
23
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In a pattern-oriented software design process, design decisions are made by selecting and instantiating
appropriate patterns, and composing them together. In our previous work, we enabled these decisions to
be formalized by defining a set of operators on patterns with which instantiations and compositions can be
represented. In this article, we investigate the algebraic properties of these operators. We provide and prove a
complete set of algebraic laws so that equivalence between pattern expressions can be proven. Furthermore,
we define an always-terminating normalization of pattern expression to a canonical form which is unique
modulo equivalence in first-order logic.

By a case study, the pattern-oriented design of an extensible request-handling framework, we demonstrate
two practical applications of the algebraic framework. First, we can prove the correctness of a finished design
with respect to the design decisions made and the formal specification of the patterns. Second, we can even
derive the design from these components.
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1. INTRODUCTION

Design patterns are codified reusable solutions to recurring design problems [Gamma
et al. 1995; Alur et al. 2003]. In the past two decades, much research on software
design patterns has been reported in the literature. Many such patterns have been
identified, documented, cataloged [Gamma et al. 1995; Alur et al. 2003; Grand 2002b,
1999, 2002a; Fowler 2003; Hohpe and Woolf 2004; Buschmann et al. 2007b; Voelter
et al. 2004; Schumacher et al. 2005; Steel 2005; DiPippo and Gill 2005; Douglass 2002;
Hanmer 2007], and formally specified [Alencar et al. 1996; Mikkonen 1998; Taibi et al.
2003; Gasparis et al. 2008; Bayley and Zhu 2010b]. Numerous software tools have been
developed for detecting patterns in reverse engineering and instantiating patterns for
software design [Niere et al. 2002; Hou and Hoover 2006; Nija Shi and Olsson 2006;
Blewitt et al. 2005; Mapelsden et al. 2002; Dong et al. 2007c; Kim and Lu 2006; Kim
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and Shen 2007, 2008; Zhu et al. 2009a, 2009b]. Although each pattern is documented
and specified separately, they are usually to be found composed with each other with
overlaps except in trivial cases [Riehle 1997]. Thus, pattern composition plays a crucial
role in the effective use of design knowledge.

The composition of design patterns has been studied by many authors, for example,
Buschmann et al. [2007a] and Riehle [1997]. Visual notations such as the Pattern:Role
annotation and a forebear based on Venn diagrams have been proposed by [Vlissides
1998] and widely used in practice. They indicate where, in a design, patterns have
been applied so that their compositions are comprehensible. These notations are imple-
mented by Dong et al. [2007b] for computer-aided visualization by defining appropriate
UML profiles. Their tool, deployed as a Web service, identifies pattern applications and
does so by displaying stereotypes, tagged values, and constraints. Such information is
delivered dynamically with the movement of the user’s mouse cursor on the screen.
Their experiments show that this delivery on demand helps to reduce the information
overload faced by designers. More recently, Smith [2011] proposed the Pattern Instance
Notation (PIN) to visually represent the composition of patterns in a hierarchical man-
ner. Most importantly, he also recognized that multiple instances of roles needed to be
better expressed and he devised a suitable graphic notation for this.

However, the existing research on pattern compositions is mostly informal, though
much has been done by others to formalize the patterns themselves [Alencar et al. 1996;
Mikkonen 1998; Lauder and Kent 1998; Taibi et al. 2003; Eden 2001; Gasparis et al.
2008; Bayley and Zhu 2010b]. These approaches use many different formalisms but
the basic ideas underlying them are similar. In particular, a specification of a pattern
usually consists of statements about the common structural features and, sometimes,
the behavioral features of its instances. The structural features are typically specified
by assertions of the existence of certain types of components in the pattern, with the
configuration of the elements described in terms of the static relationship between
them. The behavioral features are normally defined by assertions on the temporal
order of the messages exchanged between these components.

Although such formalizations make possible a systematic investigation of design
pattern compositions in a formal setting, few authors have done so. Two that have are
Dong et al., who appear to have been the first, and Taibi and Ngo.

Dong et al. define a composition of two patterns as a pair of name mappings. Each
mapping “associates the names of the classes and objects declared in a pattern with
the classes and objects declared in the composition of this pattern and other patterns”
[Dong et al. 2000, 1999, 2004]. This approach can be regarded as formalization of the
“Pattern:Role” graphic notation. They also demonstrate that structural and behavioral
properties of pattern instances can be inferred even after composition. Recently, Dong
et al. [2011] studied the commutability of pattern instantiation with pattern integra-
tion, which is their term for composition. A pattern instantiation was defined as a
mapping from names of various kinds of elements in the pattern to classes, attributes,
methods, etc, in the instance. An integration of two patterns was defined as a mapping
from the set union of the names of elements in the two patterns into the names of the el-
ements in the resulting pattern. This formal definition of integration is mathematically
equivalent to the multiple-name mapping approach.

Taibi and Ngo [2003] and Taibi [2006] took an approach very similar to this, but
instead of defining mappings for pattern compositions and instantiations, they use
substitution to directly rename the variables that represent pattern elements. For
instantiation, the variables are renamed to constants, whereas for composition, they
are renamed to new variables. The composition of two patterns is then the logical
conjunction of the predicates that specify the structural and behavioral properties of
the patterns after substitution.
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In 2008, we formally defined a pattern composition operator based on the notion of
overlaps between the elements in the composed patterns [Bayley and Zhu 2008a]. We
distinguished three different kinds of overlaps: one-to-one, one-to-many, and many-to-
many. Both Dong et al. and Taibi’s approaches can only compose patterns with one-to-
one overlaps. However, the other two kinds of overlaps are often required. For example,
if the Composite pattern is composed with the Adapter pattern in such a way that one
or more of the leaves are adapted then that is a one-to-many overlap. This cannot be
represented as a mapping between names, nor by a substitution or instantiation of
variables. However, although this operator is universally applicable, we found in our
case study that it is not very flexible for practical uses and its properties are complex
to analyze.

In 2010, therefore, we revised this previous work of ours and took a radically different
approach [Bayley and Zhu 2010a]. Instead of defining a single universal composition
operator, we proposed a set of six more primitive operators with which each sort of
composition can then be accurately and precisely expressed. We preserve the advantage
of being able to deal with more advanced overlaps. A case study was also reported there
to demonstrate the expressiveness of the operators.

In this article, we now investigate how to reason about compositions, especially how
to prove that two pattern expressions are equivalent. As pointed out by Dong et al.
[2011], this is of particular importance in pattern-oriented software design, where
design decisions are made by selecting and applying design patterns to address various
design problems. It is often desirable to determine whether two alternative decisions
result in the same design, especially if one is more abstract and general and the other
one more concrete and easier to understand. We demonstrate that such design decisions
can be formally represented using our pattern operators. The subsequent focus on
proving the equivalence between pattern expressions leads us to a set of algebraic laws
and an always-terminating normalization process that results in a canonical form,
which is unique subject to logical equivalence. As we demonstrate with a case study of
a real-world example, our algebra supports two typical practical scenarios.

—Validation and verification scenario. Recall that the current practice of pattern-
oriented software design is to instantiate and compose design patterns informally
by hand, and then present the result in the form of a class diagram annotated with
pattern:role information. In the validation and verification scenario, this design must
be checked for correct use of the design patterns. Our algebra can be used to formally
prove it to be equivalent to a pattern expression denoting the component design
patterns and the decisions made. This means that the result is consistent with the
structural and dynamic features of the component.

—Formal derivation scenario. On the other hand, given a pattern expression, we can,
in the formal derivation scenario, obtain the design by normalizing the expressions
to the canonical form. This is directly readable as a concrete design.

This article has three main contributions. It:

—proves a set of algebraic laws that pattern operators obey,
—proves the completeness of the laws, and presents a pattern expression normaliza-

tion process that always terminates with unique canonical forms subject to logic
equivalence,

—demonstrates with a real-world example the applicability of the algebra to pattern-
oriented software design in both the validation/verification and formal derivation
scenarios.

These results advance the pattern-oriented software design methodology by improving
the rigor in three ways: (a) design decisions are formally represented, (b) a new method
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is presented for formally proving the correctness of the finished design with respect to
these decisions, (c) a new method is presented for deriving this design. It also offers
the possibility of automated tool support for both of these methods.

The formalism we use to achieve these goals is the same as that in our previous
work. In particular, we use the first-order logic induced from the abstract syntax of
UML defined in GEBNF [Zhu and Shan 2006; Zhu 2010, 2012] to define both the
structural and behavioral features of design patterns. In the same formalism, we have
already formally specified the 23 patterns in the classic Gang-of-Four book [Gamma
et al. 1995], hereafter referred to as the GoF book. We have specified variants too
[Bayley and Zhu 2007, 2008b, 2010b]. We have also constructed a prototype software
tool to check whether a design represented in UML conforms to a pattern [Zhu et al.
2009a, 2009b].

It is worth noting that the definitions of the operations and the algebraic laws proved
in this article are independent of the formalism used to define patterns. Thus, the
results can be applied equally well to other formalisms such as OCL [France et al.
2004], temporal logic [Taibi 2006], process algebra [Dong et al. 2010], and so on, but
the results may be less readable and the proofs may be more complicated and lengthy.
In particular, OCL would need to be applied at metalevel to assert the existence of the
required classes and methods.

The remainder of the article is organized as follows. Section 2 reviews our approach
to formalization of patterns and lays the theoretical foundation for our proofs. Section 3
outlines the set of operations on design patterns. Section 4 presents the algebraic laws
that they obey. Section 5 uses the laws to reason about the equivalence of pattern
compositions. Section 6 proves the completeness of the algebraic laws. Section 7 re-
ports a case study with the applications of the theory to a real-world example: the
pattern-oriented design of an extensible request-handling framework through pattern
composition. Section 8 concludes the article with a discussion of related works and
future work.

2. BACKGROUND

This section briefly reviews our approach to the formal specification of design patterns,
to present the background for our formal development of the algebra of design patterns.
Our approach is based on metamodeling in the sense that each pattern is a subset of the
design models having certain structural and behavioral features. Readers are referred
to Bayley and Zhu [2007, 2008b, 2010b] and Zhu et al. [2009a] for details.

2.1. MetaModeling in GEBNF

We start by defining the domain of all models with an abstract syntax written in
the metanotation Graphic Extension of BNF (GEBNF) [Zhu and Shan 2006]. GEBNF
extends the traditional BNF notation with a “reference” facility to define the graphical
structure of diagrams. In addition, each syntactic element in the definition of a language
construct is assigned an identifier (called a field name) so that a first-order language
can be induced from the abstract syntax definition [Zhu 2010, 2012].

For example, the following are some example syntax rules in GEBNF for the UML
modeling language.

ClassDiag ::= classes : Class+, assocs, inherits, compag : Rel∗

Class ::= name : String, [attrs : Property∗], [opers : Operation∗]
Rel ::= [name : String], source : End, end : End
End ::= node : Class, [name : String], [mult : Multiplicity]
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Table I. Some Functions Induced from GEBNF Syntax Definition of UML

ID Domain Function
Functions directly induced from GEBNF syntax definition of UML
classes Class diagram The set of class nodes in the class diagram
assocs Class diagram The set of association relations in the class diagram
inherits Class diagram The set of inheritance relations in the class diagram
compag Class diagram The set of composite and aggregate relations in the class diagram
name Class node The name of the class
attr Class node The attributes contained in the class node
opers Class node The operations contained in the class node
sig Message The signature of the message
Functions defined based on induced functions
X −−�+ Y Class Class X inherits class Y directly or indirectly
X −→+ Y Class There is an association from class X to class Y directly or indirectly
X �−→+ Y Class There is an composite or aggregate relation from X to Y directly or

indirectly
isInter f ace(X) Class Class X is an interface
C DR(X) Class No messages are send to a subclass of X from outside directly
subs(X) Class The set of class nodes that are subclasses of X
calls(x, y) Operation Operation x calls operation y
isAbstract(op) Operation Operation op is abstract
f romClass(m) Message The class of the object that message m is sent from
toClass(m) Message The class of the object that message m is sent to
X ≈ Y Operation Operations X and Y share the same name

The first line defines a class diagram as consisting of a nonempty set of classes and
a collection of three relations on the set. Here classes, assocs, inherits, and compag are
fields of ClassDiag. Each field name is a function. For example, classes is a function
from a ClassDiag to the set of class nodes in the model. Functions assocs, inherits, and
compag are mappings from a class diagram to the sets of association, inheritance, and
composite/aggregate relations in the model. The nonterminal Class in the definition
of End is a reference occurrence. This means that the node at the end of a relation
must be an existing class node in the diagram, not a newly introduced class node. The
definitions of the class diagrams and sequence diagrams of UML in GEBNF can be
found in Bayley and Zhu [2010b]. Table I gives the functions used in this article that
are induced from these definitions as well as those that are based on them. A formal
more detailed treatment of this can be found in Bayley and Zhu [2010b].

2.2. Formal Specification of Patterns

Given a formal definition of the domain of models, we can for each pattern define a
predicate in first-order logic to constrain the models such that each model that satisfies
the predicates is an instance of the pattern.

Definition 2.1 (Formal Specification of DPs). A formal specification of a design pat-
tern is a triple P = 〈V, Prs, Prd〉, where Prs is a predicate on the domain of UML
class diagrams that expresses the static structural properties of the pattern and Prd
is, similarly, a predicate on the domain of UML sequence diagrams that expresses the
dynamic behavioral properties of the pattern; V = {v1 : T1, . . . , vn : Tn} is the set of
free variables in the predicates Prs and Prd. For each i ∈ {1, . . . , n}, vi represents a
component of type Ti in the pattern. A type can be a basic type T of elements,1 such

1Formally speaking, a basic type corresponds to a nonterminal symbol in the GEBNF definition of the
modeling language.
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Fig. 1. Specification of object adapter pattern.

as class, method, attribute, message, lifeline, etc., in the design model, or P(T ) (i.e., a
power set of T ), to represent a set of elements of the type T , or P(P(T )), etc.

The semantics of the specification is a closed formula in the following form.

∃v1 : T1 . . . ∃vn : Tn · (Prs ∧ Prd) (1)

Given a pattern specification P, we write Spec(P) to denote the predicate (1) given
before, V ars(P) for the set of variables declared in V , and Pred(P) for the predicate
Prs ∧ Prd.

For example, Figure 1 shows the specification of the Object Adapter design pattern.
The class diagram from the GoF book has been included for the sake of readability.

Figure 2 gives the specification of the Composite pattern, where the class diagram
from the GoF book [Gamma et al. 1995] only shows one Leaf class while in general
there may be many leaves. Both patterns will be used throughout the article.

It is worth noting that the word model in classic formal logics has a meaning subtly
different from that in software engineering. In mathematical logic, a mathematical
theory is represented in the form of set of formulas called axioms, while a model of
the theory is a mathematical structure on which the set of formulas are all true. In
software engineering, on the other hand, a model is widely regarded as a diagram or a
set of diagrams that characterizes the structural and/or dynamic features of a software
system, as a means of presenting the design. By defining a pattern as a predicate
on software models, the gap between these two notions of models can be bridged. In
particular, a software model (such as a UML diagram) is an instance of a pattern when
the software model is a structure on which the formal specification (i.e., a logic formula)
defining the pattern is true. So these two notions are consistent in our framework and
we do not distinguish between them in this article. Readers are referred to Zhu [2010,
2012] for a formal treatment of software models as mathematical structures.
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Fig. 2. Specification of the composite pattern.

2.3. Reasoning about Patterns

We often want to show that a concrete design really conforms to a design pattern. This
is a far from trivial task for some other formalization approaches. For us though, the
use of predicate logic makes it easy and we formally define the conformance relation
as follows.

Let m be a model and pr be a predicate. We write m |= pr to denote that predicate pr
is true in model m.

Definition 2.2 (Conformance of a Design to a Pattern). Let m be a model and P =
〈V, Prs, Prd〉 be a formal specification of a design pattern. The model mconforms to the
design pattern as specified by P if and only if m |= Spec(P).

To prove such a conformance we just need to give an assignment α of variables in
V to elements in m and evaluate Pred(P) in the context of α. If the result is true,
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then the model satisfies the specification. This is formalized in the following lemma,
in which Evaα(m, pr) is the evaluation of a predicate pr on model m in the context of
assignment α.

LEMMA 2.3 (VALIDITY OF CONFORMANCE PROOFS). A model m conforms to a design pat-
tern specified by predicate P if and only if there is an assignment α from V ars(P) to the
elements in m such that Evaα(m, Pred(P)) = true.

It is worth noting that the evaluation of Evaα(m, pr) is independent of the assignment
α if pr contains no free variables; thus the subscript α can be omitted. In such cases,
the evaluation always terminates with a result being either T rue or False. In fact,
m |= pr can be formally defined as Eva(m, pr) = T rue, where, when Pr = Spec(P) is
a formal specification of a design pattern P, it contains no free variables. Readers are
referred to Zhu [2010, 2012] for more details of the definition of Evaα(m, pr).

A software tool has been developed that employs the first-order logic theorem prover
SPASS. With it, proofs of conformance can be performed automatically [Zhu et al.
2009a, 2009b].

Given a formal specification of a pattern P, we can infer the properties of any system
that conforms to it. Using the inference rules of first-order logic, we can deduce that
Spec(P) ⇒ q, where q is a formula denoting a property of the model. Intuitively, we
expect that all models that conform to the specification should have this property and
the following lemma formalizes this intuition.

LEMMA 2.4 (VALIDITY OF PROPERTY PROOFS). Let P be a formal specification of a design
pattern. 
 Spec(P) ⇒ q implies that for all models m such that m |= Spec(P) we have
that m |= q.

In other words, every logical consequence of a formal specification is a property of all
the models that conform to the pattern specified.

There are several different kinds of relationships between patterns. Many of them
can be defined as logical relations and proved in first-order logic. Specialization and
equivalence are examples.

Definition 2.5 (Specialization Relation between Patterns). Let P and Q be design
patterns. Pattern P is a specialization of Q, written P � Q, if for all models m, whenever
m conforms to P, then m also conforms to Q.

Definition 2.6 (Equivalence Relation between Patterns). Let P and Q be design pat-
terns. Pattern P is equivalent to Q, written P ≈ Q, if P � Q and Q � P.

By Lemma 2.3, we can use inference in first-order logic to show specialization.

LEMMA 2.7 (VALIDITY OF PROOFS OF SPECIALIZATION RELATION). Let P and Q be two de-
sign patterns. Then, we have that:

(1) P � Q, if Spec(P) ⇒ Spec(Q), and
(2) P ≈ Q, if Spec(P) ⇔ Spec(Q).

Furthermore, by Definition 2.1 and Lemma 2.7, we can prove specialization and equiv-
alence relations between patterns by inference on the predicate parts alone if their
variable sets are equal.

LEMMA 2.8 (VALIDITY OF PROOFS OF PREDICATE RELATION). Let P and Q be two design
patterns with V ars(P) = V ars(Q). Then P � Q if Pred(P) ⇒ Pred(Q), and P ≈ Q if
Pred(P) ⇔ Pred(Q).
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Specialization is a preorder with bottom FALSE and top TRUE defined as follows.

Definition 2.9 (TRUE and FALSE Patterns). Pattern TRUE is the pattern such
that for all models m, m |= TRUE. Pattern FALSE is the pattern such that for no
model m, m |= FALSE.

Therefore, letting P, Q, and R be any given patterns, we have the following.

P � P (2)
(P � Q) ∧ (Q � R) ⇒ (P � R) (3)

FALSE � P � TRUE (4)

3. OPERATORS ON DESIGN PATTERNS

In this section, we review the set of operators on patterns defined in Bayley and Zhu
[2010a]. The restriction operator was first introduced in 2008, where it was called the
specialization operator [Bayley and Zhu 2008a].

Definition 3.1 (Restriction Operator). Let P be a given pattern and c be a predicate
such that the set vars(c) of free variables in c is included in V ars(P); that is, formally
vars(c) ⊆ V ars(P). A restriction of P with constraint c, written P [c], is the pattern
obtained from P by imposing the predicate c as an additional condition of the pattern.
Formally,

(1) V ars(P[c]) = V ars(P),
(2) Pred(P[c]) = (Pred(P) ∧ c).

Informally, the predicate c is defined on the components of P; thus it gives an ad-
ditional constraint on the components and/or on how the components relate to each
other. For example, let ||X|| denote the cardinality of set X. The pattern Composite1 is
the variant of the Composite pattern that has only one leaf.

Composite1 � Composite[ ||Leaves|| = 1]

Many more examples are given in the case studies reported in Bayley and Zhu
[2010a]. A frequently occurring use is in expressions of the form P[u = v] for pattern P
and variables u and v of the same type. This is the pattern obtained from P by unifying
components u and v and making them the same element.

Note that the instantiation of a variable u in pattern P with a constant a of the same
type of variable u can also be expressed by using restriction operator P[u = a]. Some
researchers also regard restricting the number of elements in a specific component
variable of power set type as instantiation of the pattern. This can also be represented
by applying the restriction operator as shown in the preceding example.

The restriction operator does not introduce any new components into the structure
of a pattern, but the following operators do.

Definition 3.2 (Superposition Operator). Let P and Q be two patterns. Assume that
the names of the components in P and Qare all different, that is, V ars(P)∩V ars(Q) = ∅.
The superposition of P and Q, written P ∗ Q, is defined as follows.

(1) V ars(P ∗ Q) = V ars(P) ∪ V ars(Q);
(2) Pred(P ∗ Q) = Pred(P) ∧ Pred(Q).

Informally, P ∗ Q is the minimal pattern (i.e., that with the fewest components
and weakest conditions) containing both P and Q. Note that, although the names of
components in P ∗ Q are required to be different, their instances may have overlap.
The requirement that components are named differently can always be achieved, for
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example, by systematically renaming the component variables to make them different
and the notation for renaming is as follows.

Let x ∈ V ars(P) be a component of pattern P and x′ /∈ V ars(P). The systematic
renaming of x to x′ is written as P[x\x′]. Obviously, for all models m, we have that
m |= P ⇔ m |= P[x\x′] because Spec(P) is a closed formula. In the sequel, we assume
that renaming is made implicitly before two patterns are superposed when there is a
naming conflict between them.

Definition 3.3 (Extension Operator). Let P be a pattern, V be a set of variable
declarations that are disjoint with P ’s component variables (i.e., V ars(P) ∩ V = ∅),
and c be a predicate with variables in V ars(P) ∪ V . The extension of pattern P with
components V and linkage condition c, written as P#(V • c), is defined as follows.

(1) V ars(P#(V • c)) = V ars(P) ∪ V ;
(2) Pred(P#(V • c)) = Pred(P) ∧ c.

For any predicate p, let p[x\e] denote the result of replacing all free occurrences of x
in p with expression e.

Now we define the flatten operator as follows.

Definition 3.4 (Flatten Operator). Let P be a pattern, xs : P(T ) be a variable in
V ars(P), and x : T be a variable not in V ars(P). Then the flattening of P on variable
x, written P ⇓ xs\x, is defined as follows.

(1) V ars(P ⇓ xs\x) = (V ars(P) − {xs : P(T )}) ∪ {x : T };
(2) Pred(P ⇓ xs\x) = Pred(P)[xs\{x}].

Note that P(T ) is the power set of T , and thus, xs : P(T ) means that variable xs is
a set of elements of type T . For example, Leaves ⊆ classes in the specification of the
Composite pattern is the same as Leaves : P(classes). Applying the flatten operator on
Leaves, the Composite1 pattern can be equivalently expressed as follows.

Composite ⇓ Leaves\Leaf

As an immediate consequence of this definition, we have the following property. For
x1 �= x2 and x′

1 �= x′
2,

(P ⇓ x1\x′
1) ⇓ x2\x′

2 ≈ (P ⇓ x2\x′
2) ⇓ x1\x′

1. (5)

Therefore, we can overload the ⇓ operator to a set of component variables. Let X be a
subset of P ’s component variables all of power set type, that is, X = {x1 : P(T1), . . . , xn :
P(Tn)} ⊆ V ars(P), n ≥ 1 and X′ = {x′

1 : T1, . . . , x′
n : Tn} such that X′ ∩ V ars(P) = ∅. Then

we write P ⇓ X\X′ to denote P ⇓ x1\x′
1 ⇓ · · · ⇓ xn\x′

n.
Note that our pattern specifications are closed formulae, containing no free variables.

Although the names given to component variables greatly improve readability, they
have no effect on semantics so, in the sequel, we will often omit new variable names
and write simply P ⇓ x to represent P ⇓ x\x′. Also, we will use plural forms for the
names of lifted variables, for example, xs for the lifted form of x, and similarly for sets
of variables, for example, XS for the lifted form of X.

Definition 3.5 (Generalization Operator). Let P be a pattern, x : T be a variable in
V ars(P), and xs : P(T ) be a variable not in V ars(P). Then the generalization of P on
variable x, written P ⇑ x\xs, is defined as follows.

(1) V ars(P ⇑ x\xs) = (V ars(P) − {x : T }) ∪ {xs : P(T )};
(2) Pred(P ⇑ x\xs) = ∀x ∈ xs · Pred(P).
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Fig. 3. Specification of lifted object adapter pattern.

We will use the same syntactic sugar for ⇑ as we do for ⇓. In other words, we will
often omit the new variable name and write P ⇑ x, and thanks to an analog of Eq. (5),
we can and will promote the operator ⇑ to sets.

For example, by applying the generalization operator to Composite1 on the component
Leaf , we can obtain the pattern Composite. Formally,

Composite ≈ Composite1 ⇑ Leaf \Leaves.

A formal proof of the previous equation can be found in Section 5.1.
The lift operator was first introduced in our previous work [Bayley and Zhu 2008a].

Definition 3.6 (Lift Operator). Let P be a pattern and V ars(P) = {x1 : T1, . . . , xn :
Tn}, n > 0. Let X = {x1, . . . , xk}, 1 ≤ k < n, be a subset of V ars(P). The lifting of P with
X as the key, written P ↑ X, is the pattern defined as follows.

(1) V ars(P ↑ X) = {xs1 : PT1, . . . , xsn : PTn};
(2) Pred(P ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · Pred(P).

When the key set is singleton, we omit the set brackets for simplicity, so we write
P ↑ x instead of P ↑ {x}.

For example, Adapter ↑ T arget is the following pattern.

V ars(Adapter ↑ T arget) = {T argets, Adapters, Adaptees ⊆ classes}
Pred(Adapter ↑ T arget)
= ∀T arget ∈ T argets · ∃Adapter ∈ Adapter · ∃Adaptee ∈ Adaptees ·

Pred(Adapter).

Figure 3 spells out the components and predicates of the pattern.
Informally, lifting a pattern P results in a pattern P ′ that contains a number of

instances of P. For example, Adapter ↑ T arget is the pattern that contains a number
of T argets of adapted classes. Each of these has a dependent Adapter and Adaptee class
configured as in the original Adapter pattern. In other words, the component T arget
in the lifted pattern plays a role similar to a primary key in a relational database.

4. ALGEBRAIC LAWS OF THE OPERATIONS

This section studies the algebraic laws that the operators obey.

4.1. Laws of Restriction

The following are the basic algebraic laws that the restriction operator obeys.
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THEOREM 4.1. For all patterns P, predicates c, c1, and c2 such that vars(c), vars(c1),
and vars(c2) ⊆ V ars(P), the following equalities hold.

P[c1] � P[c2], i f c1 ⇒ c2 (6)
P[c1][c2] ≈ P[c1 ∧ c2] (7)

P[true] ≈ P (8)
P[ f alse] ≈ FALSE (9)

PROOF. Let P be any given pattern, and c1, c2 be any predicates such that vars(ci) ⊆
V ars(P), i = 1, 2.

For Law (6), by Definition 3.1, we have V ars(P[ci]) = V ars(P), and Pred(P[ci]) =
Pred(P) ∧ ci, for i = 1, 2. Assume that c1 ⇒ c2. Then, we have that

Pred(P[c1]) = Pred(P) ∧ c1

⇒ Pred(P) ∧ c2

= Pred(P[c2]).

So by Lemma 2.8, we have that P[c1] � P[c2].
Similarly, we can prove that

Pred(P[c1][c2]) ⇔ Pred(P[c1 ∧ c2],

and

Pred(P[true]) ⇔ Pred(P).

Thus, Laws (7) and (8) are true by Lemma 2.8.
Law (9) holds because Pred(P[ f alse]) = Pred(P) ∧ f alse, which cannot be satisfied

by any models.

From the preceding laws, we can prove that the following laws also hold.

COROLLARY 4.2. For all patterns P, predicates c, c1, and c2, we have that

P[c] � P (10)
P[c][c] ≈ P[c] (11)

P[c1][c2] ≈ P[c2][c1]. (12)

PROOF. Law (10) is the special case of (6) where c2 is true. That is, we have that

P[c] � P[true] 〈by Law (6)〉
≈ P 〈by Law (8)〉.

For Law (11), we have that c ∧ c ⇔ c. Thus, it follows from (7).
For Law (12), we have that

P[c1][c2] ≈ P[c1 ∧ c2] 〈by Law(7)〉
≈ P[c2 ∧ c1] 〈c1 ∧ c2 ⇔ c2 ∧ c1〉
≈ P[c2][c1] 〈by Law(7)〉.

4.2. Laws of Superposition

For the majority of laws like those on restriction operator, the variable sets on the two
sides of the law can be proven equal. Therefore, by Lemma 2.8, the proof of the law
reduces to the proof of the equivalence or implication between the predicates. However,
for some laws like those on the superposition operator, these variable sets are not equal.
In such cases, we use Lemma 2.7. The proof of the following theorem is an example of
such proofs.
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THEOREM 4.3. For all patterns P and Q, we have that

(P ∗ Q) � P (13)
Q � P ⇒ P ∗ Q ≈ Q. (14)

PROOF. Let P and Q be patterns with

V ars(P) ∩ V ars(Q) = ∅. (15)

Assume that

V ars(P) = {x1 : T1, . . . , xm : Tm},
V ars(Q) = {y1 : T ′

1, . . . , yn : T ′
n}.

Then, we have that

V ars(P ∗ Q) = {x1 : T1, . . . , xm : Tm, y1 : T ′
1, . . . , yn : T ′

n}.
For Law (13), we have that

Spec(P ∗ Q)
= ∃x1 : T1 · · · xm : Tm, y1 : T ′

1 · · · yn : T ′
n · (Pred(P) ∧ Pred(Q)) 〈by Def. 2.1〉

⇔ ∃x1 : T1 · · · xm : Tm · Pred(P) ∧ ∃y1 : T ′
1 · · · yn : T ′

n · Pred(Q) 〈by (15)〉
⇒ ∃x1, . . . , xm · Pred(P) 〈by logic〉
= Spec(P) 〈by Def. 2.1〉.

Thus, by Lemma 2.7, we have that (P ∗ Q) � P.
For Law (14), assume that Q � P. By Lemma 2.7(1), we have that

Spec(Q) ⇒ Spec(P). (16)

Therefore, we have that

Spec(P ∗ Q)
= ∃x1 : T1 · · · xm : Tm, y1 : T ′

1 · · · yn : T ′
n · (Pred(P) ∧ Pred(Q)) 〈by Def. 2.1〉

⇔ ∃x1 : T1 · · · xm : Tm · Pred(P) ∧ ∃y1 : T ′
1 · · · yn : T ′

n · Pred(Q) 〈by (15)〉
= Spec(P) ∧ Spec(Q) 〈by Def. 2.1〉
= Spec(Q) 〈by (16)〉.

That is, P ∗ Q ≈ Q.

From Theorem 4.3, we can prove that TRUE and FALSE patterns are the identity
and zero element of superposition operator, which is also idempotent.

COROLLARY 4.4. For all patterns P and Q, we have that

P ∗ TRUE ≈ P (17)
P ∗ FALSE ≈ FALSE (18)

P ∗ P ≈ P. (19)

PROOF. Law (17) follows from Law (14), since TRUE is top in � according to (4).
Law (18) also follows from Law (14), since FALSE is bottom in � according to (4).
Law (19) follows Law (14), since � is reflexive according to (3).

The following theorem proves that the superposition operator is commutative and
associative.
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THEOREM 4.5. For all patterns P, Q, and R, we have that

P ∗ Q ≈ Q∗ P (20)
(P ∗ Q) ∗ R ≈ P ∗ (Q∗ R). (21)

PROOF. The proofs of Laws (20) and (21) are very similar to the proof of Theorem 4.3.
Details are omitted for the sake of space.

4.3. Laws of Extension

From now on, the proofs of algebraic laws will be omitted unless it is not so obvious.

THEOREM 4.6. Let P and Q be any given patterns, X and Y be any sets of component
variables that are disjoint to V ars(P) and to each other, c1 and c2 be any given predicates
such that vars(c1) ⊆ V ars(P) ∪ X and vars(c2) ⊆ V ars(P) ∪ Y . The extension operation
has the following properties.

P#(X • c1) � P (22)
P#(X • c1) � Q#(X • c1), i f P � Q (23)
P#(X • c1) � P#(X • c2), i f c1 ⇒ c2 (24)

P ≈ TRUE#(V ars(P) • Pred(P)) (25)
P#(X • c1)#(Y • c2) ≈ P#(X ∪ Y • c1 ∧ c2) (26)
P#(X • c1)#(Y • c2) ≈ P#(Y • c2)#(X • c1) (27)

From Laws (25) and (26), we have the following.

COROLLARY 4.7. For all patterns P, we have the equality

P#(∅ • T rue) ≈ P, (28)

and for all sets X of variables,

P#(X • False) ≈ FALSE. (29)

4.4. Laws of Flattening and Generalization

We first generalize the definitions of flattening and generalization operators such that
for all patterns P,

P ⇑ ∅ ≈ P, (30)
P ⇓ ∅ ≈ P. (31)

We have the following laws for the flattening and generalization operators.

THEOREM 4.8. Let P be any given pattern, X, Y ⊆ V ars(P) and X ∩ Y = ∅. We have
that

(P ⇓ X) ⇓ Y ≈ (P ⇓ Y ) ⇓ X (32)
(P ⇓ X) ⇓ Y ≈ P ⇓ (X ∪ Y ) (33)
(P ⇑ X) ⇑ Y ≈ (P ⇑ Y ) ⇑ X (34)
(P ⇑ X) ⇑ Y ≈ P ⇑ (X ∪ Y ). (35)

We now study the algebraic laws that involve more than one operator.

4.5. Laws Connecting Superposition with Other Operators

The following theorem gives a law about restriction and superposition.

THEOREM 4.9. For all predicates c such that vars(c) ⊆ V ars(P), we have that

P[c] ∗ Q ≈ (P ∗ Q)[c]. (36)
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Note that an instantiation of a pattern can be represented as an expression that
uses only the restriction operator. Furthermore, when a pattern composition only has
one-to-one and many-to-many overlaps, the composition can be represented as an ex-
pression that only involves restriction and superposition operators. Such a composition
is called a pattern integration [Dong et al. 2011]. From Theorem 4.9, we can prove the
following law, which is equivalent to the commutability of instantiation and integration
of patterns [Dong et al. 2011].

COROLLARY 4.10 (COMMUTABILITY OF PATTERN INSTANTIATION AND INTEGRATION).
For all patterns P and Q, and all predicates CI such that vars(CI) ⊆ V ars(P) and

predicate CC such that vars(CC) ⊆ V ars(P) ∪ V ars(Q), we have that

(P[CI] ∗ Q)[CC] ≈ (P ∗ Q)[CC][CI].

PROOF.

(P[CI] ∗ Q)[CC] ≈ ((P ∗ Q)[CI])[CC] 〈by Law (36)〉
≈ (P ∗ Q)[CC][CI] 〈by Law (12)〉

Since one interpretation of P[CI] is as the instantiation of pattern P with restriction
CI , and integration is superposition followed by restriction, the corollary states that
if we first instantiate a pattern, and then integrate it with another pattern, then that
is equal to integrating the patterns first and then instantiating them. In other words,
the instantiation and integration are commutable if the restriction and superposition
operators are applied properly.

In the same way, the following theorems state the commutability of generalization/
flattening with superposition. They can be used to prove the commutabilities of various
pattern compositions that involve one-to-many overlaps.

THEOREM 4.11. For all X ⊆ V ars(P), we have that

(P ⇑ X) ∗ Q ≈ (P ∗ Q) ⇑ X, (37)
(P ⇓ X) ∗ Q ≈ (P ∗ Q) ⇓ X. (38)

PROOF. For the sake of simplicity, we give the proof for the case when X is a singleton;
that is, X = {x}. The general case can be proved by induction on the size of X.

For Eq. (37), assume that V ars(P) ∩ V ars(Q) = ∅ and xs �∈ V ars(P) ∪ V ars(Q). By
the definitions of the ∗ and ⇑ operators, we have that

V ars((P ⇑ x\xs) ∗ Q)
= V ars(P ⇑ x\xs) ∪ V ars(Q) 〈by Def. 3.2〉
= ((V ars(P) − {x : T }) ∪ {xs : P(T )}) ∪ V ars(Q) 〈by Def. 3.5〉
= (V ars(P) ∪ V ars(Q)) − {x : T } ∪ {xs : P(T )} 〈by set theory〉
= V ars((P ∗ Q) ⇑ x\xs) 〈by Def. 3.2 and 3.5〉

and

Pred((P ⇑ X) ∗ Q)
= Pred(P ⇑ X) ∧ Pred(Q) 〈by Def. 3.2〉
= (∀x ∈ xs · Pred(P)) ∧ Pred(Q) 〈by Def. 3.5〉
⇔ ∀x ∈ xs · (Pred(P) ∧ Pred(Q)) 〈by f irst order logic〉
= Pred((P ∗ Q) ⇑ x\xs) 〈by Def. 3.2 and 3.5〉.

Therefore, by Lemma 2.8, Eq. (37) holds.
The proof of Eq. (38) is very similar to the preceding. It is omitted for the sake of

space.
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Combining the aforesaid laws with the laws about generalization and flattening, we
have the following corollary.

COROLLARY 4.12. Let P and Q be any patterns, and X ⊆ V ars(P) ∪ V ars(Q). The
following equations hold.

(P ∗ Q) ⇑ X ≈ (P ⇑ XP) ∗ (Q ⇑ XQ), (39)
(P ∗ Q) ⇓ X ≈ (P ⇓ XP) ∗ (Q ⇓ XQ), (40)

where XP = X ∩ V ars(P), XQ = X ∩ V ars(Q).

PROOF. By the definition of operator ∗, we have that V ars(P) ∩ V ars(Q) = ∅. Thus,
XP ∩ XQ = ∅. Note that X = XP ∪ XQ. Therefore, for Law (39) we have that

(P ∗ Q) ⇑ X ≈ (P ∗ Q) ⇑ (XP ∪ XQ)
≈ (P ∗ Q) ⇑ XP ⇑ XQ 〈by Law (35)〉
≈ ((P ⇑ XP) ∗ Q) ⇑ XQ 〈by Law (37)〉
≈ (P ⇑ XP) ∗ (Q ⇑ XQ) 〈by Law (37)〉.

For Law (40), the proof is similar to the proof of Law (39), but using Law (38) rather
than (37).

To prove the commutability between lifting and superposition, we first introduce a
new notation.

Let X = {x1 : T1, . . . , xn : Tn}. We write X↑ to denote the set {xs1 : P(T1), . . . , xsn :
P(Tn)}.

THEOREM 4.13. Let X ⊆ V ars(P), we have that

(P ↑ X) ∗ Q ≈ ((P ∗ Q) ↑ X) ⇓ V ars(Q)↑. (41)

PROOF. Let VP = V ars(P) = {x1 : T1, . . . , xn : Tn}, X = {x1 : T1, . . . , xk : Tk}, 1 ≤ k < n,
VQ = V ars(Q) = {y1 : R1, . . . , ym : Rm}.

By the definitions of ∗ and ↑, we have that

V ars((P ↑ X) ∗ Q) = V ars(P ↑ X) ∪ V ars(Q) = V ↑
P ∪ VQ (42)

V ars((P ∗ Q) ↑ X) = (VP ∪ VQ)↑) = V ↑
P ∪ V ↑

Q. (43)

Therefore, we have that

V ars((P ∗ Q) ↑ X) ⇓ V ars(Q)↑)
= (V ars((P ∗ Q) ↑ X) − V ars(Q)↑) ∪ V ars(Q), 〈by Def. 3.4〉
= (V ↑

P ∪ V ↑
Q − V ↑

Q) ∪ V ars(Q), 〈by (43)〉
= V ↑

P ∪ V ars(Q), 〈by VP ∩ VQ = ∅〉
= V ars((P ↑ X) ∗ Q). 〈by(42)〉.

By the definitions of ∗ and ↑, we also have that

Pred((P ↑ X) ∗ Q) = Pred(P ↑ X) ∧ Pred(Q)
= (∀x1 ∈ xs1 · · · ∀xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · Pred(P)) ∧ Pred(Q)
⇔ ∀x1 ∈ xs1 · · · xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · (Pred(P) ∧ Pred(Q)).

Similarly, we have

Pred((P ∗ Q) ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk·
∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · ∃y1 ∈ ys1 · · · ∃ym ∈ ysm · (Pred(P) ∧ Pred(Q)).
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By the definition of ⇓, we have that

Pred((P ∗ Q) ↑ X) ⇓ V ars(Q)↑) = Pred(P ∗ Q) ↑ X)[ys1\{y′
1}, . . . ysm\{y′

m}]
⇔ ∀x1 ∈ xs1 · · · xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn ·

∃y1 ∈ {y′
1} · · · ∃ym ∈ {y′

m} · (Pred(P) ∧ Pred(Q))
⇔ ∀x1 ∈ xs1 · · · xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn ·

(Pred(P) ∧ ∃y1 ∈ {y′
1} · · · ∃ym ∈ {y′

m} · Pred(Q))
⇔ ∀x1 ∈ xs1 · · · xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · (Pred(P) ∧ Pred(Q))
= Pred((P ↑ X) ∗ Q).

Therefore, by Lemma 2.8, the theorem is true.

4.6. Laws Connecting Generalization, Flattening and Lifting

Generalization, flattening, and lifting are the three operators that change the structure
of the pattern. They are connected to each other by the following algebraic laws.

THEOREM 4.14. For all patterns P, all sets of variables X, Y ⊆ V ars(P) and X′ ∩
V ars(P) = ∅, we have that

P ⇑ X ≈ (P ↑ X) ⇓ (V − X↑) (44)
(P ⇑ X\X′) ⇓ (X′\X) ≈ P (45)
(P ⇓ X\X′) ⇑ X′\X) ≈ P (46)
(P ↑ x) ⇓ V ≈ P, (47)

where V = V ars(P ↑ X).

4.7. Laws Connecting Restriction to Generalization, Flattening and Lifting

THEOREM 4.15. Let P be any given pattern, c(x1, . . . , xk) be any given predicate such
that: vars(c) = {x1 : T1, . . . , xk : Tk} ⊆ V ars(P). Let X ⊆ V ars(P) be a set of variables
such that:

(1) vars(c) ∩ X = {x1, . . . , xm}, m ≤ k;
(2) X − vars(c) = {y1, . . . , yu}; and
(3) V ars(P) − (X ∪ vars(c)) = {z1, . . . , zv}.
We have that

P[c] ⇑ X ≈ (P ⇑ X)[c⇑] (48)
P[c] ↑ X ≈ (P ↑ X)[c↑] (49)
P[c] ⇓ X ≈ (P ⇓ X)[c⇓] (50)

where
c⇑ = ∀x1 ∈ xs1, . . . ,∀xm ∈ xsm · c, and {xs1 : P(T1), . . . , xs : P(Tm)};
c⇓ = c({x′

1}, . . . , {x′
m}, xm+1, . . . , xk), x′

i : T ′
i and Ti = P(T ′

i ) for i = 1, . . . , m;

c↑ = ∀x1 ∈ xs1 · · · ∀xn ∈ xsm · ∀y1 ∈ ys1 · · · ∀yu ∈ ysu ·
∃xm+1 ∈ xsn+1 · · · ∃xn ∈ xsn · ∃z1 ∈ zs · · · zv ∈ zsv · (Pred(P) ∧ c).

The proof of the theorem is very similar to the proof of Theorem 4.13, but lengthy
and tedious. Thus, it is omitted for the sake of space.

COROLLARY 4.16. Let P be any given pattern, X, Y ⊆ V ars(P), X ∩ Y = ∅, and c be
any predicate such that vars(c) ⊆ X ∪ Y . We have that

((P[c] ↑ X) ⇓ Y ↑) ≈ ((P ↑ X) ⇓ Y ↑)[c′], (51)
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where
c′ = ∀x1 ∈ xs1, . . . ,∀xm ∈ xsm · c,
vars(c) ∩ X = {x1 : T1, . . . , xm : Tm}, and xsi : P(Ti) for i = 1 · · · m.

PROOF. By Law (49), we have that

(P[c] ↑ X) ≈ (P ↑ X)[c↑]

where
c↑ = ∀x1 ∈ xs1 · · · ∀xn ∈ xsn∀y1 ∈ ys1 · · · ∀yu ∈ ysu·

∃xm+1 ∈ xsn+1 · · · ∃xn ∈ xsn∃z1 ∈ zs · · · zv ∈ zsv · (Pred(P) ∧ c).
Because vars(c) ⊆ X ∪ Y and X ∩ Y = ∅, and by Law (50), we have that

(P ↑ X)[c↑] ⇓ Y ≈ ((P ↑ X) ⇓ Y )[(c↑)⇓)]

where, assuming that Y = {yu′+1, . . . , yu} ∪ {xm+1, . . . , xn} ∪ {zv′+1, . . . , zv}, we have

(c↑)⇓ = ∀x1 ∈ xs1 · · · ∀xn ∈ xsm ·
∀y1 ∈ ys1 · · · ∀yu′ ∈ ysu′ ·
∀yu′+1 ∈ {yu′+1} · · · ∀yu ∈ {yu} ·
∃xm+1 ∈ {xm+1} · · · ∃xn ∈ {xn} ·
∃z1 ∈ zs1 · · · zv′ ∈ zsv′ ·
∃zv′+1 ∈ {zv′+1} · · · ∃zv ∈ {zv} · (Pred(P) ∧ c)

= ∀x1 ∈ xs1 · · · ∀xn ∈ xsm ·
∀y1 ∈ ys1 · · · ∀yu′ ∈ ysu′ ·
∃z1 ∈ zs1 · · · zv′ ∈ zsv′ · (Pred(P) ∧ c).

Because vars(c) ∩ {y1, . . . , yu′ , z1, . . . zv′ } = ∅, the preceding predicate is equivalent to

∀x1 ∈ xs1 · · · ∀xn ∈ xsm · c ∧
∀x1 ∈ xs1 · · · ∀xn ∈ xsm ·
∀y1 ∈ ys1 · · · ∀yu′ ∈ ysu′ ·
∃z1 ∈ zs1 · · · zv′ ∈ zsv′ · Pred(P).

By definition of lifting and flattening, we have that

Pred(P ↑ X ⇓ Y ) = ∀x1 ∈ xs1 · · · ∀xn ∈ xsm ·
∀y1 ∈ ys1 · · · ∀yu′ ∈ ysu′ ·
∃z1 ∈ zs1 · · · ∃zv′ ∈ zsv′ · (Pred(P)).

Therefore, (P ↑ X ⇓ Y )[(c↑)⇓] ≈ (P ↑ X ⇓ Y )[c′]. The theorem is true.

4.8. Laws Connecting Extension to the Other Operators

The following theorem gives the algebraic laws that relate the extension operators to
the others.

THEOREM 4.17 (LAWS OF EXTENSION OPERATOR). Let P and Q be any given patterns,
X = {x1 : T1, . . . , xk : Tk} be any given set of variables such that X ∩ V ars(P) = ∅, and
c be any given predicate with free variables in (V ars(P) ∪ X). The following equations
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hold.2

P#(X • c) ≈ P[∃X · c] (52)
P ⇓ (xs\x) ≈ P#({x : T } • (xs = {x}), where xs : P(T ) ∈ V ars(P) (53)

P ⇑ x\xs ≈ P#({xs : P(T )} • (∀x ∈ xs · Pred(P)) ∧ x ∈ xs),
where x : T ∈ V ars(P) (54)

P[c] ≈ P#(∅ • c) (55)
P ≈ TRUE#(V ars(P) • Pred(P)) (56)

P ∗ Q ≈ P#(V ars(Q) • Pred(Q)) (57)
P ↑ X ≈ P#(V ars(P ↑ X) • Pred(P ↑ X)) (58)

PROOF. For the sake of space, we prove only the first three equations. The proofs for
the other equations are very similar and are thus omitted.

For Law (52), by the definitions of the extension operator and the restriction operator,
we have that

Spec(P#(X • c)) = ∃(V ars(P) ∪ X) · (Pred(P) ∧ c)
⇔ ∃V ars(P) · (Pred(P) ∧ (∃X · c))
⇔ Spec(P[∃X · c]).

For Law (53), let V ars(P) = {x : P(T ), x1 : T1, . . . , xn : Tn} and Pred(P) =
p(x, x1, . . . , xn). By the definitions of the extension operator and the flatten operator, we
have that

Spec(P ⇓ (xs\x))
= ∃x : T · ∃x1 : T1 · · · ∃xn : Tn · p({x}, x1, . . . , xn)
⇔ ∃xs : P(T ) · ∃x1 : T1 · · · ∃xn : Tn · (p(xs, x1, . . . , xn) ∧ ∃x : T · (xs = {x}))
⇔ Spec(P#({x : T } • (xs = {x}))).

For Law (54), let V ars(P) = {x : T , x1 : T1, . . . , xn : Tn}. By the definitions of extension
operator and the generalization operator, we have that

Spec(P ⇑ x\xs)
= ∃xs : P(T ) · ∃x1 : T1 · · · ∃xn : Tn · (∀x ∈ xs · Pred(P))
⇔ ∃x1 : T1 · · · ∃xn : Tn · ∃xs : P(T ) · (∀x ∈ xs · Pred(P))
⇔ ∃x : T · ∃x1 : T1 · · · ∃xn : Tn · (Pred(P) ∧ ∃xs : P(T ) · (∀x ∈ xs · Pred(P)))
⇔ Spec(P#{xs : P(T )} • ∀x ∈ xs · Pred(P)).

For example, from the equations given earlier, we can prove that the following equa-
tions hold.

COROLLARY 4.18.
P#(X • c1 ∧ c2) ≈ P#(X • c1)[c2] (59)

P#(X • c) ≈ P#(X • true)[c] (60)

PROOF. For Law (59), we have that
P#(X • c1)[c2] ≈ P#(X • c1)#(∅ • c2), 〈by(55)〉

≈ P#(X ∪ ∅ • c1 ∧ c2), 〈by(27)〉
≈ P#(X • (c1 ∧ c2).

For Law (60), it is a special case of Law (59) with c1 = true.

2Notation: For the sake of space, here we write ∃X · c to denote ∃x1 : T1 · · · ∃xk : Tk · c.
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5. PROVING THE EQUALITY OF PATTERN COMPOSITIONS: EXAMPLES

In the previous section, we have already used algebraic laws to prove many equations of
pattern composition expressions. In this section, we further demonstrate the use of the
laws to prove the equivalence of pattern compositions with real examples of patterns.

5.1. Different Definitions of the Composite Pattern

In Section 3, we have seen a number of definitions of the Composite and Composite1
patterns. They are as follows.

Composite1 � Composite[||Leaves|| = 1] (61)

Composite1 � Composite ⇓ Leaves\Leaf (62)
Composite ≈ Composite1 ⇑ Leaf \Leaves (63)

We now first prove that these two definitions of the Composite1 pattern are equiva-
lent. That is, the following equation is true.

Composite[||Leaves|| = 1] ≈ Composite ⇓ Leaves\Leaf.

PROOF.

Composite ⇓ Leaves\Leaf
≈ Composite#({Leaf : class)} • Leaves = {Leaf }), 〈by Law(53)〉
≈ Composite[∃Leaf : class · (Leaves = {Leaf })], 〈by Law(52)〉

≈ Composite[||Leaves|| = 1]. 〈by set theory〉
We can also prove that Eq. (63) holds when the definition of Composite1 in Eq. (62)

is substituted into the right-hand side of Eq. (63). That is,

Composite ≈ (Composite ⇓ Leaves\Leaf ) ⇑ Leaf \Leaves.

This is quite trivial because it follows from Law (46) immediately.
Similarly, by substituting the definition of Composite into Eq. (62), we can see that

the following is also true.

Composite1 ≈ (Composite1 ⇑ Leaf \Leaves) ⇓ Leaves\Leaf.

This follows Law (45) immediately.

5.2. Composition of Composite and Adapter

In this subsection, we consider two different ways in which the Composite and Adapter
patterns can be composed and then prove that the two compositions are equivalent.

A. First composition
We first consider the composition of Composite and Adapter in such a way that one

of the Leaves in the Composite pattern is the T arget in the Adapter pattern. This leaf
is renamed as the AdaptedLeaf . The definition for the composition using the operators
is as follows.

OneAdaptedLeaf �
(Adapter ∗ Composite)[T arget ∈ Leaves][T arget\AdaptedLeaf ]

Then, we lift the adapted leaf to enable several of these Leaves to be adapted. That
is, we lift the OneAdaptedLeaf pattern with AdaptedLeaf as the key and then flatten
those components in the composite part of the pattern (i.e., the components in the
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Fig. 4. Specification of composition of composite and adapter patterns.

Composite pattern remain unchanged). Formally, this is defined as follows.

(OneAdaptedLeaf ↑ (AdaptedLeaf \AdaptedLeaves))
⇓ {Composites, Components, Leaveses} (64)

By the definitions of the operators, we derive the predicates of the pattern in the
specification given in Figure 4, after some simplification of the first-order logic.

B. Second composition
An alternative way of expressing the composition is first to lift the Adapter with

T arget as the key and then to superposition it to the Composite patterns so that many
leaves can be adapted. This approach is illustrated in Figure 5. Formally,

ManyAdaptedLeaves �
(((Adapter ↑ (T arget\T argets)) ∗ Composite)[T argets ⊆ Leaves]

[T argets\AdaptedLeaves].

C. Proof of equivalence
We now apply the algebraic laws to prove that expression (64) is equivalent to the

definition of ManyAdaptedLeaves.
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First, by (41), we can rewrite ManyAdaptedLeaves to the following expression, where
VC = {Composites, Components, Leaveses}.

((Adapter ∗ Composite) ↑ (T arget\T argets) ⇓ VC

[T argets ⊆ Leaves][T argets\AdaptedLeaves] (65)

Because Leaveses is in VC and T argets ⊆ Leaves is equivalent to

∀T arget ∈ T argets · (T arget ∈ Leaves),

by (51), we have that

((Adapter ∗ Composite) ↑ (T arget\T argets) ⇓ VC)[T argets ⊆ Leaves] (66)
≈ ((Adapter ∗ Composite)[T arget ∈ Leaves]) ↑ (T arget\T argets) ⇓ VC .

Now, renaming T arget to AdaptedLeaf and T argets to AdaptedLeaves in expression
on the right hand side of (66), we have the following.

((Adapter ∗ Composite)[T arget ∈ Leaves][T arget\AdaptedLeaf ])
↑ (AdaptedLeaf \AdaptedLeaves) ⇓ VC (67)

By substituting the definition of OneAdaptedLeaf into (67), we obtain (64).

6. THE COMPLETENESS OF THE ALGEBRAIC LAWS

This section addresses the completeness question about the set of laws given in Section
4. In particular, given two equivalent pattern expressions, is it always possible to
transform one pattern expression to another by applying the algebraic laws?

In general, a set of algebraic laws is complete if they satisfy the following four
conditions.

(1) Every expression can be transformed into a canonical form by applying the algebraic
laws as rewriting rules.

(2) The process of transformation always terminates within a finite number of steps.
(3) The canonical form of an expression is unique subject to certain equivalence rela-

tion.
(4) Any two expressions are equivalent if and only if their canonical forms are equiva-

lent and the equivalence between the canonical forms can be determined by certain
mechanism.

If a set of algebraic laws satisfies these conditions, one can always transform two
expressions into their canonical forms by applying the algebraic laws as rewriting rules
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and then determine the equivalence between them by checking if their canonical forms
are equivalent.

Here, a pattern expression is constructed by applying the operators to specific design
patterns. Formally, let E(�1, . . . , �k), k ≥ 0, be a pattern expression that contains
variables �1, . . . , �k that range over patterns, and P1, . . . , Pk be specific design patterns.
We write E(P1, . . . , Pk) to represent the pattern obtained by replacing �n with Pn in
E(�1, . . . , �k) for n ∈ {1, . . . , k}, if it is syntactically valid.

Definition 6.1 (Equivalence of Pattern Expressions). Let E1(�1, . . . , �k) and E2(�1,
. . . , �k), k ≥ 0, be two pattern expressions that contain variables �1, . . . , �k that range
over patterns. E1 is equivalent to E2, written E1 ≈ E2, if for all specific patterns
P1, . . . , Pk, we have that for all valid models m,

m |= E1(P1, . . . , Pk) ⇔ m |= E2(P1, . . . , Pk).

6.1. Canonical Form

To prove the completeness of the algebraic laws, we first prove the following lemma,
stating that pattern expressions have canonical forms.

LEMMA 6.2 (CANONICAL FORM LEMMA). For all pattern expressions E, we can always
transform it, by applying the algebraic laws for a finite number of times, into the form

TRUE#(V • c),

where V is a set of variables and c is a predicate on those variables.

Informally, the canonical form of a pattern expression can be obtained by repeated
applications of the laws of extension given in Section 4 and the laws that connect exten-
sion with the other operators, that is, Laws (53)–(60). Each left-to-right application of
laws (53)–(58) will reduce the number of non-extension operators in the expression by
one, eventually reaching zero. An expression that contains multiple uses of the exten-
sion operator can then always be reduced to one by applying the laws of extensions and
Eqs. (59) and (60). Eventually, it will reduce to the canonical form. A formal inductive
proof of the lemma follows.

PROOF. Let E be any given pattern expression. We now prove by induction on the
number n of applications of operators that E contains.

(a) Base: When the number n of operators in E equals 0, that is, E contains no pattern
operator, E is either a variable that ranges over patterns or a constant (i.e., a given
pattern), such as Composite, Adapter, etc. In both cases, by Law (56), we have that

E = TRUE#(V ars(E) • Pred(E)).

Thus, the Lemma is true for the base case n = 0.
(b) Induction Hypothesis: Assume that for all n ≤ N the lemma is true, where N ≥ 0.
(c) Induction: We now prove that for all pattern expressions E that contains N + 1

applications of the operators, the lemma is also true. We have six cases, according to
which operator is applied at the top level.

Case ∗: Suppose E = E1 ∗ E2 for some pattern expressions E1 and E2, where
the numbers of applications of the operators in E1 and E2 must be less than the
number of applications of the operators in E. By the induction hypothesis, we have
that both E1 and E2 can be transformed into the form TRUE#(V • c) by apply-
ing the algebraic laws. Let Ei be transformed into TRUE#(Vi • ci), i = 1, 2. Then,
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we have that

E ≈ TRUE#(V1 • c1) ∗ TRUE#(V2 • c2) 〈by induction hypothesis〉
≈ TRUE[∃V1 · c1] ∗ TRUE[∃V2 · c2] 〈by Law (52)〉
≈ (TRUE ∗ TRUE)[∃V1 · c1][∃V2 · c2] 〈by T heorem 4.9〉
≈ TRUE[∃V1 · c1][∃V2 · c2] 〈by Law(17)〉
≈ TRUE[(∃V1 · c1) ∧ (∃V2 · c2)] 〈by Law (7)〉
≈ TRUE[∃V1 · ∃V2 · (c1 ∧ c2)] 〈V1 ∩ V2 = ∅, by Def. 3.2〉
≈ TRUE[∃(V1 ∪ V2) · (c1 ∧ c2)] 〈by logic〉
≈ TRUE#((V1 ∪ V2) • (c1 ∧ c2)) 〈by Law (52)〉.

Therefore, the lemma is true in this case.
Case [−]: Suppose that E = E′[c] for some pattern expression E′ and predicate c,

where the number of operator applications contained in E′ must be N. Thus, by the
induction hypothesis, we have that E′ can be transformed into the canonical form by
applying the algebraic laws, that is, E′ ≈ TRUE#(V ′ • c′). Then, we have that

E = E′[c]
≈ TRUE#(V ′ • c′)[c] 〈by induction hypothesis〉
≈ TRUE#(V ′ • c′ ∧ c) 〈by Law (59)〉.

Therefore, the lemma is true in this case.
Case ⇑: Suppose that E = E′ ⇑ X\XS for some pattern expression E′ and X ⊆

V ars(E′), where the number of operator applications contained in E′ must be N. Thus,
by the induction hypothesis, we have that E′ can be transformed into the canonical form
by applying the algebraic laws, that is, E′ ≈ TRUE#(V ′ •c′). Let X = {x1 : T1, . . . xk : Tk}
and XS = {xs1 : P(T1), . . . , xsk : P(Tk)}. Then, we have that

E = E′ ⇑ X\XS
≈ TRUE#(V ′ • c′) ⇑ X\XS 〈hypothesis〉
≈ TRUE#(V ′ • c′)#(XS • ∀x1 ∈ xs1 · · · xk ∈ xsk · c′) 〈by Law (54)〉
≈ TRUE#(V ′ ∪ XS • c′ ∧ ∀x1 ∈ xs1 · · · xk ∈ xsk · c′) 〈by Law (26)〉.

Therefore, the lemma is true in this case.
Case ⇓: Suppose that E = E′ ⇓ XS\X for some pattern expression E′ and XS ⊆

V ars(E′), where the number of applications of the operators contained in E′ must
be N. Thus, by the induction hypothesis, we have that E′ can be transformed into
the canonical form by applying the algebraic laws, that is, E′ ≈ TRUE#(V ′ • c′). Let
XS = {XS1 : P(T1), . . . , xsk : P(Tk)} and X = {x1 : T1, . . . xk : Tk}. Then, we have that

E = E′ ⇓ XS\X
≈ TRUE#(V ′ • c′) ⇓ XS\X 〈hypothesis〉
≈ TRUE#(V ′ • c′)#(X • xs1 = {x1} ∧ · · · ∧ xsk = {xk}) 〈by Law (53)〉
≈ TRUE#(V ′ ∪ X • c′ ∧ (xs1 = {x1} ∧ · · · xsk = {xk})) 〈by Law (26)〉.

Therefore, the lemma is true in this case.
Case ↑: Suppose that E = E′ ↑ X\XS for some pattern expression E′ and X ⊆

V ars(E′), where the number of applications of the operators contained in E′ must
be N. Thus, by the induction hypothesis, we have that E′ can be transformed into
the canonical form by applying the algebraic laws, that is, E′ ≈ TRUE#(V ′ • c′). Let
V ′ = {x1 : T1, . . . , xn : Tn} and X = {x1 : T1, . . . xk : Tk}, where 0 < k ≤ n. Then,
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we have that

E = E′ ↑ X\XS
≈ TRUE#(V ′ • c′) ↑ X\XS 〈hypothesis〉
≈ TRUE#(V ′ • c′)#(V ′↑ • c′′) 〈by Law (58)〉
≈ TRUE#(V ′ ∪ V ′↑ • c′ ∧ c′′) 〈by Law (26)〉.

where c′′ = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · c′. Therefore, the lemma
is true in this case.

Case #: Suppose that E = E′#(V •c) for some pattern expression E′ and V �⊆ V ars(E′)
and predicate c, where the number of applications of the operators contained in E′ must
be N. Thus, by the induction hypothesis, we have that E′ can be transformed into the
canonical form by applying the algebraic laws, that is, E′ ≈ TRUE#(V ′ • c′). Then, we
have that

E = E′#(V • c)
≈ TRUE#(V ′ • c′)#(V • c) 〈hypothesis〉
≈ TRUE#(V ∪ V ′ • (c ∧ c′)) 〈by Law (26)〉.

Therefore, the lemma is also true in this case.
Since the six cases cover all possible forms of pattern expressions, the lemma is true

for all expressions that contain N + 1 applications of the operators. Consequently, by
the induction proof principle, the lemma is true for every expression that contains a
finite number of operator applications.

6.2. The Completeness Theorem

We can now prove the following uniqueness property of the canonical forms of pattern
expressions.

THEOREM 6.3 (COMPLETENESS OF THE ALGEBRAIC LAWS). Let E1 and E2 be any two given
pattern expressions, with canonical forms TRUE#(V1 • c1) and TRUE#(V2 • c2), respec-
tively. Pattern expressions E1 ≈ E2 if and only if ∃V1 · c1 ⇔ ∃V2 · c2.

PROOF. Let E1 ≈ E2. By Lemma 6.2, both E1 and E2 can always be transformed into
canonical form, say,

E1 ≈ TRUE#(V1 • Pr1),
E2 ≈ TRUE#(V2 • Pr2).

Then, by Law (52), we have that

E1 ≈ TRUE[∃V1 · Pr1],
E2 ≈ TRUE[∃V2 · Pr2].

By Definition 2.2, we have that for all models m, m |= Ei if and only if m |= ∃Vi · Pri, for
i = 1, 2. Therefore, E1 ≈ E2 if and only if ∃V1 · Pr1 ⇔ ∃V2 · Pr2.

The previous theorem and the lemma prove that the algebraic laws are complete in
sense outlined at the start of this section.

(1) In Lemma 6.2, we have proved that for every pattern expression E, we can trans-
form it into a canonical form TRUE#(V • c).

(2) The proof of Lemma 6.2 shows that the canonical transformation process always
terminates within a finite number of steps.

(3) Given a canonical form TRUE#(V • c), we call the logic formula ∃V · c the logic
representation of the canonical form. Theorem 6.3 proves that the canonical form
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≈ ≈

Fig. 6. Illustration of the proof of completeness theorem.

of a pattern expression is always unique subject to logic equivalence between the
logic representation of the canonical form.

(4) Theorem 6.3 also shows that the mechanism to determine the equivalence of the
canonical forms is logic inference in first-order logic and set theory.

Theorem 6.3 and Lemma 6.2 also suggest a general process for proving the equiva-
lence between two pattern expressions. As illustrated in Figure 6, pattern expressions
E1 and E2 are transformed to their canonical forms by applying the algebraic laws sep-
arately. Then, the equivalence between them is proved by logic inference in first-order
predicate logic and set theory to determine whether the logic representations of their
canonical forms are logically equivalent.

The following example demonstrates how to prove the equivalence of two pattern
expressions using this process. It also shows that it is sometimes impossible to avoid
relying on set theory and first-order logic to determine the equivalence between two
pattern expressions.

Example 6.4. We prove that the following equation holds for all patterns P and all
variables X : P(T ) in V ars(P).

P[‖X‖ = 1] ≈ P ⇓ X

PROOF. For the left-hand side of the equation, we have that

P[‖X‖ = 1] ≈ TRUE#(V ars(P) • Pred(P))[‖X‖ = 1] 〈by Law (56)〉
≈ TRUE#(V ars(P) • (Pred(P) ∧ (‖X‖ = 1))) 〈by Law (59)〉.

For the right-hand side, we have that

P ⇓ X ≈ P#({x : T } • X = {x}) 〈by Law (53)〉
≈ P[∃x : T · (X = {x})] 〈by Law (52)〉
≈ TRUE#(V ars(P) • Pred(P))[∃x : T · (X = {x})] 〈by Law (56)〉
≈ TRUE#(V ars(P) • (Pred(P) ∧ ∃x : T · (X = {x}))) 〈by Law (59)〉.

Because, in formal predicate logic and set theory, we can prove that

‖X‖ = 1 ⇔ ∃x : T · (X = {x}),
we have that the equation holds for all patterns P.

7. CASE STUDY: DESIGN OF A REQUEST-HANDLING FRAMEWORK

In this section, we present an application of the formal algebra to the development of
an extensible request-handling framework through pattern composition. The original
experiment was reported by Buschmann et al. [2007a]. Here, we demonstrate, first,
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how to represent design decisions as pattern expressions, then how to validate and
verify the correct usage of patterns in a manually prepared design, and finally, how to
formally derive a design from the design decisions taken.

7.1. Formal Representation of Design Decisions

Buschmann et al. [2007a] derived the formulation of a request-handling framework
from a sequence of design decisions concerning the selection and composition of
patterns. The first design problem in this process was to design the structure of
the framework in such a way that the requests issued by clients can be objectified.
The Command pattern was applied to address this problem. In particular, an abstract
class Command declares a set of abstract methods to execute client requests, and a set
of ConcreteCommand classes derived from the Command class implements the con-
crete commands that applications handle. Figure 7 shows the structure of the Command
pattern.

When a client issues a specific request, it instantiates a corresponding ConcreteCom-
mand object and invokes one of its methods inherited from the abstract Command class.
The ConcreteCommand object then performs the requested operation on the applica-
tion and returns the results, if any, to the client. This is a simplified version of the
general Command pattern that makes the Client also be the Invoker. This design deci-
sion can be formally represented as an expression in our operators on design patterns
as follows.

RHF1 � Command[Invoker = Client, Receiver\Application]

To coordinate independent requests from multiple clients, the CommandProcessor
pattern shown in Figure 8 is composed with the Command pattern. This composition
of patterns can be formally expressed as follows.

RHF2 � RHF1 ∗ CommandProcessor
[Command = Component ∧ Client = CommandProcessor]

To support the undoing of actions performed in response to requests, the Memento
pattern was further composed with the design, since that is a common usage of the
pattern. The structure of the Memento pattern is shown in Figure 9. Copies of the state
of the application are created by the Originator as instances of the Memento class. The
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Fig. 9. Structure of memento pattern.
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Caretaker maintains the copies by holding the copies over time, and if required, passes
them back to the Originator.

In the request-handling framework, the originator is the application, whose states
are stored in a new component that plays the role of Memento in the Memento pattern.
Conceptually, the command is the caretaker that creates mementos before executing
a request, maintains these mementos, and when necessary passes them back to the
application so that the concrete commands can be rolled back when an undo operation
is invoked. However, an alternative design decision is to include a separate caretaker
class and connect it to the Command class so that every ConcreteCommand object can
use an instance of the caretaker class to create, maintain, and restore an instance of
the Memento class. That design decision can be represented formally as follows.

RHF3 � RHF2 ∗ Memento
[Originator = Application, Command −→ Caretaker]

A further item of functionality required for the request-handling framework is a
mechanism for logging requests. Different users may want to log the requests differ-
ently; some may want to log every request, some may want to log just one particular
type of requests, and yet more may not want to log any request at all. The design
problem is to satisfy all the different logging needs of different users in a flexible and
efficient manner. The solution is to apply the Strategy pattern, which is depicted in
Figure 10.

The Strategy pattern was applied as follows: the CommandProcessor passes the
ConcreteCommand objects it receives to a LoggingContext object that plays the Con-
text role in Strategy. This object implements the invariant parts of the logging service
and delegates the computation of customer-specific logging aspects to the ConcreteLog-
gingStrategy object, which plays the role of ConcreteStrategy in the Strategy pattern.
An abstract class Logging offers a common protocol for all ConcreteLoggingStrategy
classes so that they can be exchanged without modifying LoggingContext. This design
can be represented formally as follows.

RHF4 � RHF3 ∗ Strategy
[Context\LoggingContext, Strategy\Logging,

ConcreteStrategies\ConcreteLoggingStrategies]
[CommandProcessor −→ LoggingContext]
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Fig. 11. Original design of the request-handling framework.

The final step of the design process is to support compound commands. A Con-
creteCommand object may be an aggregate of other ConcreteCommand objects that
are executed in a particular order. The design pattern that provides this structure
is Composite. Compound commands can be represented as the composite objects and
atomic commands as leaf objects. Thus, we have the following formal expression of the
design.

RHF5 � RHF4 ∗ Composite
[Leaves = ConcreteCommands, Component = Command]
[Composite\CompositeCommand]

An optimization of the aforesaid design is to merge the LoggingContext and Com-
mandProcessor components rather than separating them. The separate Caretaker in
the Memento pattern can also be merged into the Command class. Such merging of
components is called pattern interwoven in Buschmann et al. [2007a]. The final result
is as follows.

RHF � RHF5[Caretaker = Command]
[CommandProcessor = LoggingContext]

7.2. Verification and Validation of Design Result

The current practice in pattern-oriented design is to manually work out the final result
of the design process and depict it in a class diagram for the structure. Figure 11 shows
the result of the preceding design process given by Buschmann et al. [2007a].

This diagram can be directly translated into the following pattern expression.

RHFo � Command ∗ CommandProcessor ∗ Memento ∗ Strategy ∗ Composite
[Originator\Application]
[Strategy\Logging]
[ConcreteStrategies\ConcreteLoggingStrategies]
[Context\CommandProcessor]
[(CommandProcessor.Command = Command.Command

= Composite.Component = Memento.Caretaker)\Command]
[Leaves\ConcreteCommands]
[Composite\CompositeCommands]
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Applying the algebra of design patterns, we can now formally validate and verify the
correctness of the previous design against the design decisions and the definitions of
the patterns by proving the following equation.

RHF ≈ RHFo (68)

To decide if Eq. (68) holds, we substitute the definitions of RHF1, . . . , RHF5 into
RHF, simplify the expression by applying the algebraic laws, and obtain the following.

RHF ≈ Command ∗ CommandProcessor ∗ Memento ∗ Strategy ∗ Composite
[Invoker\Client, Receiver\Application, Strategy\Logging,

Context\LoggingContext, Composite\CompositeCommand,

ConcreteStrategies\ConcreteLoggingStrategies]
[Command −→ Caretaker]
[Command = Component ∧ Originator = Application ∧
Command.Client = CommandProcessor ∧ Originator = Application ∧
Leaves = ConcreteCommands ∧ Component = Command ∧
CommandProcessor = LoggingContext ∧ Caretaker = Command]

Comparing RHF with RHFo, we can see that all the restriction predicates in RHFo

are included in RHF, except

CommandProcessor.Command = Command.Command

which we believe is a mistake in Buschmann et al. [2007b] since there is no element
in the CommandProcessor pattern called Command. It should be replaced by the
following.

CommandProcessor.Component = Command.Command.

Moreover, some of the restrictions in RHF are missing from RHFo. These are

Application = Receiver
CommandProcessor = Invoker
CommandProcessor = Command.Client

where Command.Client denotes the Client component in the Command pattern.
Other more serious errors in the diagram in Buschmann et al. [2007a] are listed in

the next section.

7.3. Formal Derivation of Designs

The expressions defining RHF can be transformed into the canonical form by following
the normalization process given in Section 6. This derives the structural and dynamic
features of the designed system. Here, we only give the derivation of the structural
features of the design. The dynamic features can be derived in the exactly same way,
but for the sake of space, they are omitted. The full details of the formal specification
of the request-handling framework can be found in Bayley and Zhu [2011].

First, for the sake of simplicity and space, we only take a small part of the pattern
specifications and make the following definitions.

Command � TRUE#({Command, Client, Invoker, Receiver : Class,
ConcreteCommands : P(Class)}

•(Client −→ Command ∧ Invoker −→ Command
∀CC ∈ ConcreteCommands · (CC −→ Receiver∧

CC −−� Command ∧ ¬isAbstract(CC)))
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ComProc � TRUE#({Client, CommandProcessor, Component : Class}
•(Client −→ CommandProcessor∧

CommandProcessor −→ Component)
Memento � TRUE#({Caretaker, Memento, Originator : Class}

•(Caretaker �−→ Memento ∧ Originator −→ memento)
Strategy � TRUE#({Context, Strategy : Class, ConcreteStrategies : P(Class)}

•(Context �−→ Strategy ∧ isInter f ace(Strategy)
∀CS ∈ ConcreteStrategies · (CS −−� Strategy)))

Composite � TRUE#({Component, Composite : Class, Leaves : P(Class)}
•(isInter f ace(Component) ∧ Composite −−�∗ Component∧

Composite �−→+ Component
∀Lf ∈ Leaves · (Lf −−� Component))).

Then, the following can be derived, following the normalization process by applying
the algebraic laws.

RHF ≈ TRUE
#( {Client, Application, CommandProcessor, Logging,

Command, CompositeCommand, Memento : Class,
ConcreteLoggingStrategies, ConcreteCommands : P(Class)}

• ((Client −→ CommandProcessor)∧
∀CC ∈ ConcreteCommands · (CC −→ Application∧

CC −−� Command ∧ ¬isAbstract(CC))∧
(CommandProcessor −→ Command)∧
(Command �−→ Memento)∧
(Application −→ memento)∧
(CommandProcessor �−→ Logging)∧
∀CL ∈ ConcreteLoggingStrategies · (CL −−� Logging)∧
isInter f ace(Command)∧
isInter f ace(Logging)∧
(CompositeCommand −−�∗ Command)∧
(CompositeCommand �−→+ Command)))

The result can be graphically presented as in Figure 12.
Comparing Figure 12 with the original diagram of Buschmann et al. [2007a] shown in

Figure 11, we found that the original solution given by Buschmann et al. [2007a] seems
have treated the memento as being created by the caretaker, but in fact it is created by
the originator instead. Also, the client should only send requests to CommandProcessor
rather than to Command directly. Therefore, the association from Client to Command
should be deleted from the original design.

In summary, the case study clearly demonstrates that:

(1) Design decisions in the application of design patterns can be precisely represented
in pattern expressions,

(2) Correct uses of design patterns can be formally verified and validated by prov-
ing equivalence between pattern expressions. Errors in the manual application of
patterns can be detected by disproving the equality between pattern expressions.
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Fig. 12. Derived design of the request-handling framework.

(3) Moreover, designs can be formally derived from the formal representation of the
design decisions through application of the algebra of design patterns. An example
of this is using the normalization process.

8. CONCLUSION

In this article, we proved a set of algebraic laws that the operators on design patterns
obey. We demonstrated their use in proving the equivalence of some pattern composi-
tions. These operators and algebraic laws form a formal calculus of design patterns that
enables us to reason about pattern compositions. We have also proved that the set of
algebraic laws is complete and we have presented a normalization process for pattern
expressions. We demonstrated the application of the algebra to pattern-oriented soft-
ware design with a real-world example: the design of an extensible request-handling
framework. We demonstrated the applicability of pattern operators to formally and
precisely representing design decisions in a pattern-oriented design process.

We also demonstrated the applicability of the algebra in two practical scenarios.
In the verification and validation scenario, manual designs are checked against the
formal representation of design decisions in the form of an expression made of pattern
compositions and instantiations and the formal specifications of design patterns. In
the derivation scenario, designs are formally derived from design decisions and formal
specifications of patterns. The work reported in this article advances the pattern-
oriented software design methodology by improving its rigorousness and laying a solid
theoretical foundation. It is built on top of the huge amount of research in the literature
about software design patterns and their formal specifications. It sheds a new light on
the formal and automated software verification and validation at design stage and
on the derivation of designs from high-level design decisions and design knowledge
encoded in design patterns.

Although the calculus is developed in our own formalization framework, we be-
lieve that it can be easily adapted to others, such as that of Eden’s approach, which
also uses first-order logic but no specification of behavioral features [Gasparis et al.
2008], Taibi’s approach, which is a mixture of first-order logic and temporal logic [Taibi
et al. 2003], and that of Lano et al. [1996], etc., and finally, the approaches based
on graphic metamodeling languages, such as RBML [France et al. 2004] and DPML
[Mapelsden et al. 2002]. However, the definitions of the operators and proofs of the
laws are more concise and readable in our formalism. Dong et al.’s approach [Alencar
et al. 1996; Dong et al. 1999, 2000, 2004, 2007a] to the formal specification of pat-
terns is very similar to ours in the way that they also use formal predicate logic to

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 3, Article 23, Pub. date: July 2013.



An Algebra of Design Patterns 23:33

specify the structural and behavioral features of patterns. However, their definition of
pattern composition is different from ours. They define pattern compositions and in-
stantiations separately, but both as name mappings. More recently, Dong et al. [2011]
studied the commutability of pattern instantiation and integration, but their results
focus on the commutability conditions for instantiation and integration rather than
general algebraic laws. Moreover, their definition of pattern instantiation and integra-
tion does not cover complicated forms of composition where one-to-many overlaps are
needed.

For future work, we are developing automated software tools based on the algebra of
design patterns to support pattern-oriented software design. The normalization process
given in the constructive proof of the completeness of the algebraic laws implies that
any two pattern compositions can be proved equivalent by using a theorem prover.
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