
 
1 

Collaborative Testing of Web Services  
Hong Zhu, Member, IEEE CS, and Yufeng Zhang 

Abstract – Software testers are confronted with great challenges in testing Web Services (WS) because of the lack of software 
artefacts, control over test executions and means of observation on the internal behaviour of services while they must deal with 
diversities in the test requirements and service implementation techniques. An automated testing technique must be developed 
with the capability of testing on-the-fly non-intrusively and non-disruptively. Addressing these problems, this paper proposes a 
framework of collaborative testing in which test tasks are completed through the collaboration of various test services that are 
registered, discovered and invoked at runtime using the ontology of software testing STOWS. The composition of test services 
are realized by using test brokers, which are also test services but specialized in the coordination of other test services. The 
ontology can be extended and updated through an ontology management service so that it can support a wide open range of test 
activities, methods, techniques and types of software artefacts. The paper presents a prototype implementation of the framework 
in semantic WS and demonstrates the feasibility of the framework by running examples of wrapping up a testing tool into a test 
service, developing a service for test executions of a WS, and composing existing test services for more complicated testing 
tasks. Experimental evaluation of the framework has also demonstrated its scalability.  

Index terms – Software Engineering, Distributed/Internet based software engineering tools and techniques, Testing tools. 

——————————      —————————— 

1. INTRODUCTION  
The research on testing Web Services (WS) has been 
growing rapidly in recent years [1, 2, 3, 4]. Most re-
search efforts fall into the following classes.  

A. Generation of test cases. Techniques have been de-
veloped to generate test cases from syntax definitions of 
WS in WSDL [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17], business process and behavioural models in BPEL 
[18, 19, 20, 21, 22, 23, 24, 25, 26], ontology based de-
scriptions of semantics in OWL-S [27, 28, 29], and other 
formal models of WS such as finite state machines and 
labeled transition systems [30, 31, 32], grammar graphs 
[33, 34], and first order logic [35], etc. These techniques 
have addressed various WS specific issues, such as the 
robustness in dealing with invalid inputs and errors in 
invocation sequences, fault tolerance to the failures of other 
services that it depends on and unreliable communication 
connections, and security in the environment that is vul-
nerable to malicious attacks, and so on.  

B. Generation of testbed. A service often relies on other 
services to perform its function. However, in service unit 
testing and also in progressive service integration testing, 
the service under test needs to be separated from other 
services that it depends on. Techniques have been devel-
oped to generate service stubs [36] or mock services [37] 
to replace the other services for testing.  

C. Checking the correctness of test outputs. Research work 
has been reported in the literature to check the correct-
ness of service output against formal specifications, such 
as using metamorphic relations [38], or a voting mecha-
nism to compare the output from multiple equivalent 
services [39, 40], etc.  

D. Testing tools. A number of prototypes and commer-
cial tools have been developed to support various activi-
ties in testing WS, such as Coyote [6], WS-FIT [7], TAXI 
[41], PLASTIC [42], LTSA-WS [32]; just to mention a few.  

However, despite the advances made in the past few 
years, great challenges remain. In particular, it is still an 
open question how to cope with the following difficult 
issues in WS testing [3, 43, 44].  

A. The lack of software artefacts. A service oriented ap-
plication commonly consists of parts (i.e. services) owned 
by many different stakeholders. Thus, typically, develop-
ers of a part have no access to the design document, 
source code, even the executable code of the other parts. 
These software artefacts are crucial to perform test activi-
ties efficiently and effectively.  

B. The lack of control over test executions. A service ori-
ented application is intrinsically distributed, and typically 
contains parts running on hardware owned by other 
stakeholders. Thus, a tester often lacks control over the 
executions of the other owners’ parts.  

C. The lack of a means of observation of internal behaviour. 
Another consequence of distributed ownership in ser-
vice-oriented applications is that testers often lack the 
means to observe the internal behaviours of the compo-
nents owned by other ventors.  

It is widely recognized that a testing technology for 
WS must also meet the following requirements.  

A. Capability of dealing with diversity. The distributed 
and shared ownership of services also implies that the 
parts of a service-oriented application may operate on a 
variety of hardware and software platforms with differ-
ent deployment configurations and delivering services of 
differing quality. Testing has to be performed in a het-
erogeneous environment. On the other hand, different 
service requesters may well have different test require-
ments to meet their own business purposes. Testing must 
deal with all such varieties and their combinations.  

B. Capability of testing on-the-fly. A typical scenario of 
service-oriented computing is that a service requester 

_________________________________ 
• Prof. Hong Zhu is with the Department of Computing and Electronics, 

School of Technology, Oxford Brookes University, Oxford OX33 1HX, 
UK. Email: hzhu@brookes.ac.uk. 

• Mr. Yufeng Zhang is with the Department of Computer Science, The 
National University of Defense Technology, Changsha, China. Email: 
yufengzhang@nudt.edu.cn   



 
2 

searches for a required function in a registry, and then 
dynamically links to the service and invokes it. It is 
widely believed that testing before the invocation is nec-
essary especially in mission critical applications. Such 
testing, called testing on-the-fly, differs from traditional 
integration testing due to the fact that the time of testing 
is just before the invocation while all parts to be inte-
grated are already in operation.  

C. Capability of performing testing non-intrusively and 
non-disruptively. A consequence of testing on-the-fly is 
that, from a service provider’s point of view, the test in-
vocations of a service must be distinguished from the real 
ones so that the normal operation of the service is not 
interrupted by test activities. On the other hand, from a 
client’s point of view, test invocations should also be dis-
tinguished from real ones so that they do not actually 
receive the real services and do not pay for such test in-
vocations as real services.  

D. Capability of full automation. The requirement of test-
ing on-the-fly eliminates the possibility of manual testing. 
Thus, all test activities must be performed automatically.  

It has been recognized that to address all these issues, 
testing WS should be a collaborative effort contributed to 
by all stakeholders [40, 41, 44]. In this paper, we present a 
framework for collaborative testing in which testing ac-
tivities are accomplished through interactions among 
multiple participants.  

The remainder of the paper is organized as follows. 
Section 2 outlines the framework and illustrates it with a 
typical scenario. Section 3 presents a prototype imple-
mentation of the framework. Section 4 demonstrates the 
feasibility of the framework by a run example. Section 5 
reports the experiments that evaluate the scalability. Fi-
nally, section 6 concludes the paper with a comparison of 
related works and a discussion of future work.  

2. FRAMEWORK FOR TESTING WS 
This section elaborates the framework, illustrates it with a 
typical scenario and identifies the technical challenges.  

2.1. A Typical Scenario 
Suppose that a fictitious car insurance broker CIB is de-
veloping a web-based system that provides online ser-
vices of car insurance. In particular, they provide the fol-
lowing services to their end users.  

The end users submit car insurance requirements to 
CIB and get quotes from various insurers that CIB is con-
nected to, and then select one to insure the car. To do so, 
CIB takes information of the car, its usage, and the pay-
ment. It uses the WS of its bank B to check the validity of 
user’s payment information, pass the payment to the se-
lected insurer and takes commissions from the insurer 
and/or the user. The car insurance broker’s software sys-
tem has a user interface to enable interactive uses, and a 
WS interface to enable other programs to connect as ser-
vice requesters. Its binding to the bank’s WS is static. 
However, since insurance is an active business domain, 
new insurance providers may emerge and existing ones 

may leave the market from time to time, the broker’s 
software binds dynamically to multiple insurance pro-
viders to ensure that the business is competitive on the 
market. The structure of the system is shown in Fig. 1.  

 
 
 
 
 
 

 
Fig. 1 Structure of Car Insurance Broker Services 

The developer of CIB’s service must test not only its 
own code, but also its integration with other WS, i.e. the 
WS of the insurers and the bank. This paper focuses on 
the integration with dynamic binding. The following dis-
cusses how the challenges can be resolved in the pro-
posed framework.  

2.2. The Proposed Framework 
The key notion of the framework is test services (T-service 
in short), which are services designated to perform vari-
ous test tasks [44]. A T-service could be provided by the 
same organization of their normal services or by a third 
party that is independent of the normal service provider 
but specialized in testing. For the sake of clarity, we use 
functional service (or F-service in short) to denote the nor-
mal services in the sequel.  

2.2.1. Service Specific T-services 
Ideally, each F-service should be accompanied with a spe-
cial T-service so that test executions of the F-service can 
be performed by the corresponding T-service. Thus, the 
normal operation of the original F-service is not disturbed 
by test requests and the cost of testing are not charged as 
real invocations of the F-service. The F-service provider 
can distinguish real requests from the test requests so that 
no real world effect is caused by test requests. To ensure 
the testing carried on a T-service faithfully represent the 
functional services, the following two principles should 
be observed in the design and implementation of 
T-services.  
(a) A T-service should act in the same way as its func-
tional service as much as possible so that when a test 
passed by the T-service implies that the F-service is also 
correct on the test cases.  
(b) A T-service should have a ‘firewall’ so that effects on 
the real world are stopped and the normal operation of 
the F-service is not disrupted.  

An implication of principle (a) is that the business logic 
that a service implements may be duplicated by its cor-
responding T-service in order to test it adequately. On the 
other hand, an exact copy of the F-service may not 
achieve the goal of T-service according to principle (b). It 
is worth noting that in certain special cases the T-service 
can be absent and all testing are performed on the 
F-services. For example, if a service contains no internal 
state and has no effect on the physical real world, the 
T-service can be a simple duplicate of the F-service, even 

CIB  
Services

Bank B 
Services

Insurer A1’s 
Services

Insurer A2’s 
Services

Insurer An’s 
Services 

GUI Interface CIB’s service 
requester 

WS    
Registry 



 
3 

be the F-service itself. When the development and main-
tenance of a T-service is too expensive, or testing the ser-
vice on-the-fly is unnecessary, the role of T-service can be 
performed by the F-service.  

A T-service that only provides this test execution func-
tion can be regarded as a mock service [37]. However, in 
addition to this, a T-service accompanying an F-service 
should also provide further support to other test activi-
ties. For example, the formal specification of the seman-
tics of the service, the internal design, such as UML dia-
grams, of the F-service, the configuration of the hardware 
and software platform, the service policy, even the source 
code etc., are of particular importance to testers. These 
kinds of information can be released to trusted T-services 
subject to preserve the intellectual property rights and 
privacy, but withheld from the general public.  

Moreover, many test activities rely on the information 
of system internal behaviours, such as the measurement 
of code coverage, the checking of the internal states of the 
program during test executions, etc. These can also be 
provided by the accompanying T-services. Therefore, the 
T-service accompanying an F-service can be much more 
than simply a mock service [37].  

2.2.2. General purpose testers 
Besides service specific T-services that accompany 
F-services, a test service can also be a general purpose test 
tool that performs various test activities, such as test plan-
ning, test case generation, and test result checking, etc. A 
general purpose T-service can be specialized in certain 
testing techniques or methods such as the generation of 
test cases from WSDL or BPEL using certain WS testing 
techniques mentioned in Section 1. For the sake of con-
venience, such general purposes T-services are also called 
general testers in the sequel to distinguish them from ser-
vice specific T-services.   

2.2.3. Test Brokers 
One particular type of general purpose T-services that 
will greatly improve the collaboration between the parties 
involved in WS testing is test broker. As discussed in Sec-
tion 1, test tasks are usually too complicated to be per-
formed directly by one T-service. A solution to this prob-
lem is to introduce test brokers, which compose and co-
ordinate other T-services to carry out test tasks. Typically, 
there are multiple test brokers; for example, each special-
izes in one type of testing processes.  

As a coordinator, a test broker receives test requests, 
decomposes the task into subtasks and generates test 
plans, searches for capable testers for each subtask, in-
vokes testers and returns test results to users. It controls 
the process of testing. A test broker not only bridges the 
gap between the users and testers, it can also monitor the 
dynamic behaviours of T-services and keep a repository 
of tests performed on each service for future choices of 
T-services and optimization of test efforts.  

2.2.4. Registry and Matchmaker 
In our framework, T-services interoperate with each other 

via SOAP messages. They need to advertise their service 
descriptions in a service registry to be discovered and 
invoked at runtime to achieve testing on-the-fly with a 
high degree of automation. Because of the complexity of 
the semantics of the service descriptions, we use Semantic 
WS registry to register T-services, which is composed of a 
UDDI registry and a Matchmaker [45].  

Fig. 2 illustrates the structure of the framework. 
 

 
 
 
 
 
 

 
Fig. 2 Reference Architecture of the Framework 

2.2.5. Ontology Manager 
We use an ontology of software testing to provide a stan-
dard set of vocabulary for encoding the information 
passed between T-services. This makes automatic proc-
essing of test tasks feasible.  

The extendibility of our framework is achieved by dy-
namic management of the ontology through another spe-
cial service, i.e. the ontology management service (OMS). 
It provides services to update the ontology.   

It is worth noting that, first, the framework focuses on 
the management aspect of testing rather than any specific 
testing techniques or tools. Most existing works on WS 
testing are complementary to our framework in the sense 
that their methods, techniques and tools can be imple-
mented as T-services. The framework facilitates their in-
tegration by providing the interfaces and collaboration 
mechanisms and ensuring the availability of software 
artefacts that they require. The loosely coupled frame-
work lays a foundation for composing various T-services 
by the utilization of Semantic WS technology.  

Second, the framework is based on the model of WS 
applications as a network of services interconnected 
through messages, where services can be dynamically 
discovered and linked to at run time. The internal struc-
ture that a service is implemented is not taken into con-
sideration in the model. This has two implications. First, 
the framework can be applied to all services that are im-
plemented with any internal structure. Therefore, it is 
generally applicable. On the other hand, the technology 
neither takes the advantages of the information about the 
internal structure of services, nor addresses testing prob-
lems due to such internal structure.  

2.3. Illustration in the Typical Scenario 
We now illustrate how the framework addresses the is-
sues in testing WS using the scenario given in section 2.1.  

2.3.1. Architecture 
By applying the framework to the scenario, we have the 
following architecture shown in Fig. 3, where normal ser-
vice invocations are depicted in solid line arrows and 

Test BrokerTester T1

T-service of A1 

F-service A1

Tester T2

T-service of A3

F-service A3

T-service of A2 

F-service A2

O
ntology M

anagem
ent

UDDI 
Registry

Match 
maker



 
4 

T-service invocations are denoted by dash line arrows.  
In particular, each of the bank B’s WS, CIB’s WS and 

insurer Ai’s WS has an accompanying T-service. These 
T-services are registered to the UDDI registry. A test task 
can be accomplished through collaborations between 
these T-services.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3.2. Collaboration process 
Consider the situation that the CIB intends to establish a 
dynamic composition with insurer A and to test the ser-
vice on-the-fly. It delegates the testing task to a test bro-
ker TB. Fig. 4 shows a typical example of collaboration 
processes managed by TB.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The Collaboration Process in a Typical Scenario 
The process starts with the generation of a test task by 

CIB’s WS and a search request for finding a proper tester 
is submitted to the service registry. The search request 
message should contain the information about the capa-
bility of the required tester. The search result is a list of 
testers, from which a test broker TB capable of handling 
the task is selected. The test request is then sent to TB. The 
test request message contains the information about the 
test task including the service to be tested, the test ade-
quacy to achieve, and the criterion for checking output 
correctness, etc.  

The test broker TB decomposes the test task into a se-
quence of subtasks and searches for appropriate testers 
for each subtask by submitting search requests to the reg-
istry. It then selects one tester for each subtask. In this 
example, we assume two testers TG and TE are selected. 
The former performs the sub-task of test case generation 
and the latter invokes test executions, checks the correct-
ness of test output and measures the test coverage. To 
generate test cases, TG sends a request to insurer A’s 
T-service to obtain its design model. After checking the 
trustworthy of tester TG, the insurer A’s T-service releases 
its design model to TG. After successfully obtained the 
design model, TG produces a set of test cases and returns 
a test suite to the test broker TB. The test broker then 
passes the test cases to TE, requests for the test invocation 
of the insurer A’s services using the test cases and re-
quests it to check the output correctness and to measure 
the test coverage. TE performs these tasks by collabora-
tion with the insurer A’s T-services. The test results are 
then returned to the test broker TB. Finally, TB assembles 
a test report containing information about test output 
correctness and test adequacy. The test report is sent to 
CIB, which is used to determine whether the dynamic link 
will take place.  

2.4. Key Technical Issues  
From the illustrative scenario given above, we can iden-
tify a number of technical issues that are crucial to the 
practical implementation of the framework.  

2.4.1. Semantic complexity of communications 
The various parties that participate in the registration, 
discovery and invocation of T-services communicate with 
each other through SOAP messages. These messages are 
complex in semantics. In particular, a T-service must pub-
lish its services with a clear and accurate description of its 
capability so that capability-based search of testers can be 
performed. The diversity of testing methods, test activi-
ties, test environments, and software artefacts used and 
produced in testing make the description of capability 
very complicated. Searching for appropriate T-services 
for a test task must match test tasks with T-service capa-
bilities. This is also a complicated issue since test tasks are 
not in one-one correspondence to capabilities. Finally, test 
tasks must be submitted to T-services with parameters of 
a wide range. Typically, a test task involves multiple 
software artefacts, such as test cases, the service to be 
tested, output of test executions, the test oracle to check 
correctness of output, and so forth. The parameters are 
therefore often of high complexity. 

To deal with semantic complexity, we employ ontol-
ogy of software testing. In general, ontology defines the 
basic terms and relations comprising the vocabulary of a 
topic area as well as the rules for the combination and 
extension of the vocabulary [46, 47]. In Section 3.1, we 
will demonstrate that the ontology of software testing 
developed in agent-based approach to software testing 
[69, 70] can be easily adapted for testing WS and imple-
mented in Semantic WS technology. It provides a set of 

Bank B’s   
T-service 

CIB 
F-services 

Bank B’s   
F-service 

Insurer A1’s 
F-service 

Insurer A2’s 
F-service 

Insurer An’s 
F-service 

WS  
Registry 

Fig. 3 System Architecture in the Typical Scenario 

Insurer A1’s 
T-service 

Insurer A2’s 
T-service 

Insurer An’s 
T-service 

CIB’s service 
requester 

CIB 
T-services 

Tester T1   Test Broker TB Tester T2   

CIB 
F-service 

Insurer A’s 
F-service 

Intended composi-
tion of services 

Test Broker  
TB 

Registry  
(UDDI +  

Matchmaker) 

4. Search for testers 

3. Request of test service 

16. Test report 

Tester TG: 
Generation of 

test cases 

7. Request service 
design model 

8. UML diagram in XMI 

6. Request to 
generate test 
cases 

Tester TE:  
Test invocation and 
test result checking 

9. Test 
cases 

10. Re-
quest to 
invoke test 
executions15.Test 

results 

13. Request data on 
test coverage 

14. Test coverage 
11. Test invocation of services 

12. Outputs of test executions of services 

Insurer A’s 
T-service 

CIB 
T-service 

1. Search for testers 

2. List of testers 

5. Lists of testers

Register, 



 
5 

standard terminology for T-service registration, discovery 
and invocation. 

2.4.2. Process complexity of interactions 
Test processes are complicated, too. Test activities in a 
testing process are usually interdependent and must be 
performed in the right order. A variety of testing tools 
must be used and T-services invoked. Failure to perform 
a test task may also occur for many different reasons. 
Thus, interactions among these services may be very 
complicated as well. Controlling and monitoring such 
complicated processes thus play a key role to the success 
of the framework.  

Our solution to this issue is to employ a special kind of 
T-services, called test brokers, to control and monitor the 
testing process using appropriate mechanisms, such as 
service orchestration and chorography. Great efforts have 
been reported in the literature on service composition. We 
believe that such approaches are applicable to our 
framework because the framework does not require any 
changes to the service oriented architecture.  

2.4.3. Extendibility and flexibility of the framework 
Because of the rapid development of WS technology and 
expansion of its application areas, the ontology of soft-
ware testing must be extendible and flexible in order to 
cope with new testing techniques and methods, new test 
requirements, and new software artefacts under test 
and/or their presentation formats.  

Our solution is a centralized public service of ontology 
management. Users of the ontology can extend the on-
tology by submitting extension request to add new con-
cepts and relationships to the ontology. However, exten-
sion, revision and deletion of existing concepts and rela-
tions must under tight control so that the registration, 
discovery and invocation of existing T-services are not 
affected by changes to the ontology.   

3. IMPLEMENTATION IN SEMANTIC WS 
The Web Ontology Language OWL is a semantic markup 
language for publishing and sharing ontologies on the 
World Wide Web [48]. It is designed for applications that 
need to process the content of information. It is a part of 
the growing stack of W3C recommendations related to 
the Semantic Web. In this section we adapt the ontology 
of software testing developed in [69, 70] and discuss how 
it is implemented in OWL.  

3.1. STOWS: Ontology of WS Testing 
STOWS (Software Testing Ontology for WS) is proposed 
in [44] based on the ontology developed in [69, 70]. It was 
adapted for WS testing.  

Concepts in STOWS are classified into three categories: 
elementary concepts, basic testing concepts and com-
pound testing concepts.  

The elementary concepts are those general concepts 
about computer software and hardware based on which 
testing concepts are defined. They include the simple ob-

jects involved in software testing, such as the types of 
Hardware and Software artefacts and their Format, etc.  

The basic testing concepts include Tester, Artefact, Ac-
tivity, Context, Method, and Environment. These basic con-
cepts are combined together to express compound testing 
concepts, which include Task and Capability. The follow-
ing describes the concepts one by one.  

3.1.1. Basic testing concepts 
Tester. A tester refers to a particular party who partici-

pates in a test activity. Generally speaking, testers can be 
human beings, organizations and software systems. In the 
service oriented framework, T-services perform the test 
tasks, thus they are testers, too. It can be an atomic 
T-service, or a composition of T-services. One important 
property of tester is its capability, which reflects the capa-
bility to perform test tasks.  

Activity. There are various test activities including test 
planning, test case generation, test execution, result vali-
dation, adequacy measurement and test report genera-
tion, etc. 

Artefact. Various kinds of artefacts may be involved in 
test activities as input/output, such as test plan, test 
cases, test results, program, specification and so forth. The 
most important property of class Artefact is Location, 
whose value is an URL referring to the location of the 
Artefact. Each type of artefacts is a subclass of artefact, 
and inherits the properties from Artefact. The subclasses 
of Artefact can be added into the ontology using the on-
tology management services. 

Context. Test activities may occur in different software 
development stages and have various test purposes. The 
concept context defines the contexts of test activities in 
testing processes and test methodologies. Typically, the 
contexts include unit testing, integration testing, system 
testing, regression testing, etc. 

Method. For each test activity, there may be multiple 
applicable test methods. Method is a part of the capability 
and also an optional part of test task. Test methods can be 
classified in a number of different ways. For example, test 
methods can be classified into program-based, specifica-
tion-based, usage-based, etc. They can also be classified 
into structural testing, fault-based testing, error-based 
testing, etc. Structural testing methods can be further 
classified into control-flow testing, data-flow testing, etc. 
Therefore, test methods are represented as a hierarchy in 
the ontology.  

Environment. It is the hardware and software configu-
ration in which a test activity is performed.  

3.1.2. Capability of T-services and Test Tasks 
The capability of a T-service represents its capability of 
performing test tasks. The class Capability in the ontology 
defines the aspects that affect the capability of a service to 
perform tasks, including the activities that the service can 
do, the test methods that the service uses, the artefacts 
that the service consumes and produces, the context in 
which the service performs test activities, and the envi-
ronment in which test activities are carried out, etc. 



 
6 

Therefore, it is composed from several basic test concepts. 
The structure of Capability is shown in the UML class dia-
gram given in Fig. 5.  

Task describes the test task to be carried out. It is used 
in service invocation. A test task also has six aspects: the 
activity to be performed, the context of the activity, the 
required test method and test environment, and the input 
and output artefacts. The compositions are in the same 
structure as capability, but have different semantics. The 
structure is shown in Fig. 5.  

 
 
 
 
 
 

 
Fig. 5 The Structure of Capability and Task 

3.2. Representation of STOWS in OWL 
In OWL-S, semantic descriptions are presented in the 
form of service profiles and used in service registration 
and discovery. The vocabulary of a subject domain is de-
fined in a data model as classes with subclass relations.  

To implement the ontology STOWS, we represent the 
concepts, including elementary, basic and compound 
concepts, as classes in OWL data model. To use the on-
tology for the registration, discovery and invocation of 
T-services, the compound concepts capability and task are 
transformed into service profiles. In OWL-S, a service 
profile contains the IOPR (Inputs, Outputs, Preconditions 
and Results) and a classification of the service [49]. Fig. 6 
shows how the concept of capability is represented in 
service profile.  

 
 
 
 
 
 
 

 
Fig. 6 Mapping Between Capability and Service Profile 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 An Example of Service Profile 

In the service profile of T-service, the test context, the 
environment and the method aspects are represented as 
input parameters Context, Environment and Method. For 
example, Fig. 7 shows a part of a service profile, whose 
serviceClassification is TestCaseGeneration. The hasInput and 
hasOutput properties indicate that the service takes a Pro-
gram as input and produces TestCase as output. By repre-
senting capability and task concepts in profiles, 
OWL-S/UDDI Matchmaker can be employed to perform 
semantic-based search of T-services.  

3.3. T-Service Registration and Discovery 
The OWL-S/UDDI Matchmaker (Matchmaker for short) 
extends UDDI registry with a capability based service 
matching engine [45, 50 ]. It provides three levels of 
matching between capability and search request. 
a) Exact matching: the capabilities in the registry and in 

the request match exactly.  
b) Plug-in matching: the service provided is more gen-

eral than that in the request.  
c) Relaxed matching: there is a similarity between ser-

vices provided and that in the request.  
The Matchmaker also provides filters for users to con-

struct more accurate service discovery: which are name-
space filter, domain filter, text filter, I/O type filter and 
constraint filter [51]. With these filters, users can construct 
necessary compound filters to control the precision of 
matching. The matching engine returns a numeric score 
for each candidate so that the higher the score, the more 
similar between the candidate and the request. Therefore, 
selection from the candidates can be based on the scores 
that tagged by the Matchmaker on the candidate services.   

We have used Matchmaker to enhance the registration 
and discovery of T-services with semantic information. A 
T-service provider must first register the service with its 
profile that defines its capability by using the API pro-
vided by the Matchmaker. A service search request is also 
submitted to the Matchmaker.  

3.4. Ontology Management Service (OMS) 
The terms used in the capability and test task description 
must be first defined in the ontology. However, it is im-
possible to build a complete ontology of software testing 
given the huge volume of software testing knowledge 
and the rapid development of new testing technique, 
methods and tools. Therefore, the ontology must be ex-
tendable and open to the public for updating. An ontol-
ogy management mechanism is provided to enable the 
population of the ontology. It is delivered as a WS to fa-
cilitate the public access to the mechanism.  

The ontology management service (OMS) is imple-
mented using the Protégé-OWL API, which is an open 
source Java library for OWL and RDF. Using the API, 
OWL data model stored in OWL files or databases can be 
loaded, changed and saved, queries be made, and rea-
soning performed using a description logic inference en-
gine [52]. Therefore, the manipulation of the ontology can 
be implemented as operations on OWL files. Fig. 7 shows 
the structure of OMS.   

<profile:Profile rdf:about="#testcase_generation"> 
    <profile:serviceClassification rdf:datatype= 

"http://www.w3.org/2001/XMLSchema#anyURI"> 
http://... /testingontology.owl#TestCaseGeneraton 

    </profile:serviceClassification> 
    <profile:hasInput> 
        <process:Input rdf:ID="input_program"> 
            <process:parameterType rdf:datatype= 
               "http://www.w3.org/2001/XMLSchema#anyURI"> 
                 http://.../testingontology.owl#Program 
            </process:parameterType> 
        </process:Input> </profile:hasInput> 
    <profile:hasOutput> 
        <process:Output rdf:ID="output_testcase"> 
            <process:parameterType rdf:datatype= 

"http://www.w3.org/2001/XMLSchema#anyURI">         
http://.../testingontology.owl#TestCase 

            </process:parameterType> </process:Output> 
    </profile:hasOutput> 
</profile:Profile> 

C a p a b ility

C o n tex t
E n v iro n m en t

M eth od
Inp u tA rte fac t

O u tpu tA rte fac t

S erv iceP ro file
A ctiv ity

IN P U T
C o n tex t
E n v iro n m en t

       M eth o d
A rte fac ts

O U T P U T  
A rtifac ts

S erv iceC lassifica tio n

Capability 

Activity Method 

Artefact 

Capability Data 

Context Environment  



 
7 

 
 
 
 
 
 
 
 
 
Fig. 8 The Structure of OMS 

OMS provides a WS interface to read and update the 
ontology data model, which is open to the public. The 
kernel of OMS is the Manager module. It provides three 
services to users: AddClass, DeleteClass and UpdateClass to 
add new concept, delete concept and revise concept of the 
ontology.  

For example, suppose that a T-service is developed to 
generate test cases using a new method not included in 
the ontology, say data mutation. Then, a new test method 
name ‘DataMutation’ can be added to the ontology as a 
subclass of test method. If a new T-service is to be regis-
tered that generates test cases from a new formal specifi-
cation language called FSL, then a new type of software 
artefacts called ‘FSL’ can be added to the ontology as a 
subclass of software artefact, rather than a subclass of test 
method. The relationship between classes in Ontology is 
represented as properties of classes. Adding or removing 
a relation can be done by applying operations on the on-
tology file via OMS. For example, if a subsumes relation 
from branch testing to statement testing is to be added, a 
‘Subsumes’ property can be added to class ‘BranchTesting’ 
with the value that refers to the class ‘StatementTesting’.  

However, to prevent misuses of the ontology man-
agement service, restrictions on the manipulation of the 
data model are imposed through two technical solutions.  

First, we classify the classes in the ontology into two 
types: elementary classes and extended classes. Elementary 
classes are those that form the framework of the ontology 
STOWS. None of them could be pruned down from the 
ontology hierarchy to avoid structural damage to the on-
tology. The extended classes are those classes attached to 
the elementary classes to populate the ontology with con-
crete concepts and instances of the concepts. They can be 
added by the users and deleted from the hierarchy. We 
have implemented an Authority Checker, which checks 
delete operations to ensure that the class to be deleted is 
extended class.  

Second, we have also implemented a Conflict Checker, 
which checks the operations on the ontology to ensure 
that the new class to be added does not exist in the on-
tology and that the class to be deleted has no subclasses in 
the hierarchy.  

Due to the openness of ontology management, there is 
a risk of errors caused by update during task executions. 
If the update is only to add a new concept or relation to 
the ontology, there should be no effect on existing tasks 
and services, thus no risk of such errors. However, if the 
update changes or deletes an existing concept or relation, 

a task running at the time of update may be affected if 
messages of the task use the changed concept or relation 
and rely on the ontology to understand the messages. In 
such cases, errors may occur due to the updates during 
execution. How to prevent such errors and reduce the risk 
of such errors remains an open question that deserves 
further research.  

3.5. Composition of T-Services Using Brokers 
As discussed in Section 2.4.2, the interactions among 
T-services can be complicated. The composition of 
T-services is a key technical issue for the success of the 
framework. One of the most promising mechanisms of 
service collaboration is service brokers. This mechanism is 
also well supported by OWL-S [53]. However, different 
from the approach taken in [53], our test brokers do not 
play the role of registry. A test broker is just a T-service 
composition and it self is a T-service as well. There may 
be multiple test brokers owned by different vendors.  

We have developed a prototype test broker to demon-
strate the feasibility of the approach. Fig. 9 shows the ar-
chitecture of our prototype test broker. It receives test 
tasks from service requesters, decomposes a test task into 
a sequence of subtasks, sets a test plan, searches for other 
T-services capable of performing the subtasks, and then 
invokes the T-services according to the plan to carry out 
the subtasks and passing information between them. Fi-
nally, it assembles the results from the services and re-
ports to the service requester. The broker is composed of 
the following four modules.  

 
 
 
 
 
 
 
 
 
 
Fig. 9 The Structure of a Test Broker 

Communication Module provides an interface to the us-
ers. It receives test requests in the form of test tasks and 
sends out test results also in SOAP format. It transfers test 
tasks to Task Analyzer and gets test results from the Task 
Execution Module. Failures to fulfill test requests are also 
reported to the requesters through this module.  

Task Analyzer decomposes a test task into several sub-
tasks and produces test plans according to codified 
knowledge of software testing processes. It also keeps the 
track record of test plan executions for each task so that 
back tracking can be made when a subtask fails.   

Tester Search Module searches for testers for each sub-
task in the test plan generated by the Task Analyzer. A 
failure to find a suitable tester for a subtask is reported to 
the Task Analyzer and an alternative test plan may be 
generated or the whole testing process fails.  

Task Execution Module executes the test plan by invok-
ing the testers and passing information between them. A 

Test Broker

Testing 
Service 

Requester

Tester T1 Tester T2

Matchmaker

Task Analyzer
Ontology 

Management 
Service

Tester Search 
Module

Task Execution 
Module

UDDI 
Registry

Communication 
Module

Knowledge-Base 
of Software Testing

Tester Tn

Ontology Management Service

Ontology
Data Model

Update 
Log

Logger

Conflict Checker

Authority Checker

Manager

AddClass

DeleteClass

UpdateClass



 
8 

failure to carry out a subtask is reported to the Task Ana-
lyzer and an alternative tester will be employed if any, or 
an alternative test plan is generated if possible. Other-
wise, the whole testing process fails.  

The knowledge-base of software testing processes plays a 
central role in the test plan generation. It can be consid-
ered as a finite set of templates of test plans with parame-
ters like task, input and output artefacts. A test task is 
then checked against the templates one by one and a test 
plan is produced by instantiating the template when a 
match is found. Each template can be regarded as a col-
laboration pattern of T-services. They can also be re-
garded as heuristic rules about how to compose and co-
ordinate T-services. This significantly reduces the size 
and complexity of the space in which T-services are 
searched for and combined. Therefore, the complexity of 
T-service composition and collaboration can be reduced. 

Fig. 10 Process Model of Test Broker 
Fig. 10 shows the process that the test broker interacts 

with Matchmaker and other T-services.  
It is worth noting that test tasks and capabilities have 

the similar structure and the corresponding semantics so 
that test requests (i.e. test tasks) can be easily transformed 
into search request (i.e. tester capabilities). Similarly, 
tester capabilities can be transformed into test subtasks 
according to the test plan and submitted to the testers. In 

the implementation of the prototype test broker, we used 
the Mindswap OWL-S API to parse task and capability 
profiles and to invoke T-services automatically [54].  

4. A RUNNING EXAMPLE 
In this section, we demonstrate the feasibility of the pro-
pose approach by a running example.  

As shown in Fig. 11, the running example consists of 
the following WS. 
• TCG: a general purpose testing tool that generates 

test cases from algebraic specifications. It is obtained 
by wrapping the CASCAT software tool [55,56] into a 
web service. CASCAT is an automated tool for test-
ing Enterprise Java Beans.   

• NCS: a web service that provides numeric calcula-
tions of complex numbers. It is the web service to be 
tested in this example.  

• T-NCS: the service specific T-service for NCS. It pro-
vides test execution service for testing NCS.  

• TFT: a test case format transformer that transforms 
test cases in the format of CASCAT output into test 
cases acceptable by T-NCS.  

 
 
 
 
 
 
 

 
Fig. 11 The Web Services in the Running Example 
 

The following gives some technical details of the regis-
tration, search and invocation of the testers in the running 
example. More details can be found in [71].   

4.1. The Registration of Testers 
We have built a UDDI registry server using Matchmaker. 
The web services involved in this running example are all 
registered on this UDDI registry.  

Take the registration of TCG as an example, the service 
takes a CASOCC specification file as input and generates 
test cases as output. These artefacts are stored in files and 
referred to through URLs to the file locations. 

To describe this service, the following new classes 
were added into the ontology. 
− CasoccSpecification: a subclass of Specification that 

stands for algebraic specification in CASOCC. 
− ComponentTest: a subclass of Context that stands for 

component testing. 
− CASOCCmethod: a subclass of Method that stands for 

the method of test case generation from CASOCC. 
In its service profile, the serviceClassification is set as 

TestCaseGeneration. The Input artefact is specified as the 
class CasoccSpecification. As described in the previous sec-
tion, the service profile has three parameters that repre-
sent the aspects of the service capability. The context of 

Test Broker Client 

TCG: Test Case 
Generator 

TFT: Test Case 
Format Transformer 

T-NCS: Test 
Executor for 

NCS: Numeric Calculation Web Service  

Matchmaker Request 
testing NCS 

Search testers 

Invoke 
tester Register



 
9 

TCG is ComponentTest. Its environment is notLimited, 
which is a subclass of Thing (the common ancestor of all 
the classes in OWL) and represents no requirement on a 
certain aspect. Its method is CASOCCmethod. The output 
artefact is TestCase.  

4.2. Submitting Test Tasks 
The web service Client plays the role of test requester. It 
constructs test tasks and submits them to the test broker, 
which in turn generates requests according to the test 
tasks and submits them to the Matchmaker to search for 
T-services. Fig. 12 shows a test task that Client generated 
and submitted to the test broker requesting test NCS 
against an algebraic specification written in CASOCC. 
The input artefact of the task is of type CasoccSpecification, 
and the output artefact type is TestResult.  

Fig. 12 The Task to Test NCS Based on Algebraic Specification 

4.3. Search for Testers and Decomposition of Task 
Once the test broker receives the test task, it generates a 
capability description from the test task and constructs a 
service profile according to the mapping given in Fig. 6. It 
then calls the Matchmaker to search for T-service provid-
ers. In this case, there is no tester that is capable of di-
rectly fulfill the test task. Thus, the test broker decom-
posed it into subtasks and generated a test plan that con-
sisted of three subtasks:  

Subtask 1: Generating test cases from the specification. 
The input artefact of the task is of type CasoccSpecification. 
The output of this subtask is of type CasoccTestCase.  

Subtask 2: Transforming the test cases into the format 
that are executable by TesterA. Its input is of type 
CasoccTestcase and output is of type CalculatorTestCase.  

Subtask 3: Executing test cases and report test results. 
Its input is of type CalculatorTestCase and its output arte-
fact type is TestResult.  

For each subtask in the test plan, the broker translates 
it into the corresponding capability description and con-

structs a service profile. The test broker then submitted 
the service profile to the Matchmaker to search for ap-
propriate testers. In this case, testers TCG, TFT and 
T-NCS were discovered for the subtasks, respectively. 
The test planning finished with each subtask associated 
with a tester, and the test plan was passed to the execu-
tion module for executing the subtasks.  

4.4. Invocation 
The task execution module of test broker called the testers 
associated to each subtask according to the order given in 
the test plan. Data were passed from one subtask to an-
other by the construction of invocation message to the 
testers. In particular, the output artefact of a subtask was 
passed to the next subtask. The output of the third sub-
task was the final result of the test, which was an OWL 
object. It was returned to the client by the broker.  

5. EVALUATION 
To further evaluate the practical usability of the proposed 
approach, we have conducted a case study and some ex‐
periments to address the following research questions.   
a)   Can  a wide  range  of  software  testing  tools  be  inte‐

grated into the framework? 
b)   Can  subtle differences between  test  services be proc‐

essed adequately? 
c)   Can the system scale up efficiently? 

5.1. Case Study: Dealing with Diversity  
To  evaluate  test  brokers’  capability  of  dealing with  the 
diversity of  testers, we selected a wide range of software 
tools reported in the literature to see if they can be turned 
into  testers. Table 1 gives  the  tools  in  the  case  study  to‐
gether with 3 testers mentioned in Section 4. 

In the case study, we have successfully described their 
functionalities  in  the STOWS ontology and  registered  to 
the Matchmaker.  For  those  tools we  can  get  the  source 
code  or  executable  code,  they  were  also  wrapped  into 
web  services  and  deployed  to  a  server.  For  the  others, 
stubs were deployed, which are marked with an asterisk 
in Table 1.   
Table 1. Testers integrated in the framework 

Name  Description 
CASCAT [56]  A CASOCC‐based test case generation tool 
Test Case Format 
Translator 

Translate the test case generated by CASCAT into the 
format recognizable by Calculator Test Case Executor 

Test Case Executor  Executes test case for a numeric calculator web service 

Klee [57] 
Generate and execute test cases from C source code by 
symbolic execution   

Magic [58] 
Check conformance between component specifications 
and their implementations 

XML Comparator  Compare XML files 
Java NCSS [59]  Measure two standard metrics for Java program 
Findbugs [60]  Find bugs in Java program by static analysis 

PMD [61] 
A static analysis tool for finding potential bugs and other 
problems in Java source code 

WSDL Based Test 
Case Generator* [5]  A WSDL based test case generation tool   

Web Service Test 
Case Executor* [5] 

Execute the test case generated by WSDL Based Test Case 
Generator 

 

<Task rdf:ID="thirdTask"> 
    <hasContext> 
        <ServiceTest rdf:ID="serviceTest"/> </hasContext> 
    <hasMethod rdf:resource="# CASOCCBasedMethod "/> 
    <hasEnvironment rdf:resource="#notLimited"/> 
    <hasActivity rdf:resource="#multiactivites"/> 
    <inputArtefact> 
        <CasoccSpecification rdf:ID="casoccSpecification"> 
            <Location rdf:datatype=  

"http://www.w3.org/2001/XMLSchema#anyURI"> 
                http://.../specification/Calculator.asoc 
            </Location> </CasoccSpecification> </inputArtefact> 
    <outputArtefact> 
        <TestResult rdf:ID="testresult"> 
            <Location rdf:datatype= 

   "http://www.w3.org/2001/XMLSchema#anyURI"> 
                http://.../artefacts/testresult/fictitioustestresult.txt 
            </Location> </TestResult> </outputArtefact> 
    <testObject> 
        <TestObject rdf:ID="calculateService"> 
            <operationName rdf:datatype= 

"http://www.w3.org/2001/XMLSchema#string"> 
                Add </operationName> 
            <endpoint rdf:datatype= 

"http://www.w3.org/2001/XMLSchema#string"> 
                http://.../axis/services/CalculatorImpl 
            </endpoint> </TestObject> </testObject> 
</Task> 



 
10 

Moreover,  for  each  of  these  T‐services, we  have  suc‐
cessfully  conducted  experiments  with  the  broker  to 
search  and  invoke  them  in  both  simple  and  complex 
tasks. For example, Klee was selected and invoked by the 
broker  to execute  tasks  that require C source code as  in‐
put, test result as output and symbolic execution as method.   

This case study shows that the approach is capable of 
dealing with a wide range of software testing, verification 
and validation tools. 

5.2. Experiment 1: Dealing with Subtle Differences 
Experiments have also been conducted to test the system’s 
capability  of  dealing  with  subtle  differences  between 
testers so that appropriate ones are selected accurately.   

In this experiment, we applied the data mutation test‐
ing  technique  [62]  to generate a  large number of  service 
profiles  (called mutants)  from  a  set  of  original  profiles 
(called the seeds). These mutants differ from the seeds on 
only  one  parameter.  They  were  generated  by  applying 
data mutation operators to a seed on the parameter.   

Let x be one of S (for service classification), I (for input 
artifact,  O  (for  output  artifact), M  (for method),  C  (for 
context) and E  (for environment). The data mutation op‐
erators are defined as follows.   
• RxF: Replace the x parameter in the seed profile (a class 
in the ontology) by its father in the ontology;   

• RxS: Replace  the x parameter  in  the  seed by one of  its 
subclasses in the ontology;   

• RxB: Replace  the x parameter  in  the  seed by one of  its 
brother classes in the ontology; 

• RxN: Replace  the x parameter  in  the seed by a class  in 
the ontology that has no relation to the parameter. 
For instance, if the ServiceClassification of a seed profile 

is TestCaseGeneration, then the RSB operator will generate 
profiles with TestCaseExecution and TestResultValidation as 
ServiceClassification,  respectively,  assumed  that  both 
classes are  the sibling classes of TestCaseGeneration  in  the 
ontology. Sometimes a data mutation operator  is not ap‐
plicable, because, for example, it may have no alternatives 
in the ontology.   

We have used the profiles of the testers in our previous 
case  studies  as  the  seeds  and  generated  167 mutants  in 
total. These mutants were  then  registered  to  the Match‐
maker.   

An experiment was  then conducted  to search  for  test‐
ers with search requests matching the seeds and to see if 
mutants could be filtered out.   

The results of the experiment shows that the intended 
original profiles were always selected. The mutants were 
never  chosen  to  execute  test  tasks  although  sometimes 
they are included in the search results together with their 
seeds.  In  particular,  the  search  scores  of  these mutants 
turned out to be as follows:   
• Mutants generated by RxS operators (i.e. RSS, RIS, ROS, 
RMS, RCS, RES) have  scores  that are 1 point  less  than 
that of their seeds;   

• Mutants  generated  by  RxF  operators  have  scores  that 
are 2 points less than that of their seeds.   

• Mutants  generated  by RxB  and RxN  (except ROB  and 

RON) have scores that are 3 points less than that of their 
seeds.   

• Mutants  generated  by  ROB  and  RON  operators were 
given much lower scores than their seeds by the Match‐
maker.   
This experiment shows  that  test services of subtle dif‐

ferences can be dealt with in our framework satisfactorily.   

5.3. Experiment 2: Scalability 
Experiments  have  also  been  conducted  to  evaluate  the 
scalability of test brokers in terms of its efficiency to deal 
with test problems of practical sizes.   

We identified three key dimensions of the sizes of test‐
ing problems that may affect usability:   
• The number of testers registered in the registry affects the 
time needed to search for a tester.   

• The  size  of  the  knowledge‐base of  software  testing  affects 
the time needed to analyze a test task and to decompose 
it  into  a  sequence  of  subtasks.  In  the  experiment, we 
measure  the  size  in  terms  of  the  number  of  test  plan 
templates in the knowledge‐base.   

• The complexity of test task also affects the time needed to 
process the task. In the experiment, we use the number 
of different types of subtasks that it will be decomposed 
into as a simple measurement of its complexity.   
The  experiments  aim  at  estimating how broker’s  exe‐

cution time depends on these factors. For each factor, we 
designed  a  set  of  contexts  that  each  consists  of  a  set  of 
testers, a set of templates and a task. In each context, the 
broker was run for a number of times. The lengths of time 
spending on executing various modules of the test broker 
in the context were collected and their averages were cal‐
culated  to  reduce  the  random  effect  of  the  underlying 
system  software  and  the  network  connection.  The  con‐
texts were constructed using the following repository.     
• Domain of testers: A repository of testers used  in the ex‐
periments contains the testers developed  in experiment 
1,  i.e.  the  set  of  real  testers  used  in  case  studies  plus 
their mutants. It contains a total of 178 testers.   

• Domain  of  test  plan  templates: A  repository  of  test  plan 
templates was also generated by applying the data mu‐
tation technique on the real templates of our test broker. 
A  large  number  of mutants were  generated.  500  tem‐
plates in total were actually used in the experiments.   

• Domain of test tasks: A small repository of test tasks were 
manually  generated  so  that  each  task  can  be  decom‐
posed  into n different  types of subtasks  (n=1,2,…,5) ac‐
cording to the real test plan templates.   
The designs of  the experiments and  their main results 

are as follows.   
(1) The effect of the number of testers 
To find out how the number of testers registered in regis‐
try  affects  the  execution  time  of  the  test  broker, we  se‐
lected at random subsets of mutant  testers  in  the reposi‐
tory  plus  11  real  testers  given  in  Table 1.  The  sizes  of 
these  subsets  increase  from  20  to  178  in  a  step of  10.  In 
each case, the set of testers were registered to form a reg‐
istration  state. A  set of 11  test  tasks were  constructed  so 
that each task can be fulfilled by one real tester.   



 
11 

In each registration state, every test task was submitted 
to the broker to search for the real tester that matches the 
task. The task is executed repeatedly for 30 times and the 
average  lengths of  execution  time were  calculated  to  re‐
duce  random  effects. Experimental data given  in Fig. 13 
shows that the average search time over 30×11 executions 
increases with the number of testers in the registry, but in 
almost a linear manner.   

Note  that,  our  experiment  results  also  show  that  the 
search  time  is  independent of  the  test  tasks. The details 
are omitted for the sake of space. 
 
 
 
 
 
 
 

 
 

Fig. 13 Time spent on searching for testers 
(2) The Effect of the number of test plan templates 
The number of the templates in the knowledge base only 
affects the time spent by the task analyzer module of the 
broker.  In  the experiment, we selected at  random sets of 
mutant templates plus one real template that matches the 
test task as the knowledge base. In each case, we place the 
real template at the end of the mutants to ensure that the 
longest time that the task analyzer will execute using the 
knowledge base.   

As shown in Fig. 14, when the size of knowledge base 
increases  from 20  to 500  the  time  spent by  the  task ana‐
lyzer module also increases, but in an almost linear rate.   
 
 
 
 
 
 
 
 
 
 
Fig. 14 Time spent by task analyzer  
(3) The effect of task complexity 

In this experiment, we generated a set of test tasks that 
are decomposed into different number of subtasks, which 
ranges from 1 to 5. The test broker was run on each task 
for 30 times. The lengths of execution time were collected 
and their averages were calculated.  

Note that in comparison with simple tasks that can be 
fulfilled directly by a tester, the test broker spends more 
time in processing a complex task on:  
a) the generation of task plan ,  
b) the searching for testers of subtasks,  
c) the execution of subtasks, which can be further split 
into three parts:  

i) the broker prepares data for invoking testers,  

ii) the testers fulfill the subtasks, and  
iii) the broker receives and unpacks the returned data 

from the tester.  
The time spent on c.ii) only depends on the perform-

ance of the tester(s). It is irrelevant to the efficiency of the 
broker. Therefore, it is omitted in our experiment.  

Fig. 15 shows the average lengths of execution times 
on different tasks with the number of different types of 
subtasks ranging from 1 to 5. A quadratic polynomial 
figure fits the curve very well with R2=0.9984.  

 
 
 
 
 
 
 
 
 

 
Fig. 15  Time dependence on the number of subtasks 

In summary, the experiments show that the broker is 
capable of dealing with test problems of practical sizes 
with respect to the number of testers registered, the size 
of the knowledge-base, and the complexity of test tasks.  

6. CONCLUSION 
In this paper, we presented service oriented architecture 
for testing WS. In this architecture, various T-services 
collaborate with each other to complete test tasks. We 
employ the ontology of software testing STOWS to de-
scribe the capabilities of T-services and test tasks for the 
registration, discovery and invocation of T-services. The 
knowledge intensive composition of T-services is realized 
by the development and employment of test brokers, 
which are also T-services. We implemented the architec-
ture in Semantic WS technology. Case studies have dem-
onstrated the feasibility of the architecture and illustrated 
how to wrap up general purpose testing tools and turn 
them into T-services and how to develop service specific 
T-services to support the testing of a WS. Experimental 
evaluation also shows the scalability of the approach.  

6.1. Related Work  
There are two other frameworks for collaborations in 
testing WS proposed in the literature.  

Since 2003, Tsai and his colleagues and students have 
advanced a framework of collaboration for WS testing. In 
2003 [63], a framework was first proposed, which consists 
of three types of elements: (a) test masters generate test 
cases based on test scenarios; (b) test agents invoke ser-
vices using test cases generated by test masters; (c) moni-
tors catch the data passed between WS and reports state 
changes to test agents. Tsai et al. soon realized that exist-
ing UDDI is insufficient to support collaborative testing 
in their framework and proposed an extension to the 
function of UDDI to enable collaboration [40, 64]. They 
proposed to add check-in and check-out services to UDDI 

y = 3E‐6x2 + 0.0809x + 2.2562
R² = 0.9265

0.00

10.00

20.00

30.00

40.00

50.00

0 100 200 300 400 500

Number of Plan Templates

Ti
m
e 
(m

s)

task analysis time

trend

y = 16.059x2 + 920.55x + 230.63
R2 = 0.9984

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

1 2 3 4 5
Number of Types of Subtasks

Ti
m

e 
(m

s) Test plan generation

Search for testers

Invocation of subtasks

Total time
Trendline

y = 0.0055x2 + 5.8882x + 281.66
R2 = 0.9935

200

400

600

800

1000

1200

1400

1600

10 30 50 70 90 110 130 150 170 190
Number of Testers

T
im

e 
(m

s) trend line



 
12 

servers so that a service is added to UDDI registry only if 
it passes a check-in test. A check-out testing is performed 
every time the service is searched for. A service is rec-
ommended to a client only if it passes the check-out test. 
To facilitate such tests, they require test scripts being in-
cluded in the information registered for the WS on UDDI. 
In [39, 40], Tsai and his colleagues went further to inves-
tigate the problem how to select a service from a large 
number of candidates by testing. They developed a test 
case ranking technique to improve the efficiency of group 
testing. More recently, in 2007 [65] and 2008 [66], the no-
tion of test broker mentioned in [63] was further devel-
oped and a prototype implementation was reported. Test 
brokers in their framework are much more complicated 
than ours and aim to achieve many more functions, which 
include generating test cases, submitting test cases to the 
WS, coordinating tester and functional services, register-
ing testers and recording the performance of testers, 
monitoring services and keeping a repository of tests per-
formed for the evaluation of services and testers, etc. A 
fundamental difference between Tsai et al.’s framework 
and our framework is that they do not use ontology as the 
definition of the semantics of messages. Search for test 
services relies on keyword matching. Thus, the frame-
work is weak in dealing with semantic complexity of 
software testing tasks and its components are more com-
plex without employing semantic WS technology. An-
other difference is that they do not use knowledge of 
software testing process to generate test plans. Moreover, 
their components are not services. In particular, they in-
voke the real services for testing rather than employ ser-
vice specific test services.  

An approach similar to Tsai et al.’s is taken by Berto-
lino et al. in their audition framework proposed in 2005 
[30]. It requires an admission testing when a WS is regis-
tered to UDDI. This is equivalent to Tsai et al.’s check-in 
test. But, after a service is registered in a UDDI server, 
Bertolino et al. emphasize on run time monitoring services 
on both functional and non-functional behaviours, while 
Tsai et al. require check-out tests. 

Based on the audition framework, Bertolino and Polini 
recently proposed a framework called service test govern-
ance (STG) to incorporate testing into a wider context of 
quality assurance of WS [67]. Here, governance means 
imposing a set of policies, procedures, documented stan-
dards on WS development, etc. These rules are to be en-
forced by a certain organization. In addition to the admis-
sion test and runtime monitoring, STG also requires WS 
testing following standard processes.  

Although both Tsai et al. and Bertolino et al. recognised 
the need of collaboration in testing WS, the technical de-
tails about how to collaborate multiple parties in WS 
testing have not been addressed adequately. Moreover, 
both frameworks require revisions and extensions of WS 
standards, especially UDDI. Therefore, as Bertolino and 
Polini admitted in [67], “on a pure SOA based scenario the 
framework is not applicable”.  

Even if UDDI can support these frameworks, the extra 

burden on UDDI servers for performing audition test or 
check-in/check-out tests will make SOA impractical even 
if such tasks are delegated to a third party. Further more, 
it is hard to see how a universal standard on WS testing 
and quality assurance can fit all purposes and be accept-
able by all sectors of industries.  

In [68], Tsai et al. discussed what is necessary to extend 
WSDL in order to support testing. They proposed to in-
clude the information like input/output dependences 
between operations, invocation sequences, and structural 
and functional features of WS. We believe that, although 
such information is necessary, it is still insufficient to 
support all aspects of WS testing. On the other hand, it is 
unnecessary to extend WSDL to provide such information. 
Information required for testing WS can be provided by 
using ontology and through T-services.  

The framework presented in this paper had its incep-
tion in 2006 [44] based on the author’s previous work on 
agent-based approach to testing web-based systems [69, 
70]. A preliminary implementation and case study of the 
framework was reported in [71] without details about the 
test broker and ontology management service. Our ap-
proach differs from the others in that it implements col-
laborative testing of WS within the framework of service 
oriented architecture using ontology and also the concept 
of T-services. In this framework, various testing functions 
are provided by T-services, such as generating test plan 
and test cases, invoking test executions, collecting test 
results, checking output correctness, measuring test ade-
quacy and coverage, and so forth. The collaborations be-
tween them are autonomous rather than enforced. That is, 
what to test and how to test is the choice of the service 
requester, and what and how to fulfil a client’s test re-
quest is the choice of test service provider. A T-service 
requester need to search for T-services, negotiate the cost 
of test, select a T-service provider and invoke the 
T-service at runtime. The test activities are then per-
formed by a T-service provider.  

This framework is further enriched in this paper by 
incorporating two facilities. The first is an ontology man-
agement facility so that the software testing ontology can 
be extended and maintained through public services. The 
second is test brokers, which are also T-services but spe-
cialised in the composition of T-services so that compli-
cated testing processes and interactions between 
T-services can be handled by such professionally devel-
oped T-services to simplify the uses of T-services.  

The approach has the following advantages in com-
parison with the existing work. First, it is scalable since 
T-services are distributed and there is no extra-burden on 
UDDI servers. Second, this approach can be implemented 
without any change to the existing standards of Semantic 
WS [72] as shown in this paper. Third, the need of dealing 
with variety is achieved through collaborations among 
many T-services and the employment of ontology of 
software testing to integrate multiple testing tools. Fo-
urth, the automation of test processes for testing 
on-the-fly, especially the dynamic composition of 



 
13 

T-services, can be also achieved by employing ontology of 
software testing and test brokers. Moreover, test execu-
tions can be performed by running a separate T-service, 
thus they do not interfere with the normal operations of 
the services under test. Finally, when test tasks are per-
formed by a trusted third party of professional T-services, 
documents and source code as well as other software ar-
tefacts can be released to the T-service provider with 
proper intellectual property protection.  

6.2. Future work 
The test broker in the prototype is still very primitive. 
Further research on the design and implementation of 
more powerful test brokers will have a significant impact 
on the usability of the T-services. In particular, using 
knowledge of software testing processes to generate test 
plans seems a promising topic for further work. Such 
knowledge can be encoded in a process definition lan-
guage such as BPEL. Therefore, a much more flexible and 
powerful test broker can be devised. Another direction to 
enhance the functionality of test brokers is to associate 
monitoring functions to brokers as in Tsai et al.’s ap-
proach so that the previous performance of T-services can 
be taken into consideration in the selection of testers.  

An issue that has not been addressed adequately is the 
testing of long running processes. A simple solution 
could be to allow testers to distinguish long running 
processes from short running tasks either in the test re-
quest message (i.e. in the test task description) or in the 
service description (i.e. in WSDL). An upper limit to the 
waiting time for test results should then be set accord-
ingly to avoid infinite waiting. The broker could also set 
different running modes for short and long running tasks. 
For the latter, the broker may generate a new thread to 
execute the function. The ability of broker to handle long 
running processes is related to the platform on which the 
broker is deployed. The soap engine we used in case 
study, i.e. Apache Axis 1.4, is capable of supporting this. 

Moreover, as discussed in Section 1, a particular diffi-
culty in testing WS is due to the lack of software artefacts 
to support test activities. The framework presented in this 
paper offers the opportunity to incorporate a trust 
mechanism so that design documents, source code and 
many other types of internal information of services can 
be delivered to trustable T-services. Further research on 
how such a trust mechanism to interoperate with the 
T-services needs to be worked out in detail.  

Another hard problem to be solved is associated to the 
management of ontology. Due to its openness, errors due 
to update during the execution of a task may occur as 
discussed in Section 3.4. How to prevent such errors and 
to reduce the risk is still an open question.  

Testing is one of the quality assurance activities for the 
development of services. It is worth investigating into 
how to extend and/or adapt the framework for a wider 
range of quality assurance activities such as static analysis 
and verification and dynamic monitoring of services, etc. 
This may need to extend the network model of WS to in-
corporate the internal structure of services.  

Finally, we have only reported the main results of the 
evaluation case studies and experiments. More detailed 
will be reported separately due to the limitation of space. 
Further empirical study and evaluation of the proposed 
approach should be conducted, especially with regard to 
the costs associated to the design, implementation and 
operation of service specific T-services.  

REFERENCES  
 
[1]  F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-

chard, Web Services Architecture. W3C Working Group Note, 
http://www.w3.org/TR/ws-arch, 2004. 

[2] M. Stal, “Web Services: Beyond Component-Based Comput-
ing”, C.ACM, vol. 45, no. 10, pp.71-76, Oct. 2002.  

[3]  G. Canfora and M. Penta, “Service-Oriented Architectures Test-
ing: A Survey,” Software Engineering: Int’l Summer Schools 
(ISSSE 2006-2008), Revised Tutorial Lectures, A. Lucia and F. Fer-
rucci (Eds.), LNCS vol.5413, Springer-Verlag, pp.78-105, 2009. 

[4] M.Bozkurt, M. Harman and Y. Hassoun, Testing Web Services: A 
Survey. Technical Report TR-10-01, Department of Computer 
Science, King's College London. January, 2010. 

[5]  X. Bai, W. Dong, W. Tsai and Y. Chen, “WSDL-Based Auto-
matic Test Case Generation for Web Services Testing,” Proc. Of 
SOSE’05, pp.215-220, Oct. 2005.  

[6]  W. Tsai, R. Paul, W. Song and Z. Cao, “Coyote: An XML-Based 
Framework for Web Services Testing,” Proc. of HASE’02, 
pp.173-174, Oct. 2002. 

[7]  N. Looker, M. Munro and J. Xu, “WS-FIT: A Tool for Depend-
ability Analysis of Web Services,” Proc. of COMPSAC’04, 
pp.120-123, Sept. 2004. 

[8]  J. Offutt and W. Xu, “Generating test cases for web services 
using data perturbation,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 
5, pp.1-10, Sept. 2004.   

[9]  S. C. Lee and J. Offutt, “Generating Test Cases for XML-Based 
Web Component Interactions Using Mutation Analysis,” Proc. 
of ISSRE’01, pp.200-209, Nov. 2001. 

[10]  W. Xu,  J. Offutt and J. Luo, “Testing Web Services by XML 
Perturbation,” Proc. of ISSRE’05, pp.257-266, Nov. 2005. 

[11]  M. P. Emer, S. R. Vergilio and M. Jino, “A Testing Approach for 
XML Schemas,” Proc. of COMPSAC’05, pp57-62, Jul. 2005. 

[12]  A. Bertolino, J. Gao and E. Marchetti, “XML every-flavor test-
ing”, Proc. of WEBIST’06, INSTICC Press, pp.268-273, Apr. 2006.  

[13]  A. Bertolino, J. Gao, E. Marchetti and A. Polini, “Systematic 
generation of XML instances to test complex software applica-
tions,” Rapid Integration of Software Engineering Techniques, Third 
Int’l Workshop, RISE 2006, Revised Selected Papers, Guelfi, N. and 
Buchs, D. (Eds.), LNCS vol. 4401, Springer, pp.114-129, 2007. 

[14]  A. Bertolino, J. Gao, E. Marchetti and A. Polini, “Automatic Test 
Data Generation for XML Schema-based Partition Testing,” 
Proc. of AST’07 , p.4, May 2007.  

[15]  J. B. Li and J. Miller, “Testing the Semantics of W3C XML 
Schema,” Proc. of COMPSAC’05, pp.443-448, Jul. 2005. 

[16]  L. F. de Almeida and S. R. Vergilio, “Exploring Perturbation 
Based Testing for Web Services,” Proc. of ICWS’06, pp.717-726, 
Sept. 2006. 

[17]  S. Hanna and M. Munro, “An Approach for WSDL-Based 
Automated Robustness Testing of Web Services,” Information 
Systems Development: Challenges in Practice, Theory, and Educa-
tion, vol. 2, Barry, C. et al. (eds.), Springer, pp.493-504, 2009. 

[18] J. Garc´ıa-Fanjul, J. Tuya and C. de la Riva, “Generating Test 
Cases Specifications for BPEL Compositions of Web Services 
Using SPIN,” Proc. WS-MaTe, 2006.  

[19]  C. Bartolini, A. Bertolino, E. Marchetti and I. Parissis, “Data 
Flow-Based Validation of Web Services Compositions: Perspec-
tives and Examples,” Architecting Dependable Systems V, R. 
Lemos, et al. (Eds.), LNCS vol. 5135, Springer-Verlag, 
pp.298-325, 2008,  

[20]  C. Bartolini, A. Bertolino and E. Marchetti, “Introducing ser-
vice-oriented coverage testing,” Proc. of ASE’08, pp.57-64, 2008.  

[21]  K. Kaschner and N. Lohmann, “Automatic test case generation 
for services,” Fourth Int’l Workshop on Engineering Ser- 



 
14 

 
vice-Oriented Applications: Analysis and Design (WESOA 2008), 
Proceedings, LNCS, Springer-Verlag, Dec. 2008. 

[22]  M. Lallali, F. Zaidi, A. Cavalli and I. Hwang, “Automatic Timed 
Test Case Generation for Web Services Composition,“ Proc. of 
ECOWS 2008, pp.53-62, 2008,  

[23]  Z. Li, W. Sun, Z. B. Jiang and X. Zhang, “BPEL4WS Unit Test-
ing: Framework and Implementation,” Proc. of ICWS’05, 
pp.103-110, July 2005. 

[24]  P. Mayer, Design and Implementation of a Framework for Testing 
BPEL Compositions. Master thesis, Leibnitz University, Germany, 
2006. 

[25]  L. Mei, W. K. Chan and T. H. Tse, “Data flow testing of ser-
vice-oriented workflow applications,” Proc. of ICSE'08, 
pp.371-380, 2008. 

[26]  Y. Zheng, J. Zhou and P. Krause, “An Automatic Test Case 
Generation Framework for Web Services,” Journal of Software, 
vol. 2, no.3, pp.64–77, 2007.  

[27]  H. Huang, W. Tsai,  R. Paul and Y. Chen, “Automated Model 
Checking and Testing for Composite Web Services,” Proc. of 
ISORC’05, pp.300-307, May 2005.  

[28]  Y.Wang, X. Bai,  J. Li and R. Huang, “Ontology-Based Test 
Case Generation for Testing Web Services,” Proc. of ISADS'07, 
pp.43-50, 2007. 

[29] X. Bai, S. Lee, W. T. Tsai and Y. Chen, “Ontology-Based Test 
Modeling and Partition Testing of Web Services,” Proc. of 
ICWS’08, pp. 465-472, 2008. 

[30]  A. Bertolino and A. Polini, “The Audition Framework for Test-
ing Web Services Interoperability,” Proc. of EUROMICRO’05, 
pp.134-142, Aug. 2005. 

[31]  F. Belli and M. Linschulte, “Event-Driven Modeling and Testing 
of Web Services,” Proc. of COMPSAC’08, pp.1168-1173, 2008. 

[32]  J.Magee, J. Kramer, S. Uchitel and H. Foster, “LTSA-WS: a tool 
for model-based verification of web service compositions and 
choreography,” Proc. of ICSE'06, pp.771-774, 2006.  

[33]  R. Heckel and M. Lohmann, “Towards Contract-based Testing 
of Web Services,” Electronic Notes in Theoretical Computer Science, 
vol. 82, no.6, 2004.  

[34]  R. Heckel and L. Mariani, “Automatic conformance testing of 
web services,” Proc. FASE’05, Springer, pp.34-48, 2005. 

[35]  W.Tsai, X.Wei, Y. Chen, R. Paul, and X. Bai. “Swiss Cheese Test 
Case Generation for Web Services Testing,” IEICE - Trans. Inf. 
Syst., Vol. 88, no.12, pp.2691-2698, Dec. 2005. 

[36]  A. Bertolino, G. De Angelis, L. Frantzen and A. Polini, 
“Model-Based Generation of Testbeds for Web Services,” Proc. 
TestCom/FATES’08, pp.266-282, 2008. 

[37]  H. Huang, H. Liu, Z. Li and J. Zhu, “Surrogate: A Simulation 
Apparatus for Continuous Integration Testing in Service Ori-
ented Architecture,” Proc. of SCC’08, vol. 2, pp.223-230, 2008.  

[38]  W. K. Chan, S. C. Cheung and K. R. P. H. Leung, “A Metamor-
phic testing Approach for Online testing of service-Oriented 
software Applications,” Int’l Journal of Web Services Research, 
vol. 4, no.2, pp.61- 81, Apr. 2007. 

[39]  W. Tsai, X. Zhou, Y. Chen and X. Bai, “On Testing and Evalu-
ating Service-Oriented Software,” Computer, vol. 41, no.8, 
pp.40-46, Aug. 2008.  

[40]  W. Tsai, Y. Chen, R. Paul, N. Liao and H. Huang, “Cooperative 
and Group Testing in Verification of Dynamic Composite Web 
Services,” Proc. of COMPSAC’04, vol. 2: Workshops and Fast 
Abstracts, pp.170-173, Sept. 2004. 

[41]  A.Bertolino, J. Gao, E. Marchetti and A.Polini, “TAXI--A Tool 
for XML-Based Testing,” Proc. of ICSE’07 (Companion), 
pp53-54, May 2007. 

[42]  A. Bertolino, G. De Angelis, L. Frantzen and A. Polini, “The 
PLASTIC Framework and Tools for Testing Service-Oriented 
Applications,” Software Engineering: Int’l Summer Schools, 
(ISSSE’08), pp.106-139, 2008.  

[43] G. Canfora and M. Penta, “Testing Services and Service-Centric 
Systems: Challenges and Opportunities,” IT Professional, vol. 8, 
no. 2, pp.10-17, 2006. 

[44] H. Zhu, “A Framework for Service-Oriented Testing of Web 
Services,” Proc. of COMPSAC’06, pp.679-691, Sept. 2006. 

[45]  K. Sycara, M. Paolucci, A.Ankolekar and N. Srinivasan, 
“Automated Discovery, Interaction and Composition of Se-
mantic Web services,” J. Web Semantics, vol. 1, no.1, pp27-46, 
Dec. 2003.   

 
[46] M. Uschold and M. Gruninger, “Ontologies: Principles, Meth-

ods, and Applications,” Knowledge Engineering Review, vol.11, 
no. 2, pp.93-155, 1996. 

[47] T.R. Gruber, “A Translation Approach to Portable Ontology 
Specification,” Knowledge Acquisition, vol. 5, pp.199-220, 1993. 

[48] OWL Web Ontology Language Reference. http: //www.w3.org/ 
TR/ 2004/ REC-owl-ref-20040210/, 2004.  

[49]  OWL-S: Semantic Markup for Web Services. http: 
//www.w3.org/ Submission/OWL-S/, 2004. 

[50]  N. Srinivasan, M. Paolucci and K. Sycara, “Adding OWL-S to 
UDDI, implementation and throughput.,” Proc. The 1st Int’l 
Workshop on Semantic Web Services and Web Process Composition, 
pp.169-182, 2004. 

[51] T. Kawamura, J-A. De Blasio, T. Hasegawa, M. Paolucci, and K. 
Sycara, “A Preliminary Report of a Public Experiment of a Se-
mantic Service Matchmaker combined with a UDDI Business 
Registry,” Proc. of ICSOC’03, pp.208-224, Dec. 2003.  

[52]  Protégé-owl API Programmer’s Guide. http://protege.stanford. 
edu/plugins/owl/api/guide.html. 

[53]  K. Sycara, M. Paolucci, J. Soudry and N. Srinivasan, “Dynamic 
Discovery and Coordination of Agent-Based Semantic Web 
Services,” IEEE Internet Computing, vol. 8, no.3, pp. 66-73, 
May/June 2004.  

[54]  Mindswap OWL-S API. http://www.mindswap.org/2004/ 
owl-s/api/. 

[55] L. Kong, H. Zhu and B. Zhou, “Automated Testing EJB Com-
ponents Based on Algebraic Specifications,” Proc. of COMP-
SAC’07, vol. 2, pp.717-722, 2007.  

[56] B. Yu, L. Kong, Y. Zhang and H. Zhu, “Testing Java Compo-
nents Based on Algebraic Specifications,” Proc. of ICST’08, 
pp.190-199, April 2008. 

[57] C.  Cadar,  D.  Dunbar  and  D.  Engler,  ʺKlee:  Unassisted  and 
Automatic  Generation  of  High‐Coverage  Tests  for  Complex 
Systems Programs,ʺ OSDI, 2008. 

[58] S.  C.  Edmund,  E.  Clarke,  A.  Groce,  S.  Jha  and  T.  Vienna, 
ʺModular  Verification  of  Software  Components  in  C  ,ʺ  IEEE 
Trans. Softw. Eng. , vol.30 , pp. 388‐402, 2004. 

[59]  JavaNCSS. http://javancss.codehaus.org/ 
[60]  D. Hovemeyer and W. Pugh, ʺFinding more null pointer bugs, 

but not too many ,ʺ in Proc. of PASTE’07, pp.9‐14, 2007. 
[61]  PMD. http://pmd.sourceforge.net/ 
[62] L. Shan and H. Zhu, "Generating Structurally Complex Test 

Cases By Data Mutation", The Computer Journal, vol.52, pp. 
571-588, 2009. 

[63] W. Tsai, R. Paul, L. Yu, A. Saimi, Z. Cao, “Scenario-Based Web 
Services Testing with Distributed Agents,” IEICE Transactions 
on Information and Systems, vol. E86-D, no. 10, pp.2130-2144, 
October, 2003. 

[64]  W. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi and X. Bai, “Verifica-
tion of Web Services Using an Enhanced UDDI Server,” Proc. of 
WORDS’03, pp.131-138, 2003.  

[65]  X. Bai, Y. Wang, G. Dai, W.T. Tsai and Y. Chen, “A Frame-
work of Contract-Based Collaborative Verification and Valida-
tion of Web Services,” Proc. of CBSE’07, LNCS vol. 4608, 
pp.256-271, July 2007. 

[66]  X. Bai, S. Lee, R. Liu, W.T. Tsai and Y. Chen, “Collaborative 
Web Services Monitoring with Active Service Broker,” Proc. of 
COMPSAC‘08, pp.84-91, 2008.  

[67]  A. Bertolino and A. Polini,  “SOA Test Governance: Enabling 
Service Integration Testing across Organization and Technol-
ogy Borders,” Proc. of Webtest’09 at ICST’09, April 2009. 

[68]  W. Tsai, R. Paul, Y. Wang, C. Fan and D.Wang, “Extending 
WSDL to Facilitate Web Services Testing,” Proc. of HASE’02, 
pp.171-172, 2002. 

[69]  H. Zhu and Q. Huo, “Developing A Software Testing Ontology 
in UML for A Software Growth Environment of Web-Based 
Applications,” Software Evolution with UML and XML, H. Yang, 
(ed.), IDEA Group Inc. pp263-295, 2005.  

[70]  H. Zhu, Q. Huo, and S. Greenwood, “A Multi-Agent Software 
Environment for Testing Web-based Applications,” Proc. 
COMPSAC'03, pp.210-215, Nov. 2003. 

[71] Y. Zhang and H. Zhu, “Ontology for Service Oriented Testing 
of Web Services,” Proc. of SOSE’08, Dec. 2008. 

[72] T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web,” 
Scientific American, vol. 284, no.5, pp.34-43, 2001.  


