
Behaviour Observation in Software Testing 20/08/99

-- 1 --

A Theory of Behaviour Observation in Software Testing

Hong Zhu

School of Computing and Mathematics, Oxford Brookes University,
Gipsy Lane, Headington, Oxford, OX3 0BP, UK, Email: hzhu@brookes.ac.uk

Xudong He

School of Computer Science, Florida International University,
University Park, Miami, FL 33199, Email: hex@cs.fiu.edu

Abstract

Software testing is a process in which a software system’s dynamic behaviours are observed and
analysed so that the system’s properties can be inferred from the information revealed by test
executions. While the existing software testing theories might be adequate in describing the testing of
sequential systems, they are not capable to describe the testing of concurrent systems that can exhibit
different behaviours on the same test case due to non-determinism and concurrency. This paper
presents a theory of behaviour observation in software testing. We first introduce and formally define
the notion of observation scheme that characterises systematic and consistent methods of behaviour
observations and recordings. We propose a set of desirable properties for observation schemes and
study the relationships among the properties. We provide several constructions of observation schemes
that have direct implications in current software testing practice. We then explore the relationships
between different observation schemes and examine these observation schemes with regard to the
desirable properties. Finally, we apply the theory to a concrete computation model for concurrent
systems, high-level Petri nets, and demonstrate how to use observation scheme to define test adequacy
criteria.

Keywords: software testing, behaviour observation, concurrent systems, Petri nets, complete
partially ordered set.

1. Introduction

Software testing is a process in which a software system’s dynamic behaviours are observed,
recorded and analysed so that properties of the system can be inferred from the information
revealed by test executions. The past decades have seen a rapid growth in the study of testing
methods, see e.g. [ZHM97] for a survey. The most well known testing methods include
structural testing, functional testing, and fault-based testing. These testing methods not only
differ from each other in the way that test cases are selected or generated, but also in the way
that the dynamic behaviour of the software under test are observed and analysed. For
example, in statement testing, executions of the statements in program source code are
observed and recorded for analysing the percentage of statements tested. In path testing
methods, observations are made and recorded to analyse various types of paths executed
during testing. In mutation testing, what observed is the liveness of mutants, i.e. whether or
not a mutant produces a result different from that of the software under test. These behaviour
observation and recording methods are usually implemented through software
instrumentation. It is no doubt that how to observe system’s behaviour during the testing
process is a very important issue of testing methods. No matter how dynamic behaviour is
observed and recorded, it should be made consistently and systematically.

Unfortunately, few existing theories have addressed the important issue of behaviour

Behaviour Observation in Software Testing 20/08/99

-- 2 --

observation in software testing. Instead, existing theories of software testing assume explicitly
or implicitly that a software system can only demonstrate one dynamic behaviour on one test
set and the test cases uniquely determine the dynamic behaviour of the program under test.
For example, test criteria were defined as a function or predicate on test sets, e.g. [GG75,
BuA82, Wey86, ChS87, DaW88 Wey88, PZ91, PZ93, FW93, ZH93]. This assumption is
sound for testing sequential software. However, testing a concurrent system on the same test
case twice may reveal different behaviours due to non-determinism. The uniqueness
assumption on software’s dynamic behaviour hence significantly limits the application of
existing software testing theories. This paper addresses the complex of non-determinism and
concurrency in software testing while sequential software systems are treated as special cases.

This paper proposes a theory that enables us to study the properties of various ways of
behaviour observations and the relationships between them. It is organised as follows. Section
2 introduces the notion of observation schemes and the preliminary concepts and notations
used in the paper. Section 3 discusses various properties of observation schemes. Section 4
studies the extraction relation between observation schemes. Section 5 proposes a number of
schemes constructions as abstractions of testing methods. Section 6 applies the theory to the
testing of Petri net. A number of observation schemes are defined and analysed. Section
7concludesthe paper with a discussion of related and future work.

2. The Notion of Observation Schemes

The recorded observations of system’s dynamic behaviour during a testing can be (1) the set
of executed statements, (2) the set of exercised branches, (3) the set of traversed paths, (4) the
sequences of communications occurred between processes, or (5) the set of dead mutants, and
so on. To make the behaviour observation and recording meaningful, we require that the
observation and recording be systematic and consistent. For example, it is not acceptable if
we record executed statements at one time and communications between processes at another
time during a single testing execution.

We use the word scheme to denote a systematic and consistent way of observing and
recording dynamic behaviours in software testing. We require that a scheme have a universe
of phenomena on systems’ dynamic behaviours that are observable from testing. This
universe must have the structure of a complete partially ordered set for the following reasons.

(1) Partial ordering on observable phenomena. Suppose that a software system is tested and
an observation is made. By carrying out more tests on the same software system and use
the same observation scheme, we should be able to obtain more information about the
dynamic behaviour of the system. The final cumulative observation should contain more
information than the intermediate observation. Therefore, there is an ordering between
these two observations. However, observations made during two independent tests are in
general not ordered. Therefore, all possible observations made during testing a software
system form a partial order.

(2) Existence of a summation operation. A summation operation is needed to add up a
number of individual observations made during testing a software system. The result of
such a summation is the least upper bound of the individual observations.

(3) Existence of the least element. No information about the dynamic behaviour of a system
can be observed if the system is not executed. To identify such a situation, the universe of
phenomena is required to contain the least element denoting “no information” .

Behaviour Observation in Software Testing 20/08/99

-- 3 --

For example, let an observation of the dynamic behaviour of a system be the set of executed
statements during testing, all such sets constitute a universe of phenomena and the partial
ordering relation on the universe is the set inclusion. The least element is the empty set. The
summation operation is set union.

Before we formally define the notion of schemes and investigate their properties, we first give
some mathematical concepts and notations. Readers are referred to [GS90] for details about
domain theory.

Let D be a non-empty set, ≤ be a binary relation on D, and S ⊆ D be a subset of D.

• Partial ordering: the binary relation ≤ is a partial ordering, if ≤ is reflexive, transitive and
anti-symmetric.

• Upper bound: u is called an upper bound of S, if s ≤ u for all s∈S.

• Consistent subset: S is a consistent subset if for all s1, s2 ∈ S, there is s ∈ D such that s1 ≤ s
and s2 ≤ s. We say that s1 is consistent with s2 and write s1↑s2.

• Directed subset: S is a directed subset, if for all s1, s2 ∈ S, there exists s ∈ S such that s1

≤ s and s2 ≤ s.

• Complete partially ordered set (CPO): <D, ≤ > is called a complete partially ordered set,
if (1) D has a least element, written ⊥; (2) for every directed subset S ⊆ D, S has a least
upper bound, written as ∑S, i.e. for any other upper bound u, ∑S ≤ u.

• Let I be any index set, xi be a variable that ranges over set Xi, i∈I. We write
Ii∈

∃ xi ∈

X i.Pred as a short hand for ∃x1∈X1.∃x2∈X2….Pred. ∀
∈i I

xi ∈X i.Pred is defined similarly.

• bag(X) is used to denote the set of all multiple sets on a set X. The traditional set
operations are used to denote their multiple set variants as well . Y

'
 is the set obtained by

removing duplicated elements in a multiple set Y.

• Let ϕ be a mapping from X to Y. For all subsets A⊆X, we define ϕ(A)={ ϕ(a) | a∈A}.

We use the following symbols in this paper:

• p and its variants for a concurrent system, and P for the set of all concurrent systems;

• s and its variants for a specification, and S for the set of all specifications;

• D for the set of input data for all concurrent systems, and Dp for the set of valid inputs of
p;

• t and its variants for a test case, i.e. an input datum for testing a concurrent system.

• T and its variants for a test set. Generally, T is a multiple set (or bag) so that multiple
executions on the same test case can be described.

Behaviour Observation in Software Testing 20/08/99

-- 4 --

• σ and its variants for a phenomenon observable during testing a concurrent system, and Γ
for a set of phenomena.

We now formally define a scheme as follows.

Definition 1. (Observation Scheme)

A scheme of behaviour observation and recording, or simply an observation scheme, is an
ordered pair <Β, µ>, where B={ <Bp, ≤p> | p∈P}, and µ={ µp | p∈P} . B is called the universe
of phenomena. For all concurrent systems p∈P, <Bp, ≤p> is a complete partially ordered set.
Bp is called the universe of phenomena on p. µ is called the recording function. For all
concurrent systems p∈P, the recording function µp maps a test set T to a non-empty consistent
subset of Bp. ÿ

Informally, each element in Bp is a phenomenon observable from testing a concurrent system
p. σ1 ≤ p σ2 means that phenomenon σ1 is a part of phenomenon σ2. The least element ⊥p of
Bp denotes that nothing is observed. µp(T) is the set of all possible phenomena observable by
testing p on test set T. In other words, σ ∈µp(T) means that σ is a phenomenon that is
observable by an execution of p on test set T.

Example 1. (Input/Output observation scheme)

Let IOp = { <x,y> | x∈Dp and y∈p(x)} , where y∈p(x) means that y is a possible output of
concurrent system p when executed on input data x. The universe of observable phenomena is
defined to be the power set of IOp, and the partial ordering be set inclusion. The recording
function µp(T) is defined to be the collection of sets of input/output pairs observable from
testing p on T.

For instance, assume that Dp = {0,1}, p(1)= {1}, and p(0) = {0, 1} due to non-determinism.
Let test data t=0, and test set T1={ t}, then µp(T1)={{ <0,0>}, { <0,1>}}, i.e. one may observe
either { <0,0>} or { <0,1>} by executing p on input 0 once. Let test set T2={2 t}, then
µp(T2)={{ <0,0>}, { <0,1>}, { <0,0>, <0,1>}}, i.e. one of the following three different
phenomena can be observed by executing p twice on the same input 0:

(1) { <0,0>} - p output 0 in two executions on input 0;

(2) { <0,1>} - p output 1 in two executions on input 0;

(3) { <0,0>, <0,1>} - p output 0 in one execution, and 1 in another execution on the same
input 0.

ÿ

Example 2. (Dead mutant observation scheme)

Consider the observation scheme for mutation testing [DLS78, Bud81, How82]. Let Φ be a
set of mutation operations. The application of Φ to a program p produces a set of mutants of
p. Let Φ(p) be the set of such mutants that are not equivalent to p. Define the universe of
phenomena to be the power set of Φ(p). The partial ordering is defined to be the set inclusion
relation. For all test sets T, the recording function µ p T() is defined to be the collection of sets

of mutants. Each element in µ p T() is a set of mutants that can be kill ed by one testing of p on

Behaviour Observation in Software Testing 20/08/99

-- 5 --

T. ÿ

Example 3. (Output diversity observation scheme)

The observation scheme in this example records the number of different outputs on each input
data. A phenomenon observable from testing a concurrent system on a set of test cases
consists of a set of records. Each record has two parts <t, n>, where t is a valid input, n is the
number of different outputs on the input data observed from the testing. Formally, an element
of the universe of phenomena is a set in the form of { <ti,ni> | ti∈Dp, ni>0, i∈I}. The partial
ordering relation on phenomena is defined as follows:

σ σ σ σ≤ ⇔ ∀ < >∈ ∃ < >∈ = ∧ ≤' , . ' , ' ' .(' ')t n t n t t n n .

The least upper bound of σ and σ’ is, then,

σ σ
σ σ

σ σ
σ σ

1 2

1 2 1 2 1 1 2 2

1 1 1 1 2 2 2

2 2 2 2 1 1 1

0

0 0

0 0

+ = < > < >=
< > ∃ > < >∈ ∧ < >∈
< > ∃ > < >∈ ∧ ¬∃ > < >∈
< > ∃ > < >∈ ∧ ¬∃ > < >∈

%

&
K

'
K

{ , | ,

,max(,) , , .(, ,)

, , .(,) .(,)

, , .(,) .(,)

}t n t n

t n n if n n t n t n

t n if n t n n t n

t n if n t n n t n

� ��

� ��

� ��

��

ÿ

3. Properties of Schemes

The definition of scheme provided in the previous section is still i nsuff icient to characterise
the notion of consistent and systematic ways of behaviour observation. For example, given a
set of mutation operators, a set of mutants of a given program p can be generated by applying
the mutation operators to p. Suppose that the phenomena observed during a mutation testing
of p is the set of mutants still alive after test. Therefore, one might define the universe of
phenomena to be the sets of li ve mutants and the partial ordering on phenomena to be the set
inclusion relation. Our intuition suggests that if an observation σ1 is made by a test execution,
one should be able to have an observation σ2 such that σ1 ≤ σ2 when carrying out more tests.
However, using the above definition it is just the opposite, because the more one tests a
program, the less mutants may be alive, i.e. σ1 ≥ σ2.

Therefore, we further require that an observation scheme satisfy additional properties. The
first property to be discussed here is related to whether non-trivial phenomena can be
observed from non-empty tests.

Definition 2. (Observability)

An observation scheme is said to have observabilit y, if a concurrent system is tested on valid
inputs, some phenomenon of the system’s behaviour can always be observed, but nothing can
be observed from a testing using only invalid input. Formally,

(1) ∀p∈P.(∅≠∩ pDT� ⇒)(T�pp ∉⊥) , and

(2) ∀p∈P.(∅=∩ pDT ⇒ }{)(pp T ⊥=µ). ÿ

The following are some properties weaker than observabili ty. All of them state that the empty
test set, which means no testing has been done, is the weakest one in terms of the observable
phenomena.

Behaviour Observation in Software Testing 20/08/99

-- 6 --

Definition 3. (Lower, Middle and Upper Least Element)

An observation scheme is said to have the lower least element property, if for all test set T,
)').((').(σ≥σ∈σ∃∅∈σ∀ ppp T�� . It is said to have the middle least element property, if for

all test sets T, ∃σ ∈ µp(T).∀σ’ ∈ µp(∅).(σ ≥p σ’). It is said to have the upper least element
property, if for all test set T,)').((').(σ≥σ∅∈σ∃∈σ∀ ppp �T� . ÿ

Lemma 1.

(1) The middle least element property implies the lower least element property.

(2) Observabili ty implies the lower least element property, the middle least element and upper
lower element property.

Proof. Statement (1) is straightforward by definition. Statement (2) can be proved by
condition (2) of observabili ty. ÿ

Another property related to when a non-trivial phenomenon can be observed is the domain
limited property defined below.

Definition 4. (Domain Limited Property)

An observation scheme is said to have domain limited property, if only valid inputs effect the
observation. Formally, ∀p∈P.()()(ppp DT�T� ∩=) . ÿ

The second group of properties about schemes is concerned with the relationship between the
phenomena observable from testings on different test sets. The consistency requires that a
phenomenon observable from one test set be consistent with any phenomenon observable
from another test set if both are obtained from testing the same program.

Definition 5. (Consistency)

A set Γ of phenomena is said to be consistent with a set Γ’ of phenomena, written as Γ↑Γ’ , if
for all σ∈Γ and all σ’ ∈Γ’ , σ ↑σ’ . An observation scheme is said to have consistency, if for
all systems p, all test sets T and T’ , the set of phenomena observable from executing p on T is
consistent with the set of phenomena observable from executing p on T’ . Formally,
∀p∈P.(µp(T) ↑µp(T’)). ÿ

It should be noticed that a concurrent system might well produce different outputs on one test
case in two test executions. Whether such phenomena are considered as consistent depends on
the definition of the universe of phenomena. For example, the definition of the input/output
observation scheme given in Example 1 considers such phenomena as consistent. However,
they are considered as inconsistent if the definition of IOp in Example 1 is replaced with
IO t f t t Dp p' { , () | }= < > ∈ where f is a function on Dp. In fact, using IO’ to define the universe

of phenomena excludes the possibili ty of non-determinism. Hence, different outputs on the
same input indicate inconsistency.

A property stronger than consistency is the completeness property.

Definition 6. (Completeness)

An observation scheme is said to have completeness, if every phenomenon σi∈Ι observable

Behaviour Observation in Software Testing 20/08/99

-- 7 --

from executing a concurrent system p on a test set Ti∈Ι is contained in the phenomena σ
observed from executing p on Ti

i I∈
� . Formally, ∀ p∈P.(∀

∈i I
σi ∈ µp(Ti). (∃ σ ∈ µp.(Ti

i I∈
�) (σ ≥p

σi))). ÿ

Lemma 2.

Let T ={ ti | i∈I}. If an observation scheme is complete, then we have that

∀ p∈P.(∀
∈i I

σi∈µp({ ti}). (∃ σ ∈ µp(T).(σ ≥pσi))).

Proof. Let Ti={ ti} for i∈Ι in the definition of completeness. ÿ

Lemma 3.

Completeness implies the middle least element property. That is, if an observation scheme has
completeness, then for all test sets T, there is σ ∈ µp(T) such that, for all σ’ ∈ µp(∅) , σ ≥ σ’ .

Proof. For all test sets T, we have that T T Ti
i p

= ∪
∈ ∅µ ()
� , where Ti=∅. The statement then

follows the definition of completeness immediately. ÿ

The third group of properties about schemes states the relationship between phenomena
observable from testing on a test set and its subset.

Definition 7. (Extendibility)

An observation scheme is said to have extendibilit y, if every phenomenon observable from
executing a concurrent system p on a test set T is a part of a phenomenon observable from
executing p on a superset T’ of T. Formally,

∀ p∈P.())').('('')(σσµσµσ ppp TTTT ≤∈∃⇒⊆∧∈ . ÿ

Lemma 4. Extendibili ty implies the lower least element property.

Proof. Let T=∅ in the definition of extendibili ty. ÿ

Lemma 5. Extendibili ty implies consistency.

Proof. Let T1 and T2 be any given test sets. Then, T = T1∪T2 ⊇ T1. Similarly, T ⊇ T2. By
extendibili ty, for all σ1∈µp(T1) there is σ∈µp(T) such that σ≥σ1, and for all σ2∈µp(T2) there is
σ’∈µp(T) such that σ’≥σ2. By the definition of observation schemes, µp(T) is a consistency
set, therefore, there is σ* such that σ*≥σ and σ*≥σ’ . By the transitivity of ≥ relation, we have
that σ*≥σ1 and σ*≥σ2. Hence, σ1↑σ2. The statement follows from the definition of
consistency. ÿ

Lemma 6. Completeness implies extendibili ty.

Proof. Assume that 'TT ⊆ and)(T�p∈σ . Let "' TTT ∪= and)"(" T�p∈σ . By the

definition of completeness,)'(" T�p∈σ+σ . The statement follows from the fact that

σ≥σ+σ " . ÿ

Definition 8. (Tractability)

Behaviour Observation in Software Testing 20/08/99

-- 8 --

An observation scheme is said to have tractabilit y, if every phenomenon observable from
executing a concurrent system p on a test set T contains a phenomenon observable from
executing p on a subset T’ of T. Formally,

∀ p∈P.())').('('')(σσµσµσ ppp TTTT ≥∈∃⇒⊇∧∈ . ÿ

Lemma 7. Tractabili ty implies the upper least element property, that is, for all test sets T,
)').((').(σ≥σ∅∈σ∃∈σ∀ ppp �T� .

Proof. Let ∅ be the T’ in the definition of tractabili ty. ÿ

Definition 9. (Repeatability)

An observation scheme is said to have repeatabilit y, if every phenomenon observable from
executing a concurrent system p on a test set T can be observed from executing p on the same
test cases in the test set T for more times. Formally,

∀ p∈P.()'(')(')(TTTTTT pp µ∈σ⇒⊇∧∈∧µ∈σ
'

bag). ÿ

The last group of properties about schemes states the relationships between the phenomena
observable from testing on a number of subsets and the phenomena observable from the union
of the subsets. These properties are related to questions like whether a testing task can be
divided into a number of subtasks.

Definition 10. (Composability)

An observation scheme is said to have composabilit y, if the phenomena observable by
executing a concurrent system p on a number of test sets Ti∈I can be put together to form a
phenomenon that is observable from executing p on the union of the test sets Ti∈I. Formally,

∀ p∈P.(
Ii∈

∀ σi ∈ µp (Ti) .(∑
∈

σ
Ii

i ∈ µp(�
Ii

iT
∈

))). ÿ

Composabili ty means that the summation operation is safe in the sense that the summation of
the phenomena observable from a number of test sets is still observable if the testing is not
divided into subsets. The decomposabili ty formally defined below states another kind of
safety. It means that dividing a testing task into small subtasks will not loss the possibili ty of
observing a phenomenon. Unfortunately, some schemes that look sound do not have
decomposabili ty as we will see later.

Definition 11. (Decomposability)

An observation scheme is said to have decomposabilit y, if for all test sets T, T Ti
i I

=
∈
� implies

that every phenomenon observable from executing a concurrent system p on the test set T can
be decomposed into the summation of the phenomena observable from executing p on test
sets Ti∈I. Formally, let T Ti

i I

=
∈
� ,

 ∀ p∈P.(σ ∈ µp(T) ⇒
Ii∈

∃ σi ∈ µp(Ti) .(∑
∈

σ=σ
Ii

i)). ÿ

Behaviour Observation in Software Testing 20/08/99

-- 9 --

Lemma 8.

(1) Decomposabili ty implies that

∀ p∈P.∀T={ ti | i∈I}. (σ ∈µp(T) ⇒
Ii∈

∃ σi∈µp({ ti}) .(∑
∈

σ=σ
Ii

i)), (*)

(2) If an observation scheme has composabili ty, then (*) implies decomposabili ty.

Proof.

Statement (1) is obvious from the definition of decomposabili ty. To prove (2), let T Ti
i I

=
∈
�

and Ti={ ti,j | j∈Ji}. Let σ ∈ µp(T). By (*), we have that

iJjIi ∈∈
∃
,

σi,j∈µp({ ti,j}) .(∑
∈∈
σ=σ

iJjIi
ji

,
,)).

By composabili ty, we have that for all i∈I, σ µi j
j J

p i

i

T, ()
∈
∑ ∈ , Let σ σi i j

j Ji

=
∈
∑ , . Then, we have

that σ σ=
∈
∑ i
i I

. ÿ

The following lemma proves that composabili ty and decomposabili ty are very strong
properties.

Lemma 9.

(1) Composabili ty implies completeness;

(2) Decomposabili ty implies tractabili ty;

(3) Composabili ty and decomposabili ty imply repeatabili ty.

Proof.

(1) The statement follows from the fact that for all i∈I , i
Ii

i σ≥σ∑
∈

.

(2) Assume T⊇T’ and σ µ∈ p T(). Let T=T’∪T” . By the definition of decomposabili ty,

∃ ∈ ∃ ∈ = +σ µ σ µ σ σ σ1 2 1 2p pT T('). (").(). The statement follows from the fact that

σ σ σ1 2 1+ ≥ .

(3) Assume that T={ ti | i∈I}, TT ⊇' and)(' TT
'

bag∈ . Let)(T� p∈σ . By decomposabili ty,

there are })({ ipi t�∈σ for all i∈I such that σ σ=
∈
∑ i
i I

. Since TT ⊇' and)(' TT
'

bag∈ ,

there is T* such that (a) T’=T∪T*, and (b) for all t∈T* , there is i∈I such that t=ti∈T. Let

σ σt i= . By composabili ty, σ σ µ+�
��

�
��

∈
∈
∑ t
t T

p T
*

'0 5. The statement follows from the fact

that σ σ σ σ+ = +
∈ ∈ ∈
∑ ∑ ∑t
t T

i
i I

t
t T* *

, and for all σi, σ σ σi i i+ = .

Behaviour Observation in Software Testing 20/08/99

-- 10 --

ÿ

The relationships between properties of schemes are summarised in Figure 1.

The following theorem gives the structure of phenomena observable from finite test sets using
a scheme with composabili ty and decomposabili ty.

Theorem 1. (Structure Theorem)

If a scheme B=<B, µ> has composabili ty and decomposabili ty, we have

(1) }0})({|{})({ n+t�++nt� pp ≤<∧⊆= ∑ , for all n>0;

(2) }10})({|{}),,,({
1

2211 kin+t�++++tntntn� iiipi

k

i
ikkp ≤≤∧≤<∧⊆∧==

=
∑ �� .

Proof.

(1) By applying induction on n.

• For n=1, the right hand side of equation (1) is:

})({})}({|{}1})({|{ t�t�+t�++ ppp =∈σσ==∧⊆∑
Therefore, the statement is true when n=1.

• Assume that the statement is true for n=N>0, i.e.

}0})({|{})({ N+t�++Nt� pp ≤<∧⊆= ∑ . (*)

• For n=N+1, by the definition of composabili ty, the following equation follows from (*).

 })}({'})({|'{}))1({(t�Nt�tN� ppp ∈σ∧∈σσ+σ⊇+

 = }10})({|{ +≤<∧⊆∑ N+t�++ p .

Consistency

Completeness

Tractability Extendability

Composabili tyDecomposabil ity

Repeatabili ty

&

Observabili ty

Middle least
element property

Upper least
element property

Lower least
element property

Figure 1. Relationships between properties

Behaviour Observation in Software Testing 20/08/99

-- 11 --

 By the definition of decomposabili ty, we have that

 }))1({(tN�p + ⊆ { | ({ }) }σ σ µi
i

N

i p t i N
=

+

∑ ∈ ∧ ≤ ≤ +
1

1

1 1� �

 = }10})({|{ +≤<∧⊆∑ N+t�++ p .

Therefore, the statement is also true for n=N+1.

According to the principle of mathematical induction, the statement is true for all n>0.

(2) The proof is similar to the proof of statement (1) by applying induction on k.

ÿ

Example 4.

(1) The input/output observation scheme defined in Example 1 satisfies all the properties
defined in definitions 2 ~ 11.

(2) The dead mutant observation scheme defined in Example 2 has repeatabili ty, consistency,
completeness, composabili ty, extendibili ty, tractabili ty, and decomposabilit y. Its
observabili ty and domain limited property depends on the mutation operations. For some
mutation operations, a non-empty test set may kill no mutants. It may also have no
domain limited property because an invalid input for the original program may be valid
for a mutant, hence it kill s the mutant.

(3) The output diversity observation scheme defined in Example 3 has observabili ty,
repeatabili ty, consistency, completeness, composabili ty, extendabili ty, tractabili ty and
domain limited property. However, it does not have decomposabili ty.

Proof. The proofs of the statements are straightforward. Details are omitted for the sake of
space. ÿ

4. Extraction Relation Between Schemes

Given a phenomenon observable from testing of a concurrent system, we can often extract
information from the observation. For example, we can extract the set of executed statements
from the set of executed paths. This section formally defines such extraction relation between
schemes and studies its properties.

Let A=<A, µA> and B=<B, µB> be two schemes.

Definition 12. (Extraction Relation between Schemes)

Scheme A is an extraction of scheme B, written A�B, if for all p∈P, there is a homomorphism
ϕp from <Bp, ≤B,p> to <Ap, ≤A,p>, such that (1) ϕp(σ)=⊥Α,p if and only if σ=⊥Β,p, and (2) for all
test sets T, µ ϕ µp

A
p p

BT T() (())= .

Informally, scheme A is an extraction of scheme B means that scheme B observes and records
more detailed information about dynamic behaviours than scheme A does. The phenomena
that scheme A observes can be extracted from the phenomena that B observes.

Behaviour Observation in Software Testing 20/08/99

-- 12 --

Definition 13. (Equivalence Relation on Schemes)

Scheme A and scheme B are said to be equivalent, written A~B, if there is an isomorphism ϕ
from A to B such that for all test sets T, ϕ µ µp p

A
p
BT T(()) ()= . ÿ

Obviously, we have that:

Lemma 10. For all schemes A and B, A~B implies that A�B, and B�A. ÿ

Lemma 11. For all schemes A, B and C, (a) A~A; (b) A~B⇒B~A; (c) A~B∧B~C⇒A~C. ÿ

It is also easy to see that the extraction relation is a partial ordering on schemes when
equivalent schemes are considered as the same one.

Lemma 12.

For all schemes A, B, and C, we have that:

(1) Reflexivity: A�A;

(2) Transitivity: A�B and B�C imply that A�C;

(3) Anti-symmetry: A�B and B�A imply that A~B.

Proof. Straightforward, by the definitions. ÿ

The following theorem proves that extraction mappings preserve the properties of schemes
discussed in the previous section.

Theorem 2.

Assume that scheme A=<A, µA> is an extraction of scheme B=<B, µB>. We have that:

(1) if B has observabili ty, so does A;

(2) if B has domain limited property, so does A;

(3) if B has consistency, so does A.

(4) if B has completeness, so does A;

(5) if B has extendibili ty, so does A;

(6) if B has tractabili ty, so does A;

(7) if B has repeatabili ty, so does A;

(8) if B has composabili ty, so does A;

(9) if B has decomposabili ty, so does A;

Proof. Let ϕp, p∈P, be the extraction mappings from B to A.

Behaviour Observation in Software Testing 20/08/99

-- 13 --

(1) Let T be any given test set.

(a) Assume that T Dp∩ ≠ ∅. By the observabili ty of B, ⊥ ∉B p p
B T, ()µ . Since

µ ϕ µp
A

p p
BT T() (())= , and ϕ σp A p() ,= ⊥ ⇔ σ = ⊥B p, , we have that ⊥ ∉A p p

A T, ()µ .

Therefore, T Dp∩ ≠ ∅⇒⊥ ∉A p p
A T, ()µ .

(b) Now assume that T Dp∩ = ∅. By the observabili ty of B, µ p
B

B pT() { },= ⊥ . By the

definition of extraction, µ ϕ µp
A

p p
BT T() (())= =ϕp({ ⊥Β,p})={ ⊥Α,p} . That is, T Dp∩ = ∅ ⇒

µ p
A T()={ ⊥Α,p}. Therefore, statement (1) is true.

(2) Let T be any given test set. We have that

µ ϕ µp
A

p p
BT T() (())= (by the definition of extraction)

= ∩ϕ µp p
B

pT D(()) (by the domain limited property of B)

= ∩µ p
A

pT D() (by the definition of extraction)

(3) Let T and T’ be any given test sets. Let σ µ∈ p
A T() and σ µ' (')∈ p

A T . By the definition of

extraction, there are σ µB p
B T∈ () and σ µ' (')B p

B T∈ such that σ ϕ σ= p B() and

σ ϕ σ' (')= p B . By the consistency of B, we have that µ µp
B

p
BT T() (')� . Hence, there exists

σ B
* such that σ σB B B

* ≥ and σ σB B B
* '≥ . Because ϕ p is a homomorphism, we have that

ϕ σ ϕ σp B A p B() ()* ≥ and ϕ σ ϕ σp B A p B() (')* ≥ . Therefore, µ µp
A

p
AT T() (')� .

(4) Let Ti I∈ be a collection of test sets and σ µi p
A

iT∈ (), i I∈ . Because

µ ϕ µp
A

i p p
B

iT T i I() (()),= ∈ , there are σ µi
B

p
B

iT∈ () such that σ ϕ σi p i
B= () for i I∈ . By the

completeness of B, there exists σ µB p
B

i
i I

T∈
∈

()� such that σ σB B i
B≥ for all i I∈ . Since ϕ p

is a homomorphism, ϕ σ ϕ σ σp B A p i
B

i() ()≥ = . By the definition of extraction,

ϕ σ ϕ µ µp B p p
B

i
i I

p
A

i
i I

T T() (()) ()∈ =
∈ ∈
� � . Therefore, A is complete.

(5) Let T, T’ be test sets and T T⊆ ' . Let σ µ∈ p
A T(). By the definition of extraction, there

exists σ µB p
B T∈ () such that σ ϕ σ= p B(). By the extendibili ty of B, there is σ µ' (')B p

B T∈
such that σ σ' B B B≥ . By the definition of extraction, ϕ σ µp B p

A T(') (')∈ . Since ϕ p is a

homomorphism, ϕ σ ϕ σp B A p B(') ()≥ =σ. Therefore, A also has extendibili ty.

(6) Let T, T’ be test sets and T T⊇ ' . Let σ µ∈ p
A T(). By the definition of extraction, there

exists σ µB p
B T∈ () such that σ ϕ σ= p B(). By the tractabili ty of B, there is σ µ' (')B p

B T∈
such that σ σB B B≥ ' . Since ϕ p is a homomorphism, ϕ σ ϕ σp B A p B() (')≥ . Therefore, A
also has tractabili ty.

(7) Let T be any given test set, and T’∈bag(
'
T) and T T⊆ ' . Let σ µ∈ p

A T(). By the definition

of extraction, there is σ µB p
B T∈ () such that σ ϕ σ= p B(). By the definition of

Behaviour Observation in Software Testing 20/08/99

-- 14 --

repeatabili ty, σ µB p
B T∈ (') . By the definition of extraction, we have that σ ϕ σ= p B()

∈ϕ µp p
B T((')) =µ p

A T(') . Therefore, A also has repeatabili ty.

(8) Let Ti I∈ be a collection of test sets and σ µi p
A

iT∈ (), i I∈ . Because

µ ϕ µp
A

i p p
B

iT T i I() (()),= ∈ , there are σ µi
B

p
B

iT∈ () such that σ ϕ σi p i
B= (). The

composabili ty of B implies that σ µi
B

i I
p
B

i
i I

T
∈ ∈
∑ ∈ ()� . Because ϕ p is a homophormism,

ϕ σ ϕ σp i
B

i I
p i

B

i I

() ()
∈ ∈
∑ ∑= . Therefore, ϕ σ ϕ µ µp i

B

i I
p p

B
i

i I
p
A

i
i I

T T() (()) ()
∈ ∈ ∈
∑ ∈ =� � . That is, A

also has composabili ty.

(9) Let Ti I∈ be a collection of test sets. Let σ µ∈
∈

p
A

i
i I

T()� . By the definition of extraction,

there is σ µB p
B

i
i I

T∈
∈

()� such that σ ϕ σ= p B(). The decomposabili ty of B implies that

there exist σ µi
B

p
B

iT∈ () for i I∈ , such that σ σB i
B

i I

=
∈
∑ . Since ϕp is a homomorphism, we

have that ϕ σ ϕ σp i
B

i I
p i

B

i I

() ()
∈ ∈
∑ ∑= . Hence, σ ϕ σ=

∈
∑ p i

B

i I

(). By the definition of extraction,

ϕ σ µp i
B

i
A

iT() ()∈ for all i I∈ . Therefore, A also has decomposabili ty.

ÿ

5. Constructions of Schemes

This section provides a number of constructions of observation schemes and investigates their
properties.

5.1 Set Construction

In statement testing, software testers observe and record the subset of statements in the
software source code that are executed, see e.g. [Mye79, Bei90]. In this observation scheme,
the execution of a statement is an atomic event to be observed, and the universe of phenomena
consists of all the sets of such events. The partial ordering on phenomena is just set inclusion.
Such a construction of scheme is common to many testing methods. The following is a formal
definition of this construction.

Definition 14. (Regular Set Scheme)

Scheme B=<B, µ> is said to be a regular set scheme (or simply regular scheme) with base
Up∈P, if for all p∈P, the elements in the CPO <Bp, ≤p> are subsets of Up and the partial
ordering ≤p is the set inclusion relation ⊆. Moreover, the following conditions hold for the
mapping µp:

(1) ()� �
pDt

pp t�U
∈

= })({ ,

(2) µ p() { }∅ = ∅ ,

(3) T D Tp p∩ ≠ ∅ ⇒ ∅ ∉µ (),

Behaviour Observation in Software Testing 20/08/99

-- 15 --

(4) µ µp p pT T D() ()= ∩ ,

(5) }),({)(IiT�T� ipi
Ii

i
Ii

ip ∈∈σσ=
∈∈
�� .

 ÿ

Lemma 13.

Let B=<B, µ> be an observation scheme. If B is a regular scheme, then we have that

(1) B has observabili ty;

(2) B has domain limited property;

(3) B has composabili ty;

(4) B has decomposabili ty.

Proof.

(1) Because ∅ is the least element ⊥p in the universe of phenomena, condition (2) and (3) in
the definition of regular scheme imply the observabili ty;

(2) Condition (4) is the domain limited property;

(3) Composabili ty and decomposabili ty follow from condition (5) immediately.

ÿ

Theorem 3. (Extraction Theorem for Regular Schemes)

Let B=<B, µΒ> be a regular scheme. Let A=<A, µΑ>. Assume that for all p∈P, there is a set
Up

A such that <Ap, ≤p> is a CPO on subsets of Up
A with set inclusion relation ⊆. If for all

p∈P, there is a surjection fp from Up
B to Up

A such that:

(a) σ σ σ σA p B p A p BA B f x x∈ ⇔ ∃ ∈ = ∈.({ ()| }), or in short Ap=fp(Bp), and

(b) for all test sets T, µ σ σ µp
A

p p
BT f T() ()| ()= ∈< A ,

then we have that:

(1) A is a regular scheme with base Up
A, and

(2) A is an extraction of B.

We say that A is the regular scheme extracted from B by the extraction mapping fp.

Proof.

(1) To prove statement (1), we first prove that A is a scheme, then prove that A is a regular

Behaviour Observation in Software Testing 20/08/99

-- 16 --

scheme with base Up
A.

(a) To prove that A is a scheme, we only need to prove that for all test sets T, µ p
A T() is

consistent. This is proved as follows. Let σA and σ’A in µ p
A T(). Then, there is σB and σ’B

in µ p
B T() such that σ σA p Bf= () and σ σ' (')A p Bf= . The consistency of µ p

B T() implies

that there is σ*B such that σ σB B
* ≥ and σ σB B

* '≥ . By condition (a), we have that
f Ap B p()*σ ∈ . It is easy to see by set theory that f fp B p B() ()*σ σ≥ and f fp B p B() (')*σ σ≥ .

Therefore, µ p
A T() is consistent.

(c) To prove that A is a regular scheme with base Up
A, we check that A satisfies conditions

(1)~(5) in Definition 14. It follows the definition of A and the regularity of B. Details are
omitted here for the sake of space.

(2) It is easy to see that the mapping ϕ σ σp pf x x() { ()| }= ∈ is a homomorphism from <Bp,

≤B,p> to <Ap, ≤A,p>. The statement follows directly from the definitions. ÿ

5.2 Partially Ordered Set Construction

Let X be a non-empty set and ≤ be a partial ordering on X. A subset S⊆X is said to be
downward closed if for all x∈S, y ≤ x ⇒ y∈S. Let p∈P. Given a partially ordered set (also
called poset) <Ap, ≤p>, we define the universe Bp of phenomena to be the set of downward
closed subsets of Ap. The a binary relation ≤B,p on phenomena is defined as follows:

σ σ σ σ1 2 1 2≤ ⇔ ∀ ∈ ∃ ∈ ≤B p px y x y, . .() .

It is easy to prove that ≤B,p is a partial ordering. Moreover, if the poset < Ap, ≤p> has a least
element ⊥p, the poset <Bp, ≤B,p > is a CPO with the least element { ⊥p} . The least upper bound
of σ1 and σ2 is σ1∪σ2.

Definition 15. (Poset Scheme)

An observation scheme B=<B, µ> is said to be a partially ordered set scheme (or poset
scheme) with base <Ap, ≤p>, p∈P, if its universe of phenomena is defined as above and the
recording function has the following properties:

(1) µ p()∅ ={{ ⊥p}},

(2) T D Tp p p∩ ≠ ∅ ⇒ ⊥ ∉{ } ()µ ,

(3) µ µp p pT T D() ()= ∩ ,

(4) }),({)(IiT�T� ipi
Ii

i
Ii

ip ∈∈σσ=
∈∈
�� .

Lemma 14.

A poset scheme has observabili ty, domain limited property, decomposabili ty, and
composabili ty.

Behaviour Observation in Software Testing 20/08/99

-- 17 --

Proof. The observabili ty follows from conditions (1) and (2) immediately. The domain
limited property follows from condition (3). Composabili ty and decomposabili ty follow from
the fact that the least upper bound of a directed subset of downward closed subsets is the
union of the subsets. Details are omitted from here. ÿ

Example 5. (Observation scheme for path testing [How76, Mye79, Bei90])

Let p be any given program. A path in p is a sequence of statements in p executed in order.
Let Ap be the set of paths in p, and the partial ordering ≤p be the sub-path relation. Let s be a
set of paths in p. The downward closure of s is the set of sub-paths covered by s, written as

�
s .

Let T be a test set. Define:

µ p T pT s() { |,= �
 sT,p is a set of execution paths in p that may be executed when testing p on T}.

It is easy to see that the function defined above satisfies the conditions (1)~(4) in the
definition of the poset scheme. Therefore, by Lemma 14, it has observabili ty, domain limited
property, composabili ty and decomposabili ty. ÿ

Similar to Example 5, we can define observation schemes that observe the sequences of a type
of events happened during test executions of a system, such as the sequences of
communication and synchronisation events. Such schemes have the same property as the
scheme for path testing.

5.3 Product Construction

Given two schemes A and B, we can define a new scheme from them. The following defines
the product scheme of A and B.

Definition 16. (Product Construction)

Let A=<A, µA> and B=<B, µB>. The scheme C=<C, µC> is said to be the product of A and B,
written C=A×B, if for all p∈P,

(1) C A Bp A B A p B p C p=< < > ∈ ∈ ≤ >{ , | , }, ,σ σ σ σ ,

where < >≤ < > ⇔ ≤ ∧ ≤σ σ σ σ σ σ σ σA B C p A B A A p A B B p B, ' , ' ' ', , ,2 7 2 7 2 7;

(2) for all test sets T, µ µ µp
C

p
A

p
BT T T() () ()= × . ÿ

Theorem 4.

Let A=<A, µA> and B=<B, µB> be two schemes. We have that:

(1) if both A and B have observabili ty, so does A×B;

(2) if both A and B have domain limited property, so does A×B;

(3) if both A and B have consistency, so does A×B.

(4) if both A and B have completeness, so does A×B;

Behaviour Observation in Software Testing 20/08/99

-- 18 --

(5) if both A and B have extendibili ty, so does A×B;

(6) if both A and B have tractabili ty, so does A×B;

(7) if both A and B have repeatabili ty, so does A×B;

(8) if both A and B have composabili ty, so does A×B;

(9) if both A and B have decomposabili ty, so does A×B.

Proof. Let scheme C=A×B.

(1) By the definition of product scheme, ⊥ =< ⊥ ⊥ >C p A p B p, , ,, . The following proves that C
satisfies two conditions of observabili ty, respectively.

(a) Assume that T Dp∩ ≠ ∅. The observabili ty of A and B implies that ⊥ ∉A p p
A T, ()µ and

⊥ ∉B p p
B T, ()µ . By the definition of the product scheme,

⊥ =< ⊥ ⊥ >∉ ×C p A p B p p
A

p
BT T, , ,, () ()µ µ ;

(b) Now assume that T Dp∩ = ∅. By the observabili ty of A and B, µ p
A T()={ ⊥Α,p} and

µ p
B

B pT() { },= ⊥ . Therefore, µ µp
A

p
B

A p B p C pT T() () { , } { }, , ,× = < ⊥ ⊥ > = ⊥ .

(2) Let T be any given test set. Then,

µ µ µp
C

p
A

p
BT T T() () ()= × (by the definition of the product scheme)

= ∩ × ∩µ µp
B

p p
B

pT D T D() () (by the domain limited property of A and B)

= ∩µ p
A

pT D() (by the definition of product scheme)

(3) Let T and T’ be any given test sets. Let σ µC p
C T∈ () and σ µ' (')C p

A T∈ . By the definition of

the product scheme, there are σ µA p
A T∈ (), σ µ' (')A p

A T∈ , σ µB p
B T∈ () and σ µ' (')B p

B T∈
such that σ σ σC A B=< >, and σ σ σ' ' , 'C A B=< > . By the consistency of A and B,

µ µp
A

p
AT T() (')� and µ µp

B
p
BT T() (')� . Hence, there exists σ A

* such that σ σA A A
* ≥ and

σ σA A A
* '≥ , and there is σ B

* such that σ σB B B
* ≥ and σ σB B B

* '≥ . Let σ σ σC A B
* * *,=< > .

Then, σ σC C C
* ≥ and σ σC C C

* '≥ . Therefore, µ µp
C

p
CT T() (')� .

(4) Let Ti I∈ be a collection of test sets and σ µi
C

p
C

iT∈ (), i I∈ . Because

µ µ µp
C

i p
A

i p
B

iT T T() () ()= × for all i I∈ , there are σ µi
A

p
A

iT∈ () and σ µi
B

p
B

iT∈ () such that

σ σ σi
C

i
A

i
B=< >, . By the completeness of A and B, there exists σ µA p

A
i

i I

T∈
∈

()� such that

σ σA A i
A≥ for all i I∈ , and there exists σ µB p

B
i

i I

T∈
∈

()� such that σ σB B i
B≥ for all i I∈ .

Let σ σ σC A B=< >, . Then, σ µ µ µC p
A

i
i I

p
B

i
i I

p
C

i
i I

T T T∈ × =
∈ ∈ ∈

() () ()� � � and σ σC C i
C≥ for all

i I∈ . Therefore, C is complete.

Behaviour Observation in Software Testing 20/08/99

-- 19 --

(5) Let T, T’ be test sets and T T⊆ ' . Let σ µC p
C T∈ (). By the definition of the product

scheme, there exists σ µA p
A T∈ () and σ µB p

B T∈ () such that σ σ σC A B=< >, . By the

extendibili ty of A and B, there is σ µ' (')A p
A T∈ such that σ σ' A A A≥ , and there is

σ µ' (')B p
B T∈ such that σ σ' B B B≥ . Let σ σ σ' ' , 'C A B=< > . By the definition of the product

scheme, σ σ σ σ σ σ' ' ' ,C A B C A B C= < > ≥ < > =� � � � and σ µ' (')C p
C T∈ . Therefore, C also

has extendibili ty.

(6) Let T, T’ be test sets and T T⊇ ' . Let σ µC p
C T∈ (). By the definition of the product

scheme, there exists σ µA p
A T∈ () and σ µB p

B T∈ () such that σ σ σC A B=< >, . By the

tractabili ty of A and B, there is σ µ' (')A p
A T∈ and σ µ' (')B p

B T∈ such that σ σA A A≥ ' and

σ σB B B≥ ' . Let σ σ σ' ' , 'C A B=< > . By the definition of the product scheme, σ µ' (')C p
C T∈

and σ σC C≥ ' . Therefore, C also has tractabili ty.

(7) Let T be any given test set, and T’∈bag(
'
T) and T T⊆ ' . Let σ µC p

C T∈ (). By the definition

of the product scheme, there are σ µA p
A T∈ () and σ µB p

B T∈ () such that σ σ σC A B=< >, .

By the definition of repeatabili ty, σ µA p
A T∈ (') and σ µB p

B T∈ (') . By the definition of the

product scheme, σ µ µ µC p
A

p
B

p
CT T T∈ × =(') (') (') . Therefore, C also has repeatabili ty.

(8) Let Ti I∈ be a collection of test sets and σ µi p
C

iT∈ () , i I∈ . Because

µ µ µp
C

i p
A

i p
B

iT T T() () ()= × for all i I∈ , there are σ µi
A

p
A

iT∈ () and σ µi
B

p
B

iT∈ () such that

σ σ σi i
A

i
B=< >, . The composabili ty of A and B implies that σ µi

A

i I
p
A

i
i I

T
∈ ∈
∑ ∈ ()� and

σ µi
B

i I
p
B

i
i I

T
∈ ∈
∑ ∈ ()� . Therefore, σ σ σi

i I
i
A

i
B

i I∈ ∈
∑ ∑= < >, =< >

∈∈
∑∑σ σi

A
i
B

i Ii I

,

∈ ×
∈ ∈

µ µp
A

i
i I

p
A

i
i I

T T() ()� � =
∈

µ p
C

i
i I

T()� . That is, C also has composabili ty.

(9) Let Ti I∈ be a collection of test sets. Let σ µC p
C

i
i I

T∈
∈

()� . By the definition of the product

scheme, there are σ µA p
A

i
i I

T∈
∈

()� and σ µB p
B

i
i I

T∈
∈

()� such that σ σ σC A B=< >, . The

decomposabili ty of A and B implies that there exist σ µi
A

p
A

iT∈ () and σ µi
B

p
B

iT∈ (), i I∈ ,

such that σ σA i
A

i I

=
∈
∑ and σ σB i

B

i I

=
∈
∑ . Because < >

∈
∑ σ σi

A
i
B

i I

, =< >
∈∈
∑∑σ σi

A
i
B

i Ii I

, and

< >∈σ σ µi
A

i
B

p
C

iT, (), C also has decomposabili ty.

ÿ

Lemma 15. For all schemes A, B and C, A×(B×C) ~ (A×B)×C.

Proof. Straightforward by the definition. ÿ

Example 6. (Typed dead mutant observation scheme)

In Example 2, an observation scheme is defined for mutation testing. In software testing tools,
mutation operators are often divided into a number of classes to generate different types of
mutants, see e.g. [KO91]. Dead mutants of different types are then recorded separately to
provide more detailed information. To define the observation scheme for this, let Φ1, Φ2, …,

Behaviour Observation in Software Testing 20/08/99

-- 20 --

Φn be sets of mutation operators. For each Φi, i=1, 2, …, n, define a dead mutant observation
scheme Mi as in Example 2. Then, we define the typed dead mutant observation scheme
MTyped= M1×M2×…×Mn. ÿ

5.4 Statistical Constructions

Let B=<B, µΒ> be an observation scheme. N be any given set of numbers. Then, <N, ≤> is a
totally ordered set under the less than or equal to relation ≤ on numbers. We can define a
scheme A=<A, µΑ> as follows.

Definition 17. (Statistical Construction)

A scheme A=<A, µΑ> is said to be a statistical observation scheme based on B=<B, µΒ>, if
there exists a set N of numbers and a collection of mappings sp∈P : Bp→N such that

(1) For all p∈P, Ap=N, and ≤A,p is the less than or equal to relation on N;

(2) For all p∈P, the mapping sp from Bp to the set N preserves the orders in Bp, i.e.
σ σ σ σ≤ ⇒ ≤B p p ps s, ' () (');

(3) For all test sets T, µ σ σ µp
A

p p
BT s T() { ()| ()}= ∈ . ÿ

Example 7. (Statement coverage)

Let B=(B, µΒ) be the regular scheme for statement testing. Define sp(σ) = ||σ|| / np, where np is
the number of statements in program p, ||σ|| is the size of the set σ. We thus define a statistical
observation scheme for statement coverage. The phenomena observed by the scheme are the
percentage of statements executed during testing. ÿ

Example 8. (Mutation score)

In mutation testing, mutation score is defined by the following equation and used as an
adequacy degree of a test set [DLS78, Bud81].

Mutation Score
number of dead mutants

number of non equivalent mutants
�

� � �

� � �
=

-

We define the mutation score as a statistical observation scheme based on the dead mutant
observation scheme with the mapping sp(σ)= ||σ|| / mp, where ||σ|| is the size of the set σ and
mp is the number of non-equivalent mutants of p generated by the set of mutation operators. ÿ

Notice that the statement coverage scheme defined above is not decomposable, although the
observation scheme for statement testing is regular, which has decomposabili ty according to
Lemma 13. Similarly, the mutation score scheme does not have decomposabili ty while the
dead mutation scheme has decomposabili ty. The examples show that the space of statistical
information observable from testing separately on several smaller test sets may be smaller
than the space observable from a large test set.

In software testing, statistics can be also made on the phenomena observed from testing on
each test case. The following defines the general construction of such schemes.

Definition 18. (Case-Wise Statistical Construction)

Behaviour Observation in Software Testing 20/08/99

-- 21 --

A scheme A=<A, µΑ> is said to be a case-wise statistical observation scheme based on B=<B,
µΒ>, if there exists a set N of numbers and a collection of mappings sp∈P : Bp→N such that

(1) For all p∈P, Ap=D Np → , where D Np → is the set of partial functions from Dp to N, and

≤A,p is defined by the following equation:

σ σ σ σ σ1 2 1 1 2≤ ⇔ ∀ ∈ = ∨ ≤A p pt D t undefined t t, .(() () ()),

where ≤ is the less than or equal to relation on N;

(2) For all p∈P, the mapping sp from Bp to the set N preserves the order in Bp, i.e.
σ σ σ σ≤ ⇒ ≤B p p ps s, ' () (');

(3) For all test sets T = { | }n t i Ii i ∈ where i j t ti j≠ ⇒ ≠ , σ µA p
A T∈ () iff (a)

∀ ∈ ∃ ∈ =i I n t t si p
B

i i A i p i. ({ }).(() ())σ µ σ σ , and (b) t T t undefinedA∉ ⇒ =σ () . ÿ

Notice that if the base scheme of a case-wise statistical scheme has composabili ty and
decomposabili ty, the case-wise statistical information can be derived from the phenomena
observed by using the base scheme. However, the case-wise observation scheme may have
different properties from its base scheme. The following is such an example.

Example 9.

The output diversity observation scheme defined in Example 3 is the case-wise statistical
observation scheme based on the input/output observation scheme with the mapping sp being
the set size function. ÿ

6. Behaviour Observations on Petri Nets
In this section, we apply the theory of behaviour observation to Petri nets - a well -known
model of concurrent and distributed systems [Mur89].

6.1 Basic Notion of Petri Nets

In this subsection, we provide an overview of a class of high-level Petri nets called predicate
transition nets (PrT nets in the sequel) [GL81]. A formal definition of predicate transition nets
can be found in [He96].

A PrT net is a tuple (Nt, Spec, Ins), where

(1) Nt = (Pl, Tr, Fl) is the net structure, in which
(i) Pl and Tr are non-empty finite sets satisfying Pl ∩ Tr = ∅. Pl and Tr are the sets of
places and transitions of Nt respectively;
(ii) Fl ⊆ (Pl × Tr) ∪ (Tr × Pl) is a flow relation, called the arcs of Nt;

(2) Spec is the underlying specification, which defines the types, tokens, labels, and
constraints of Nt;

(3) Ins = (ϕ, L, R, M0) is a net inscription that associates a net element in Nt with its
denotation in Spec:
(i) ϕ is a mapping that associates each place pl in Pl with a valid type defined in Spec,
(ii) L is a mapping that maps each arc in Fl to a valid label defined in Spec,
(iii) R is a mapping that associates each transition tr in Tr with a first order logic formula

defined in Spec,
(iv) M0 is a set of initial markings. Each initial marking assigns a multiple set of tokens

Behaviour Observation in Software Testing 20/08/99

-- 22 --

defined in Spec to each place pl in Pl.

A marking is a distribution of tokens in places. A transition is enabled if its pre-set places
contain enough tokens and its constraint is satisfied with an occurrence mode, which is a
substitution of relevant label variables with tokens. An enabled transition can fire. The firing
of an enabled transition consumes the tokens in the pre-set places and produces tokens in the
post-set places. We denote the firing of transition tr with occurrence mode α in marking M by
M /tr α→ M’ , where M’ is the resulting marking. We call the pair tr/α a firing. Two
transitions, including the same transition with two different occurrence modes, are in conflict
if the firing of one of them disables the other. Two transitions not in conflict can fire
concurrently. Conflicts are resolved non-deterministically. An execution step of a PrT net
consists of the simultaneous firings of non-conflict enabled transitions, and is denoted by M

TrO→ M’ , where TrO is a set of f irings. An execution of a PrT net is a sequence of
consecutive execution steps starting from an initial marking. The dynamic semantics of a Petri
net is the set of all possible maximal execution sequences starting from initial markings.

Notice that, firstly, we have used an interleaved-set semantic model here and thus true
concurrency can be studied. Alternatively, other semantic models such as branch structure and
partial order can be used [Rei85]. Secondly, we have considered the dynamic semantics of a
PrT net from a set of initial markings, instead of a single initial marking.

The following PrT net specifies the well -known dining philosophers’ problem.

Eating

Putdown

Thinking

ph ch1, ch2

Pickup

Chopstick

<ph,ch1,ch2>

ph ch1,ch2

<ph,ch1,ch2>

Figure 2 A PrT Net Specification of Dining Philosophers Problem

Figure 2 shows two philosopher states denoted by places Thinking and Eating respectively,
two transitions Pickup and Putdown, and the available chopstick state defined by place
Chopstick. The net inscription (ϕ, L, R, M0) is as follows.

(1) Place Types:
 ϕ(Thinking) = ϕ(Eating) = 2PHIL, ϕ(Chopstick) = 2CHOP,
where types PHIL and CHOP are induced from integers and defined in Spec.
(2) Arc Labels:
 L(Thinking, Pickup) = ph, and the rest are obvious from Figure 2.
(3) Transition Constraints:
 R(Pickup) = (ph = ch1) ∧ (ch2 = ph ⊕ 1), R(Putdown) = true,
where ⊕ is modulus k addition.
(4) Initial Marking:
 M0 = { mk | k=2, 3, …,}, where mk is defined as follows:

mk(Thinking) = {1, 2, ..., k}, mk(Eating) =∅, mk(Chopstick) = {1, 2, ..., k}.

The above specification allows concurrent executions such as multiple non-conflicting (non-
neighboring) philosophers picking up chopsticks simultaneously, and some philosophers
picking up chopsticks while others putting down chopsticks. The constraints associated with
transitions Pickup and Putdown also ensure that a philosopher can only use two designated

Behaviour Observation in Software Testing 20/08/99

-- 23 --

chopsticks defined by the implicit adjacent relationships. Table 1 below gives the details of a
partial execution of the PrT net in Figure 2.

Table 1. An Execution of the PrT Net in Figure 2
Markings mi Firings fi

Thinking Eating Chopstick Fired Transition Occurrence Mode
{ 1,2,3,4,5} { } { 1,2,3,4,5} Pickup { ph←1, ch1←1, ch2←2}
{ 2,3,4,5} { <1,1,2>} { 3,4,5} Putdown { ph←1, ch1←1, ch2←2}
{ 1,2,3,4,5} { } { 1,2,3,4,5} Pickup { ph←2, ch1←2, ch2←3}
{ 1,3,4,5} { <2,2,3>} { 1,4,5} Pickup { ph←4, ch1←4, ch2←5}
{ 1, 3, 5} { <2,2,3>, <4,4,5>} { 1} Putdown { ph←2, ch1←2, ch2←3}
{ 1, 2, 3, 5} { <4, 4, 5>} { 1,2,3} Putdown { ph←4, ch1←4, ch2←5}
{ 1,2,3,4,5} { } { 1,2,3,4,5} Pickup { ph←5, ch1←5, ch2←1}
{ 1,2,3,4} { <5,5,1>} { 2,3,4} Pickup { ph←3, ch1←3, ch2←4}
{ 1,2,4} { <5,5,1>, <3,3,4>} { 2} Putdown { ph←3, ch1←3, ch2←4}
{ 1,2,3,4} { <5,5,1>} { 2,3,4} Putdown { ph←5, ch1←5, ch2←1}
{ 1,2,3,4,5} { } { 1,2,3,4,5} … …

6.2 Behaviour Observation Schemes on Petri Nets

Let p be a PrT net and M0 be the set of initial markings of p. Thus, M0 can be viewed as the
domain of valid input for p. From the definition of PrT nets, an execution σ of p on a test case
m0 is a maximum sequence of execution steps starting from m0, and is denoted by

0 1
0 1 2: kTrO TrOTrO

km m m mσ → → →� �

where m0∈M0, mi, i=1,2,…, are markings such that each mi is obtained from mi−1 by firings
TrOi−1. For many concurrent systems, a maximum sequence of markings can be infinite, i.e.
the execution does not terminate. However, in software testing practice, we cannot observe
and record an infinite execution within a finite period of time. Therefore, we stop execution
manually and observe and record a partial execution. We use nσ to denote the partial
execution (or prefix) consisting of the first n execution steps of σ, i.e.

0 1
0 1 2 1: nTrO TrOTrOn

n nm m m m mσ −→ → →� . We denote the set of all finite partial

executions from an initial marking m0 of p as
0,p m

+Σ and p
+Σ as the set of f inite partial

executions from the set of initial markings M0, respectively. We call the firing sequence TrO0

TrO1 … TrOn−1 extracted from a partial execution σn a trace and denote it by Tracep(σn). We
use Firingp(σn) to denote the set of f irings extracted from the trace Tracep(σn). Furthermore,
we denote the transition sequence Tr0 Tr1 … Trn−1 extracted from a trace by dropping all
occurrence bindings as Transp(σn), where each Tr i is a multiple set.

It is worth noting that partial executions can have different numbers of execution steps, which
are determined by the tester, hence form an additional dimension of non-determinism of
testing. Without the loss of generali ty, we call both complete executions and partial
executions as test executions in the sequel.

In the following sections, we define several concrete behaviour observation schemes based on
the transition coverage criteria proposed in testing ER nets (a type of high-level Petri nets) in
[MP90]. Six transition coverage criteria proposed in [MP90] are:

(C1) Firing Sequence Adequacy: an adequate testing must include all feasible firing
sequences from the initial marking set;

(C2) Firing Adequacy: an adequate testing must cover all feasible firings;

Behaviour Observation in Software Testing 20/08/99

-- 24 --

(C3) Transition Sequence Adequacy: an adequate testing must cover all feasible transition
sequences;

(C4) Transition Adequacy: in an adequate testing, every feasible transition must be fired at
least once;

(C5) N-Times Adequacy: an N-Times adequate testing must cover those feasible transition
sequences that contain any one transition no more than N times;

(C6) N-Notable Adequacy: an N-Notable adequate testing must cover those feasible transition
sequences that contain any one transition no more than N times and no more than one
notable sub-sequence, where a sub-sequence is said notable, if all sequences of the
same length containing it result in the same final marking.

In [MP90], interleaving semantics was used such that each execution step involved only one
firing of a transition, which is a special case of our execution step that can have simultaneous
firings of multiple transitions. The subsuming relationships among the above adequacy
criteria are shown in Figure 3.

Definition 19. (Firing Sequence Scheme)

For all p∈P, the universe of observation on p under the firing sequence scheme FS
pΩ = < FS

pB ,
FS
pµ > is defined as follows:

(1) FS
pB = 2 pTrace , where Tracep is the set of all traces from the set of initial markings,

(2) The partial ordering FS
p≤ on FS

pB is the set inclusion;

(3) For all 0m M∈ , ,({ }) { { } }FS
p p mm Traceµ σ σ= ∈ , where Tracep,m is the set of all traces

from the initial marking m;

(4) For all test sets T, FS
pµ (i

i I

T
∈
�)= ()FS

i i p i
i I

T i Iσ σ µ
∈

 ∈ ∧ ∈ 
 
� .

The domain pD of a PrT net p is the set of initial markings 0M . From the definition of traces,

it is easy to see the following properties of FS
pµ .

(i) FS
pµ (∅) = { ∅},

(ii) 0 ()FS
pT M Tµ∩ ≠ ∅ ⇒ ∅ ∉ ,

(iii) 0() ()FS FS
p pT T Mµ µ= ∩ .

Thus the Firing Sequence Scheme is regular.

C1

C2C3

C5

C6

C4

Figure 3. The Subsuming Relationships

Behaviour Observation in Software Testing 20/08/99

-- 25 --

Definition 20. (Firing Sequence Coverage)

Let E be a collection of test executions of Petri net p. E is said to satisfy the firing sequence
coverage criterion iff Tracep(E) = Tracep. The coverage measurement of E is defined by the
formula FSC p E Trace E Tracep p(,) ()= . ÿ

It is worth noting that most concurrent systems in practical use contain an infinite number of
firing sequences. To satisfy such an adequacy criterion, we may need an infinite amount of
computation resource.

Definition 21. (Firing Scheme)

For all p∈P, the universe of observation on p under the firing scheme FT
pΩ = < FT

pB , FT
pµ > is

defined as follows.

(1) FT
pB = 2 pFiring , where Firingp is the set of all feasible firings in p,

(2) The partial ordering FT
p≤ on FT

pB is the set inclusion;

(3) For all test sets T, FT
pµ (T)= () ()FS

p p
x u

Firing x u Tµ
∈

 ∈ 
 
� .

It is easy to see that the Firing Scheme is an extraction of the Firing Sequence Scheme such
that the orders between firings are ignored.

The following defines the firing coverage criterion.

Definition 22. (Firing Coverage Criterion)

Let β be an observation under the firing scheme on Petri net p during a testing. The testing is
said to be adequate according to the firing coverage criterion iff β = Firingsp. Moreover, for
all β∈ FT

pB , the adequacy measurement is FTC p Firingp(,)β β= . ÿ

For example, the execution of the Petri net given in Table 1 satisfies the firing coverage
criterion. All the transitions (i.e. Pickup and Putdown) and possible occurrences have
appeared.

Definition 23. (Transition Sequence Scheme)

For all p∈P, the universe of observation on p under the transition sequence scheme TS
pΩ =

< TS
pB , TS

pµ > is defined as follows.

(1) TS
pB = 2 pTrans , where Transp is the set of transition sequences extracted from Tracep by

ignoring occurrence modes in execution steps;
(2) The partial ordering TS

p≤ on TS
pB is the set inclusion;

(3) For all test sets T, TS
pµ (T)= () ()FT

p p
x u

Trans x u Tµ
∈

 ∈ 
 
� , where ()FT

p Tµ is the recording

function defined in the Firing Sequence Scheme. ÿ

It is easy to see that the Transition Sequence Scheme is an extraction of the Firing Sequence
Scheme such that the bindings of occurrence modes to transitions are ignored.

Behaviour Observation in Software Testing 20/08/99

-- 26 --

Definition 24. (Transition Scheme)

For all p∈P, the universe of observation on p under the transition scheme TR
pΩ = < TR

pB , TR
pµ >

is defined as follows.

(1) TR
pB = 2 pTR , where TRp is the set of all feasible transition;

(2) The partial ordering TR
p≤ on TR

pB is the set inclusion;

(3) For all test sets T, TR
pµ (T)={ }/ ()FT

pt t Tα µ∈ , where ()FT
p Tµ is the recording function

defined in the Firing Scheme. ÿ

It is easy to see that the Transition Scheme is an extraction of the Firing Scheme such that the
bindings of occurrence modes to transitions are ignored. Alternatively, the Transition Scheme
can be extracted from the Transition Sequence Scheme.

Definition 25. (N-Times Scheme)

For all p∈P, the universe of observation on p under the N-times scheme NT
pΩ = < NT

pB , NT
pµ >

is defined as follows.

(1) NT
pB = 2 pNT , where NTp is the set of prefixes of transition sequences extracted from Transp

that no transitions appear more than N times in the sequence;
(2) The partial ordering NT

p≤ on NT
pB is the set inclusion;

(3) For all test sets T, ()NT
p Tµ = { } ()

p

TS
p

x u NT

x u Tµ
∈ ∩

  ∈ 
  
� , where ()TS

p Tµ is the recording

function defined in the Transition Sequence Scheme. ÿ

It is easy to see that the N-Times Scheme is an extraction of the Transition Sequence Scheme
such that only transition sequences containing no more than N appearances of any transition
are included.

Definition 26. (N-Notable Scheme)

For all p∈P, the universe of observation on p under the N-Notable scheme NN
pΩ = < NN

pB , NN
pµ

> is defined as follows.

(1) NN
pB = 2 pNN , where NNp is the set of equivalent classes defined on notable sub-sequences

from the set NTp;
(2) The partial ordering NN

p≤ on NN
pB is the set inclusion;

(3) For all test sets T, NN
pµ (T)= () ()NT

p p
x u

NN x u Tµ
∈

 ∈ 
 
� , where ()NT

p Tµ is the recording

function defined in the N-Times Scheme. ÿ

It is easy to see that the N-Notable Scheme is an extraction of the N-Times Scheme such that
only one representative is needed for a set of equivalent transition sequences.

The extraction relationships among the above observation schemes are shown in Figure 4.

Behaviour Observation in Software Testing 20/08/99

-- 27 --

Figure 4. The Extraction Relationships

7. Discussion

7.1 Relation to Work on Theory of Software Testing

The research on software testing theory has focused on test adequacy criteria since
Goodenough and Gerhart [GG75] pointed out that the central problem of software testing is
test criteria. A great number of test criteria have been proposed and investigated in the
literature [ZHM97]. Researches have been conducted to establish the relationships between
test criteria and fault detecting abili ty and software reliabili ty. In recent years, axiomatic
approaches have been advanced to understand test criteria from a very high level of
abstraction [BuA82, Wey88, PZ91, PZ93, ZH93, ZHM95, Zhu95, Zhu96a]. However, few
existing theories of software testing take concurrency and non-determinism into account,
instead the uniqueness of dynamic behaviour is assumed. Given the fact that a test set can
generate a number of different dynamic behaviours of a non-deterministic system, we argued
that test criteria should be defined as functions (or predicates) of the behaviour observed from
test executions. By doing so we addressed the complexity of non-uniqueness of observations
due to concurrency and non-determinism and extended the notion of test criteria. We also
argued that the way to observe dynamic behaviour is a fundamental part of all testing
methods. Such behabiour observations method are required to be consistent and systematic, if
the testing method is well established. Yet, different observation methods have different
properties.

The notion of observation scheme proposed in this paper formally characterises systematic
and consistent methods of recording and observing software dynamic behaviour. The
desirable properties and constructions of schemes proposed and investigated in this paper are
analogue to the axiomatic study of test adequacy criteria proposed by Weyuker in [BuA82,
Wey88], formalised by Parrish and Zweben in [PZ91, PZ93], and further developed in [ZH93,
Zhu95, Zhu96a]. We are further investigating how to adapt and extend existing axioms of test
adequacy criteria to our new notion of test adequacy criteria defined on observable
phenomena. We are also searching for axioms that are suitable for testing concurrent systems
but have not appeared in the study of testing sequential programs.

Relationships between testing methods have been investigated using the subsumption relation
between adequacy criteria, e.g. [Nta88, FW88, CPR89]. Recently, Frankl and Weyuker
[FW93a] proved that in general the subsumption relation does not guarantee better fault
detecting abili ty, while Zhu [Zhu96b] proved that in posterior testing scenario the
subsumption relation does mean better fault detecting. Other relations between testing
methods are also defined as relations between test adequacy criteria, for example, various

Transition Sequence

Firing

 Transition

N-Times

N-Notable

Firing Sequence

Behaviour Observation in Software Testing 20/08/99

-- 28 --

relations proposed and investigated by Frankl and Weyuker [FW93b] and the framework
proposed by Gourlay [Gou83]. The extraction relation between observation schemes provides
an alternative approach for analysing relationships between testing methods. Many questions
remain for further research, for example, the relationship between extraction relation and fault
detecting abili ty, and the relationship between extraction and the subsumption relation and
various Frankl and Weyuker’s relations between test criteria [FW93a, FW93b].

The applicabili ty of the theory proposed in this paper is demonstrated by the analysis of a
number of testing methods proposed in [MP90] for testing Petri nets. The observation
schemes underlying some well -known testing methods, such as mutation testing, statement
and path testing, are discussed in the paper as examples. We are investigating the observation
schemes underlying data flow testing methods [LaK83, Nta84, RaW85, FW88] and
specification based testing methods [SC96, BGM91, Hie92, RiC85, Kem85]. We are also
applying the theory to guide the design of a serious of testing methods for distributed
concurrent systems specified in hierarchical predicate transition nets.

7.2 Relation to Work on Semantics of Programming Languages and Domain Theory

In this paper, we argued that the space of phenomena about software dynamic behaviour
observable from software testing constitutes a CPO (complete partially ordered sets), if the
the observations are systematic and consistent. The mathematical structure of CPO’s has been
investigated in the context of programming language semantics [Sto77]. As a result, the
domain theory is established, which is an important branch of theoretical computer science,
and forms the foundation of the denotational semantics of computer languages. The
denotational semantics of programming languages considers the semantics of a program as a
monotonic and continuous function on CPO. Various power domain constructions have been
proposed and studied to define the denotational semantics of concurrent and non-deterministic
programs [Plo76, Smy78]. In this paper, we have seen that the great variety of testing
methods provides a spectrum of fresh concrete examples and general constructions of CPO’s
with a novel practical application of domain theory to software testing. In this paper, we
focused on the issues related to software testing rather than the mathematical properties of
such CPO’s. From the viewpoint of domain theory, an observation scheme could be
considered as a monotonic and continuous mapping from the space of test sets, which is a
complete lattice, to a ‘power domain’ based on a CPO phenomena. The extendibili ty and
tractabili ty are monotonic conditions for schemes with respect to lower and upper power
domain constructions, respectively. The composabili ty and decomposabili ty can then be
considered as some kind of continuity conditions for schemes. However, an observation
scheme differs from semantics in the way that given a program the semantics associates an
output (or behaviour) with one input while a scheme relates an observable phenomenon to a
set of test cases (i.e. inputs). Although it is demonstrated in the paper that the definition of
observation schemes and various desirable properties of schemes are consistent with the
operational semantics of Petri nets, the relationship between semantics of concurrent systems
and the notion of scheme would be a very interesting topic for further research.

Acknowledgements

This work is jointly funded by the National Science Foundation of the USA under grant INT-
9731620 and the National Science Foundation of China under grant 69811120643.

References

[ZHM97] Zhu, H., Hall , P. and May, J., Software unit test coverage and adequacy, ACM

Behaviour Observation in Software Testing 20/08/99

-- 29 --

Computing Survey, Vol. 29, No. 4, Dec. 1997, pp366~427.

[GG75] Goodenough, J.B. & Gerhart, S.L., Toward a theory of test data selection, IEEE TSE,
Vol.SE_3, June 1975.

[BuA82] Budd, T. A. & Angluin, D., Two notions of correctness and their relation to testing,
Acta Informatica, Vol. 18, 1982, pp31-45.

[Wey86] Weyuker, E. J., Axiomatizing software test data adequacy, IEEE TSE, Vol.SE_12,
No.12, December 1986, pp1128-1138.

[ChS87] Cherniavsky, J. C. & Smith, C. H., A recursion theoretic approach to program
testing, IEEE TSE, Vol. SE_13,No.7, July 1987, pp777-784.

[DaW88] Davis, M. & Weyuker E., Metric space-based test-data adequacy criteria, The
Computer Journal, Vol.13, No.1, February 1988, pp17-24.

[Wey88] Weyuker, E.J., The evaluation of program-based software test data adequacy
criteria, Communications of the ACM, Vol.31, No.6, June 1988, pp668-675.

[PZ91] Parrish, A. & Zweben, S.H., Analysis and refinement of software test data adequacy
properties, IEEE TSE, Vol. SE_17, No. 6, June 1991, pp565-581.

[PZ93] Parrish, A.S. and Zweben, S.H., 1993, Clarifying Some fundamental Concepts in
Software Testing, IEEE TSE, Vol. 19, No.7, July 1993, pp742~746.

[FW93] Frankl, P.G. & Weyuker, J.E., A formal analysis of the fault-detecting abili ty of
testing methods, IEEE TSE, Vol. 19, No. 3, March 1993, pp202- 213.

[ZH93] Zhu, H. & Hall , P., Test data adequacy measurement, SEJ, Vol. 8, No.1, Jan. 1993,
pp21~30.

[GS90] Gunter, C. A., Scott, D. S., Semantic domains, In Handbook of Theoretical Computer
Science, Vol. B., Formal Models and Semantics, Ed. J. van Leeuwen, The MIT
Press/Elsevier, 1990, pp633~674.

[DLS78] DeMill o, R.A., Lipton, R.J. & Sayward, F.G., Hints on test data selection: Help for
the practising programmer, Computer, Vol.11, April 1978, pp34-41.

[Bud81] Budd, T. A., Mutation analysis: Ideas, examples, problems and prospects, in
Computer Program Testing, Chandrasekaran, B., and Radicchi, S., (eds), North-
Holland, 1981. pp129~148.

[How82] Howden, W.E., Weak mutation testing and completeness of test sets, IEEE TSE,
Vol.SE-8, No.4, July 1982, pp371-379.

[Mye79] Myers, G. J., The art of software testing, John Wiley and Sons, New York, NY,
1979.

[Bei90] Beizer, B., Software testing techniques, 2nd Edition, New York, Van Nostrand
Reinhold, 1990.

[How76] Howden, W.E., Reliabili ty of the path analysis testing strategy, IEEE TSE,
Vol.SE_2, September 1976, pp.208-215.

[KO91] King, K.N. & Offutt, A.J., A FORTRAN language system for mutation-based
software testing, Software--Practice and experience, Vol.21, No.7, July 1991, pp685-
718.

[Mur89] Murata, T., Petri nets, Properties, analysis and applications, Proc. of IEEE, vol. 77,
no.4, 1989, pp541-580.

Behaviour Observation in Software Testing 20/08/99

-- 30 --

[GL81] Genrich, H. J. and Lautenbach, K., System modelli ng with high level Petri nets,
Theoretical Computer Science, vol.13, 1981, pp109-136.

[He96] He, X., A Formal Definition of Hierarchical Predicate Transition Nets, Proc. of the
17th International Conference on Application and Theory of Petri Nets (ICATPN'96),
Lecture Notes in Computer Science, vol. 1091, Osaka, Japan, 1996, pp212-229.

[Rei85] Reisig, W., On the semantics of Petri Nets, in Formal Models in Programming,
Neuhold, E. J. and Chroust, G. eds, North Holland, 1985, pp347~372.

[ZHM95] Zhu, H., Hall , P., and May, J., Understanding software test adequacy -- An
axiomatic and measurement approach, Mathematics of Dependable Systems, Edited
by Mitchell , C., and Stavridou, V., Oxford University Press, 1995, pp275~295.

[Zhu95] Zhu, H., Axiomatic assessment of control flow based software test adequacy criteria,
SEJ, Sept. 1995, pp194~204.

[Zhu96a] Zhu, H., A formal interpretation of software testing as inductive inference, Journal
of Software Testing, Verification and Reliabili ty, UK., Vol. 6, July 1996, pp3~31.

[Nta88] Ntafos, S.C., A comparison of some structural testing strategies, IEEE TSE, Vol. SE-
14, June 1988, pp868-874.

[FW88] Frankl, P.G. & Weyuker, J.E., An applicable family of data flow testing criteria,
IEEE TSE, Vol.SE_14, No.10, October 1988, pp1483-1498.

[CPR89] Clarke, L.A., Podgurski, A., Richardson, D.J., & Zeil , S.J., A formal Evaluation of
data flow path selection criteria, IEEE TSE, Vol.15, No.11, November 1989, pp1318-
1332.

[FW93a] Frankl, P.G. & Weyuker, J.E., A formal analysis of the fault-detecting abili ty of
testing methods, IEEE TSE, Vol. 19, No. 3, March 1993, pp202- 213.

[Zhu96b] Zhu, H., A formal analysis of the subsume relation between software test adequacy
criteria, IEEE Transactions on Software Engineering, Vol. 22, No. 4, April 1996,
pp248~255.

[FW93b] Frankl, P. G., Weyuker, E. J., Provable Improvements On Branch Testing, IEEE
TSE, Vol.19 No.10, 1993, pp.962-975

[Gou83] Gourlay, J. A mathematical framework for the investigation of testing, IEEE TSE,
Vol.SE_9, No.6, November 1983, pp686-709.

[MP90] Morasca, S. and Pezze, M., Using high-level Petri nets for testing concurrent and
real-time systems, Real-Time Systems, Theory and Applications (H. Zedan ed.), North
Holland, 1990, pp119-131.

[LaK83] Laski, J. and Korel, B, A data flow oriented program testing strategy, IEEE TSE,
Vol. SE-9, May 1983, pp33-43.

[Nta84] Ntafos, S.C., On required element testing, IEEE TSE, Vol. SE_10, No. 6, November
1984, pp795-803.

[RaW85] Rapps, S. & Weyuker, E.J., Selecting software test data using data flow
information, IEEE TSE, Vol.SE_11, No.4, April 1985, pp367-375.

[FW88] Frankl, P.G. & Weyuker, J.E., An applicable family of data flow testing criteria,
IEEE TSE, Vol.SE_14, No.10, October 1988, pp1483-1498.

[SC96] Stock, P. and Carrington, D., A framework for specification-based testing, IEEE TSE,

Behaviour Observation in Software Testing 20/08/99

-- 31 --

Vol. 22, No. 11, 1996, pp777~793.

[BGM91] Bernot, G., Gaudel, M.C. & Marre, B., Software testing based on formal
specifications: a theory and a tool, SEJ, November 1991, pp387-405.

[Hie92] Hierons, R., Software Testing from Formal Specification, Ph.D. Thesis, Brunel
University, UK, 1992.

[RiC85] Richardson, D.J. & Clarke, L.A., Partition analysis: A method combining testing and
verification, IEEE TSE, Vol. SE_11, No. 12, December 1985, pp1477-1490.

[Kem85] Kemmerer, R.A., Testing formal specifications to detect design errors, IEEE TSE,
Vol.SE_11, No.1, January 1985, pp32-43.

[Sto77] Stoy, J. E., The Scott-Strachey approach to programming language theory, MIT Press,
Cambridge, MA, 1977.

[Plo76] Plotkin, G. D., A powerdomain construction, SIAM Journal of Computing, Vol. 5,
1976, pp452~487.

[Smy78] Smyth, M., Power domains, Journal of Comput. System Sci., Vol. 16, 1978,
pp23~36.

