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Abstract

Software testing is a process in which a software system’'s dynamic behaviours are observed and
analysed so that the system’s properties can be inferred from the information reveded by test
exeadtions. While the existing software testing theories might be alequate in describing the testing of
sequential systems, they are not cgpable to describe the testing of concurrent systems that can exhibit
different behaviours on the same test case due to non-determinism and concurrency. This paper
presents a theory of behaviour observation in software testing. We first introduce and formally define
the notion of observation scheme that characterises systematic and consistent methods of behaviour
observations and recordings. We propose aset of desirable properties for observation schemes and
study the relationships among the properties. We provide severa constructions of observation schemes
that have direct implications in current software testing practice We then explore the relationships
between dfferent observation schemes and examine these observation schemes with regard to the
desirable properties. Finaly, we gply the theory to a ancrete computation model for concurrent
systems, high-level Petri nets, and demonstrate how to use observation scheme to define test adequacy
criteria

Keywords:. software testing, behaviour observation, concurrent systems, Petri nets, complete
partially ordered set.

1. Introduction

Software testing is a processin which a software system’s dynamic behaviours are observed,
recrded and analysed so that properties of the system can be inferred from the information
reveded by test exeautions. The past decades have seen arapid growth in the study of testing
methods, see eg. [ZHM97] for a survey. The most well known testing methods include
structural testing, functional testing, and fault-based testing. These testing methods not only
differ from each ather in the way that test cases are selected or generated, but aso in the way
that the dynamic behaviour of the software under test are observed and analysed. For
example, in statement testing, exeautions of the statements in program source ®de ae
observed and recrded for analysing the percentage of statements tested. In path testing
methods, observations are made and recorded to analyse various types of paths exeauted
during testing. In mutation testing, what observed is the liveness of mutants, i.e. whether or
not a mutant produces a result different from that of the software under test. These behaviour
observation and recording methods are usualy implemented through software
instrumentation. It is no doulh that how to observe system’s behaviour during the testing
processis a very important issue of testing methods. No matter how dynamic behaviour is
observed and rerded, it shoud be made consistently and systematicdly.

Unfortunately, few existing theories have addressed the important issue of behaviour
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observation in software testing. Insteal, existing theories of software testing assume eplicitly
or implicitly that a software system can orly demonstrate one dynamic behaviour on ore test
set and the test cases uniquely determine the dynamic behaviour of the program under test.
For example, test criteria were defined as a function a predicae on test sets, e.g. [GG75,
BuA82, Wey86, ChS87, Daw88 Wey88, PZ91, PZ93, FW93, ZH93]. This asumption is
soundfor testing sequential software. However, testing a mncurrent system on the same test
case twice may reved different behaviours due to nondeterminism. The uniqueness
asumption on software's dynamic behaviour hence significantly limits the gplicaion o
existing software testing theories. This paper addresses the complex of non-determinism and
concurrency in software testing whil e sequential software systems are treated as ecial cases.

This paper proposes a theory that enables us to study the properties of various ways of
behaviour observations and the relationships between them. It is organised as follows. Section
2 introduces the nation o observation schemes and the preliminary concepts and ndations
used in the paper. Section 3 discusses various properties of observation schemes. Sedion 4
studies the extradion relation ketween olservation schemes. Sedion 5 popaoses a number of
schemes constructions as abstractions of testing methods. Sedion 6 applies the theory to the
testing of Petri net. A number of observation schemes are defined and analysed. Sedion
7concludesthe paper with a discusson d related and future work.

2. The Notion of Observation Schemes

The recorded olservations of system’s dynamic behaviour during a testing can be (1) the set
of exeauted statements, (2) the set of exercised branches, (3) the set of traversed peths, (4) the
sequences of communicaions occurred between processes, or (5) the set of dead mutants, and
so on. To make the behaviour observation and recording meaningful, we require that the
observation and recording be systematic and consistent. For example, it is not accetable if
we record exeauted statements at one time and communications between processes at another
time during a single testing exeaution.

We use the word scheme to denote a systematic and consistent way of observing and
recording dynamic behaviours in software testing. We require that a scheme have auniverse
of phenomena on systems dynamic behaviours that are observable from testing. This
universe must have the structure of a cmplete partially ordered set for the foll owing reasons.

(1) Partial ordering onobservable phenomena. Suppcse that a software system is tested and
an olservationis made. By carrying out more tests on the same software system and wse
the same observation scheme, we shoud be ale to oltain more information abou the
dynamic behaviour of the system. The final cumulative observation shoud contain more
information than the intermediate observation. Therefore, there is an ardering between
these two olservations. However, observations made during two independent tests are in
genera not ordered. Therefore, all possble observations made during testing a software
system form a partial order.

(2) Existence of a summnation operation. A summation operation is nealed to add up a
number of individual observations made during testing a software system. The result of
such asummationisthe least upper bound @ the individual observations.

(3) Existence of the least element. No information abou the dynamic behaviour of a system
can be observed if the system is not exeauted. To identify such a situation, the universe of
phenomenais required to contain the least element dencting “no information’.
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For example, let an olservation d the dynamic behaviour of a system be the set of exeauted
statements during testing, all such sets constitute auniverse of phenomena and the partial
ordering relation onthe universe is the set inclusion. The least element is the empty set. The
summeation ogerationis st union.

Before we formally define the notion d schemes and investigate their properties, wefirst give
some mathematica concepts and ndations. Realers are referred to [GS90] for details abou
domain theory.

Let D be anon-empty set, < be abinary relation onD, and SO D be asubset of D.

» Partial ordering: the binary relation< isapartial ordering, if < isreflexive, transitive and
anti-symmetric.

» Upper bound uiscdled an upper boundof S,if s< ufor al sOS

* Consistent subset: Sisaconsistent subset if foral s;, s, 0 S, thereissd D suchthat s;< s
ands, <s. Wesay that s, is consistent with s, and write s;1 s,.

» Direded subset: Sisadireded subset, if for dl s, s, 0 S, there exists s 00 Ssuch that s,
<sands<s.

» Complete partially ordered set (CPO): <D, < > is cdled a complete partially ordered set,
if (1) D has aleast element, written [J; (2) for every directed subset S D, S has a least
upper bound written as Z S, i.e. for any other upper boundu, Z S<u.

 Let | be ay index set, x; be avariable that ranges over set X, iCJl. We write [0x O

il

Xi.Pred asashort hand for [ix;[(0X1.[X%[0Xo. ...Pred. -EX‘ [O0X;.Pred is defined simil arly.

* bag(X) is used to dencte the set of all multiple sets on a set X. The traditional set

operations are used to denate their multiple set variants as well. Y is the set obtained by
removing dugicated elementsin amultiple set Y.

o Let ¢ be amapping from X to Y. For al subsets ACX, we define ¢(A)={ ¢(a) | alJA}.
We use the foll owing symbads in this paper:

* panditsvariantsfor a @mncurrent system, and P for the set of al concurrent systems;
* sanditsvariantsfor aspecification,and Sfor the set of al specificaions;

» D for the set of inpu data for al concurrent systems, and Dy, for the set of valid inputs of
p;

* tanditsvariantsfor atest case, i.e. an inpu datum for testing a concurrent system.

* T andits variants for a test set. Generally, T is a multiple set (or bag) so that multiple
exeautions on the same test case can be described.
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e oanditsvariants for aphenomenon olservable during testing a awncurrent system, and I
for aset of phenomena.

We now formally define a scheme as foll ows.
Definition 1. (Observation Scheme)

A scheme of behaviour observation and recording, or simply an observation scheme, is an
ordered pair <B, 1>, where B={<B,, <,> | p0P}, and u={ 1, | pO0P}. B is cdled the universe
of phenomena. For al concurrent systems pCP, <B,, <p> is a cmplete partially ordered set.
By is cdled the universe of phenomena on p. i is cdled the recording function. For all
concurrent systems pJP, the recording function 1, maps a test set T to a non-empty consistent
subset of B,,.

Informally, each element in By, is a phenomenon observable from testing a concurrent system
p. 01 <, 0> means that phenomenon oy is a part of phenomenon o,. The least element [, of
B, denotes that nothing is observed. L,(T) is the set of al possble phenomena observable by
testing p on test set T. In ather words, o Uu(T) means that ois a phenomenon that is
observable by an exeaution d p ontest set T.

Example 1. (Input/Output observation scheme)

Let 10, = {<x,y> | XD, and yUp(x)}, where ylp(x) means that y is a posshble output of
concurrent system p when exeauted oninpu data x. The universe of observable phenomenais
defined to be the power set of 10, and the partial ordering be set inclusion. The recording
function p(T) is defined to be the wlledion o sets of inpu/output pairs observable from
testingp onT.

For instance, assume that D, = {0,1}, p(1)= {1}, and p(0) = {0, 1} due to nonrrdeterminism.
Let test data t=0, and test set T,={t}, then ui,(T1)={{ <0,0>}, { <0,1>}}, i.e. one may observe
either {<0,05} or {<0,1>} by exeauting p on inpu O orce. Let test set T,={2t}, then
Up(T2)={{ <0,0>}, {<0,1>}, {<0,0>, <0,1>}}, i.e. one of the following three different
phenomena can be observed by exeauting p twice onthe same inpu O:

(1) {<0,0>} - pouput Ointwo exeautionsoninpu O;
(2) {<0,1>} - pouput 1 intwo exeautionsoninpu O;

(3) {<0,0>, <0,2>} - p ouput O in ore exeaution, and 1in ancther exeaition onthe same
input 0.

Example 2. (Dead mutant observation scheme)

Consider the observation scheme for mutation testing [DLS78, Bud81, How82]. Let @ be a
set of mutation operations. The gplication d @ to a program p produces a set of mutants of
p. Let @(p) be the set of such mutants that are naot equivalent to p. Define the universe of
phenomenato be the power set of @(p). The partial ordering is defined to be the set inclusion
relation. For all test sets T, the recording function p(T) is defined to be the wllection d sets

of mutants. Each element in u (T) isaset of mutants that can be kill ed by one testing of p on
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T.
Example 3. (Output diversity observation scheme)

The observation scheme in this example records the number of different outputs on ead input
data. A phenomenon olservable from testing a ncurrent system on a set of test cases
consists of a set of records. Each record has two parts <t, n>, wheretisavalid inpu, nisthe
number of different outputs on the inpu data observed from the testing. Formally, an element
of the universe of phenomenais a set in the form of {<t;,n> | Dy, n>0, iJl}. The partial
ordering relation on plenomenais defined as foll ows:

0<0 = 0O<t,n>0o.0<t,n>Oc".(t=t'On<n).
The least upper boundof ogand &' is, then,

<t,max(n,n,)>, if [h,n,>0.(<t,n, >0o,0<t,n, >00o,)
o,+0, ={<tn><t,n>=:<t,n > if h >0.(<t,n >0o,)0-[h,>0.(<t,n,>00,) }
<t,n, >, if [h,>0.(<t,n,>00,)0-[h, >0.(<t,n, >00,)

3. Properties of Schemes

The definition d scheme provided in the previous dion is gill i nsufficient to characterise
the nation o consistent and systematic ways of behaviour observation. For example, given a
set of mutation oyperators, a set of mutants of a given program p can be generated by applying
the mutation operators to p. Suppase that the phenomena observed duing a mutation testing
of p is the set of mutants dill alive dter test. Therefore, one might define the universe of
phenomena to be the sets of live mutants and the partial ordering on pthenomena to be the set
inclusion relation. Our intuition suggests that if an observation oy is made by atest exeaution,
one shoud be ale to have an olservation o, such that o, < 0, when carrying ou more tests.
However, using the aowe definition it is just the oppasite, becaise the more one tests a
program, the lessmutants may be dive, i.e. 01 = 0,

Therefore, we further require that an observation scheme satisfy additional properties. The
first property to be discussd here is related to whether nontrivia phenomena can be
observed from non-empty tests.

Definition 2. (Observability)

An observation scheme is sid to have observabhility, if a cncurrent system is tested on \alid
inpus, some phenomenon d the system’s behaviour can always be observed, bu nathing can
be observed from atesting wsing only invalid inpu. Formally,

(1) OpOP.( Tn Dp 200 OpOup(T)), and
(2) OpOP.(Tn D, =00 u (T) ={0,}).
The foll owing are some properties weeker than observability. All of them state that the empty

test set, which means no testing has been dorg, is the wedkest one in terms of the observable
phenomena.
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Definition 3. (Lower, Middle and Upper Least Element)

An observation scheme is sid to have the lower least element property, if for all test set T,
HoOup(@).Bo'Dup(T).(0'2p 0). Itis sid to have the middle least element property, if for

al test sets T, Lo U uy(T).00" O ps(0).(0 2, ). It is sid to have the upper least element
property, if for all test set T, o Dﬂp(T).Eb'Dyp(D).(o 2p c).

Lemma 1.

(1) Themiddle least element property implies the lower least element property.

(2) Observabhility implies the lower least element property, the midde least element and uper
lower element property.

Proof. Statement (1) is draightforward by definition. Statement (2) can be proved by
condtion (2) of observabili ty.

Ancther property related to when a non-trivial phenomenon can be observed is the domain
limited property defined below.

Definition 4. (Domain Limited Property)

An observation scheme is sid to have domain limited property, if only valid inpus effed the
observation. Formally, OpUP.(up(T) = up(T n Dp)) .

The second group d properties abou schemes is concerned with the relationship between the
phenomena observable from testings on dfferent test sets. The ansistency requires that a
phenomenon olservable from one test set be mnsistent with any phenomenon olservable
from another test set if both are obtained from testing the same program.

Definition 5. (Consistency)

A set [ of phenomenais sid to be consistent with aset 7 of phenomena, writtenas 't I, if
for all oM andal ¢ 0O, o1 0. An olservation scheme is sid to have consistency, if for
all systemsp, al test sets T and T, the set of phenomena observable from exeautingp on T is
consistent with the set of phenomena observable from exeauting p on T'. Formally,

OpOP.(Up(T) 1 Lp(T))-

It shoud be naticed that a concurrent system might well produce different outputs on ore test
case in two test exeautions. Whether such phenomena are considered as consistent depends on
the definition d the universe of phenomena. For example, the definition d the inpu/output
observation scheme given in Example 1 considers sich phenomena & consistent. However,
they are wnsidered as inconsistent if the definition o 10, in Example 1 is replaceal with
10, ={<t, f(t) >t OD,} wherefisafunction onD,. Infad, using IO’ to define the universe

of phenomena excludes the possbility of non-determinism. Hence, different outputs on the
same inpu indicae inconsistency.

A property stronger than consistency is the completenessproperty.
Definition 6. (Completeness)

An olservation scheme is said to have completeness if every phenomenon o;5 observable
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from exeauting a ncurrent system p on a test set Ty is contained in the phenomena o
observed from exeauting p on | J T, . Formally, O pOP.( 0o 0 pp(Ty). (Do 0 e (T (0 2

o). | |
Lemma 2.

Let T={t;|i0JI}. If an observation scheme is complete, then we have that
0 pOP.( DaOu{t})- (D0 0 pT).(02500)).

Proof. Let T;={t;} for ilJ/ in the definition o completeness
Lemma 3.

Completenessimplies the midde least element property. That is, if an olbservation scheme has
completeness then for al test sets T, thereis o [ py(T) such that, for al o O u(0) , 02 0.

Proof. For al test sets T, we have that T=T0O UTi, where T,=0. The statement then
i (0)
foll ows the definition d completenessimmediately.

The third goup d properties abou schemes dates the relationship between phenomena
observable from testing on atest set and its subset.

Definition 7. (Extendibility)

An observation scheme is sid to have extendibility, if every phenomenon olservable from
exeauting a cncurrent system p on atest set T is a part of a phenomenon olservable from
exeauting p onasuperset T' of T. Formally,

OpOP.(c0u,(T)OTOT'O Oo'Op,(T').(0<,0)).

L emma 4. Extendibili ty impli es the lower |east element property.
Prodf. Let T=[0 in the definition d extendibility.

L emma 5. Extendibili ty impli es consistency.

Proof. Let T; and T, be awy given test sets. Then, T = T,00T, O T;. Similarly, T O T,. By
extendibili ty, for all o10u,(T1) thereis olu,(T) such that o201, and for al g,0uy(T2) thereis
o Oup(T) such that o' 20,. By the definition d observation schemes, () is a @nsistency
set, therefore, thereis o* such that o*>0 and 0* >0’ . By the trangitivity of > relation, we have
that o*>0; and 0*>0,. Hence 03110, The statement follows from the definition o
consistency.

L emma 6. Completenessimpli es extendibili ty.
Proof. Asaume that TOT' and O'D,up(T). Let T'=TOT" and d'Dyp(T"). By the
definition o completeness 0+d'Dyp(T'). The statement follows from the fad that

o+0"20.

Definition 8. (Tractability)
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An observation scheme is sid to have tractability, if every phenomenon olservable from
exeauting a concurrent system p on a test set T contains a phenomenon olservable from
exeauting p onasubset T' of T. Formally,

0pOP.(o Ou,(T)OT OT'0 Bo'Du,(T').(0 2, 0%)).

Lemma 7. Tradability implies the upper least element property, that is, for all test sets T,
HoOup(T).Lo'Tup(@).(02p 0).

Prodf. Let [0 bethe T in the definition d tradabili ty.
Definition 9. (Repeatability)

An observation scheme is sid to have repeatahbility, if every phenomenon olservable from
exeauting a mncurrent system p onatest set T can be observed from exeauting p onthe same
test casesin thetest set T for more times. Formally,

0 pOP.(oOp p(T) OT'Dbag(T) OT'OT O o Opp(TY)).

The last group d properties abou schemes dates the relationships between the phenomena
observable from testing on anumber of subsets and the phenomena observable from the union
of the subsets. These properties are related to questions like whether a testing task can be
divided into a number of subtasks.

Definition 10. (Composability)

An olservation scheme is sid to have composahility, if the phenomena observable by
exeauting a concurrent system p on a number of test sets Ty can be put together to form a
phenomenonthat is observable from exeauting p onthe union d the test sets Tiy,. Formally,

0pOP.( 0 010 4 (T) -(% o O iLDJITi ).

Composabili ty means that the summation operation is sfe in the sense that the summeation o
the phenomena observable from a number of test sets is gill observable if the testing is not
divided into subsets. The decomposability formally defined below states ancther kind o
safety. It means that dividing atesting task into small subtasks will not lossthe posshility of
observing a phenomenon. Unfortunately, some schemes that look sound do nb have
decompaosabili ty as we will seelater.

Definition 11. (Decomposability)
An observation scheme is sid to have decomposahility, if for all test sets T, T = UTi implies

ial
that every phenomenon olservable from exeauting a concurrent system p onthe test set T can
be decomposed into the summation d the phenomena observable from exeauting p on test
sets Tig. Formally, let T =T,

il

OpOP.(o0 (T O iDDI 0 U pp(Ti) (o= i% gi)).
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Lemma 8.
(1) Decompaosabili ty impli es that
O pOP.OT={t; [i01}. (0 DOup(T) O iDDI a0u({t}) (o= 0 ), (*)
il
(2) If an olservation scheme has composabili ty, then (*) implies decomposabili ty.
Prodf.

Statement (1) is obvious from the definition d decompaosability. To prove (2), let T :UTi
igl

and Ti={t;; | jOJ}. Let o O uy(T). By (*), we have that

0 o,0m{t}) (o= S 0i;)).

il j0J, 0150,

By composabili ty, we have that for all iCll, ZGH Ou,(T), Let 0, = ZGH . Then, we have
10, J 0,
that o = Zoi :

[In]

The following lemma proves that composability and demmposability are very strong
properties.

Lemma 9.

(1) Composahility impli es completeness

(2) Decomposabili ty implies tractabili ty;

(3) Composahili ty and decomposabili ty imply repeaabili ty.
Prodf.

(1) The statement foll ows from the fad that for all il ,ZO'i >0j.
icl
(2) Assume TOT and o Ou (T). Let T=T'OT". By the definition d decomposability,

Bo, Op,(T").00, Ou(T").(c =0, +0,). The statement follows from the fad that
0,+0,20,.

(3) Asume that T={t; | i0I}, T'OT and T'Obag(T). Let oUup(T). By decomposability,
there are o Uup({tj}) for al il such that o= ZUi . Since T'OT and T'Obag(T),
there is T* such that (@) T'=TOT*, and (b) for all tIDD'II'*, thereisill such that t=t;00T. Let
o, =0,. By composability, (a+ ZJJ Ou,(T'). The statement follows from the fact

&

that o+ 0,=) o0,+) o,,andfordl o, 0, +0, =0,.

il
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The relationships between properties of schemes are summarised in Figure 1.

Upper least Middle least Lower least
element property element property [®] element property
+ 1 >/ + Consistency
Observabili ty "
Tractability Extendability
Repeaabili ty T
Completeness

Decomposability Compasabili ty

Figure 1. Relationships between properties

The following theorem gives the structure of phenomena observable from finite test sets using
a scheme with compasabili ty and decompaosabili ty.

Theorem 1. (Structure Theorem)

If ascheme B=<B, 1> has composabili ty and decompasabili ty, we have
L) upnt) ={ZF|F 0 upt}) 00<||I|<n}, for al n>0;

k
@ wpnty, notp, -, nitic}) ={ZF|F=iL_J1Fi 07 O pp ) DO<|1|<m O1<i<k}.
Prodf.
(1) By applying indwction onn.
e For n=1, theright hand side of equation (1) is:
{3 M7 0 up@ O)r] =3 ={olo0 () = upEth

Therefore, the statement is true when n=1.

* Asaume that the statement is true for n=N>0, i.e.
up@NG) ={3 17 0 up ) 00<|7|< N} *)
» For n=N+1, by the definition o composabili ty, the foll owing equetion foll ows from (*).

up(N+38) D{o+0'|6 0y (NG) 00’0 ep (th}

:{zmrmﬂp({t}) 00o<|7|sN+3.

—-10--



Behaviour Observation in Software Testing 20/08/99

By the definition o decompasabili ty, we have that

N+1

up(N+1)t) D{Z olo, Op,({h) O 1<i<N+T

:{ZHI’ O upt}) D0<|I|<sN+1.
Therefore, the statement is also true for n=N+1.

Acoording to the principle of mathematical induction, the statement is true for all n>0.

(2) The proof is smilar to the proaof of statement (1) by applying induction onk.

Example 4.

(1) The inpu/output observation scheme defined in Example 1 satisfies all the properties
defined in definitions 2 ~ 11.

(2) The dead mutant observation scheme defined in Example 2 has repeaabili ty, consistency,
completeness composability, extendibility, tractability, and decomposability. Its
observability and damain limited property depends on the mutation operations. For some
mutation operations, a nonempty test set may kill no mutants. It may aso have no
domain limited property because an invalid inpu for the original program may be valid
for amutant, henceit kill s the mutant.

(3) The output diversity observation scheme defined in Example 3 has observability,
repedability, consistency, completeness composability, extendability, tractability and
domain limited property. However, it does not have decomposabili ty.

Prodf. The prodfs of the statements are straightforward. Detail s are omitted for the sake of
space

4. Extraction Relation Between Schemes

Given a phenomenon olservable from testing of a concurrent system, we can dften extrad
information from the observation. For example, we can extrad the set of exeauted statements
from the set of exeauted paths. This dion formally defines sich extradion relation between
schemes and studies its properties.

Let A=<A, 1/*> and B=<B, 1I®> be two schemes.
Definition 12. (Extraction Relation between Schemes)

Scheme A is an extraction of scheme B, written A<B, if for all pOJP, there is a homomorphism
@p from <Bj, <> t0 <Ay, <ap>, such that (1) ¢,(0)=0a if and orly if 0=0gp, and (2) for all
test sets T, pp(T) =¢ (o (T)).

Informally, scheme A is an eXtraction of scheme B means that scheme B observes and records
more detail ed information about dynamic behaviours than scheme A does. The phenomena
that scheme A observes can be extraded from the phenomenathat B observes.
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Definition 13. (Equivalence Relation on Schemes)

Scheme A and scheme B are said to be equivalent, written A~B, if there is an isomorphism ¢
from A to B such that for all test sets T, ¢, (5 (T)) = pp(T).

Obvioudly, we have that:

Lemma 10. For al schemesAandB, A~B impliesthat A<B, and B<A.
Lemma 11. For all schemesA, BandC, (a) A~A; (b) A~B B~A; (c) A~BB~CO A~C.

It is aso easy to see that the extradion relation is a partia ordering on schemes when
equivaent schemes are mnsidered as the same one.

Lemma 12.

For al schemes A, B, and C, we have that:

(1) Reflexvity: A<A;

(2) Transitivity: A<Band B<C imply that A<C;
(3) Anti-symmetry: A<B and B<A imply that A~B.
Prodf. Straightforward, by the definitions.

The following theorem proves that extradion mappings preserve the properties of schemes
discussed in the previous ®dion.

Theorem 2.

Assume that scheme A=<A, 1/*> is an extraction of scheme B=<B, 1®>. We have that:
(1) if B hasobservahility, so daes A,

(2) if Bhasdomain limited property, so deesA,;

(3) if B hasconsistency, so daes A.

(4) if B has completeness so does A,

(5) if B hasextendibility, so dees A;

(6) if B hastradability, so daesA,;

(7) if B hasrepedability, so does A;

(8) if B has compasability, so does A;

(9) if B has decompasability, so does A;

Proof. Let ¢, pOP, bethe extradion mappings from B to A.
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Let T be any given test set.

Asume that TnD #0. By the observability of B, Oy, Ou;(T). Since
puy(T)=¢ (u3(T), and ¢ (0)=0,, = o=0g, we have that O, , Ou(T).
Therefore, Tn D, #00 O,, Ous(T).

Now assime that Tn D,=0. By the observability of B, uE(T):{DB’p}. By the
definition o extradion, u(T) =¢ (1, (T))=¢p({ Usp})={Dap}. Thatis, Tn D, =0 O
p(T)={Cap}. Therefore, statement (1) istrue.

Let T be any given test set. We have that

py(T) =6 (up(T)) (by the definition d extradion)
= ¢p(uE(T n D,)) (by the domain limited property of B)
=uy(TnD,) (by the definition o extradion)

Let Tand T' be any given test sets. Let o Ouy(T) and o' Ouy(T'). By the definition d
extradion, there ae o, Ou;(T) and o' Ou;(T') such that o=¢ (o,) and
0'=¢,(0';). By the onsistency of B, we have that u(T) T u>(T'). Hence, there eists
0, such that o, 2, 0, and 0, 2, 0',. Because ¢, is a homomorphism, we have that
$,(05)2,0,(0;) and ¢ (0,)=, ¢,(0 ). Therefore, uf(T) T ui(T).

Let T, be a ollection d test sets and o, Ouy(T), i0l. Because
po(T) =, (up(T)),i OI, there are o O (T,) such that o, = ¢ (o7) for i OI. By the

completenessof B, there exists o, Oug(| JT,) suchthat o, >, of foral i OI. Since ¢,
ial
is a homomorphism, ¢ (o) =, ¢p(aiB) =0,. By the definition d extradion,
¢.(05) 00 (LA(JT)) = uy(JT,)- Therefore, Ais complete.
igl ial

Let T, T betest setsand TOT'. Let o Dug‘(T). By the definition o extradion, there
exists o, Ou;(T) suchthat 0 =¢ (0,). By the extendibility of B, thereis o', O (T')
such that 0’2, 0. By the definition d extradion, ¢ (0';) Du’,j(T'). Since ¢, isa
homomorphism, ¢ (0'5) =2, ¢ (o) =0. Therefore, A also has extendibili ty.

Let T, T betestsetsand TOT'. Let o Du’;(T). By the definition d extradion, there
exists o, O (T) such that 0=¢ (o). By the tractahility of B, thereis o', O (T')
such that 0, >, 0'5. Since ¢, is a homomorphism, ¢ (o) =, ¢ ,(0'y). Therefore, A

also has tradability.

Let T be ay given test set, and T'Obag(T) and TOT'. Let 0 Dug‘(T). By the definition
of extradion, there is o, Duﬁ(T) such that o=¢ (0;). By the definition d
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repedability, o, DuE(T'). By the definition o extradion, we have that 0 =¢ (o)
O¢ ,(up(T)) =, (T'). Therefore, A also hes repeatability.

(8) Let T, be a ollection do test sets and o, Ouy(T), i0l. Because
pa(T) =@ (u (T)),i 01, there are o Oug(T) such that o, =¢,(c7). The
composability of B implies that za? Ous(JT). Because ¢, is a homophamism,

] il
8,(3 )= Y 8,(0%). Therefore, 3 9,(0%) 06, (uSUT) = pUT)- That is, A

1l 1l [u] ial idl

also has composabili ty.

(9) Let T, be a ollection d test sets. Let aDu’;(UTi). By the definition d extradion,
there is o, OuS(|JT,) such that o=¢ (o). 'Il'?le decomposability of B implies that
there eist o DuIED&Ti) for i OI, such that o, = ;GF. Since ¢y, is ahomomorphism, we
have that ¢p(z ol)= z ¢ (o). Hence 0 = z ¢ ,(07). By the definition o extradion,

o i o

¢ (o) Oul(T) foral i OI. Therefore, A also has decomposability.

5. Constructions of Schemes

This ®dion provides a number of constructions of observation schemes and investigates their
properties.

5.1 Set Construction

In statement testing, software testers observe and record the subset of statements in the
software source ®de that are exeauted, see eg. [Mye79, Bei9(]. In this observation scheme,
the exeaution d a statement is an atomic event to be observed, and the universe of phenomena
consists of al the sets of such events. The partial ordering on plenomenais just set inclusion.
Such a @nstruction d scheme is common to many testing methods. The following is aformal
definition o this construction.

Definition 14. (Regular Set Scheme)

Scheme B=<B, 1> is sid to be aregular set scheme (or simply regular scheme) with base
Upre, if for al pOP, the dements in the CPO <B,, <,> are subsets of U, and the partial
ordering <; is the set inclusion relation . Moreover, the following condtions hald for the

mapping Lip:
@ Up= UUupdm),

t0D,

(2) p,(0)={0},

3 TnD, 200 OO, (T),
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(4) p,(T) =, (T Dy),

®) up(UT) ={Uoai|oi Dpp(M)iO1}.

il icl

Lemma 13.

Let B=<B, 1> be an observation scheme. If B isaregular scheme, then we have that
(1) B has observabili ty;

(2) B hasdomain limited property;

(3) B has composabili ty;

(4) B has decompasabili ty.

Proof.

(1) Because U is the least element [, in the universe of phenomena, condtion (2) and (3) in
the definition d regular scheme imply the observabili ty;

(2) Condtion (4) isthe domain limited property;
(3) Composahili ty and decompaosabili ty foll ow from condtion (5) immediately.

Theorem 3. (Extraction Theorem for Regular Schemes)

Let B=<B, 1°> be aregular scheme. Let A=<A, 1/*>. Asaume that for al pOP, there is a set
U7 such that <A, <,> is a CPO on subsets of U with set inclusion relation 0. If for all

pOP, thereisasurjedion f,from U] to U’ such that:

(@ o, 0A = 0oy OB,.(0, ={f,(X)|x00og}), or in short A=fi,(Bp), and
(b) for all test sets T, i (T) = {f,(0)|o Ou(T)},

then we have that:

(1) Aisaregular scheme with base U”, and

(2) Aisan extradion d B.

We say that Aisthe regular scheme extraded from B by the extradion mapping fp.
Proaf.

(1) To prove statement (1), we first prove that A is a scheme, then prove that A is a regular
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scheme with base U;\.

(& To prove that A is a scheme, we only neal to prove that for all test sets T, u’;(T) is
consistent. Thisis proved as follows. Let gy and g’ a in u;\(T). Then, thereis og and g’
in p:(T) such that o, = f (o) and 0’ ,= f (0';). The @nsistency of u(T) implies
that there is o*g such that o, >0, and 0,>0',. By condtion (a), we have that
f (o) OA,. It is easy to seeby set theory that f (03)= f,(0;) and f (o) = f (0';).
Therefore, u;(T) is consistent.

(c) To prove that A is a regular scheme with base U”, we ched that A satisfies condtions

(1)~(5) in Definition 14. It foll ows the definition d A and the regularity of B. Detail s are
omitted here for the sake of space.

(2) It is easy to see that the mapping ¢ (o) ={f,(x)|x 0o} is a homomorphism from <B,,
<gp> 10 <Ay, <ap>. The statement foll ows diredly from the definitions.

5.2 Partially Ordered Set Construction

Let X be anonempty set and < be apartia ordering onX. A subset SOX is sid to be
downward closed if for al xOS y < x 0 yOS Let pP. Given a partially ordered set (also
caled poset) <A, <p>, we define the universe B, of phenomena to be the set of downward
closed subsets of A,. The abinary relation<g, on pfenomenais defined as foll ows:

0,<g,0, = OxOo,.0y00,.(X<, ).

It is easy to prove that <g, is a partial ordering. Moreover, if the poset < A,, <> has a least
element [, the poset <B,, <g), > is a CPO with the least element { [} . The least upper bound
of gy and 0, is 011 0>.

Definition 15. (Poset Scheme)

An observation scheme B=<B, p> is sid to be apartially ordered set scheme (or poset
scheme) with base <A, <>, pOP, if its universe of phenomena is defined as above and the
reaording function hes the foll owing properties:

(D) pp(O)={ Do}k,

2 Tn Dp 00 {Dp} Dup(T),

Q) u(T)=pu,(Tn D),

(4) ,Up(UT|) :{UO'i|0'i D,up(Ti),i al}.
icl icl

Lemma 14.

A poset scheme has observability, domain limited property, decomposability, and
composabili ty.

—-16--



Behaviour Observation in Software Testing 20/08/99

Prodf. The observability follows from condtions (1) and (2) immediately. The domain
limited property foll ows from condtion (3). Compasabili ty and decomposabili ty follow from
the fad that the least upper bound & a directed subset of downward closed subsets is the
union d the subsets. Detall s are omitted from here.

Example5. (Observation scheme for path testing [How76, Mye79,Bei90])

Let p be ay given program. A path in p is a sequence of statements in p exeauted in order.
Let A, be the set of paths in p, and the partial ordering <, be the sub-path relation. Let s be a
set of pathsin p. The downward closure of sisthe set of sub-paths covered by s, written as S.
Let T be atest set. Define:

M, (T) ={S; | srpisaset of exeaution pethsin p that may be exeaited when testing p onT}.

It is easy to see that the function defined abowve satisfies the @ndtions (1)~(4) in the
definition d the poset scheme. Therefore, by Lemma 14, it has observability, damain limited
property, compaosabili ty and decomposabili ty.

Similar to Example 5, we can define observation schemes that observe the sequences of atype
of events happened duing test exeautions of a system, such as the sequences of
communicaion and synchronisation events. Such schemes have the same property as the
scheme for path testing.

5.3 Product Construction

Given two schemes A and B, we can define anew scheme from them. The foll owing defines
the product scheme of A and B.

Definition 16. (Product Construction)

Let A=<A, (*> and B=<B, 1’>. The scheme C=<C, 1> is sid to be the product of A and B,
written C=AxB, if for al pOP,

(1) C,=<{<0,,0,>0,0A,0, 0B}, <. ,>,
where (<0 ,,0, ><. ,<0'4,05>) = (0,,,04)0(05 <5, 0'5);
(2) for all test sets T, u(T) = p(T) x pE(T).

Theorem 4.

Let A=<A, 1*> and B=<B, 1®> be two schemes. We have that:
(2) if both A and B have observability, so does AxB;

(2) if both A and B have domain limited property, so does AxB;
(3) if bath A and B have mnsistency, so dces AxB.

(4) if both A and B have completeness so does AxB;
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(5) if bath A and B have extendibili ty, so dces AxB;

(6) if both A and B have tradabili ty, so does AxB;

(7) if both A and B have repeaabili ty, so does AxB;

(8) if both A and B have mmpasability, so dees AxB;
(9) if bath A and B have decompasabili ty, so dces AxB.
Proof. Let scheme C=AxB.

(1) By the definition d product scheme, 0. , =<0, ,,0g , >. The following proves that C
satisfies two condtions of observabili ty, respectively.

(@ Asuume that T n D, # 0. The observability of A and B implies that [, , Du;\(T) and
Ogp, O uﬁ(T). By the definition d the product scheme,
Oc.p =< Oppr O p >Optp(T) x 1 (T);

(b) Now asuume that Tn D, =0. By the observability of A and B, u’;(T):{ Oapy and
po(T) ={0g } . Therefore, up(T) x pp(T) ={< 0, ,,0g, > ={0c .}

(2) Let T be ay given test set. Then,

pG(T) = pio(T) x o (T) (by the definition d the product scheme)
=p(TnD,)xus(TnD,) (by the domain limited property of A and B)
= u’;(T nD,) (by the definition o product scheme)

(3) Let Tand T' be any given test sets. Let o O (T) and o' Ou (T'). By the definition
the product scheme, there ae o, Oul(T), o' ,Ouy(T'), 05 Ous(T) and o', Ou(T')
such that o.=<0,,0,> and ¢'.=<0',,0';>. By the mnsistency of A and B,

pi(M T po(T) and pB(T) T pS(T"). Hence, there eists o, such that 0/, =, 0, and
o, >A0A, and there is 0, such that 0,2, 0, and 0,2, 0',. Let 0. =<0,,0,>.
Then, 0. 2. 0. and g, 2. @' .. Therefore, up(T)Tup(T ).

(4 Let T, be a ollettion o test sets and of Oug(T), i0l. Because
ps(T) = py(T) x uo(T,) for al i 01, there ae o' Ouj(T,) and o Oug(T,) such that
of =<o},0? >. By the ompletenessof A and B, there eists o, Ou/(|JT,) such that
o,=, 0 for dl i O, and there exists o, Ous(|JT,) such that o, =, JIDiEl‘ for al i Ol.
Let 0. =<0,,0,>. Then, g, Du’;(U'ﬁ)xuﬁ(Lljl'l'i) =us(JT) and o, =, of for all

il il il

i OI. Therefore, Cis complete.
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(5) Let T, T betest setsand TOT'. Let o, DuE(T). By the definition d the product
scheme, there eists o, Ouj(T) and o, Ouy(T) such that o, =<0o,,0,>. By the
extendbility of A and B, there is ¢',Ou,(T') such that ¢',2,0,, and there is
0's Op (T') suchthat o'y 2, 0. Let 0’ =<0’ ,,0";>. By the definition d the product
scheme, o' = <0',0';> 2. <0,0,> =0, and o' Ou(T). Therefore, C also
has extendibili ty.

(6) Let T, T betest setsand TOT'. Let o, Duﬁ(T). By the definition d the product
scheme, there eists o, Oul(T) and o, Ouy(T) such that 0. =<o,,0,>. By the
tractability of A and B, thereis o', Ouo(T') and o', Oui(T') such that 0,2, o', and
0y;2, 0. Let 0’ =<0',,0';>. By the definition d the product scheme, o’ O (T')
and o, 20'.. Therefore, Calso hastractability.

(7) Let T be any given test set, and T'Obag(T) and TO T'. Let O Duﬁ(T). By the definition
of the product scheme, there ae o, Du;\(T) and o, DuE(T) such that o, =<0,,04 >.
By the definition d repeaability, o, Ouj(T') and o, Ou,(T'). By the definition d the
product scheme, o Oy (T') x uo(T') = u5(T"). Therefore, Calso hes repeaability.

(8)Let T, be a ollection d test sets and o, Ouj(T), i0l. Because
ps(T) = up(T) x uo(T,) for al iOl, there ae o' Ouj(T,) and o Oug(T,) such that

o, =<0!,0°>. The composability of A and B implies that ZGiA Ops(JT) and

[In] i
o Ous( JT). Therefore, o=<olo’>=<5 oS o’>
2.0l 2972 272
Ops(UT) xub(JT) =us(JT). That is, Calso hes composability.
il ial il

(9) Let T, be a ollection d test sets. Let o Duﬁ(UTi). By the definition d the product
scheme, there ae o, Du;\(g'ﬁ) and o, Du‘;(@'ﬁ) such that o, =<0,0,>. The
decomposabili ty of A and B implies that there exist o Ou/(T,) and o Ou(T), i OI,

_ A _ B A B o_ A B
such that GA—%Gi and GB—%Ji . Because %<Gi 0, >_<%ai ,%oi > and

<of,of >0u;(T), Calso has decomposability.

Lemma 15. For all schemes A, B and C, Ax(BxC) ~ (AxB)xC.
Prodf. Straightforward by the definition.
Example 6. (Typed dead mutant observation scheme)

In Example 2, an olservation scheme is defined for mutation testing. In software testing toals,
mutation operators are often dvided into a number of classes to generate different types of
mutants, see eg. [KO91]. Dead mutants of different types are then recorded separately to
provide more detail ed information. To define the observation scheme for this, let @, @, ...,

—-19--



Behaviour Observation in Software Testing 20/08/99

@, be sets of mutation operators. For each @, i=1, 2, ...,n, define adead mutant observation
scheme M as in Example 2. Then, we define the typed dead mutant observation scheme

Ml'yped: MXMX...xM,.
5.4 Statistical Constructions

Let B=<B, 1®> be a observation scheme. N be a1y given set of numbers. Then, <N, <> isa
totally ordered set under the lessthan o equal to relation < on numbers. We can define a
scheme A=<A, 1/*> asfollows.

Definition 17. (Statistical Construction)

A scheme A=<A, "> is siid to be adtatistical observation scheme based onB=<B, P>, if
there existsaset N of numbers and a wlledion d mappings s,p : By — N such that

(1) For all pOP, A;=N, and<ap isthe lessthan or equal to relation onN,;

(2) For al pOP, the mapping s, from B, to the set N preserves the orders in By, i.e

0<g,0 0 s,(0)<s,(0);

(3) For al test sets T, u’;(T) ={s,(0)|o Duﬁ(T)}.
Example 7. (Statement cover age)

Let B=(B, 1f) be the regular scheme for statement testing. Define Sy(0) = |lal|/ np, whereng is
the number of statementsin program p, ||gi| is the size of the set 0. We thus define astatisticd
observation scheme for statement coverage. The phenomena observed by the scheme ae the
percentage of statements exeauted during testing.

Example 8. (M utation score)

In mutation testing, mutation score is defined by the following equation and wed as an
adequacy degreeof atest set [DLS78,Bud8]].

number of dead mutants
number of non-equivalent mutants

Mutation Score =

We define the mutation score & a statisticd observation scheme based on the dead mutant
observation scheme with the mapping s,(0)= ||o]| / m,, where ||| is the size of the set o and
m, is the number of nonequivalent mutants of p generated by the set of mutation operators.

Notice that the statement coverage scheme defined abowve is not decomposable, although the
observation scheme for statement testing is regular, which has decompasabili ty according to
Lemma 13. Similarly, the mutation score scheme does not have decompaosability while the
dead mutation scheme has decomposability. The examples show that the space of statisticd
information olservable from testing separately on severa smaller test sets may be smaller
than the spaceobservable from alarge test set.

In software testing, statistics can be dso made on the phenomena observed from testing on
ead test case. The foll owing defines the general construction d such schemes.

Definition 18. (Case-Wise Statistical Construction)
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A scheme A=<A, /"> is siid to be acase-wise statistical observation scheme based on B=<B,
1>, if there existsaset N of numbers and a wllection d mappings Sprp : Bp— N such that

(1) For dl p0IP, A;=D, - N, where D, - N isthe set of partia functions from D, to N, and
<ap is defined by the foll owing equation:

0,55, 0, = 0t0D,.(0,(t) = uncefined 0o, (t) < 0,(1)),
where< isthelessthan or equal to relation onN;

(2) For al pOP, the mapping s, from B, to the set N preserves the order in By, i.e
0<g,0 0 s,(0)<s,(0);

(3) For al test sets T = {nt|idI} where i[Ot #t, 0, Du;\(T) iff (a)
Oi O1. 0o, Duﬁ({niti}).(aA(ti) =s,(0,)),and(b) t OT O 0 ,(t) = undefined.

Notice that if the base scheme of a case-wise dtatisticd scheme has composability and
decompaosability, the cae-wise statisticd information can be derived from the phenomena
observed by using the base scheme. However, the case-wise observation scheme may have
different properties from its base scheme. The following is such an example.

Example 9.

The output diversity observation scheme defined in Example 3 is the cae-wise statisticad
observation scheme based onthe inpu/output observation scheme with the mapping s, being
the set size function.

6. Behaviour Observations on Petri Nets

In this sction, we gply the theory of behaviour observation to Petri nets - a well-known
model of concurrent and dstributed systems [Mur89].

6.1 Basic Notion of Petri Nets

In this subsedion, we provide an owerview of a dassof high-level Petri nets cdled predicae
trangition rets (PrT netsin the sequel) [GL81]. A formal definition d predicate transition rets
can be foundin [HeQg].

A PrT netisatuple (Nt, Speg Ins), where

(2) Nt = (PI, Tr, Fl) isthe net structure, in which
(i) Pl and Tr are non-empty finite sets stisfying Pl n Tr = 0. Pl and Tr are the sets of
places and transitions of Nt respedively;
@ii) FI O (P x Tr) O (Tr x PI) isaflow relation, call ed the arcs of Nt;

(2) Spec is the underlying spedficaion, which defines the types, tokens, labels, and
constraints of Nt;

(3) Ins = (¢, L, R, Mg) is a net inscription that associates a net element in Nt with its
denotationin Spec
(i) ¢ isamapping that associates each place pl in Pl with avalid type defined in Spec,
(i) L isamapping that maps each arc in Fl to avalid label defined in Spec,
(iii) Risamapping that asociates eadh transition tr in Tr with a first order logic formula

defined in Speg

(iv) Mg is a set of initial markings. Eadh initial marking assgns a multiple set of tokens
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defined in Specto ead pacepl in Pl.

A marking is a distribution d tokens in places. A transition is enabled if its pre-set places
contain enough tokens and its constraint is stisfied with an occurrence mode, which is a
substitution d relevant label variables with tokens. An enabled transition can fire. The firing
of an enabled transition consumes the tokens in the pre-set places and produces tokens in the
post-set places. We dencte the firing of transitiontr with occurrence mode a in marking M by

M OTFf3. M’, where M’ is the resulting marking. We call the pair tr/a a firing. Two
trangitions, including the same transition with two dfferent occurrence modes, are in conflict
if the firing of one of them disables the other. Two transitions not in conflict can fire
concurrently. Corflicts are resolved nondeterministicdly. An exeaution step of a PrT net
consists of the simultaneous firings of non-conflict enabled transitions, and is denated by M
OTP- M, where TrO is a set of firings. An exeattion of a PrT net is a sequence of
conseautive exeaution steps darting from an initial marking. The dynamic semartics of a Petri
net isthe set of all possble maximal exeaution sequences garting from initial markings.

Notice that, firstly, we have used an interleaved-set semantic model here and thus true
concurrency can be studied. Alternatively, other semantic models such as branch structure and
partial order can be used [Rei85]. Seaondy, we have ansidered the dynamic semantics of a
PrT net from aset of initial markings, instead of asingleinitial marking.

The following PrT net spedfies the well-known dning phil osophers’ problem.

chl, ch2
Pickup | _h chi ch2>
Thinking

Chopstick

<ph,chl,ch2>

Figure2 A PrT Net Specification of Dining Philosophers Problem

Figure 2 shows two phlosopher states denated by places Thinking and Eating respedively,
two transitions Pickup and Putdown, and the available dhopstick state defined by place
Chogstick The net inscription (¢, L, R, Mo) is asfoll ows.

(1) Place Types:

d(Thinking) = (Eating) = 2™, ¢(Chopstick) = 27,
where types PHIL and CHOP are induced from integers and cefined in Spec
(2) Arc Labels:

L(Thinking, Pickup) = ph, and the rest are obvious from Figure 2.
(3) Transition Constraints:

R(Pickup) = (ph=chl) O(ch2=phO 1), R(Putdown) =true,
where [0 ismoduus k addition.
(4) Initial Marking:

Mo ={m | k=2, 3, ...,},where my is defined as foll ows:

m(Thinking) ={1, 2, ..., k}, m(Eating) =00, my(Chopstick) ={1, 2, ..., k}.

The @owve spedfication all ows concurrent exeautions such as multiple non-conflicting (non-
neighbaring) philosophers picking up chopsticks smultaneously, and some philosophers
picking up chopsticks whil e others putting down chopsticks. The @nstraints associated with
transitions Pickup and Putdown also ensure that a philosopher can ony use two designated
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chopsticks defined by the impilicit adjacent relationships. Table 1 below gives the detail s of a
partial exeaution d the PrT net in Figure 2.

Table 1. An Execution of the PrT Net in Figure2

Markings m; Firingsf;

Thinking Eating Chopstick Fired Transition Occurrence Mode
{12,345 |{} {1,2,3,4,5} Pickup {ph~1,chl-1,ch2-2}
{2,3,4,5} {<1,1,25} {3,4,5} Putdown {ph-1,chl1, ch2-2}
{1,2345 |{} {1,2,3,4,5} Pickup {ph-~2,chl-2, ch2-3}
{1,3,4,5} {<2,2,3>} {1,4,5} Pickup {ph~4,chl—4,ch2_5}
{1,3,5} {<2,2,3>,<4,45>} |{1} Putdown {ph-2,chl—2,ch2-3}
{1,2,3,5} |{<4,4, 5} {1,2,3} Putdown {ph~4, chl—4,ch2 -5}
{12,345 |{} {1,2,3,4,5} Pickup {ph<5,chl~5,ch2-1}
{1,2,3,4} {<5,5,1>} {2,3,4} Pickup {ph~3,chl~3,ch2-4}
{1,2,4} {<5,5,1>,<3,34>} |{2} Putdown {ph~3,chl-3, ch2-4}
{1,2,3,4} {<5,5,1>} {2,3,4} Putdown {ph~5, chl5, ch2 1}
{1,2,34,5} |{} {1,2,3,4,5}

6.2 Behaviour Observation Schemeson Petri Nets

Let p be aPrT net and Mg be the set of initial markings of p. Thus, My can be viewed as the
domain of valid inpu for p. From the definition d PrT nets, an exeaution o of p onatest case
My IS a maximum sequence of exeaution steps garting from my, and is denated by

o.m OL moOrfPd m-..m 0P, -

where mydMo, m, i=1,2,..., are markings sich that ead my is obtained from m_; by firings
TrO—;. For many concurrent systems, a maximum sequence of markings can be infinite, i.e.
the exeaution daes not terminate. However, in software testing pradice, we canna observe
and reoord an infinite exeaution within a finite period d time. Therefore, we stop exeaution
manually and olserve and record a partia exeaution. We use ¢" to dencte the partial
exeaition (or prefix) consisting of the first n exeation steps of o, i.e
o":m OE. mOrPa m-..m_ OTPE m. We denote the set of al finite partial

exeautions from an initial marking my of p as ijb and X as the set of finite partial

exeautions from the set of initial markings Mo, respedively. We call the firing sequence TrQ,
TrO, ... TrO,., extraded from a partial exeaution 0" atrace and cenote it by Trace,(0"). We
use Firingy(0") to denote the set of firings extraded from the trace Trace,(0"). Furthermore,
we denote the transition sequence Tr, Try, ... Tr, extraded from a trace by droppng al
occurrence bindings as Trans,(a"), where each Tr;is amulti ple set.

It isworth nding that partial exeautions can have different numbers of exeaution steps, which
are determined by the tester, hence form an additional dimension d nondeterminism of
testing. Withou the loss of generality, we cal both complete exeaitions and partia
exeautions as test exeattions in the sequel.

In the foll owing sedions, we define several concrete behaviour observation schemes based on
the transition coverage criteria proposed in testing ER nets (a type of high-level Petri nets) in
[MP9Q]. Six transition coverage aiteria proposed in [MP9Q] are:

(C1) Firing Squence Adequecy: an adequate testing must include dl feasible firing
sequences from the initial marking set;
(C2) Firing Adequacy: an adequate testing must cover all feasible firings,
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(C3) Transition Squence Adequacy. an adequate testing must cover al feasible transition
sequences,

(C4) Transition Adequecy. in an adequate testing, every feasible transition must be fired at
leest once

(C5) N-Times Adequecy: an N-Times adequate testing must cover those feasible transition
sequences that contain any one transition nomore than N times,

(C6) N-Notable Adequacy: an N-Notable alequate testing must cover those feasible transition
sequences that contain any one transition nomore than N times and nomore than one
notable sub-sequence, where asub-sequence is sid notable, if al sequences of the
same length containing it result in the same final marking.

In [MPO(Q], interleaving semantics was used such that each exeaution step invalved only one
firing of atransition, which is a special case of our exeaution step that can have simultaneous
firings of multiple transitions. The subsuming relationships among the &owve adequacy
criteria ae shown in Figure 3.

C1
I N
C3 Cc2
W
C5 c4
|
C6
Figure 3. The Subsuming Relationships

Definition 19. (Firing Sequence Scheme)
For al pdP, the universe of observation onp under the firing sequence scheme Q';S: <BES,

p;° > is defined as foll ows:

(1) B°= 2" where Trace, is the set of all traces from the set of initial markings,

(2) The partial ordering <"°on B'® isthe set inclusion;

(3) For al mOM,, p>({m}) :{{a}‘a OTrace, .}, where Tracey,n is the set of all traces
from the initial marking m;

(4) For all test sets T, 5 (LT ):élJUi o, DT i O E.
iol ol

Thedomain D of aPrT net p isthe set of initial markings M, . From the definition d traces,

it is easy to seethe foll owing properties of ugs.

i) uPO0)={0}

(i) TnaM,z00 O00u>T),

(i) HES(T) = HES(T A M)

Thus the Firing Sequence Schemeisregular.
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Definition 20. (Firing Sequence Cover age)

Let E be acolledion d test exeautions of Petri net p. E is sid to satisfy the firing sequence
coverage criterion iff Trace,(E) = Trace,. The mverage measurement of E is defined by the

formula FSC(p, E) = Trace, (E)|/|[Trace, |

It is worth nding that most concurrent systems in pradical use contain an infinite number of
firing sequences. To satisfy such an adequacy criterion, we may neal an infinite anourt of
computation resource.

Definition 21. (Firing Scheme)

For all pOP, the universe of observation onp under the firing scheme Q7' = <B", u;' >is
defined as foll ows.

(1) Bf"= 2", whereFiring, is the set of all feasiblefiringsinp,

(2) The partial ordering <77 on B_" isthe set inclusion;
(3) For all test sets T, pfT (T)= EU Firing, (})|uC] u;S(T)E.
D(Du D

It is easy to seethat the Firing Scheme is an extradion d the Firing Sequence Scheme such
that the orders between firings are ignored.

The following defines the firing coverage aiterion.
Definition 22. (Firing Coverage Criterion)

Let B be an observation unar the firing scheme on Petri net p during atesting. The testing is
said to be alequate according to the firing coverage criterion iff 8= Firings,. Moreover, for
al BB, the alequacy measurement is FTC(p, 8) = ||/ |Firing, .

For example, the exeaution d the Petri net given in Table 1 satisfies the firing coverage
criterion. All the transitions (i.e. Pickup and Putdown) and passble occurrences have

appeaed.
Definition 23. (Transition Sequence Scheme)

For all pOP, the universe of observation onp under the transition sequence scheme QTpS:
<B;®, uy° >isdefined asfoll ows.

(1) B°= 2™  where Trans, is the set of transition sequences extraded from Trace, by
ignoring occurrence modes in exeaution steps;

. . TS TS ; PR
(2) The partial ordering < °on B~ isthe set inclusion;

(3) For all test sets T, > (T)= %JTransp(x)‘uDuET (I')E, where 7" (T) is the recording
Cu

function defined in the Firing Sequence Scheme.

It is easy to seethat the Transition Sequence Scheme is an extradion d the Firing Sequence
Scheme such that the bindings of occurrence modes to transitions areignored.
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Definition 24. (Transition Scheme)

For all pOP, the universe of observation onp under the transition scheme Q7= <B®, u* >

is defined as follows.

(1) B"= 2™, where TR, isthe set of al feasible transition;

(2) The partial ordering <X on B® isthe set inclusion;

(3) For all test sets T, u;R(T)z{t‘t/aDugT (T)}, where " (T) is the recording function
defined in the Firing Scheme.

It is easy to seethat the Transition Scheme is an extradion d the Firing Scheme such that the
bindings of occurrence modes to transitions are ignored. Alternatively, the Transition Scheme
can be extraded from the Transition Sequence Scheme.

Definition 25. (N-Times Scheme)

For all pOP, the universe of observation onp uncer the N-times cheme Q' =<B]", u" >
is defined as foll ows.

Q) B;‘T = 2" where NT, is the set of prefixes of transition sequences extraded from Trans,

that no transitions appea more than N times in the sequence;
(2) The partial ordering <" on B]" isthe set inclusion;

(3) For al test sets T, uyT(T)zg U {x}‘uDu;S(T)%, where 1 °(T) is the recording
Skaunnr, g
function defined in the Transition Sequence Scheme.

It is easy to seethat the N-Times Scheme is an extradion d the Transition Sequence Scheme
such that only transition sequences containing no more than N appeaances of any transition
areincluded.

Definition 26. (N-Notable Scheme)

For all pOP, the universe of observation onp uncer the N-Notable scheme Q7" = <B)" , "
> is defined as foll ows.

(1) B =2"", where NN, is the set of equivalent classs defined on ndable sub-sequences
from the set NTp;

(2) Thepartial ordering <" on B[™ isthe set inclusion;
(3) For all test sets T, u™" (T):EUNN (x)‘uDuNT(T)E where u\"(T) is the recording
! p 5t p p D’ p
function cefined in the N-Times Scheme.

It is easy to seethat the N-Notable Scheme is an extradion d the N-Times Scheme such that
only one representative is needed for a set of equivalent transiti on sequences.

The extradion relationships among the dove observation schemes are shown in Figure 4.
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Firing Sequence [ Firing

Transition Sequence |> Transition

v

N-Times

v

N-Notable

Figure 4. The Extraction Relationships

7. Discussion

7.1 Relation to Work on Theory of Software Testing

The research on software testing theory has focused on test adequacy criteria since
Goodenough and Gerhart [GG75] pointed ou that the central problem of software testing is
test criteria. A gred number of test criteria have been proposed and investigated in the
literature [ZHM97]. Reseaches have been condicted to establish the relationships between
test criteria and fault deteding ability and software reliability. In recent years, axiomatic
approaches have been advanced to understand test criteria from a very high level of
abstradion [BuA82, Wey88, PZ91, PZ93, ZH93, ZHM95, Zhu95 Zhu96a]. However, few
existing theories of software testing take ancurrency and nordeterminism into ac@urt,
instead the unigueness of dynamic behaviour is assumed. Given the fad that a test set can
generate anumber of different dynamic behaviours of a non-deterministic system, we argued
that test criteria shoud be defined as functions (or predicaes) of the behaviour observed from
test exeautions. By doing so we aldressed the cmplexity of non-uniquenessof observations
due to concurrency and nondeterminism and extended the notion d test criteria. We dso
argued that the way to olserve dynamic behaviour is a fundamental part of al testing
methods. Such behabiour observations method are required to be cnsistent and systematic, if
the testing method is well established. Yet, different observation methods have different

properties.

The notion d observation scheme propased in this paper formally charaderises systematic
and consistent methods of recording and olserving software dynamic behaviour. The
desirable properties and constructions of schemes proposed and investigated in this paper are
analogue to the akiomatic study of test adequacy criteria proposed by Weyuker in [BUA82,
Wey88], formali sed by Parrish and Zweben in [PZ91, PZ93], and further developed in [ZH93,
Zhu95 Zhu%a]. We ae further investigating how to adapt and extend existing axioms of test
adequacy criteria to ou new notion d test adequacy criteria defined on olservable
phenomena. We ae dso searching for axioms that are suitable for testing concurrent systems
but have not appeared in the study of testing sequential programs.

Relationships between testing methods have been investigated using the subsumption relation
between adequacy criteria, e.g. [Nta88, FW88, CPR89]. Recently, Frankl and Weyuker
[FW934] proved that in general the subsumption relation daes not guarantee better fault
deteding ability, while Zhu [Zhu96K proved that in posterior testing scenario the
subsumption relation daes mean better fault deteding. Other relations between testing
methods are dso defined as relations between test adequacy criteria, for example, various
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relations proposed and investigated by Frankl and Weyuker [FW93h and the framework
proposed by Gourlay [Gou83. The extradion relation between olbservation schemes provides
an dternative gproach for analysing relationships between testing methods. Many questions
remain for further research, for example, the relationship between extradion relation and fault
deteding ability, and the relationship between extradion and the subsumption relation and
various Frankl and Weyuker’ s relations between test criteria[FW93a, FW93h].

The gplicability of the theory propased in this paper is demonstrated by the analysis of a
number of testing methods propased in [MPOQ] for testing Petri nets. The observation
schemes underlying some well-known testing methods, such as mutation testing, statement
and path testing, are discussed in the paper as examples. We ae investigating the observation
schemes underlying data flow testing methods [LaK83, Nta84, Raw85, FW88] and
spedficaion besed testing methods [SC96, BGM91, Hie92, RiC85, Kem85]. We ae dso
applying the theory to guide the design of a serious of testing methods for distributed
concurrent systems gedfied in hierarchicd predicae transition rets.

7.2 Relation to Work on Semantics of Programming L anguages and Domain Theory

In this paper, we agued that the space of phenomena @ou software dynamic behaviour
observable from software testing constitutes a CPO (complete partially ordered sets), if the
the observations are systematic and consistent. The mathematical structure of CPO’s has been
investigated in the cntext of programming language semantics [Sto77]. As a result, the
domain theory is established, which is an important branch of theoretical computer science,
and forms the fourdation d the denctational semantics of computer languages. The
denotational semantics of programming languages considers the semantics of a program as a
monaonic and continuous function onCPO. Various power domain constructions have been
propased and studied to define the denatational semantics of concurrent and nonrdeterministic
programs [Plo76, Smy78]. In this paper, we have seen that the grea variety of testing
methods provides a spedrum of fresh concrete examples and general constructions of CPO’s
with a novel pradica applicaion d domain theory to software testing. In this paper, we
focused on the isaues related to software testing rather than the mathematica properties of
such CPO's. From the viewpoint of domain theory, an olservation scheme wuld be
considered as a monaonic and continuows mapping from the space of test sets, which is a
complete lattice to a ‘power domain’ based on a CPO phenomena. The extendibility and
tradability are monaonic condtions for schemes with resped to lower and upper power
domain constructions, respectively. The compaosability and decompaosability can then be
considered as ome kind d continuity condtions for schemes. However, an observation
scheme differs from semantics in the way that given a program the semantics asociates an
output (or behaviour) with ore input while ascheme relates an olservable phenomenonto a
set of test cases (i.e. inpus). Althouwgh it is demonstrated in the paper that the definition o
observation schemes and various desirable properties of schemes are mnsistent with the
operational semantics of Petri nets, the relationship between semantics of concurrent systems
and the nation d scheme would be avery interesting topic for further reseach.
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