

Automated Testing EJB Components Based on Algebraic Specifications

 Liang Kong(2), Hong Zhu(1) and Bin Zhou(2)
(1) Department of Computing, School of Technology, Oxford Brookes University

Wheatley Campus, Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

(2) Department of Computer Science, National University of Defence Technology
Changsha, China, Email: liangkong@gmail.com

Abstract

Algebraic testing is an automated software testing
method based on algebraic formal specifications. It has the
advantages of highly automated testing process and inde-
pendence of the software’s implementation details. This
paper applies the method to software components. An
automated testing tool called CASCAT for Java compo-
nents is presented. A case study of the tool shows the high
fault detecting ability.

1. Introduction
In recent years, software component technology has

emerged as a key element in the development of large and
complicated systems [1 , 2 , 3]. Ensuring the quality of
software components and their correct integration is a
critical problem in component-based software development
(CBSD). Industrial practices in CBSD have shown a clear
shift of focus from design and coding to requirements
analysis, integration and testing [4, 5, 6, 7].

However, it is widely recognized that users’ testing of
components is difficult [8]. Components are usually deliv-
ered as executable code without the source code and de-
tailed design information. Moreover, the executable com-
ponent code usually contains no instrumentation code [9].
Thus, component users have very limited ability to control
and observe the behaviour of the component under test.
Consequently, white-box testing techniques are not appli-
cable to software components. In recent years, techniques
and methods have been advanced in the literature for in-
cluding code in commercial-off-the-shelf (COTS) compo-
nents for self-testing; e.g. [10, 11]. However, they are yet to
be adopted by COTS components producers. Therefore,
currently, users’ testing has to be based on specifications.

In addition to manual component testing methods based
on informal documentation, existing research has explored
uses of formal specifications of software components such
as design-by-contracts with pre/post-conditions [12] and
state transition diagrams [13]. These methods are capable
of automatic generation of adequate test cases with respect
to certain adequacy criteria. However, they offer little
support to checking the correctness of test results auto-

matically, which is particularly important as behaviour
observation is difficult in component testing.

In this paper, we explore a method of testing software
components based on algebraic formal specifications. We
report a prototype automated testing tool called CASCAT
for testing Java Enterprise Beans and a preliminary case
study of its fault detecting ability. The main advantage of
the method is its full automation of testing process, in-
cluding test case generation, test driver construction, and
test result checking. Another distinctive feature of the
testing method is that it allows testing to focus on a specific
property of the component or a specific part of the func-
tionality provided by component. This is particularly im-
portant because components are often designed for a broad
applicability, but it is often that only a subset of a compo-
nent’s functions is actually used [12].

 The remainder of the paper is organised as follows.
Section 2 introduces the basic ideas of the testing method.
Section 3 briefly reviews existing related work. Section 4
discusses the special issues in the application of methods to
users’ testing of components. A specification language
CASOCC is presented. Section 5 presents the automated
testing CASCAT tool for EJB components. Section 6 re-
ports a case study of the testing tool. Section 7 concludes
the paper with a discussion of further work.

2. Related works
Algebraic specification (AS) emerged in the 1970s as a

formal method for the specification of abstract data types
[14, 15]. It has now developed into a formal method for a
wide range of software [16]. In general, an AS consists of
two parts <Σ, E>, where Σ is the signature of the algebra
that defines a collection of sorts and operators on the sorts,
and E is a set of axioms in the form of conditional equations
that define the semantics of the operators.

In the application of AS method to the formal specifica-
tion of data types, a sort represents a data type; operators
represent the operations on the data type and constants,
which are 0-ary operators. In application of the method to
OO software, a sort represents a class and the operators
represent methods of the class. The attributes are assumed
to be accessed through get and set methods. In this paper, to

apply the specification method to software components, we
use sort to represent software components and the operators
to the operations provided by the components.

The uses of AS in software testing can be back dated to
early 1980s [17]. Since then, significant progresses have
been made in the techniques that support automated soft-
ware testing using AS, which is called algebraic testing in
the sequel. Its basic idea is based on the fact that each
ground term (i.e. a term without any free variables) of a
given signature has two interpretations in the context of
software testing. First, a ground term represents a sequence
of calls to the operations. Second, it also represents a value,
i.e. the result of the execution. Therefore, checking whether
an equation is satisfied by an implementation on a test case
meant to execute the operation sequences of the terms on
both sides of the equation with variables substituted by the
test data represented in the form of ground terms and then to
compare the results. If the results are equivalent, the pro-
gram is correct on the test case; otherwise, it has errors.

In early 1980s, Gonnon, McMullin and Hamlet devel-
oped a compiler based system called DAISTS to use AS in
testing abstract data types implemented in procedural pro-
gramming languages [17]. In DAISTS, each axiom was
tested on manually scripted test cases and the results from
both sides of the axiom were compared by calling a manu-
ally programmed TypeEquality function according to the
data type of the result.

In late 1980s, Gaudel et al. further developed the theory
and method of algebraic testing [18]. They used observa-
tion contexts [19, 20] to enable automatic comparisons of
structured values without manually programming equality
functions.

Algebraic testing received much attention since 1990s in
the context of class testing of object-oriented (OO) pro-
grams. Frankl and Doong [21] and Hughes and Stotts [22]
studied the effectiveness of testing OO programs based on
AS. Hughes and Stotts [22] adapted DAISTS and devel-
oped a tool called Daistish for testing programs in Eiffel
and C++ using the specification language of DAISTS.
Frankl and Doong adopted a notation to represent AS in a
form that is suitable for OO systems and developed an AS
language called LOBAS and a tool called ASTOOT. They
proposed an extension of the method to include negative
test cases, which consists of two terms that are supposed to
generate non-equivalent results. In [23, 24], Chen, Tse and
Chen further developed the theory and method of auto-
matic derivation of test oracles based on observation con-
texts. Through a counter-example, they raised a theoretical
question about the validity of test oracles based on obser-
vation contexts. This question is answered by Zhu in [25]. It
was proved that the test oracle is valid in the final semantics
and behavioural semantics of AS.

A common weakness of existing algebraic testing tech-
niques is that software is tested in a ‘big bang’ approach, i.e.
all classes of a system is tested all together without em-

ploying any incremental integration strategy. This seriously
limited the practical usability of the testing method. In [25],
Zhu addressed this problem by proposing an approach to
the organisation of AS to match the structures of software
systems. Equations in an AS are divided into groups that
each group represents a class in object-oriented system. A
partial ordering between sorts is introduced to represent the
importation relationship between classes. This partial or-
dering generalises the notion of observable sorts and sup-
ports incremental integration testing. This approach is im-
plemented in this paper and extended by using sorts to
represent classes, data types, as well as components.

3. Testing Method
This section gives the details of the testing method.

3.1 Specification Language CASOCC
A software component, as defined by Szyperski in [2], is

a ‘unit of composition with contractually specified inter-
faces and context dependencies only. It can be deployed
independently and subject to composition by third parties.’
The interface of a component typically contains two types
of information: (a) the functionality that the component
provides; (b) the functionality that the component requires.
Modern component models define the syntax for specifying
such information to enable components reused across or-
ganisations and creates a COTS component market. How-
ever, industrial standards of component models rarely
specify the semantics of the functionality provided and
required by a component. In this subsection, we discuss
how to support automated testing by using AS of software
components. We will present a simple specification lan-
guage for this purpose.

Our AS language is called CASOCC. It stands for
Common AS of Components and Classes. It does not dis-
tinguish software components from classes or data types so
that it can be applied to all of these types of software enti-
ties, which often occur at the same time in compo-
nent-based software. It is also independent of the software
component models, or the programming languages used to
implement the software entities. A specification in
CASOCC consists of a number of modular units. Each unit
specifies one sort by defining the operators on the sort and a
set of axioms that these operators must satisfy. The com-
ponents or classes that a component or a class depends on
are specified as imported sorts. The importation relation-
ship between the sorts is required to be acyclic. The fol-
lowing defines the overall structure of a unit in CASOCC.
<Spec> ::= {<Spec Unit>}
<Spec Unit> ::= Spec < Sort Name > Observable: <Boolean>
 [Import: <Import Sort List>]
 Operations: <Operation List>
 [Var: <Variable Declaration List>]
 [Axioms: <List of axioms>]
End

In a CASOCC unit, the Sort Name is the sort specified

by this specification unit, which is called the main sort of
the unit. The Import clause declares a list of sorts that the
main sort depends on. These imported sorts could be the
data types or classes of the parameters of the operators
defined in the unit. It defines the importation relation on
sorts and thus the structure of the component-based soft-
ware. The distinction between main sorts from imported
sorts does not only decide which axioms are to be checked,
but also plays a significant role in the derivation of test
oracles. It is worth noting that importation relation is dif-
ferent from classic enrichment or extension operations of
AS modules [16]. In stead, importation in CASOCC is
equal to the protected importation operation on modules in
CafeOBJ and OBJ3.

As discussed above, the observability of a sort plays a
significant role in the automated algebraic testing. In
CASOCC specifications, each sort is explicitly specified as
either observable or not by using the Observable clause. A
software entity is observable, if there is an equality operator
“==” defined on the entity. Formally, observable sorts are
defined as follows [25].

Definition 1. (Observable sort)
In an AS <Σ, E>, a sort s is called an observable sort, if

there is an operation _ == _ : s×s→Bool such that for all
ground terms τ and τ’ of sort s,

E |−((τ == τ’) = true) ⇔ E |− (τ=τ’).
An algebra A is a correct implementation of an observable
sort s, if for all ground terms τ and τ’ of sort s,

A |= (τ=τ’) ⇔ A|= ((τ == τ’) = true) �
The VAR clause declares a list of universally quantified

variables that occur in the axioms. Each variable declara-
tion is in the form of <variable identifier> : <Sort Name>,
where the sort name is either an imported sort or a prede-
fined sort of the CASOCC language, which include Java’s
primitive data types such as byte, short, int, long, float,
double, char, String and boolean. They are observable.

To further support automated generation of observation
contexts, CASOCC required operators divided into four
types in their declarations in the Operator clause. These
types of operators are given below.
− Creators create instances of the software entity, such as an

object of a class, and/or initialise the entity, such as the
initialisation of a software component. They must have no
parameters of the main sort, but result in the main sort.

− Constructors construct the data structure by adding more
elements to the data. For example, the push operator on
stacks is a constructor. A constructor must have a pa-
rameter of the main sort and results in the main sort. It
may occur in the normal forms if the axioms are used as
term rewriting rules.

− Transformers manipulate the data structure without add-
ing more data. For example, the pop operation on stacks is
a transformer. Similar to constructors, a transformer must
have the main sort as its parameter and results in the main

sort. However, it cannot occur in any normal forms.
− Observers enable the internal states or data in the soft-

ware entity to be observed from the outside. For example,
the top and the depth operator on stacks are observers.
Observers must have a parameter of the main sort but
result in an imported sort.
An axiom in CASOCC is a conditional equation in the

following form.
<Axiom> ::= <Label> : <Equation>[, if <Condition>]
<Label>::= <Number> | <Identifier>
<Equation> ::= <Term> = <Term>
<Condition> ::= <Term of Boolean type>
 | <Equation> | <Term> <Relation Operator> <Term>
 | <Condition> <Logic Connectives> <Condition>

A term can be formed from variables declared in the
VAR clause and constants of predefined sorts by applying
operators defined in the Operator clause and the operators
of the predefined sorts and imported sorts. It is worth noting
that, we adopted LOBAS’s notation for the representation
of terms in the object oriented style rather than the tradi-
tional functional style [21]. Therefore, a term f(x,y), i.e. an
operator f applied to parameters x and y, is represented in
the form of x.f(y), if x is of the main sort. Details of the
syntax of terms are omitted for the sake of space.

The following is an example of specification in
CASOCC. It specifies a stack with bounded depth of 10
elements.
Spec Stack
 observable F;
 import int, String;
 operations
 creator create: String->Stack;
 constructor push: Stack,int->Stack;
 transformer pop: Stack->Stack;
 observer getId: Stack->String; top: Stack->int;
 height: Stack->int;
 vars S: Stack; n: int; x: String;
 axioms
 1: create(x).getId() = x;
 2: findByPrimaryKey(x).getId() = x;
 3: create(x).height() = 0;
 4: S.push(n) = S; if S.height() = 10;
 5: S.pop() = S; if S.height() = 0;
 6: S.push(n).pop() = S; if S.height() < 10;
 7: S.push(n).top() = n; if S.height() < 10;
 8: S.push(n).height() = S.height()+1; if S.height() < 10;
 9: S.pop().height() = S.height()-1; if S.height() >0;
end

It is worth noting that, specifications in CASOCC are
independent of the implementations. A unit can be imple-
mented as a component, a class or a data type. A system
may consist of units implemented in different types.

3.2 Observation Contexts
To enable automated testing of software components, we

require the formal specification is well structured and
matches the structure of program. The following will first
formally define the notion of well-structuredness.

Let U be a set of units in CASOCC specification and S be
a set of sorts. For each sort s∈S, there is a unit U s∈U that

specifies the software entity corresponding to sort s. Let ≺
be the importation relation on S.

Definition 2. (Well founded specification)
A sort s ∈ S is well founded, if for all s’ in the import list of
U s, s’ is an observable sort, or s’ is well founded. A speci-
fication U is well founded, if and only if the importation
relation ≺ is a pre-order on the set S of sorts, and all sorts
s∈Σ is well founded. �

Definition 3. (Well structured specification)
A specification U in CASOC is well structured, if it

satisfies the following conditions.
(1) It is well founded;
(2) For every user defined unit Us∈ U,

(a) there is at least one observer declared in Us;
(b) for every axioms of conditional equations E in Us, if

the condition contains an equation 'τ τ= , we must
have 's s≺ , where s’ is the sort of terms τ and τ’. �

The notion of observation context can be formally de-
fined as follows.

Definition 4. (Observable context)
A context C[…] of a sort c is a term C with one occur-

rence of a special variable , of sort c. The value of a term t
of sort c in the context of C[…], written as C[t], is the term
obtained by substituting t into the special variable , . An
observation context oc of sort c is a context of sort c and the
sort of the term oc[…] is s c≺ . To be consistent with our
notation for operators, we write _.oc: c→s to denote such an
observation context oc[].

An observation context sequence of a sort c is the se-
quential composition _.oc1.oc2. ….ocn of a sequence of
observation contexts oc1, oc2, …, ocn , where _.oc1: c→s1,
_.oci: si−1→si, for all i =2,…,n . An observation context
sequence is primitive, if the sn is an observable sort. �

The general form of an observable context oc is:
_.f1(...).f2(...).....fk(...).obs(...)

where f1, ..., fk are transformers of sort sc, obs is an observer
of sort c, and f1(...), ..., fk (...) are ground terms. A primitive
observation context produces a value in an observable sort.
For example, consider the specification of Stack given in
the previous section. The following are observation con-
texts. Because the predefined sort Integer is observable,
these observation contexts are primitive.
 _.top(), _.pop().top(), _.pop().pop().top(), _.height(),
 _.pop().height (), _.pop().pop().height().

It is worth noting that there are usually an infinite
number of different observation contexts for a given AS.
We define the complexity of an observation context
_.f1(...).f2(...).....fk(...).obs(...) as the number k of transform-
ers in the context. For example, the complexity of obser-
vation context _.top() is 0, and the complexity of
_.pop().pop().height() is 2.

3.3 Generation of Test Cases and Oracles
A simple but effective test case generation method used

by many researchers is to substitute ground terms into
variables in the axioms. The result of substitution is a pair
of ground terms that should be equivalent according to the
specification plus an optional condition that contains no
variables. When the condition is evaluated to be true, then
two sequences of method calls on the two sides of an
equation are invoked separately to generate two results and
further comparisons of the results are made to determine if
the implementation is correct.

However, there are some subtle differences in what are
substituted into the variables in the literature. In DAISTS,
user-defined terms are used [17]. In [18], all ground terms
of certain complexity are used. In TACCLE system [23],
only ground terms in normal forms are used. A common
problem with these approaches is that when operators have
parameters of predefined data types, such as integers, there
may be a large number of ground terms even in the normal
form. Chen et al.’s solution is to apply white-box testing
methods to cover all paths in the software under test. Un-
fortunately, this solution is not applicable to testing soft-
ware components because the source code is not always
available. Therefore, we combine random testing with
algebraic testing by selecting the values for variables of
predefined data types at random.

Another feature of software components that differs
components from classes is that a component can only have
one instance while a class may have many instances [2].
This has caused a technical problem in the application of
algebraic testing to components. A typical implementation
of testing tools for class testing will generate two instances
of a class for each test case based on one axiom; one
represents the result of a sequence of method calls corre-
sponding to the left-hand-side of an equation, and the other
represents the result of the right-hand-side. This technique
is not applicable to components because the component can
only have one instance. The result of the first sequence of
method calls cannot always be recorded in almost all
component models, such as in Enterprise Java Beans (EJB)
and CCM (CORBA Component Model). A solution to this
problem is that, instead of simply substituting the ground
terms into variables in the axioms, primitive observation
contexts are also applied to both left hand and right hand
sides so that the results in predefined data types become
recordable and comparable. The following gives some
examples of the test cases for the Stack example.
 create(String:[gfn2785]).height() = int:[0];
 create(String:[Rm8]).push(int:[961467407]).pop().top()
 = create(String:[Rm8]).top();
 if create(String:[Rm8]).height()<int:[10];
 create(String:[Rm8]).push(int:[961467407]).pop().height()
 = create(String:[Rm8]).height();
 if create(String:[Rm8]).height()<int:[10];

This approach also differs from existing works, which
separates test cases from test oracles.

4. Testing Tool CASCAT
A prototype testing tool called CASCAT (Common

AS-based Component Automatic Testing) has been de-
signed and implemented in Java for testing Java Enterprise
Beans running on the JBoss platform. As shown in Figure 1,
it contains four main components.

Figure 1. Overall Structure of CASCAT Tool

− Specification Parser: It parses the AS in CASOCC, and
checks the well-formedness of the specification and the
type correctness of equations in the axioms.

− Test Case Generator: It takes two parameters from the
user and generates a set of test cases. The parameters are
the upper bounds of the complexities of the observation
contexts and the values substituted into the variables.

− Test Driver: It executes the component on each test case
and records the test results.

− Test Result evaluator: It checks the correctness of the
results of the test executions and reports to the user.
The inputs to the automated test process are a specifica-

tion of the component, the file location of the component
deployed to JBoss platform, the location of the JBoss server,
and the complexities of the observation contexts and the
ground terms to be substituted into variables in the axioms.
Figure 2 shows the interface of the tool.

Figure 2. Interface of The CASCAT Tool

CASCAT allows the user to select a subset of axioms for
testing, thus to focus testing efforts on a subset of functions
and properties of the component. In such cases, test cases

are generated from these selected axioms only.

5. Experiments
To evaluate the effectiveness of the testing method, we

have carried out a preliminary case study using error
seeding and mutation testing.

In the error seeding experiment, we manually inserted 37
faults into the Stack component and tested faulty compo-
nents one by one against the axioms given in Section 3.
Table 1, shows the distribution of the fault according to the
classification proposed in [26]. All faults were detected. In
the experiment, most injected faults are detected due to
equations are not satisfied, while three path selection faults
caused abnormal executions of the component on test cases.
One path selection faults caused the component to execute
without termination on a test case. Two other faults raised
runtime error on test cases.

In mutation analysis, the MuJava testing tool is applied
to the source code of the component to generate mutants of
the component. Each component is then tested by CASCAT.
The mutation analysis also demonstrated that the testing
method can have an overall mutation score of 89.8% (killed
89.8% non-equivalent mutants). It indicates a high fault
detecting ability. As shown in

Table 2, the result is consistent with the error-seeding
experiment.

Table 1. Results of Error Seeding Experiment

Detected #Faults
Type of Faults Inserted

Normal Abnormal
Path Omission 3 3 (100%) Domain

Faults Path Selection 18 15 (83.3%) 3 (16.7%)
Wrong Variable 3 3 (100%)

Wrong Expression 2 2 (100%)

Stmt Omission 7 7 (100%)
Computa-
tion Faults

Stmt Transition 4 4 (100%)
Total 37 34 (91.9%) 3 (8.1%)

Table 2. Results of Mutation Analysis

#Killed Mutants Mutant
Type

#Total
Mutants

#Equiv
Mutants Normal Abnormal

Mutation
Score

AODU 2 0 2 0 100%
AOIS 44 2 20 18 90.5%
AOIU 5 0 4 1 100%
AORB 12 0 11 1 100%
AORS 5 0 2 3 100%
COR 2 0 0 2 100%
LOI 16 1 7 8 100%
ROR 5 1 1 3 100%
JSD 1 0 0 0 0%
JSI 5 0 0 0 0%
JTD 2 0 2 0 100%
JTI 4 1 3 0 100%

Total 103 5 52 36 89.8%

One of the purposes of our experiment with the tool is to

find out how the complexities of test cases are related to

CASOCC Spec
Parser

Test Case
Generator

Test Result
Evaluator

Component
Spec in
CASOCC

Test
Driver

Test
Cases

J2EE Component
Deployed on JBoss

Platform

Test
Report

CASCAT Tool

fault detecting ability. In the experiment, we tested the
component by first using test cases of the lowest com-
plexities and then increasing the complexity of the test
cases gradually until all faults are detected. We found that
the majority of faults can be detected by test cases of very
low complexity as shown in Table 3. The only faults that
require test cases of high complexity to detect are in the
piece of code that deals with the bound of the stack. Table 3
also shows that the number of test cases increases as the
complexity increases.

Table 3. Fault Detecting Ability vs Complexity
Mutation Analysis Error Seeding Test case

Complexity
#Test
Cases #Mutants

Detected
%Mutants
Detected

#Faults
Detected

%Faults
Detected

1 45 53 60.2% 22 59.5%
2 87 30 34.2% 14 37.8%
3 129 4 4.5% 0 0%

4~10 -- 0 0 0 0%
11 465 1 1.1% 1 2.7%

6. Conclusion
In this paper, we explored the application of algebraic

testing method to software components. A specification
language CASOCC is designed. An automated EJB com-
ponent testing tool CASCAT is implemented. The approach
has the following advantages. First, AS are independent of
the implementation details, thus are suitable for formal
specification of software components. Second, as shown
by the CASCAT testing tool, algebraic testing of compo-
nents can achieve a very high degree of automation, which
include test case generation, test driver automation and test
oracle generation. Moreover, it allows software testers to
focus on a subset of functions and properties of the com-
ponent that they are used. Finally, the method can achieve a
high fault detecting ability as shown by our preliminary
experiment with testing a software component, which con-
firmed the experiments done by Doong and Frankl [21].

For further research, we are conducting more experi-
ments with the testing method using the prototype tool and
analysing the types of faults that cannot be easily detected.
We believe that the theories of observational AS can be
applied to a wider range of software systems such as con-
current systems, because concurrency and non-determinism
can be treated naturally by behavioural theories [19].

7. References

[1] Hopkins, J., Component primer, C.ACM 43(10), Oct. 2000,
pp27-30.

[2] Szyperski, C., Component Software: Beyond Object-Oriented
Programming, Second Edition, Addison Wesley, Nov. 2002.

[3] D'Souza, D. and Wills, A. C., Objects, Components and
Frameworks with UML: The Catalysis Approach, Addison
Wesley, 1999.

[4] Gao, J., Tsao, J. H.-S., and Wu, Y., Testing and Quality As-
surance for Component-Based Software, Artech House, 2003.

[5] Sparling, M., Lessons learned through six years of compo-
nent-based development, C.ACM 43(10), Oct.2000, pp47-53.

[6] Crnkovic, I., Larsson, M., A case study: demands on compo-

nent-based development, Proc. ICSE'2000, June, 2000,
pp22-30.

[7] Morisio, M., Seaman, C. B., Parra, A. T., Basili, V. R., Kraft,
S. E. and Condon, S. E., Investigating and improving a
COTS-based software development, Proc. ICSE'2000, June
2000, pp32-41.

[8] Beydeda S. and Gruhn, V. (eds), Testing COTS Components
and Systems, Springer, 2005.

[9] Beydeda, S. and Gruhn, V., State of art in testing components,
Proc. of QSIC03, Oct. 2003, IEEE CS, pp146-153.

[10] Beydeda, S., The Self-Testing COTS Component STECC
Method, PhD Thesis, Department of Computer Science,
University of Leipzig, Germany, 2004.

[11] Beydeda, S., Self-Metamorphic-Testing Components, Proc.
COMPSAC'06, 2006, pp.265-272

[12] Briand, L. C., Labiche, Y., Sówka, M. M., Automated,
Contract-based User Testing of Commercial-Off-The-Shelf
Components, Proc. of ICSE’06, May, 2006, Shanghai, China,
IEEE CS Press, pp.92-101.

[13]Gallagher, L. and Offutt, J., Automatically testing interacting
software components, Proc. AST’06, ACM Press, May 2006,
pp.57-63.

[14] Guttag, J., “Abstract data types and the development of data
structures”, C.ACM 20(6), 1977, pp396-404.

[15] Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J.
B., Initial Algebra Semantics and Continuous Algebras, J.
ACM 24(1), Jan.1977, pp68 – 95.

[16] Sannella, D. and Tarlecki, A., Algebraic methods for speci-
fication and formal development of programs, ACM Comput.
Surv. 31(3es), Article 10, Sept. 1999.

[17] Gonnon, J., McMullin, P. and Hamlet, R., Data-Abstraction
Implementation, Specification, and Testing, ACM TOPLAS
3(3), July 1981, pp211-223.

[18] Bernot, G., Gaudel, M. C., and Marre, B., Software testing
based on formal specifications: a theory and a tool, Software
Engineering Journal, Nov. 1991, pp387- 405.

[19] Goguen, J. and Malcolm, G., A hidden agenda, Theoretical
Computer Science 245(1), 2000, pp55-101.

[20] Sannellla, D., and Tarlecki, A., On observational equivalence
and algebraic specification, Journal of Computer and System
Sciences 34, 1987, pp150-178.

[21] Doong, R. K. and Frankl, P. G., The ASTOOT approach to
testing object-oriented programs, ACM TSEM 3(2),
Apr.1994, pp101-130.

[22] Hughes, M. and Stotts, D., Daistish: systematic algebraic
testing for OO programs in the presence of side-effects. Proc.
ISSTA’96, ACM Press, January 1996, pp53-61.

[23] Chen, H. Y., Tse T. H. and Chen, T. Y., TACCLE: a meth-
odology for object-oriented software testing at the class and
cluster levels, ACM TSEM 10(1), Jan. 2001, pp56-109.

[24] Chen, H.Y., et al., In black and white: an integrated approach
to class-level testing of object-oriented programs, ACM
TSEM 7(3), Jul. 1998, pp250-295.

[25] Zhu, H., A Note on Test Oracles and Semantics of Algebraic
Specifications,Proc.QSIC'03,Dallas,USA,Nov.2003,pp91-99.

[26] Harrold, M. J, Offutt, J, A. and Tewary, K. (1997) An ap-
proach to fault modeling and fault seeding using the program
dependence graph, J. of Systems & Software 3, pp.273-296.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

