, Jan.
1993, pp21-30.

38. Zhu, H., A formal analysis of the subsume relation between software test ad-
equacy criteria, IEEE Transactions on Software Engineering, Vol. 22, No. 4,
April 1996, pp248-255.



A Methodology of Component Integration Testing 33

39. Zhu, H. Hall, P. and May, J., Software Unit Test Coverage and Adequacy, ACM
Computing Survey, Vol. 29, No. 4, Dec. 1997, pp366-427.

40. Myers, G. J. , The Art of Software Testing, John Wiley and Sons, New York,
1979.

41. Beizer, B., Software Testing Techniques, 2nd Edition, New York, Van Nostrand
Reinhold, 1990.

42. Howden, W. E., Reliability of The Path Analysis Testing Strategy, IEEE Trans-
action on Software Engineering, Vol. SE-2, No. 9, Sept. 1976, pp208-215.

43. King, K. N. and Offutt, A. J., A FORTRAN Language System for Mutation-
Based Software Testing, Software–Practice and Experience, Vol. 21, No. 7, Jul.
1991, pp685-718.

44. DeMillo, R. A., Lipton, R. J. and Sayward, F. G., Hints on Test Data Selection:
Help for The Practising Programmer, IEEE Computer, Vol. 11, Apr. 1978,
pp34-41.

45. Budd, T. A., Mutation Analysis: Ideas, Examples, Problems and Prospects,
In Computer Program Testing, Chandrasekaran and Radicchi (eds.), North
Holland, 1981, pp129-149.

46. Zhu, H., Axiomatic assessment of control flow based software test adequacy
criteria, Software Engineering Journal, UK, Sept. 1995.

47. Zhu, H. and He, X., An Observational Theory of Integration Testing for
Component-Based Software Development, Proc. of COMPSAC2001, Oct. 2001,
Chicago, Illinois, USA, pp363-368.


