Collaborative Testing of Web Services

Hong Zhu, Member, IEEE CS, and Yufeng Zhang

Abstract — Software testers are confronted with great challenges in testing Web Services (WS) because of the lack of software
artefacts, control over test executions and means of observation on the internal behaviour of services while they must deal with
diversities in the test requirements and service implementation techniques. An automated testing technique must be developed
with the capability of testing on-the-fly non-intrusively and non-disruptively. Addressing these problems, this paper proposes a
framework of collaborative testing in which test tasks are completed through the collaboration of various test services that are
registered, discovered and invoked at runtime using the ontology of software testing STOWS. The composition of test services
are realized by using test brokers, which are also test services but specialized in the coordination of other test services. The
ontology can be extended and updated through an ontology management service so that it can support a wide open range of test
activities, methods, techniques and types of software artefacts. The paper presents a prototype implementation of the framework
in semantic WS and demonstrates the feasibility of the framework by running examples of wrapping up a testing tool into a test
service, developing a service for test executions of a WS, and composing existing test services for more complicated testing

tasks. Experimental evaluation of the framework has also demonstrated its scalability.

Index terms — Software Engineering, Distributed/Internet based software engineering tools and techniques, Testing tools.

1. INTRODUCTION

The research on testing Web Services (WS) has been
growing rapidly in recent years [1, 2, 3, 4]. Most re-
search efforts fall into the following classes.

A. Generation of test cases. Techniques have been de-
veloped to generate test cases from syntax definitions of
WS in WSDL [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17], business process and behavioural models in BPEL
[18, 19, 20, 21, 22, 23, 24, 25, 26], ontology based de-
scriptions of semantics in OWL-S [27, 28, 29], and other
formal models of WS such as finite state machines and
labeled transition systems [30, 31, 32], grammar graphs
[33, 34], and first order logic [35], etc. These techniques
have addressed various WS specific issues, such as the
robustness in dealing with invalid inputs and errors in
invocation sequences, fault tolerance to the failures of other
services that it depends on and unreliable communication
connections, and security in the environment that is vul-
nerable to malicious attacks, and so on.

B. Generation of testbed. A service often relies on other
services to perform its function. However, in service unit
testing and also in progressive service integration testing,
the service under test needs to be separated from other
services that it depends on. Techniques have been devel-
oped to generate service stubs [36] or mock services [37]
to replace the other services for testing.

C. Checking the correctness of test outputs. Research work
has been reported in the literature to check the correct-
ness of service output against formal specifications, such
as using metamorphic relations [38], or a voting mecha-
nism to compare the output from multiple equivalent
services [39, 40], etc.

o Prof. Hong Zhu is with the Department of Computing and Electronics,
School of Technology, Oxford Brookes University, Oxford OX33 1HX,
UK. Email: hzhu@brookes.ac.uk.

o Mr. Yufeng Zhang is with the Department of Computer Science, The
National University of Defense Technology, Changsha, China. Email:
yufengzhang@nudt.edu.cn

D. Testing tools. A number of prototypes and commer-
cial tools have been developed to support various activi-
ties in testing WS, such as Coyote [6], WS-FIT [7], TAXI
[41], PLASTIC [42], LTSA-WS [32]; just to mention a few.

However, despite the advances made in the past few
years, great challenges remain. In particular, it is still an
open question how to cope with the following difficult
issues in WS testing [3, 43, 44].

A. The lack of software artefacts. A service oriented ap-
plication commonly consists of parts (i.e. services) owned
by many different stakeholders. Thus, typically, develop-
ers of a part have no access to the design document,
source code, even the executable code of the other parts.
These software artefacts are crucial to perform test activi-
ties efficiently and effectively.

B. The lack of control over test executions. A service ori-
ented application is intrinsically distributed, and typically
contains parts running on hardware owned by other
stakeholders. Thus, a tester often lacks control over the
executions of the other owners’ parts.

C. The lack of a means of observation of internal behaviour.
Another consequence of distributed ownership in ser-
vice-oriented applications is that testers often lack the
means to observe the internal behaviours of the compo-
nents owned by other ventors.

It is widely recognized that a testing technology for
WS must also meet the following requirements.

A. Capability of dealing with diversity. The distributed
and shared ownership of services also implies that the
parts of a service-oriented application may operate on a
variety of hardware and software platforms with differ-
ent deployment configurations and delivering services of
differing quality. Testing has to be performed in a het-
erogeneous environment. On the other hand, different
service requesters may well have different test require-
ments to meet their own business purposes. Testing must
deal with all such varieties and their combinations.

B. Capability of testing on-the-fly. A typical scenario of
service-oriented computing is that a service requester

searches for a required function in a registry, and then
dynamically links to the service and invokes it. It is
widely believed that testing before the invocation is nec-
essary especially in mission critical applications. Such
testing, called testing on-the-fly, differs from traditional
integration testing due to the fact that the time of testing
is just before the invocation while all parts to be inte-
grated are already in operation.

C. Capability of performing testing non-intrusively and
non-disruptively. A consequence of testing on-the-fly is
that, from a service provider’s point of view, the test in-
vocations of a service must be distinguished from the real
ones so that the normal operation of the service is not
interrupted by test activities. On the other hand, from a
client’s point of view, test invocations should also be dis-
tinguished from real ones so that they do not actually
receive the real services and do not pay for such test in-
vocations as real services.

D. Capability of full automation. The requirement of test-
ing on-the-fly eliminates the possibility of manual testing.
Thus, all test activities must be performed automatically.

It has been recognized that to address all these issues,
testing WS should be a collaborative effort contributed to
by all stakeholders [40, 41, 44]. In this paper, we present a
framework for collaborative testing in which testing ac-
tivities are accomplished through interactions among
multiple participants.

The remainder of the paper is organized as follows.
Section 2 outlines the framework and illustrates it with a
typical scenario. Section 3 presents a prototype imple-
mentation of the framework. Section 4 demonstrates the
feasibility of the framework by a run example. Section 5
reports the experiments that evaluate the scalability. Fi-
nally, section 6 concludes the paper with a comparison of
related works and a discussion of future work.

2. FRAMEWORK FOR TESTING WS

This section elaborates the framework, illustrates it with a
typical scenario and identifies the technical challenges.

2.1. A Typical Scenario

Suppose that a fictitious car insurance broker CIB is de-
veloping a web-based system that provides online ser-
vices of car insurance. In particular, they provide the fol-
lowing services to their end users.

The end users submit car insurance requirements to
CIB and get quotes from various insurers that CIB is con-
nected to, and then select one to insure the car. To do so,
CIB takes information of the car, its usage, and the pay-
ment. It uses the WS of its bank B to check the validity of
user’s payment information, pass the payment to the se-
lected insurer and takes commissions from the insurer
and/or the user. The car insurance broker’s software sys-
tem has a user interface to enable interactive uses, and a
WS interface to enable other programs to connect as ser-
vice requesters. Its binding to the bank’s WS is static.
However, since insurance is an active business domain,
new insurance providers may emerge and existing ones

may leave the market from time to time, the broker’s
software binds dynamically to multiple insurance pro-
viders to ensure that the business is competitive on the
market. The structure of the system is shown in Fig. 1.

GUI Interface CIB’s service

requester

Bank B | CiB » ws
Services Services Reqistry
Insurer Al’s Insurer A2's Insurer An's

Services Services Services

Fig. 1 Structure of Car Insurance Broker Services

The developer of CIB’s service must test not only its
own code, but also its integration with other WS, i.e. the
WS of the insurers and the bank. This paper focuses on
the integration with dynamic binding. The following dis-
cusses how the challenges can be resolved in the pro-
posed framework.

2.2. The Proposed Framework

The key notion of the framework is test services (T-service
in short), which are services designated to perform vari-
ous test tasks [44]. A T-service could be provided by the
same organization of their normal services or by a third
party that is independent of the normal service provider
but specialized in testing. For the sake of clarity, we use
functional service (or F-service in short) to denote the nor-
mal services in the sequel.

2.2.1. Service Specific T-services

Ideally, each F-service should be accompanied with a spe-
cial T-service so that test executions of the F-service can
be performed by the corresponding T-service. Thus, the
normal operation of the original F-service is not disturbed
by test requests and the cost of testing are not charged as
real invocations of the F-service. The F-service provider
can distinguish real requests from the test requests so that
no real world effect is caused by test requests. To ensure
the testing carried on a T-service faithfully represent the
functional services, the following two principles should
be observed in the design and implementation of
T-services.

(@) A T-service should act in the same way as its func-
tional service as much as possible so that when a test
passed by the T-service implies that the F-service is also
correct on the test cases.

(b) A T-service should have a ‘firewall” so that effects on
the real world are stopped and the normal operation of
the F-service is not disrupted.

An implication of principle (a) is that the business logic
that a service implements may be duplicated by its cor-
responding T-service in order to test it adequately. On the
other hand, an exact copy of the F-service may not
achieve the goal of T-service according to principle (b). It
is worth noting that in certain special cases the T-service
can be absent and all testing are performed on the
F-services. For example, if a service contains no internal
state and has no effect on the physical real world, the
T-service can be a simple duplicate of the F-service, even

be the F-service itself. When the development and main-
tenance of a T-service is too expensive, or testing the ser-
vice on-the-fly is unnecessary, the role of T-service can be
performed by the F-service.

A T-service that only provides this test execution func-
tion can be regarded as a mock service [37]. However, in
addition to this, a T-service accompanying an F-service
should also provide further support to other test activi-
ties. For example, the formal specification of the seman-
tics of the service, the internal design, such as UML dia-
grams, of the F-service, the configuration of the hardware
and software platform, the service policy, even the source
code etc., are of particular importance to testers. These
kinds of information can be released to trusted T-services
subject to preserve the intellectual property rights and
privacy, but withheld from the general public.

Moreover, many test activities rely on the information
of system internal behaviours, such as the measurement
of code coverage, the checking of the internal states of the
program during test executions, etc. These can also be
provided by the accompanying T-services. Therefore, the
T-service accompanying an F-service can be much more
than simply a mock service [37].

2.2.2. General purpose testers

Besides service specific T-services that accompany
F-services, a test service can also be a general purpose test
tool that performs various test activities, such as test plan-
ning, test case generation, and test result checking, etc. A
general purpose T-service can be specialized in certain
testing techniques or methods such as the generation of
test cases from WSDL or BPEL using certain WS testing
techniques mentioned in Section 1. For the sake of con-
venience, such general purposes T-services are also called
general testers in the sequel to distinguish them from ser-
vice specific T-services.

2.2.3. Test Brokers

One particular type of general purpose T-services that
will greatly improve the collaboration between the parties
involved in WS testing is test broker. As discussed in Sec-
tion 1, test tasks are usually too complicated to be per-
formed directly by one T-service. A solution to this prob-
lem is to introduce test brokers, which compose and co-
ordinate other T-services to carry out test tasks. Typically,
there are multiple test brokers; for example, each special-
izes in one type of testing processes.

As a coordinator, a test broker receives test requests,
decomposes the task into subtasks and generates test
plans, searches for capable testers for each subtask, in-
vokes testers and returns test results to users. It controls
the process of testing. A test broker not only bridges the
gap between the users and testers, it can also monitor the
dynamic behaviours of T-services and keep a repository
of tests performed on each service for future choices of
T-services and optimization of test efforts.

2.2.4. Registry and Matchmaker
In our framework, T-services interoperate with each other

via SOAP messages. They need to advertise their service
descriptions in a service registry to be discovered and
invoked at runtime to achieve testing on-the-fly with a
high degree of automation. Because of the complexity of
the semantics of the service descriptions, we use Semantic
WS registry to register T-services, which is composed of a
UDDI registry and a Matchmaker [45].
Fig. 2 illustrates the structure of the framework.

UDDI Match
Reglstry maker

TesterT1 %4 Test Broker jli Tester T,

‘ T-service of A1 T service of Az } T-service of Az

Juawabeuey ABojouO

‘ F-service A; ‘ ‘ F-service A, ‘ ‘ F-service Az ‘

Fig. 2 Reference Architecture of the Framework

2.2.5. Ontology Manager

We use an ontology of software testing to provide a stan-
dard set of vocabulary for encoding the information
passed between T-services. This makes automatic proc-
essing of test tasks feasible.

The extendibility of our framework is achieved by dy-
namic management of the ontology through another spe-
cial service, i.e. the ontology management service (OMS).
It provides services to update the ontology.

It is worth noting that, first, the framework focuses on
the management aspect of testing rather than any specific
testing techniques or tools. Most existing works on WS
testing are complementary to our framework in the sense
that their methods, techniques and tools can be imple-
mented as T-services. The framework facilitates their in-
tegration by providing the interfaces and collaboration
mechanisms and ensuring the availability of software
artefacts that they require. The loosely coupled frame-
work lays a foundation for composing various T-services
by the utilization of Semantic WS technology.

Second, the framework is based on the model of WS
applications as a network of services interconnected
through messages, where services can be dynamically
discovered and linked to at run time. The internal struc-
ture that a service is implemented is not taken into con-
sideration in the model. This has two implications. First,
the framework can be applied to all services that are im-
plemented with any internal structure. Therefore, it is
generally applicable. On the other hand, the technology
neither takes the advantages of the information about the
internal structure of services, nor addresses testing prob-
lems due to such internal structure.

2.3. lllustration in the Typical Scenario

We now illustrate how the framework addresses the is-
sues in testing WS using the scenario given in section 2.1.

2.3.1. Architecture

By applying the framework to the scenario, we have the
following architecture shown in Fig. 3, where normal ser-
vice invocations are depicted in solid line arrows and

T-service invocations are denoted by dash line arrows.

In particular, each of the bank B’s WS, CIB's WS and
insurer A/s WS has an accompanying T-service. These
T-services are registered to the UDDI registry. A test task
can be accomplished through collaborations between
these T-services.

< - ‘I Test Broker TB 1‘?:'> Tester T,
A N

I
T
——— b m——— 1 |
1

[
[
ClB'sservice || ! WS
requester ' ' :: Registry
Bank B’s HEI "
T-service | <1777 T Ly A T
[} | v oL
Bank B’s ' I A "
F-service | CiB CiB i
| |F-services| | T-services "
Insurer Ay's | o, l | : : X | Insurer Ay's
a i] ! ! /| F-service
F-service P s e - - ‘N
Insurer A¢'s |2 | Insurer Ay's || Insurer Ay's Y| Insurer Ay's
T-service F-service T-service T-service

Fig. 3 System Architecture in the Typical Scenario

2.3.2. Collaboration process

Consider the situation that the CIB intends to establish a
dynamic composition with insurer A and to test the ser-
vice on-the-fly. It delegates the testing task to a test bro-
ker TB. Fig. 4 shows a typical example of collaboration
processes managed by TB.

1. Search for testers Registry
| - > (UDDI + <
¥ 2. List of testers Matchmaker)
CiB y -
T-service 4. Search for testers | |5. Lists of testers
CIB \3. Request of test service[Test Broker
F-service >
16. Test report B
Intended COMPOSi- g Request to . Test 13éthet_o
"t|on of services generate test cases ﬁ] o ot
IrllsurerlA’s cases 15.Te|ft executions
"SEIVICE | 7. Request service y| resuls
Insurer A’s design model Tester TG:
T-service < —| Generation of
8. UML diagram in XMI| test cases
A .
13. Request data on Register,
test coverage Tester TE:
» | Test invocation and

14. Test coverage test result checking
11. Test invocation of services I Y

12. Outputs of test executions of services

Fig. 4 The Collaboration Process in a Typical Scenario

The process starts with the generation of a test task by
CIB’s WS and a search request for finding a proper tester
is submitted to the service registry. The search request
message should contain the information about the capa-
bility of the required tester. The search result is a list of
testers, from which a test broker TB capable of handling
the task is selected. The test request is then sent to TB. The
test request message contains the information about the
test task including the service to be tested, the test ade-
quacy to achieve, and the criterion for checking output
correctness, etc.

The test broker TB decomposes the test task into a se-
quence of subtasks and searches for appropriate testers
for each subtask by submitting search requests to the reg-
istry. It then selects one tester for each subtask. In this
example, we assume two testers TG and TE are selected.
The former performs the sub-task of test case generation
and the latter invokes test executions, checks the correct-
ness of test output and measures the test coverage. To
generate test cases, TG sends a request to insurer A’s
T-service to obtain its design model. After checking the
trustworthy of tester TG, the insurer A’s T-service releases
its design model to TG. After successfully obtained the
design model, TG produces a set of test cases and returns
a test suite to the test broker TB. The test broker then
passes the test cases to TE, requests for the test invocation
of the insurer A’s services using the test cases and re-
quests it to check the output correctness and to measure
the test coverage. TE performs these tasks by collabora-
tion with the insurer A’s T-services. The test results are
then returned to the test broker TB. Finally, TB assembles
a test report containing information about test output
correctness and test adequacy. The test report is sent to
CIB, which is used to determine whether the dynamic link
will take place.

2.4. Key Technical Issues

From the illustrative scenario given above, we can iden-
tify a number of technical issues that are crucial to the
practical implementation of the framework.

2.4.1. Semantic complexity of communications

The various parties that participate in the registration,
discovery and invocation of T-services communicate with
each other through SOAP messages. These messages are
complex in semantics. In particular, a T-service must pub-
lish its services with a clear and accurate description of its
capability so that capability-based search of testers can be
performed. The diversity of testing methods, test activi-
ties, test environments, and software artefacts used and
produced in testing make the description of capability
very complicated. Searching for appropriate T-services
for a test task must match test tasks with T-service capa-
bilities. This is also a complicated issue since test tasks are
not in one-one correspondence to capabilities. Finally, test
tasks must be submitted to T-services with parameters of
a wide range. Typically, a test task involves multiple
software artefacts, such as test cases, the service to be
tested, output of test executions, the test oracle to check
correctness of output, and so forth. The parameters are
therefore often of high complexity.

To deal with semantic complexity, we employ ontol-
ogy of software testing. In general, ontology defines the
basic terms and relations comprising the vocabulary of a
topic area as well as the rules for the combination and
extension of the vocabulary [46, 47]. In Section 3.1, we
will demonstrate that the ontology of software testing
developed in agent-based approach to software testing
[69, 70] can be easily adapted for testing WS and imple-
mented in Semantic WS technology. It provides a set of

standard terminology for T-service registration, discovery
and invocation.

2.4.2. Process complexity of interactions

Test processes are complicated, too. Test activities in a
testing process are usually interdependent and must be
performed in the right order. A variety of testing tools
must be used and T-services invoked. Failure to perform
a test task may also occur for many different reasons.
Thus, interactions among these services may be very
complicated as well. Controlling and monitoring such
complicated processes thus play a key role to the success
of the framework.

Our solution to this issue is to employ a special kind of
T-services, called test brokers, to control and monitor the
testing process using appropriate mechanisms, such as
service orchestration and chorography. Great efforts have
been reported in the literature on service composition. We
believe that such approaches are applicable to our
framework because the framework does not require any
changes to the service oriented architecture.

2.4.3. Extendibility and flexibility of the framework
Because of the rapid development of WS technology and
expansion of its application areas, the ontology of soft-
ware testing must be extendible and flexible in order to
cope with new testing techniques and methods, new test
requirements, and new software artefacts under test
and/or their presentation formats.

Our solution is a centralized public service of ontology
management. Users of the ontology can extend the on-
tology by submitting extension request to add new con-
cepts and relationships to the ontology. However, exten-
sion, revision and deletion of existing concepts and rela-
tions must under tight control so that the registration,
discovery and invocation of existing T-services are not
affected by changes to the ontology.

3. IMPLEMENTATION IN SEMANTIC WS

The Web Ontology Language OWL is a semantic markup
language for publishing and sharing ontologies on the
World Wide Web [48]. It is designed for applications that
need to process the content of information. It is a part of
the growing stack of W3C recommendations related to
the Semantic Web. In this section we adapt the ontology
of software testing developed in [69, 70] and discuss how
it is implemented in OWL.

3.1. STOWS: Ontology of WS Testing

STOWS (Software Testing Ontology for WS) is proposed
in [44] based on the ontology developed in [69, 70]. It was
adapted for WS testing.

Concepts in STOWS are classified into three categories:
elementary concepts, basic testing concepts and com-
pound testing concepts.

The elementary concepts are those general concepts
about computer software and hardware based on which
testing concepts are defined. They include the simple ob-

jects involved in software testing, such as the types of
Hardware and Software artefacts and their Format, etc.

The basic testing concepts include Tester, Artefact, Ac-
tivity, Context, Method, and Environment. These basic con-
cepts are combined together to express compound testing
concepts, which include Task and Capability. The follow-
ing describes the concepts one by one.

3.1.1. Basic testing concepts

Tester. A tester refers to a particular party who partici-
pates in a test activity. Generally speaking, testers can be
human beings, organizations and software systems. In the
service oriented framework, T-services perform the test
tasks, thus they are testers, too. It can be an atomic
T-service, or a composition of T-services. One important
property of tester is its capability, which reflects the capa-
bility to perform test tasks.

Activity. There are various test activities including test
planning, test case generation, test execution, result vali-
dation, adequacy measurement and test report genera-
tion, etc.

Artefact. Various kinds of artefacts may be involved in
test activities as input/output, such as test plan, test
cases, test results, program, specification and so forth. The
most important property of class Artefact is Location,
whose value is an URL referring to the location of the
Artefact. Each type of artefacts is a subclass of artefact,
and inherits the properties from Artefact. The subclasses
of Artefact can be added into the ontology using the on-
tology management services.

Context. Test activities may occur in different software
development stages and have various test purposes. The
concept context defines the contexts of test activities in
testing processes and test methodologies. Typically, the
contexts include unit testing, integration testing, system
testing, regression testing, etc.

Method. For each test activity, there may be multiple
applicable test methods. Method is a part of the capability
and also an optional part of test task. Test methods can be
classified in a number of different ways. For example, test
methods can be classified into program-based, specifica-
tion-based, usage-based, etc. They can also be classified
into structural testing, fault-based testing, error-based
testing, etc. Structural testing methods can be further
classified into control-flow testing, data-flow testing, etc.
Therefore, test methods are represented as a hierarchy in
the ontology.

Environment. It is the hardware and software configu-
ration in which a test activity is performed.

3.1.2. Capability of T-services and Test Tasks

The capability of a T-service represents its capability of
performing test tasks. The class Capability in the ontology
defines the aspects that affect the capability of a service to
perform tasks, including the activities that the service can
do, the test methods that the service uses, the artefacts
that the service consumes and produces, the context in
which the service performs test activities, and the envi-
ronment in which test activities are carried out, etc.

Therefore, it is composed from several basic test concepts.
The structure of Capability is shown in the UML class dia-
gram given in Fig. 5.

Task describes the test task to be carried out. It is used
in service invocation. A test task also has six aspects: the
activity to be performed, the context of the activity, the
required test method and test environment, and the input
and output artefacts. The compositions are in the same
structure as capability, but have different semantics. The
structure is shown in Fig. 5.

A ;
|

| Method | | Capability Data |

| Context | |Envir0nment|

Fig. 5 The Structure of Capability and Task

3.2. Representation of STOWS in OWL

In OWL-S, semantic descriptions are presented in the
form of service profiles and used in service registration
and discovery. The vocabulary of a subject domain is de-
fined in a data model as classes with subclass relations.

To implement the ontology STOWS, we represent the
concepts, including elementary, basic and compound
concepts, as classes in OWL data model. To use the on-
tology for the registration, discovery and invocation of
T-services, the compound concepts capability and task are
transformed into service profiles. In OWL-S, a service
profile contains the IOPR (Inputs, Outputs, Preconditions
and Results) and a classification of the service [49]. Fig. 6
shows how the concept of capability is represented in
service profile.

' Capability I : ServiceProfile A
| Activity ! L— ServiceClassification |
I Context \:\:\H\IPUT |
: Environment H\| (E:r?\r/]itf:r:ment :
! Method ‘—I\:‘ |
: InputArtefact \:_L\ Method :
: | | Artefacts |
I\ OutputArtefact \}\:\OUTPUT :
Tt T T T 1 Artifacts 1
N e e e _ 7

Fig. 6 Mapping Between Capability and Service Profile

<profile:Profile rdf:about="#testcase_generation">
<profile:serviceClassification rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI">
http://... ltestingontology.owl#TestCaseGeneraton
</profile:serviceClassification>
<profile:hasinput>
<process:Input rdf:ID="input_program">
<process:parameterType rdf:datatype=
"http:/iwww.w3.0rg/2001/XMLSchema#anyURI">
http://.../testingontology.owl#Program
</process:parameterType>
</process:Input> </profile:hasinput>
<profile:hasOutput>
<process:Output rdf:ID="output_testcase">
<process:parameterType rdf:datatype=
"http:/lwww.w3.0rg/2001/XMLSchema#anyURI">
http://.../testingontology.owl#TestCase
</process:parameterType> </process:Output>
</profile:hasOutput>
</profile:Profile>

Fig. 7 An Example of Service Profile

In the service profile of T-service, the test context, the
environment and the method aspects are represented as
input parameters Context, Environment and Method. For
example, Fig. 7 shows a part of a service profile, whose
serviceClassification is TestCaseGeneration. The haslnput and
hasOutput properties indicate that the service takes a Pro-
gram as input and produces TestCase as output. By repre-
senting capability and task concepts in profiles,
OWL-S/UDDI Matchmaker can be employed to perform
semantic-based search of T-services.

3.3. T-Service Registration and Discovery

The OWL-S/UDDI Matchmaker (Matchmaker for short)

extends UDDI registry with a capability based service

matching engine [45,50]. It provides three levels of

matching between capability and search request.

a) Exact matching: the capabilities in the registry and in
the request match exactly.

b) Plug-in matching: the service provided is more gen-
eral than that in the request.

c) Relaxed matching: there is a similarity between ser-
vices provided and that in the request.

The Matchmaker also provides filters for users to con-
struct more accurate service discovery: which are name-
space filter, domain filter, text filter, I/O type filter and
constraint filter [51]. With these filters, users can construct
necessary compound filters to control the precision of
matching. The matching engine returns a numeric score
for each candidate so that the higher the score, the more
similar between the candidate and the request. Therefore,
selection from the candidates can be based on the scores
that tagged by the Matchmaker on the candidate services.

We have used Matchmaker to enhance the registration
and discovery of T-services with semantic information. A
T-service provider must first register the service with its
profile that defines its capability by using the API pro-
vided by the Matchmaker. A service search request is also
submitted to the Matchmaker.

3.4. Ontology Management Service (OMS)

The terms used in the capability and test task description
must be first defined in the ontology. However, it is im-
possible to build a complete ontology of software testing
given the huge volume of software testing knowledge
and the rapid development of new testing technique,
methods and tools. Therefore, the ontology must be ex-
tendable and open to the public for updating. An ontol-
ogy management mechanism is provided to enable the
population of the ontology. It is delivered as a WS to fa-
cilitate the public access to the mechanism.

The ontology management service (OMS) is imple-
mented using the Protégé-OWL API, which is an open
source Java library for OWL and RDF. Using the API,
OWL data model stored in OWL files or databases can be
loaded, changed and saved, queries be made, and rea-
soning performed using a description logic inference en-
gine [52]. Therefore, the manipulation of the ontology can
be implemented as operations on OWL files. Fig. 7 shows
the structure of OMS.

Ontology Management Service

Update
Log

Ontology
Data Model

Manager

q
Conflict Checker

Authority Checker

AddClass O

DeleteClass O

UpdateClass &

Fig. 8 The Structure of OMS

OMS provides a WS interface to read and update the
ontology data model, which is open to the public. The
kernel of OMS is the Manager module. It provides three
services to users: AddClass, DeleteClass and UpdateClass to
add new concept, delete concept and revise concept of the
ontology.

For example, suppose that a T-service is developed to
generate test cases using a new method not included in
the ontology, say data mutation. Then, a new test method
name ‘DataMutation’ can be added to the ontology as a
subclass of test method. If a new T-service is to be regis-
tered that generates test cases from a new formal specifi-
cation language called FSL, then a new type of software
artefacts called ‘FSL’ can be added to the ontology as a
subclass of software artefact, rather than a subclass of test
method. The relationship between classes in Ontology is
represented as properties of classes. Adding or removing
a relation can be done by applying operations on the on-
tology file via OMS. For example, if a subsumes relation
from branch testing to statement testing is to be added, a
‘Subsumes’ property can be added to class ‘BranchTesting’
with the value that refers to the class ‘StatementTesting’.

However, to prevent misuses of the ontology man-
agement service, restrictions on the manipulation of the
data model are imposed through two technical solutions.

First, we classify the classes in the ontology into two
types: elementary classes and extended classes. Elementary
classes are those that form the framework of the ontology
STOWS. None of them could be pruned down from the
ontology hierarchy to avoid structural damage to the on-
tology. The extended classes are those classes attached to
the elementary classes to populate the ontology with con-
crete concepts and instances of the concepts. They can be
added by the users and deleted from the hierarchy. We
have implemented an Authority Checker, which checks
delete operations to ensure that the class to be deleted is
extended class.

Second, we have also implemented a Conflict Checker,
which checks the operations on the ontology to ensure
that the new class to be added does not exist in the on-
tology and that the class to be deleted has no subclasses in
the hierarchy.

Due to the openness of ontology management, there is
a risk of errors caused by update during task executions.
If the update is only to add a new concept or relation to
the ontology, there should be no effect on existing tasks
and services, thus no risk of such errors. However, if the
update changes or deletes an existing concept or relation,

a task running at the time of update may be affected if
messages of the task use the changed concept or relation
and rely on the ontology to understand the messages. In
such cases, errors may occur due to the updates during
execution. How to prevent such errors and reduce the risk
of such errors remains an open question that deserves
further research.

3.5. Composition of T-Services Using Brokers

As discussed in Section 2.4.2, the interactions among
T-services can be complicated. The composition of
T-services is a key technical issue for the success of the
framework. One of the most promising mechanisms of
service collaboration is service brokers. This mechanism is
also well supported by OWL-S [53]. However, different
from the approach taken in [53], our test brokers do not
play the role of registry. A test broker is just a T-service
composition and it self is a T-service as well. There may
be multiple test brokers owned by different vendors.

We have developed a prototype test broker to demon-
strate the feasibility of the approach. Fig. 9 shows the ar-
chitecture of our prototype test broker. It receives test
tasks from service requesters, decomposes a test task into
a sequence of subtasks, sets a test plan, searches for other
T-services capable of performing the subtasks, and then
invokes the T-services according to the plan to carry out
the subtasks and passing information between them. Fi-
nally, it assembles the results from the services and re-
ports to the service requester. The broker is composed of
the following four modules.

Knowledge-Base |

of Software Testing | Test Broker
—
Ontology
Management Task Analyzer Tester Search
i Module
Service N
I Registry
Testing Communication Task Execution
Service
Module Module
Requester

Tester Ty Tester T, Tester T,

Fig. 9 The Structure of a Test Broker

Communication Module provides an interface to the us-
ers. It receives test requests in the form of test tasks and
sends out test results also in SOAP format. It transfers test
tasks to Task Analyzer and gets test results from the Task
Execution Module. Failures to fulfill test requests are also
reported to the requesters through this module.

Task Analyzer decomposes a test task into several sub-
tasks and produces test plans according to codified
knowledge of software testing processes. It also keeps the
track record of test plan executions for each task so that
back tracking can be made when a subtask fails.

Tester Search Module searches for testers for each sub-
task in the test plan generated by the Task Analyzer. A
failure to find a suitable tester for a subtask is reported to
the Task Analyzer and an alternative test plan may be
generated or the whole testing process fails.

Task Execution Module executes the test plan by invok-
ing the testers and passing information between them. A

failure to carry out a subtask is reported to the Task Ana-
lyzer and an alternative tester will be employed if any, or
an alternative test plan is generated if possible. Other-
wise, the whole testing process fails.

The knowledge-base of software testing processes plays a
central role in the test plan generation. It can be consid-
ered as a finite set of templates of test plans with parame-
ters like task, input and output artefacts. A test task is
then checked against the templates one by one and a test
plan is produced by instantiating the template when a
match is found. Each template can be regarded as a col-
laboration pattern of T-services. They can also be re-
garded as heuristic rules about how to compose and co-
ordinate T-services. This significantly reduces the size
and complexity of the space in which T-services are
searched for and combined. Therefore, the complexity of
T-service composition and collaboration can be reduced.

User Requests a
Test Task

Task (in OWL)

Generate Test
Plan

Test Plan
Subtask 1
Subtask 2

Test Report Test Report
(failure) \ﬁﬁ‘
3

Sub’t;sk n

Convert Test Task into

Required Tester Capability

[Tester Capability (In OwL) |

Transform into Service
Profile
(by Matchmaker Client API)

If fail
If success

Service Profile (In OWL-S)

Submit To Search Engine

Matchmaker
Returns

Generate An
—»| Alternative
Test Plan

If Empty

Search
Results

List of Candidate
T-services

If Not Empty

Select a T-service

Selected
T-services

If no
alternative
T-service

Select An

Alternative
T-service

Set Profile parameters
according to Subtask

Report Test
Results to
The User

If has alternative
T-service - -
Failure T-service Invocation
Message
2

v If ful
Execute T-service

Test Results

If Failed

Fig. 10 Process Model of Test Broker

Fig. 10 shows the process that the test broker interacts
with Matchmaker and other T-services.

It is worth noting that test tasks and capabilities have
the similar structure and the corresponding semantics so
that test requests (i.e. test tasks) can be easily transformed
into search request (i.e. tester capabilities). Similarly,
tester capabilities can be transformed into test subtasks
according to the test plan and submitted to the testers. In

the implementation of the prototype test broker, we used
the Mindswap OWL-S API to parse task and capability
profiles and to invoke T-services automatically [54].

4. A RUNNING EXAMPLE

In this section, we demonstrate the feasibility of the pro-

pose approach by a running example.

As shown in Fig. 11, the running example consists of
the following WS.

e TCG: a general purpose testing tool that generates
test cases from algebraic specifications. It is obtained
by wrapping the CASCAT software tool [55,56] into a
web service. CASCAT is an automated tool for test-
ing Enterprise Java Beans.

e NCS: a web service that provides numeric calcula-
tions of complex numbers. It is the web service to be
tested in this example.

e T-NCS: the service specific T-service for NCS. It pro-
vides test execution service for testing NCS.

e TFT: a test case format transformer that transforms
test cases in the format of CASCAT output into test
cases acceptable by T-NCS.

Test Broker |Search testers

TFT: Test Case
Format Transformer

Matchmaker

\Register

T-NCS: Test
Executor for

|

[NCS: Numeric Calculation Web Service]

TCG: Test Case
Generator

Fig. 11 The Web Services in the Running Example

The following gives some technical details of the regis-
tration, search and invocation of the testers in the running
example. More details can be found in [71].

4.1. The Registration of Testers

We have built a UDDI registry server using Matchmaker.
The web services involved in this running example are all
registered on this UDDI registry.

Take the registration of TCG as an example, the service
takes a CASOCC specification file as input and generates
test cases as output. These artefacts are stored in files and
referred to through URLSs to the file locations.

To describe this service, the following new classes
were added into the ontology.

— CasoccSpecification: a subclass of Specification that
stands for algebraic specification in CASOCC.

— ComponentTest: a subclass of Context that stands for
component testing.

— CASOCCmethod: a subclass of Method that stands for
the method of test case generation from CASOCC.

In its service profile, the serviceClassification is set as
TestCaseGeneration. The Input artefact is specified as the
class CasoccSpecification. As described in the previous sec-
tion, the service profile has three parameters that repre-
sent the aspects of the service capability. The context of

TCG is ComponentTest. Its environment is notLimited,
which is a subclass of Thing (the common ancestor of all
the classes in OWL) and represents no requirement on a
certain aspect. Its method is CASOCCmethod. The output
artefact is TestCase.

4.2. Submitting Test Tasks

The web service Client plays the role of test requester. It
constructs test tasks and submits them to the test broker,
which in turn generates requests according to the test
tasks and submits them to the Matchmaker to search for
T-services. Fig. 12 shows a test task that Client generated
and submitted to the test broker requesting test NCS
against an algebraic specification written in CASOCC.
The input artefact of the task is of type CasoccSpecification,
and the output artefact type is TestResult.

<Task rdf:ID="thirdTask">
<hasContext>
<ServiceTest rdf:ID="serviceTest"/> </hasContext>
<hasMethod rdf:resource="# CASOCCBasedMethod "/>
<hasEnvironment rdf:resource="#notLimited"/>
<hasActivity rdf:resource="#multiactivites"/>
<inputArtefact>
<CasoccSpecification rdf:ID="casoccSpecification">
<Location rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI">
http://.../specification/Calculator.asoc
</Location> </CasoccSpecification> </inputArtefact>
<outputArtefact>
<TestResult rdf:ID="testresult">
<Location rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI">
http://.../artefacts/testresult/fictitioustestresult.txt
</Location> </TestResult> </outputArtefact>
<testObject>
<TestObject rdf:ID="calculateService">
<operationName rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#string">
Add </operationName>
<endpoint rdf:datatype=
"http://www.w3.0rg/2001/XMLSchemattstring">
http://.../axis/services/Calculatorimpl
</endpoint> </TestObject> </testObject>
</Task>

Fig. 12 The Task to Test NCS Based on Algebraic Specification

4.3. Search for Testers and Decomposition of Task

Once the test broker receives the test task, it generates a
capability description from the test task and constructs a
service profile according to the mapping given in Fig. 6. It
then calls the Matchmaker to search for T-service provid-
ers. In this case, there is no tester that is capable of di-
rectly fulfill the test task. Thus, the test broker decom-
posed it into subtasks and generated a test plan that con-
sisted of three subtasks:

Subtask 1: Generating test cases from the specification.
The input artefact of the task is of type CasoccSpecification.
The output of this subtask is of type CasoccTestCase.

Subtask 2: Transforming the test cases into the format
that are executable by TesterA. Its input is of type
CasoccTestcase and output is of type CalculatorTestCase.

Subtask 3: Executing test cases and report test results.
Its input is of type CalculatorTestCase and its output arte-
fact type is TestResult.

For each subtask in the test plan, the broker translates
it into the corresponding capability description and con-

structs a service profile. The test broker then submitted
the service profile to the Matchmaker to search for ap-
propriate testers. In this case, testers TCG, TFT and
T-NCS were discovered for the subtasks, respectively.
The test planning finished with each subtask associated
with a tester, and the test plan was passed to the execu-
tion module for executing the subtasks.

4.4. Invocation

The task execution module of test broker called the testers
associated to each subtask according to the order given in
the test plan. Data were passed from one subtask to an-
other by the construction of invocation message to the
testers. In particular, the output artefact of a subtask was
passed to the next subtask. The output of the third sub-
task was the final result of the test, which was an OWL
object. It was returned to the client by the broker.

5. EVALUATION

To further evaluate the practical usability of the proposed

approach, we have conducted a case study and some ex-

periments to address the following research questions.

a) Can a wide range of software testing tools be inte-
grated into the framework?

b) Can subtle differences between test services be proc-
essed adequately?

c) Can the system scale up efficiently?

5.1. Case Study: Dealing with Diversity
To evaluate test brokers’ capability of dealing with the
diversity of testers, we selected a wide range of software
tools reported in the literature to see if they can be turned
into testers. Table 1 gives the tools in the case study to-
gether with 3 testers mentioned in Section 4.

In the case study, we have successfully described their
functionalities in the STOWS ontology and registered to
the Matchmaker. For those tools we can get the source
code or executable code, they were also wrapped into
web services and deployed to a server. For the others,
stubs were deployed, which are marked with an asterisk
in Table 1.

Table 1. Testers integrated in the framework

Name Description
CASCAT [56] A CASOCC-based test case generation tool
Test Case Format | Translate the test case generated by CASCAT into the
Translator format recognizable by Calculator Test Case Executor

Test Case Executor | Executes test case for a numeric calculator web service

Generate and execute test cases from C source code by

Kl 7
ce [57] symbolic execution
Magic [58] Check gor}formance be.tween component specifications
and their implementations
XML Comparator | Compare XML files

Java NCSS [59] Measure two standard metrics for Java program

Findbugs [60] Find bugs in Java program by static analysis

A static analysis tool for finding potential bugs and other

PMD [61
[61] problems in Java source code

WSDL Based Test

Case Generator* [5] A WSDL based test case generation tool

Web Service Test
Case Executor* [5]

Execute the test case generated by WSDL Based Test Case
Generator

Moreover, for each of these T-services, we have suc-
cessfully conducted experiments with the broker to
search and invoke them in both simple and complex
tasks. For example, Klee was selected and invoked by the
broker to execute tasks that require C source code as in-
put, test result as output and symbolic execution as method.

This case study shows that the approach is capable of
dealing with a wide range of software testing, verification
and validation tools.

5.2. Experiment 1: Dealing with Subtle Differences

Experiments have also been conducted to test the system’s
capability of dealing with subtle differences between
testers so that appropriate ones are selected accurately.

In this experiment, we applied the data mutation test-
ing technique [62] to generate a large number of service
profiles (called mutants) from a set of original profiles
(called the seeds). These mutants differ from the seeds on
only one parameter. They were generated by applying
data mutation operators to a seed on the parameter.

Let x be one of S (for service classification), I (for input
artifact, O (for output artifact), M (for method), C (for
context) and E (for environment). The data mutation op-
erators are defined as follows.

e RxF: Replace the x parameter in the seed profile (a class
in the ontology) by its father in the ontology;

e RxS: Replace the x parameter in the seed by one of its
subclasses in the ontology;

e RxB: Replace the x parameter in the seed by one of its
brother classes in the ontology;

e RxN: Replace the x parameter in the seed by a class in
the ontology that has no relation to the parameter.

For instance, if the ServiceClassification of a seed profile
is TestCaseGeneration, then the RSB operator will generate
profiles with TestCaseExecution and TestResultValidation as
ServiceClassification, respectively, assumed that both
classes are the sibling classes of TestCaseGeneration in the
ontology. Sometimes a data mutation operator is not ap-
plicable, because, for example, it may have no alternatives
in the ontology.

We have used the profiles of the testers in our previous
case studies as the seeds and generated 167 mutants in
total. These mutants were then registered to the Match-
maker.

An experiment was then conducted to search for test-
ers with search requests matching the seeds and to see if
mutants could be filtered out.

The results of the experiment shows that the intended
original profiles were always selected. The mutants were
never chosen to execute test tasks although sometimes
they are included in the search results together with their
seeds. In particular, the search scores of these mutants
turned out to be as follows:

e Mutants generated by RxS operators (i.e. RSS, RIS, ROS,
RMS, RCS, RES) have scores that are 1 point less than
that of their seeds;

e Mutants generated by RxF operators have scores that
are 2 points less than that of their seeds.

e Mutants generated by RxB and RxN (except ROB and

10

RON) have scores that are 3 points less than that of their
seeds.

e Mutants generated by ROB and RON operators were
given much lower scores than their seeds by the Match-
maker.

This experiment shows that test services of subtle dif-
ferences can be dealt with in our framework satisfactorily.

5.3. Experiment 2: Scalability

Experiments have also been conducted to evaluate the
scalability of test brokers in terms of its efficiency to deal
with test problems of practical sizes.

We identified three key dimensions of the sizes of test-
ing problems that may affect usability:

e The number of testers registered in the registry affects the
time needed to search for a tester.

e The size of the knowledge-base of software testing affects
the time needed to analyze a test task and to decompose
it into a sequence of subtasks. In the experiment, we
measure the size in terms of the number of test plan
templates in the knowledge-base.

o The complexity of test task also affects the time needed to
process the task. In the experiment, we use the number
of different types of subtasks that it will be decomposed
into as a simple measurement of its complexity.

The experiments aim at estimating how broker’s exe-
cution time depends on these factors. For each factor, we
designed a set of contexts that each consists of a set of
testers, a set of templates and a task. In each context, the
broker was run for a number of times. The lengths of time
spending on executing various modules of the test broker
in the context were collected and their averages were cal-
culated to reduce the random effect of the underlying
system software and the network connection. The con-
texts were constructed using the following repository.

e Domain of testers: A repository of testers used in the ex-
periments contains the testers developed in experiment
1, i.e. the set of real testers used in case studies plus
their mutants. It contains a total of 178 testers.

e Domain of test plan templates: A repository of test plan
templates was also generated by applying the data mu-
tation technique on the real templates of our test broker.
A large number of mutants were generated. 500 tem-
plates in total were actually used in the experiments.

e Domain of test tasks: A small repository of test tasks were
manually generated so that each task can be decom-
posed into n different types of subtasks (n=1,2,...,5) ac-
cording to the real test plan templates.

The designs of the experiments and their main results

are as follows.
(1) The effect of the number of testers
To find out how the number of testers registered in regis-
try affects the execution time of the test broker, we se-
lected at random subsets of mutant testers in the reposi-
tory plus 11 real testers given in Table 1. The sizes of
these subsets increase from 20 to 178 in a step of 10. In
each case, the set of testers were registered to form a reg-
istration state. A set of 11 test tasks were constructed so
that each task can be fulfilled by one real tester.

In each registration state, every test task was submitted
to the broker to search for the real tester that matches the
task. The task is executed repeatedly for 30 times and the
average lengths of execution time were calculated to re-
duce random effects. Experimental data given in Fig. 13
shows that the average search time over 30x11 executions
increases with the number of testers in the registry, but in
almost a linear manner.

Note that, our experiment results also show that the
search time is independent of the test tasks. The details
are omitted for the sake of space.

1600
1400 |
1200 |
1000 |
800 |
600 |
400 -
200

y=0.0055x + 5.8882x + 281.66
R? = 0.9935

¢ — trend line

Time (ms)

10 30 50 70 90 110

Number of Testers

130 150 170 190
Fig. 13 Time spent on searching for testers
(2) The Effect of the number of test plan templates
The number of the templates in the knowledge base only
affects the time spent by the task analyzer module of the
broker. In the experiment, we selected at random sets of
mutant templates plus one real template that matches the
test task as the knowledge base. In each case, we place the
real template at the end of the mutants to ensure that the
longest time that the task analyzer will execute using the
knowledge base.

As shown in Fig. 14, when the size of knowledge base
increases from 20 to 500 the time spent by the task ana-
lyzer module also increases, but in an almost linear rate.

50.00

y=3E-6xX +0.0809x+2.2562
R?=0.9265

40.00

30.00

Time (ms)

i= 20.00
task analysis time

10.00 trend

0.00
200 300
Number of Plan Templates

Fig. 14 Time spent by task analyzer
(3) The effect of task complexity

In this experiment, we generated a set of test tasks that
are decomposed into different number of subtasks, which
ranges from 1 to 5. The test broker was run on each task
for 30 times. The lengths of execution time were collected
and their averages were calculated.

Note that in comparison with simple tasks that can be
fulfilled directly by a tester, the test broker spends more
time in processing a complex task on:

a) the generation of task plan,

b) the searching for testers of subtasks,

c) the execution of subtasks, which can be further split
into three parts:

i) the broker prepares data for invoking testers,

11

ii) the testers fulfill the subtasks, and

iii) the broker receives and unpacks the returned data

from the tester.

The time spent on c.ii) only depends on the perform-
ance of the tester(s). It is irrelevant to the efficiency of the
broker. Therefore, it is omitted in our experiment.

Fig. 15 shows the average lengths of execution times
on different tasks with the number of different types of
subtasks ranging from 1 to 5. A quadratic polynomial
figure fits the curve very well with R?=0.9984.

6000.0

5000.0 y = 16.059x° + 920.55x + 230.63
R? = 0.9984
_ 4000.0 .
é | o= Test plan generation
aé 80000 ~ Ea — X— Search for testers
= 2000.0 B == — -A— Invocation of subtasks
= ---x--- Total time
1000.0 - Trendline
0.0 A S F---""" s R

Number of Types of Subtasks

Fig. 15 Time dependence on the number of subtasks

In summary, the experiments show that the broker is
capable of dealing with test problems of practical sizes
with respect to the number of testers registered, the size
of the knowledge-base, and the complexity of test tasks.

6. CONCLUSION

In this paper, we presented service oriented architecture
for testing WS. In this architecture, various T-services
collaborate with each other to complete test tasks. We
employ the ontology of software testing STOWS to de-
scribe the capabilities of T-services and test tasks for the
registration, discovery and invocation of T-services. The
knowledge intensive composition of T-services is realized
by the development and employment of test brokers,
which are also T-services. We implemented the architec-
ture in Semantic WS technology. Case studies have dem-
onstrated the feasibility of the architecture and illustrated
how to wrap up general purpose testing tools and turn
them into T-services and how to develop service specific
T-services to support the testing of a WS. Experimental
evaluation also shows the scalability of the approach.

6.1. Related Work

There are two other frameworks for collaborations in
testing WS proposed in the literature.

Since 2003, Tsai and his colleagues and students have
advanced a framework of collaboration for WS testing. In
2003 [63], a framework was first proposed, which consists
of three types of elements: (a) test masters generate test
cases based on test scenarios; (b) fest agents invoke ser-
vices using test cases generated by test masters; (c) moni-
tors catch the data passed between WS and reports state
changes to test agents. Tsai et al. soon realized that exist-
ing UDDI is insufficient to support collaborative testing
in their framework and proposed an extension to the
function of UDDI to enable collaboration [40, 64]. They
proposed to add check-in and check-out services to UDDI

servers so that a service is added to UDDI registry only if
it passes a check-in test. A check-out testing is performed
every time the service is searched for. A service is rec-
ommended to a client only if it passes the check-out test.
To facilitate such tests, they require test scripts being in-
cluded in the information registered for the WS on UDDL
In [39, 40], Tsai and his colleagues went further to inves-
tigate the problem how to select a service from a large
number of candidates by testing. They developed a test
case ranking technique to improve the efficiency of group
testing. More recently, in 2007 [65] and 2008 [66], the no-
tion of test broker mentioned in [63] was further devel-
oped and a prototype implementation was reported. Test
brokers in their framework are much more complicated
than ours and aim to achieve many more functions, which
include generating test cases, submitting test cases to the
WS, coordinating tester and functional services, register-
ing testers and recording the performance of testers,
monitoring services and keeping a repository of tests per-
formed for the evaluation of services and testers, etc. A
fundamental difference between Tsai et al.’s framework
and our framework is that they do not use ontology as the
definition of the semantics of messages. Search for test
services relies on keyword matching. Thus, the frame-
work is weak in dealing with semantic complexity of
software testing tasks and its components are more com-
plex without employing semantic WS technology. An-
other difference is that they do not use knowledge of
software testing process to generate test plans. Moreover,
their components are not services. In particular, they in-
voke the real services for testing rather than employ ser-
vice specific test services.

An approach similar to Tsai et al.’s is taken by Berto-
lino et al. in their audition framework proposed in 2005
[30]. It requires an admission testing when a WS is regis-
tered to UDDI. This is equivalent to Tsai et al.’s check-in
test. But, after a service is registered in a UDDI server,
Bertolino et al. emphasize on run time monitoring services
on both functional and non-functional behaviours, while
Tsai et al. require check-out tests.

Based on the audition framework, Bertolino and Polini
recently proposed a framework called service test govern-
ance (STG) to incorporate testing into a wider context of
quality assurance of WS [67]. Here, governance means
imposing a set of policies, procedures, documented stan-
dards on WS development, etc. These rules are to be en-
forced by a certain organization. In addition to the admis-
sion test and runtime monitoring, STG also requires WS
testing following standard processes.

Although both Tsai et al. and Bertolino ef al. recognised
the need of collaboration in testing WS, the technical de-
tails about how to collaborate multiple parties in WS
testing have not been addressed adequately. Moreover,
both frameworks require revisions and extensions of WS
standards, especially UDDI. Therefore, as Bertolino and
Polini admitted in [67], “on a pure SOA based scenario the
framework is not applicable”.

Even if UDDI can support these frameworks, the extra

12

burden on UDDI servers for performing audition test or
check-in/check-out tests will make SOA impractical even
if such tasks are delegated to a third party. Further more,
it is hard to see how a universal standard on WS testing
and quality assurance can fit all purposes and be accept-
able by all sectors of industries.

In [68], Tsai et al. discussed what is necessary to extend
WSDL in order to support testing. They proposed to in-
clude the information like input/output dependences
between operations, invocation sequences, and structural
and functional features of WS. We believe that, although
such information is necessary, it is still insufficient to
support all aspects of WS testing. On the other hand, it is
unnecessary to extend WSDL to provide such information.
Information required for testing WS can be provided by
using ontology and through T-services.

The framework presented in this paper had its incep-
tion in 2006 [44] based on the author’s previous work on
agent-based approach to testing web-based systems [69,
70]. A preliminary implementation and case study of the
framework was reported in [71] without details about the
test broker and ontology management service. Our ap-
proach differs from the others in that it implements col-
laborative testing of WS within the framework of service
oriented architecture using ontology and also the concept
of T-services. In this framework, various testing functions
are provided by T-services, such as generating test plan
and test cases, invoking test executions, collecting test
results, checking output correctness, measuring test ade-
quacy and coverage, and so forth. The collaborations be-
tween them are autonomous rather than enforced. That is,
what to test and how to test is the choice of the service
requester, and what and how to fulfil a client’s test re-
quest is the choice of test service provider. A T-service
requester need to search for T-services, negotiate the cost
of test, select a T-service provider and invoke the
T-service at runtime. The test activities are then per-
formed by a T-service provider.

This framework is further enriched in this paper by
incorporating two facilities. The first is an ontology man-
agement facility so that the software testing ontology can
be extended and maintained through public services. The
second is test brokers, which are also T-services but spe-
cialised in the composition of T-services so that compli-
cated testing processes and interactions between
T-services can be handled by such professionally devel-
oped T-services to simplify the uses of T-services.

The approach has the following advantages in com-
parison with the existing work. First, it is scalable since
T-services are distributed and there is no extra-burden on
UDDI servers. Second, this approach can be implemented
without any change to the existing standards of Semantic
WS [72] as shown in this paper. Third, the need of dealing
with variety is achieved through collaborations among
many T-services and the employment of ontology of
software testing to integrate multiple testing tools. Fo-
urth, the automation of test processes for testing
on-the-fly, especially the dynamic composition of

T-services, can be also achieved by employing ontology of
software testing and test brokers. Moreover, test execu-
tions can be performed by running a separate T-service,
thus they do not interfere with the normal operations of
the services under test. Finally, when test tasks are per-
formed by a trusted third party of professional T-services,
documents and source code as well as other software ar-
tefacts can be released to the T-service provider with
proper intellectual property protection.

6.2. Future work

The test broker in the prototype is still very primitive.
Further research on the design and implementation of
more powerful test brokers will have a significant impact
on the usability of the T-services. In particular, using
knowledge of software testing processes to generate test
plans seems a promising topic for further work. Such
knowledge can be encoded in a process definition lan-
guage such as BPEL. Therefore, a much more flexible and
powerful test broker can be devised. Another direction to
enhance the functionality of test brokers is to associate
monitoring functions to brokers as in Tsai et al’s ap-
proach so that the previous performance of T-services can
be taken into consideration in the selection of testers.

An issue that has not been addressed adequately is the
testing of long running processes. A simple solution
could be to allow testers to distinguish long running
processes from short running tasks either in the test re-
quest message (i.e. in the test task description) or in the
service description (i.e. in WSDL). An upper limit to the
waiting time for test results should then be set accord-
ingly to avoid infinite waiting. The broker could also set
different running modes for short and long running tasks.
For the latter, the broker may generate a new thread to
execute the function. The ability of broker to handle long
running processes is related to the platform on which the
broker is deployed. The soap engine we used in case
study, i.e. Apache Axis 1.4, is capable of supporting this.

Moreover, as discussed in Section 1, a particular diffi-
culty in testing WS is due to the lack of software artefacts
to support test activities. The framework presented in this
paper offers the opportunity to incorporate a trust
mechanism so that design documents, source code and
many other types of internal information of services can
be delivered to trustable T-services. Further research on
how such a trust mechanism to interoperate with the
T-services needs to be worked out in detail.

Another hard problem to be solved is associated to the
management of ontology. Due to its openness, errors due
to update during the execution of a task may occur as
discussed in Section 3.4. How to prevent such errors and
to reduce the risk is still an open question.

Testing is one of the quality assurance activities for the
development of services. It is worth investigating into
how to extend and/or adapt the framework for a wider
range of quality assurance activities such as static analysis
and verification and dynamic monitoring of services, etc.
This may need to extend the network model of WS to in-
corporate the internal structure of services.

13

Finally, we have only reported the main results of the
evaluation case studies and experiments. More detailed
will be reported separately due to the limitation of space.
Further empirical study and evaluation of the proposed
approach should be conducted, especially with regard to
the costs associated to the design, implementation and
operation of service specific T-services.

REFERENCES

[1] F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard, Web Services Architecture. W3C Working Group Note,
http:/ /www.w3.org/TR/ws-arch, 2004.

M. Stal, “Web Services: Beyond Component-Based Comput-
ing”, C.ACM, vol. 45, no. 10, pp.71-76, Oct. 2002.

G. Canfora and M. Penta, “Service-Oriented Architectures Test-
ing: A Survey,” Software Engineering: Int'l Summer Schools
(ISSSE 2006-2008), Revised Tutorial Lectures, A. Lucia and F. Fer-
rucci (Eds.), LNCS vol.5413, Springer-Verlag, pp.78-105, 2009.
M.Bozkurt, M. Harman and Y. Hassoun, Testing Web Services: A
Survey. Technical Report TR-10-01, Department of Computer
Science, King's College London. January, 2010.

X. Bai, W. Dong, W. Tsai and Y. Chen, “WSDL-Based Auto-
matic Test Case Generation for Web Services Testing,” Proc. Of
SOSE’05, pp.215-220, Oct. 2005.

W. Tsai, R. Paul, W. Song and Z. Cao, “Coyote: An XML-Based
Framework for Web Services Testing,” Proc. of HASE'02,
pp-173-174, Oct. 2002.

N. Looker, M. Munro and J. Xu, “WS-FIT: A Tool for Depend-
ability Analysis of Web Services,” Proc. of COMPSAC'04,
pp-120-123, Sept. 2004.

J. Offutt and W. Xu, “Generating test cases for web services
using data perturbation,” SIGSOFT Softw. Eng. Notes, vol. 29, no.
5, pp.1-10, Sept. 2004.

S. C. Lee and J. Offutt, “Generating Test Cases for XML-Based
Web Component Interactions Using Mutation Analysis,” Proc.
of ISSRE’01, pp.200-209, Nov. 2001.

W. Xu,]. Offutt and J. Luo, “Testing Web Services by XML
Perturbation,” Proc. of ISSRE’05, pp.257-266, Nov. 2005.

M. P. Emer, S. R. Vergilio and M. Jino, “A Testing Approach for
XML Schemas,” Proc. of COMPSAC'05, pp57-62, Jul. 2005.

A. Bertolino, J. Gao and E. Marchetti, “XML every-flavor test-
ing”, Proc. of WEBIST’06, INSTICC Press, pp.268-273, Apr. 2006.
A. Bertolino, J. Gao, E. Marchetti and A. Polini, “Systematic
generation of XML instances to test complex software applica-
tions,” Rapid Integration of Software Engineering Techniques, Third
Int’l Workshop, RISE 2006, Revised Selected Papers, Guelfi, N. and
Buchs, D. (Eds.), LNCS vol. 4401, Springer, pp.114-129, 2007.

A. Bertolino, J. Gao, E. Marchetti and A. Polini, “ Automatic Test
Data Generation for XML Schema-based Partition Testing,”
Proc. of AST'07 , p.4, May 2007.

[15] J. B. Li and J. Miller, “Testing the Semantics of W3C XML
Schema,” Proc. of COMPSAC’05, pp.443-448, Jul. 2005.

L. F. de Almeida and S. R. Vergilio, “Exploring Perturbation
Based Testing for Web Services,” Proc. of ICWS’06, pp.717-726,
Sept. 2006.

S. Hanna and M. Munro, “An Approach for WSDL-Based
Automated Robustness Testing of Web Services,” Information
Systems Development: Challenges in Practice, Theory, and Educa-
tion, vol. 2, Barry, C. et al. (eds.), Springer, pp.493-504, 2009.

[18] J. Garc'ia-Fanjul, J. Tuya and C. de la Riva, “Generating Test
Cases Specifications for BPEL Compositions of Web Services
Using SPIN,” Proc. WS-MaTe, 2006.

C. Bartolini, A. Bertolino, E. Marchetti and I. Parissis, “Data
Flow-Based Validation of Web Services Compositions: Perspec-
tives and Examples,” Architecting Dependable Systems V, R.
Lemos, et al. (Eds.), LNCS vol. 5135, Springer-Verlag,
pp-298-325, 2008,

C. Bartolini, A. Bertolino and E. Marchetti, “Introducing ser-
vice-oriented coverage testing,” Proc. of ASE’08, pp.57-64, 2008.
K. Kaschner and N. Lohmann, “Automatic test case generation
for services,” Fourth Int'l Workshop on Engineering Ser-

(2]

(3]

(4]

[5]

(6]

(7]

(8]

19

[10]
(11]
[12]

[13]

[14]

16]

[17]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

vice-Oriented Applications: Analysis and Design (WESOA 2008),
Proceedings, LNCS, Springer-Verlag, Dec. 2008.

M. Lallali, F. Zaidi, A. Cavalli and I. Hwang, “ Automatic Timed
Test Case Generation for Web Services Composition,” Proc. of
ECOWS 2008, pp.53-62, 2008,

Z.Li, W. Sun, Z. B. Jiang and X. Zhang, “BPEL4WS Unit Test-
ing: Framework and Implementation,” Proc. of ICWS'05,
pp-103-110, July 2005.

P. Mayer, Design and Implementation of a Framework for Testing
BPEL Compositions. Master thesis, Leibnitz University, Germany,
2006.

L. Mei, W. K. Chan and T. H. Tse, “Data flow testing of ser-
vice-oriented workflow applications,” Proc. of ICSE'08,
pp-371-380, 2008.

Y. Zheng, J. Zhou and P. Krause, “An Automatic Test Case
Generation Framework for Web Services,” Journal of Software,
vol. 2, no.3, pp.64-77, 2007.

H. Huang, W. Tsai, R. Paul and Y. Chen, “Automated Model
Checking and Testing for Composite Web Services,” Proc. of
ISORC’05, pp.300-307, May 2005.

Y.Wang, X. Bai, J. Li and R. Huang, “Ontology-Based Test
Case Generation for Testing Web Services,” Proc. of ISADS'07,
pp-43-50, 2007.

[29] X. Bai, S. Lee, W. T. Tsai and Y. Chen, “Ontology-Based Test

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Modeling and Partition Testing of Web Services,” Proc. of
ICIWS'08, pp. 465-472, 2008.

A. Bertolino and A. Polini, “The Audition Framework for Test-
ing Web Services Interoperability,” Proc. of EUROMICRO’05,
pp.134-142, Aug. 2005.

F. Belli and M. Linschulte, “Event-Driven Modeling and Testing
of Web Services,” Proc. of COMPSAC’08, pp.1168-1173, 2008.
J.Magee,]J. Kramer, S. Uchitel and H. Foster, “LTSA-WS: a tool
for model-based verification of web service compositions and
choreography,” Proc. of ICSE'06, pp.771-774, 2006.

R. Heckel and M. Lohmann, “Towards Contract-based Testing
of Web Services,” Electronic Notes in Theoretical Computer Science,
vol. 82, no.6, 2004.

R. Heckel and L. Mariani, “Automatic conformance testing of
web services,” Proc. FASE’05, Springer, pp.34-48, 2005.

W.Tsai, X.Weli, Y. Chen, R. Paul, and X. Bai. “Swiss Cheese Test
Case Generation for Web Services Testing,” IEICE - Trans. Inf.
Syst., Vol. 88, no.12, pp.2691-2698, Dec. 2005.

A. Bertolino, G. De Angelis, L. Frantzen and A. Polini,
“Model-Based Generation of Testbeds for Web Services,” Proc.
TestCom/FATES'08, pp.266-282, 2008.

H. Huang, H. Liu, Z. Li and]J. Zhu, “Surrogate: A Simulation
Apparatus for Continuous Integration Testing in Service Ori-
ented Architecture,” Proc. of SCC’08, vol. 2, pp.223-230, 2008.

W. K. Chan, S. C. Cheung and K. R. P. H. Leung, “A Metamor-
phic testing Approach for Online testing of service-Oriented
software Applications,” Int’l Journal of Web Services Research,
vol. 4, no.2, pp.61- 81, Apr. 2007.

W. Tsai, X. Zhou, Y. Chen and X. Bai, “On Testing and Evalu-
ating Service-Oriented Software,” Computer, vol. 41, no.8,
pp.40-46, Aug. 2008.

W. Tsai, Y. Chen, R. Paul, N. Liao and H. Huang, “Cooperative
and Group Testing in Verification of Dynamic Composite Web
Services,” Proc. of COMPSAC’04, vol. 2: Workshops and Fast
Abstracts, pp.170-173, Sept. 2004.

A.Bertolino, J. Gao, E. Marchetti and A.Polini, “TAXI--A Tool
for XML-Based Testing,” Proc. of ICSE'07 (Companion),
pp53-54, May 2007.

A. Bertolino, G. De Angelis, L. Frantzen and A. Polini, “The
PLASTIC Framework and Tools for Testing Service-Oriented
Applications,” Software Engineering: Int'l Summer Schools,
(ISSSE’08), pp.106-139, 2008.

G. Canfora and M. Penta, “Testing Services and Service-Centric
Systems: Challenges and Opportunities,” IT Professional, vol. 8,
no. 2, pp.10-17, 2006.

H. Zhu, “A Framework for Service-Oriented Testing of Web
Services,” Proc. of COMPSAC’06, pp.679-691, Sept. 2006.

K. Sycara, M. Paolucci, A.Ankolekar and N. Srinivasan,
“Automated Discovery, Interaction and Composition of Se-
mantic Web services,” |. Web Semantics, vol. 1, no.1, pp27-46,
Dec. 2003.

14

[46]

(47]
(48]
(49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

[57]

(58]

[59]
(60]

[61]
(62]

M. Uschold and M. Gruninger, “Ontologies: Principles, Meth-
ods, and Applications,” Knowledge Engineering Review, vol.11,
no. 2, pp.93-155, 1996.

T.R. Gruber, “A Translation Approach to Portable Ontology
Specification,” Knowledge Acquisition, vol. 5, pp.199-220, 1993.
OWL Web Ontology Language Reference. http: //www.w3.org/
TR/ 2004/ REC-owl-ref-20040210/, 2004.
OWL-S: Semantic ~ Markup for ~ Web
//www.w3.org/ Submission/OWL-S/, 2004.
N. Srinivasan, M. Paolucci and K. Sycara, “Adding OWL-S to
UDDI, implementation and throughput.,” Proc. The 1¢t Int'l
Workshop on Semantic Web Services and Web Process Composition,
Ppp-169-182, 2004.

T. Kawamura, J-A. De Blasio, T. Hasegawa, M. Paolucci, and K.
Sycara, “A Preliminary Report of a Public Experiment of a Se-
mantic Service Matchmaker combined with a UDDI Business
Registry,” Proc. of ICSOC’03, pp.208-224, Dec. 2003.

Protégé-owl API Programmer’s Guide. http:/ /protege.stanford.
edu/plugins/owl/api/ guide.html.

K. Sycara, M. Paolucci, J. Soudry and N. Srinivasan, “Dynamic
Discovery and Coordination of Agent-Based Semantic Web
Services,” IEEE Internet Computing, vol. 8, no.3, pp. 66-73,
May/June 2004.
Mindswap OWL-S API.
owl-s/api/.

L. Kong, H. Zhu and B. Zhou, “Automated Testing EJB Com-
ponents Based on Algebraic Specifications,” Proc. of COMP-
SAC’07, vol. 2, pp.717-722, 2007.

B. Yu, L. Kong, Y. Zhang and H. Zhu, “Testing Java Compo-
nents Based on Algebraic Specifications,” Proc. of ICST'08,
Ppp-190-199, April 2008.

C. Cadar, D. Dunbar and D. Engler, "Klee: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs," OSDI, 2008.

S. C. Edmund, E. Clarke, A. Groce, S. Jha and T. Vienna,
"Modular Verification of Software Components in C ," IEEE
Trans. Softw. Eng. , vol.30 , pp. 388-402, 2004.

JavaNCSS. http://javancss.codehaus.org/

D. Hovemeyer and W. Pugh, "Finding more null pointer bugs,
but not too many ," in Proc. of PASTE'07, pp.9-14, 2007.

PMD. http://pmd.sourceforge.net/

L. Shan and H. Zhu, "Generating Structurally Complex Test
Cases By Data Mutation", The Computer Journal, vol.52, pp.
571-588, 2009.

Services. http:

http:/ /www.mindswap.org/2004/

[63] W. Tsai, R. Paul, L. Yu, A. Saimi, Z. Cao, “Scenario-Based Web

(64]

(65]

[66]

(67]

(68]

(69]

[70]

(71]

(72]

Services Testing with Distributed Agents,” IEICE Transactions
on Information and Systems, vol. E86-D, no. 10, pp.2130-2144,
QOctober, 2003.

W. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi and X. Bai, “Verifica-
tion of Web Services Using an Enhanced UDDI Server,” Proc. of
WORDS'03, pp.131-138, 2003.

X. Bai, Y. Wang, G. Dai, W.T. Tsai and Y. Chen, “A Frame-
work of Contract-Based Collaborative Verification and Valida-
tion of Web Services,” Proc. of CBSE'07, LNCS vol. 4608,
pp-256-271, July 2007.

X. Bai, S. Lee, R. Liu, W.T. Tsai and Y. Chen, “Collaborative
Web Services Monitoring with Active Service Broker,” Proc. of
COMPSAC'08, pp.84-91, 2008.

A. Bertolino and A. Polini, “SOA Test Governance: Enabling
Service Integration Testing across Organization and Technol-
ogy Borders,” Proc. of Webtest'09 at ICST'09, April 2009.

W. Tsai, R. Paul, Y. Wang, C. Fan and D.Wang, “Extending
WSDL to Facilitate Web Services Testing,” Proc. of HASE'02,
pp.171-172, 2002.

H. Zhu and Q. Huo, “Developing A Software Testing Ontology
in UML for A Software Growth Environment of Web-Based
Applications,” Software Evolution with UML and XML, H. Yang,
(ed.), IDEA Group Inc. pp263-295, 2005.

H. Zhu, Q. Huo, and S. Greenwood, “A Multi-Agent Software
Environment for Testing Web-based Applications,” Proc.
COMPSAC'03, pp.210-215, Nov. 2003.

Y. Zhang and H. Zhu, “Ontology for Service Oriented Testing
of Web Services,” Proc. of SOSE’08, Dec. 2008.

T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284, no.5, pp.34-43, 2001.

