
AFM Technical Report
Number: CCT-AFM-2014-01; Date: 17 Oct. 2014; Version: 1.0

On the Composability of

Design Patterns

Hong Zhu
Email: hzhu@brookes.ac.uk

and

Ian Bayley  
Email: ibayley@brookes.ac.uk

Applied Formal Methods Research Group

Department of Computing and Communication Technologies

Oxford Brookes University

Oxford OX33 1HX, UK

!

TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014 1

On the Composability of Design Patterns
Hong Zhu and Ian Bayley

Oxford Brookes University, Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract—In real applications, design patterns are almost
always to be found composed with each other. It is crucial
that these compositions be validated. This paper examines the
notion of validity, and develops a formal method for proving
or disproving it, in a context where composition is performed
with formally defined operators on formally specified patterns.
In particular, for validity, we require that pattern compositions
preserve the features, semantics and soundness of the composed
patterns. The application of the theory is demonstrated by a
formal analysis of overlap-based pattern compositions and a case
study of a real pattern-oriented software design.

Keywords-Design Patterns, Pattern composition, Composibility,
Feature preservation, Semantics preservation, Soundness preser-
vation, Formal methods.

I. MOTIVATION

Design patterns encapsulate knowledge of reusable solu-
tions to recurring design problems [1]. Since Gamma et al.
published a catalogue of 23 basic OO design patterns [2]
(referred to as the GoF book in the sequel), a large number of
patterns in various specific design areas have been identified
and documented [3]–[15]. Many software tools have been
developed, often as IDE plug-ins, to apply design patterns,
or to recognise the correct uses of patterns at code level [16]–
[21] and at model level [22]–[26]. They are widely used in
practice in almost all software development [27]. A pattern-
oriented software design methodology is emerging [28], [29].

Empirical studies show that design patterns are often used
wrongly, with a negative impact on software quality [27], [30],
[31], though the exact meaning of appropriate application is
still an open question. For example, Fig. 1 shows in diagrams
c) to f), four different compositions of the GoF patterns
Composite and Adapter, with the latter indicated by shading.
Are these valid and is there a way to prove that they are?!

Component!

Leaves! Composite!

Target!

Adapter!

Adaptee!

(a)!Composite!pattern! (b)!Adapter!pattern!

!

! !

!
!

!

! !

!

!

!

!

! !

!

! !

! !

!

!
!

! !

!

(c)! (d)! (e)! (f)!

Fig. 1. Motivative examples of pattern compositions

In this paper, we take a formal approach to the problem
by proposing a mathematical definition of the notion of

valid composition and instantiation of design patterns, and
developing a formal theory that allows us to formally prove or
disprove that a use of design pattern is sound and valid. The
applicability of the theory is demonstrated by applying it to
the analysis of overlap-based pattern compositions as well as
a case study with a real example of pattern-oriented design. It
is based on our previous work on an algebra of design patterns
[32] as well as work of many others on formalisation of design
patterns [33]–[41].

The remainder of the paper is organised as follows. Section
II briefly reviews related work on pattern composition. Section
III analyses the open problem, outlines our proposed approach
and summarises the main contributions of this paper. Section
IV sets the foundation of the work by defining the mathe-
matical notations and recalls the formal theory that the paper
is based on. Section V examines the notion of valid pattern
composition and instantiation. The notions of feature preser-
vation, semantics preservation and soundness preservation are
introduced and formally defined as conditions of valid pattern
compositions and instantiations. Their interrelationships are
studied. Section VI is devoted to the verification of the validity
of pattern compositions and instantiations expressed in terms
of pattern operations. Section VII applies the theory to overlap-
based pattern composition operators. Section VIII reports a
case study with a real example of pattern-oriented software
design: a general request handling framework [42]. Finally,
section IX concludes the paper with a comparison with related
work and a discussion of future work.

II. RELATED WORK

Although each pattern is specified separately, they are usu-
ally to be found composed with each other [43]. Thus, pattern
composition plays a crucial role in the effective use of design
knowledge. The past few years have seen a rapid growth in
research on this topic. Existing work can be classified into
two categories: (a) the representation of pattern composition
and instantiation, and (b) the validation of pattern applications
when they are composed and instantiated.

A. Representation of Pattern Compositions and Instantiations
Compositions can be represented either visually or formally.
1) Visual representation: This is usually informal [42],

[44]. Visual notations such as the Venn diagram with Pat-
tern:Role annotation proposed by Vlissides [45] have been
widely used in practice to show the component parts of
the composition. Dong et al. [46] developed both static and
dynamic techniques for visualizing the applications of design
patterns. They defined UML profiles and implemented a tool,

2 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

deployed as a web service, that represents the application of
patterns in UML diagrams. This is done by UML profiles to at-
tach information to designs through stereotypes, tagged values,
and constraints. Such information is delivered dynamically
with the movement of user’s mouse cursor on the screen. Their
experiments show that this dynamic delivery helps to reduce
the apparent complexity of the design. More recently, Smith
[47] proposed the PIN notation (Pattern Instance Notation) to
represent the same information in a hierarchical manner.

2) Formal representation of pattern compositions: Very few
authors have studied pattern compositions formally despite the
large number of works on formalisation of design patterns.
Dong et al. and Taibi do so in [48] and [49], respectively.
In Dong et al.’s approach, a composition of two patterns is
a pair of mappings each of which link components from a
pattern to the result pattern. Dong et al. demonstrated how the
structural and behavioural properties of the composite pattern
can be derived from the original patterns and applied this to
the study of security design patterns [50]. In [51], Dong et al.
define instantiation again as a mapping, but from components
in the pattern (e.g. concrete classes, attributes, methods) to
those in the actual system.

Taibi took a very similar approach to Dong et al., but instead
of defining mappings between the components of composed
patterns, he directly renames the components and combines
the predicates from the pattern specification.

Both of these approaches effectively specify how compo-
nents from the composed patterns overlap in the composite
pattern. In our previous work [52], a pattern composition
operator was formally defined based on the notion of overlaps
between the elements of composed patterns. There are three
types of overlap: one-to-one, many-to-many and one-to-many.
Dong and Taibi’s approaches can handle the first two but
cannot easily be extended to one-to-many overlaps because the
latter requires links component names of different types and
therefore cannot be defined as mappings between component
names (Dong’s approach), nor as renaming of component
identifiers (Taibi’s approach). In [32], [53], [54], we developed
a formal calculus of design patterns, consisting of:

• A set of operators on design patterns in which pattern
compositions and instantiations can be expressed.

• A set of algebraic laws that these operators obey so that
two different compositions can be proven equal.

• A normalisation process that transforms pattern expres-
sions into a normal form. The process always terminates
with a unique normal form up to logic equivalence.

As shown in [53], these operators are expressive enough to
capture all pattern compositions suggested by the GoF book,
and the normalisation process with algebraic laws can be used
in a pattern oriented design processes, as demonstrated in [32]
with a case study based on a real software design example.

B. Validation of Pattern Compositions and Instantiations
The impact on software quality, both positive and negative,

of using design patterns has been studied empirically, for
example, by Huston [55], Prechelt et al. [56], Khomh and
Guéhéneuc [27] and Mouratidou et al. [31], etc.

Wendorff [30] observed that there are two different ways in
which patterns can be misused.

1) the pattern’s intent might not fit the project’s require-
ments. Research efforts to address this include Hsueh
et al.’s quantitative approach [57], which uses quality
metrics to measure the improvement effectiveness, and
Ampatzoglou et al.’s methodology [58] of impact assess-
ment.

2) the pattern may be misapplied by software developers
who misunderstand the rationale. This is the subject of
this paper and few have addressed it.

Dong et al. [48] propose the following faithfulness condi-
tions to ensure that composition makes sense.

1) the mappings must agree on shared objects and parts,
2) it must not be possible to infer new facts about the

patterns being composed from the result of their com-
position, and

3) all the properties of the composed patterns must also be
true in the resultant composite pattern.

They showed out to verify these conditions for an example
where Composite is composed with Iterator. Taibi also requires
these conditions but argued in [59] that condition (2) is not
always necessary.

III. THE PROPOSED APPROACH

In this section, we outline our own approach to the open
problem of verifying that a composition is valid. We refine the
problem into defining and proving that a pattern composition
and instantiation preserves three important qualities of the
pattern:

• soundness, the existence of valid instances for the pattern,
i.e. at least one design conforms to the pattern;

• semantics, the meanings of the pattern, which is the set
of designs conforming to the pattern;

• features, the structural and behavioural properties of the
pattern.

Another important quality of pattern specifications we will
discuss is completeness, which means that it covers all the
characteristic features of the pattern, no more no less. In
common with other researchers, we regard a design pattern as
a predicate that asserts the existence of elements (eg classes)
in the design, states structural properties in terms of how these
elements are statically interconnected, and behavioural proper-
ties in terms of their dynamic interaction. Pattern compositions
are expressions formed from the application of six pattern
operators [52] to existing patterns. To determine validity,
we investigate under what conditions the operators preserve
soundness, semantics and features.

The main contributions of the paper are as follows.
• We formally define the notions of feature preservation,

semantics preservation and soundness preservation, and
thereby formalise the notion of valid composition.

• We present a formal method to enable software designers
to prove or disprove the validity of pattern composition,
by considering soundness preserving, semantics preser-
vation and feature preservation. In particular, we prove
that

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 3

– all six operators are feature preserving,
– operators that change the structural requirements are

semantics preserving, and
– operators that introduce new constraints fail to be se-

mantics preserving only when the newly introduced
constraints are in conflict with the semantics of the
original pattern.

• We demonstrate the validity and applicability of the
theory developed in this paper by two means:

– a theoretical analysis of the validity conditions for
pattern compositions based on overlaps [52], [32]

– a case study of a real pattern-oriented design.

IV. PRELIMINARIES

This section lays the foundation for the paper by defining the
preliminaries. We first recall the logic underlying the formal
specification of design patterns, then the pattern composition
and instantiation operators [32].

A. Logic Systems underlying Pattern Specification and Rea-
soning

In the past few years, researchers have advanced several
approaches to the formalisation of design patterns. In spite
of the differences in their formalisms, the basic underlying
ideas are quite similar. In particular, a pattern is usually
specified using statements that constrain the structural features,
and sometimes the behavioural features, too, of its valid
instances. The structural constraints are typically assertions
that certain types of components exist and have a certain
configuration. The behavioural constraints, on the other hand,
detail the temporal order of messages exchanged between
the components during the executions of an instance of the
pattern. Note that, negative information can also be included
in pattern specifications, for example, to state the so called
forbidden conditions, such as no associations are allowed
between two particular components. Such negative conditions
could be useful to validate the correct uses of patterns.

The various approaches to pattern formalisation differ in
how they represent software systems and in how they formalise
the predicate. For example, Eden’s predicates are on the source
code of object-oriented programs [40], [60]–[62] but they
are limited to structural features. Taibi’s approach in [38]
is similar but he takes the further step of adding temporal
logic for behavioural features. In contrast, our predicates
are built up from primitive predicates on UML class and
sequence diagrams [41]. These primitives are induced from the
abstract syntax definition of UML diagrams in GEBNF, which
is an extension of BNF for graphical modelling languages
[63], [64]. Therefore, without loss of generality, a pattern
specification is defined as follows.

Definition 1: (Formal specifications of design patterns) A
formal specification of a design pattern is an ordered pair P =
⟨V ars, Pred⟩, where Pred is a predicate on the domain of
software systems, and V ars = {v1 : T1, · · · , vn : Tn} is a set
of declarations for the variables that are free in the predicate
Pred. Each vi is a variable that represents a component in the
pattern and Ti is that variable’s corresponding type. A type

can be a basic type Z of elements, such as class, method,
attribute, message, lifeline, etc. in the design model, or P(Z)
(i.e. a power set of Z), to represent a set of elements of the
type Z, or P(P(Z)) (i.e. the power set of the power set of Z),
etc. Note that, for the sake of convenience, we do not allow
the empty set ∅ to be an instance of a power set type P(T).

The semantics of a specification is a ground predicate in the
following form.

∃v1 : T1 · · · ∃vn : Tn · (Pred) (1)

In the sequel, we write Spec(P) to denote the predicate (1)
above, V ars(P) for the set of variables declared in V ars, and
Pred(P) for the predicate Pred. ⊓&

Often predicate Pred is split into static and dynamic
conditions as in [38] and [41]. It can also be specialised
to particular representations of software systems such as
program code, UML diagrams etc, though in this paper, we
will just consider the latter for our concrete examples for
simplicity. The operators we use from [32], [53], [54] are
also independent of the particular formalism, although the
examples come from the previous work [41] and [65]. The
theory developed in this paper is valid as far as the following
notion of conformance is valid and the logic is consistent.

Give a specification of a design pattern, one can decide
whether a concrete design conforms to the design pattern by
demonstrating that the predicate is satisfied by the design. To
prove such a conformance we just need to give an assignment
α of variables in V ars to elements in the design model m
and evaluate Pred(P) in the context of α. The evaluation of
a predicate p in the context of an assignment α of variables
in p to elements in a model m, denoted by [[p]]mα , is defined
as usual in predicate logic. Thus, the definition is omitted for
the sake of space. If the result of the evaluation [[Pred(P)]]mα
is true, we say that the model m satisfies the specification P ,
and write m |= Spec(P).

Definition 2: (Conformance of a Design to a Pattern) Let m
be a model and P = ⟨V ars, Pred⟩ be a formal specification
of a design pattern. The model m conforms to the design
pattern as specified by P if and only if m |= Spec(P). For
the sake of simplicity, in the sequel we will also write m |= P
for m |= Spec(P). ⊓&

Given a formal specification of a pattern P , we can also
infer the properties of any system that conforms to it by
deducing that Spec(P) ⇒ q where q is a formula denot-
ing a property of the model. In other words, every logical
consequence of a formal specification is a property of every
model that conforms to the pattern specified. This statement is
true only if the logic interpretation of predicates is consistent
with logic inference rules. Formally, we have the following
proposition about the logic system underlying the formalism
used for pattern specification.

Proposition 1: (Consistency of Specification Logic)
For all models m and predicates p and q on models, we

have that ⊢ (p ⇒ q) and m |= p imply that m |= q. ⊓&
Note that the logic system also has axioms about the atomic

predicates of software systems. One such predicate is −−◃,
where X −−◃ Y means that X is a subclass of Y . Two of its

4 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

axioms are the transitivity and asymmetry properties below.
∀X,Y, Z ∈ Class,

(X −−◃ Y) ∧ (Y −−◃ Z) =⇒ X −−◃ Z. (2)
¬(X −−◃ Y ∧ Y −−◃X) (3)

These well-formedness conditions are true for all valid
UML models. For that reason, they can be used as axioms
in reasoning about design patterns [26].

B. Relations and Operators on Design Patterns
Based on the formal logic underlying pattern specifications,

we can define various relationships between patterns, one of
which is the following specialisation relationship.

Definition 3: (Specialisation Relation between Patterns) Let
P and Q be design patterns. Pattern P is a specialisation of
Q, written P ! Q, if for all models m, whenever m conforms
to P , m also conforms to Q. Formally, P ! Q " ∀m · (m |=
P ⇒ m |= Q).

Two patterns P and Q are equivalent, written P ≈ Q, if
P ! Q and Q ! P . ⊓&

To establish that P ! Q, one can use logic inference in
predicate logic to prove that Spec(P) ⇒ Spec(Q).

Specialisation is a partial order with FALSE as bottom
and TRUE as top, where TRUE and FALSE are special
patterns defined as follows.

Definition 4: (TRUE and FALSE patterns) Pattern
TRUE is the pattern that satisfies the condition that for all
models m, m |= TRUE. Pattern FALSE is the pattern that
satisfies the condition that for all models m, m |= FALSE.
⊓&
The operators on patterns introduced in [32] are as defined

below; see the original for explanations, examples and case
studies.

Definition 5: (Pattern Operators) Let P and Q be any given
patterns, V = V ars(P) = {x0 : T0, · · · , xn : Tn} and
Pred(P) = p(x0, · · · , xn).

1) Restriction: Let c be a predicate on V . P [c] is the
pattern such that V ars(P [c]) = V and Pred(P [c]) =
p ∧ c.

2) Superposition: Assume that V ∩ V ars(Q) = ∅. P ∗Q,
is the pattern that V ars(P ∗ Q) = V ∪ V ars(Q) and
Pred(P ∗Q) = p ∧ Pred(Q).

3) Extension: Let V ∩U = ∅, and c be a predicate on V ∪U .
P#(U • c) is the pattern such that V ars(P#(U • c)) =
V ∪ U and Pred(P#(U • c)) = p ∧ c,

4) Flattening: Assume T0 = P(T) and x′
0 ̸∈ V . P ⇓ x0\x′

0
is the pattern such that

V ars(P ⇓ x0\x′
0) = {x′

0 : T, x1 : T1, · · · , xn : Tn};
Pred(P ⇓ x0\x′

0) = p({x′
0}, x1, · · · , xn).

5) Generalisation: P ⇑ x0\x′
0 is the pattern such that

V ars(P ⇑ x0\x′
0) = {x′

0 : P(T0), x1 : T1, · · · , xn : Tn},
P red(P ⇑ x0\x′

0) = ∀x0 ∈ x′
0 · Pred(P).

6) Lifting: Let X = {x0 · · · , xk}, n > k > 0, and xsi ̸∈ V
for i = 1, · · · , n. P ↑ X is the pattern such that

V ars(P ↑ X) = {xs0 : P(T0), · · · , xsn : P(Tn)},
P red(P ↑ X) = ∀x0 ∈ xs0 · · · ∀xk ∈ xsk ·
∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · p(x1, · · · , xn).

⊓&
Informal explanations of the operators are as follows. Re-

striction operator P [c] imposes an additional condition c on
an existing pattern P . A common use of restriction as shown
in our case studies [53] is the form P [u = v], where u and v
are variables of the same type. An alternative form P [u = a]
where a is a constant element is also useful for instantiating
a pattern.

Superposition P ∗ Q is a pattern containing both pattern
P and pattern Q. Naming clashes in component variables can
always be resolved by systematic renaming. Let x ∈ V ars(P)
and x′ /∈ V ars(P). The systematic renaming of x to x′ is
written as P [x\x′]; this does not change the meaning of the
pattern. That is, for all models m that m |= P ⇔ m |=
P [x\x′]. Another approach, which we prefer, is to write P.x
to denote the variable x in pattern P . Thus, the variable P.x
can be easily distinguished from Q.x.

Extension P#(U •c) introduces a set U of new components
into the pattern P and links these components with the existing
ones according to the predicate c.

Flattening P ⇓ x\x′ forces the component x in P always
to be a singleton {x′}. When there is no risk of confusion, the
name x′ can be omitted.

Generalisation P ⇑ x\x′ is the opposite of flattening. It
allows an element x in pattern P to be repeated one or many
times. Both the generalisation and flattening operators can be
overloaded to be applied to a set X of component variables.

Lifting P ↑ X results in a pattern P ′ that contains a varying
number of instances of pattern P . For example, Adapter ↑
Target is the pattern that contains a number of Targets of
adapted classes. Each of these has a dependent Adapter and
Adaptee class configured as in the original Adapter pattern.
In other words, the component Target in the lifted pattern
plays a role similar to the primary key in a relational database.
The difference between lifting and generalisation is illustrated
in Example 1.

Note that pattern specifications are closed formulae, contain-
ing no free variables. Although the names given to component
variables improve readability significantly, they have no effect
on semantics. So, in the sequel, we will often omit new
variable names and write simply P ⇓ x to represent P ⇓ x\x′,
and P ⇓ X to represent P ⇓ X\X ′. For the lifting operator,
when the key set X is singleton, we omit the set brackets for
simplicity, so we write P ↑ x instead of P ↑ {x}.

The following are some simple examples that illustrate the
meanings of pattern operators. They are also used in the
next section to illustrate the notions of validity of pattern
compositions.

Example 1: Consider patterns P and Q defined as below.

P = ⟨{A : Class}, A.isAbstract⟩
Q = ⟨{B : Class, C : Class}, B −−◃ C⟩

where for any classes X and Y , X.isAbstract means that
class X is an abstract class, X −−◃ Y means that class X is
a subclass of Y . We have that

Spec(P) = ∃A : Class · (A.isAbstract)

Spec(Q) = ∃B,C : Class · (B −−◃ C)

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 5

Consider the pattern compositions R1 to R4 defined as
follows:

R1 = P#(D : Class •D ⋄−→ A)

R2 = Q ⇑ B\Bs

R3 = Q ↑ B\Bs

R4 = (P ∗Q)[A = C]

where for any classes X and Y , X ⋄−→ Y means X has part
Y , i.e. there is composite/aggregate relation from X to Y .

Informally, R1 adds an additional component D to P
and connects it to class A with an aggregation relation.
R2 generalises Q by allowing a number of classes Bs =
{B1, · · · , Bn, · · · } to be C’s subclasses instead of Q, whereas
R3 is the lifting of Q on the component B. R4 is the
composition of P and Q by unifying component A of pattern
P with component C of pattern Q. These compositions are
illustrated in Fig. 2.

!

A"
B! C!

!

isAbstract"

!

B"
!

C!

isAbstract"

A" D!

isAbstract"

!

B2! C!

B1!

Bn!
…!

…!

Bs!

Cm!

B2!
C1!

B1!

Bn!
…!

…!

…!

…!

Bs! Cs!

B! A=C!
isAbstract"

!

Not"isAbstract"

!

B! C!

Not"isAbstract"

! !

A=B! C!

isAbstract"

P! Q!
Q’!

R1!
R2! R3!

R4! R5!

Fig. 2. Illustration of the Patterns in Examples 1 to 4

From the definitions of the operators we immediately have:

Spec(R1) = ∃A,D : Class · (A.isAbstract ∧D ⋄−→ A)

Spec(R2) = ∃Bs : P(Class), ∃C : Class ·
(∀B ∈ Bs · (B −−◃ C))

Spec(R3) = ∃Bs,Cs : P(Class) ·
(∀B ∈ Bs · ∃C ∈ Cs · (B −−◃ C))

Spec(R4) = ∃A,B : Class · (A.isAbstract ∧B −−◃A)

⊓&
In [32], we proved a complete set of the equational laws

that the operators obey. Some of theme are used in the proof
of theorems and in the case study. For the sake of self-
containedness, these laws are listed here in Fig. 3, where the
following notations are used.

Let P be any given pattern, X = {x1 : T1, · · · , xn : Tn}
be any set of variables, and p be any predicate.

• XP = X ∩ V ars(P);
• X↑ = {xs1 : P(T1), · · · , xsn : P(Tn)},
• ∃X · p denotes ∃x1 : T1 · · · ∃xn : Tn · p,
• ∀X · p denotes ∀x1 : T1 · · · ∀xn : Tn · p,
• ∃X ∈ Xs · p denotes ∃x1 ∈ xs1 · · · ∃xn ∈ xsn · p,
• ∀X ∈ Xs · p denotes ∀x1 ∈ xs1 · · · ∀xn ∈ xsn · p,

• vars(p) denotes the set of free variables in predicate p,
• Let X ′ = (X ∩ vars(p)) ∪ (X − vars(p)), and Y =

(V ars(P) ∪ vars(p))−X ′). Then,

p⇑X = ∀X ∈ X↑ · p
p⇓X = p({x′

1}, · · · , {x′
n}, xn+1, · · · , xk),

p(P↑X) = ∀X ′ ∈ X ′↑ · ∃Y ∈ Y ↑ · (Pred(P) ∧ p).

V. THE NOTION OF VALIDITY

Our process to determine validity of compositions considers
each of feature preservation, semantic preservation and sound-
ness preservation in turn. We formally define these notions
now and study the relationships between them.

A. Feature Preservation
If a pattern P has certain feature, one would expect that a

valid use of the pattern should also have the feature. The notion
of feature preservation can be formally defined as follows.

Definition 6: (Feature Preservation) A unary operator ⊕ on
patterns is feature preserving, if, for any pattern P and any
predicate p, pattern P has property p implies that ⊕P also
has property p. Formally,

Spec(P) ⊢ p ⇒ Spec(⊕P) ⊢ p.

A binary operator ⊕ on patterns is feature preserving, if for
any patterns P and Q and any predicate p, pattern P has the
property p or pattern Q has the property p imply that P ⊕Q
also has property p. Formally,

(Spec(P) ⊢ p) ∨ (Spec(Q) ⊢ p) ⇒ (Spec(P ⊕Q) ⊢ p). ⊓&

The following lemma proves an important property of
feature preservation operators.

Lemma 1: (Feature Preservation Lemma)
(a) An unary pattern operator ⊕ is feature preserving, if for

all patterns P , Spec(⊕P) ⇒ Spec(P).
(b) A binary pattern operator ⊕ is feature preserving, if for

all patterns P and Q, Spec(P⊕Q) ⇒ Spec(P) and Spec(P⊕
Q) ⇒ Spec(Q).

Proof: (a) Assume that for all patterns P , we have that
Spec(⊕P) ⇒ Spec(P). Then, for any predicate p, Spec(p) ⊢
p implies that Spec(⊕P) ⊢ p by the consistency of the logic.
Thus, ⊕ preserves features.

(b) Assume that for a property p, we have that Spec(P) ⊢ p.
Because Spec(P ⊕ Q) ⇒ Spec(P), we have that Spec(P ⊕
Q) ⇒ p. If we have that Spec(Q) ⊢ p, then, because
Spec(P ⊕Q) ⇒ Spec(Q), we have that Spec(P ⊕Q) ⇒ p.
Thus, we have that

(Spec(P) ⊢ p) ∨ (Spec(Q) ⊢ p) ⇒ (Spec(P ⊕Q) ⊢ p).

That is, ⊕ preserves features.
An important property of pattern specifications is com-

pleteness, which means that it should capture all aspects of
the design. If the specification is incomplete, a design may
wrongly be regarded as an instance of the pattern, leading to
a false positive. The formal definition of completeness is as
follows.

6 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

1. Laws of !:

P ! P (4)
(P ! Q) ∧ (Q ! R) ⇒ (P ! R) (5)

P ! Q ∧Q ! P ⇒ P ≈ Q (6)
FALSE ! P ! TRUE (7)

2. Laws of [c]:

(c1 ⇒ c2) ⇒ P [c1] ! P [c2] (8)
P [c][c] ≈ P [c] (9)

P [c1][c2] ≈ P [c2][c1] (10)
P [c1][c2] ≈ P [c1 ∧ c2] (11)

P [true] ≈ P (12)
P [false] ≈ FALSE (13)

3. Laws of ∗:

(P ∗Q) ! P (14)
Q ! P ⇒ P ∗Q ≈ Q (15)

P ∗ P ≈ P (16)
P ∗ TRUE ≈ TRUE ∗ P ≈ P (17)

P ∗ FALSE ≈ FALSE ∗ P ≈ FALSE (18)
P ∗Q ≈ Q ∗ P (19)

(P ∗Q) ∗R ≈ P ∗ (Q ∗R) (20)

4. Laws of #:

P#(X • c1) ! P (21)
P#(X • c1) ! P#(X • c2), if (c1 ⇒ c2) (22)
P#(X • c1) ! Q#(X • c1), if P ! Q (23)
P#(X • c1) ! P#(X • c2), if c1 ⇒ c2 (24)
P ≈ TRUE#(V ars(P) • Pred(P)) (25)

P#(∅ • True) ≈ P (26)
P#(X • False) ≈ FALSE (27)

P#(X • c1)#(Y • c2) ≈ P#(X ∪ Y • c1 ∧ c2) (28)
P#(X • c1)#(Y • c2) ≈ P#(Y • c2)#(X • c1) (29)

5. Laws of ⇓ and ⇑:

(P ⇓ ∅) ≈ P (30)
(P ⇓ X) ⇓ Y ≈ (P ⇓ Y) ⇓ X (31)
(P ⇓ X) ⇓ Y ≈ P ⇓ (X ∪ Y) (32)

(P ⇑ ∅) ≈ P (33)
(P ⇑ X) ⇑ Y ≈ (P ⇑ Y) ⇑ X (34)
(P ⇑ X) ⇑ Y ≈ P ⇑ (X ∪ Y) (35)

6. Laws connecting ∗ with others:

P [c] ∗Q ≈ (P ∗Q)[c] (36)
(P ⇑ X) ∗Q ≈ (P ∗Q) ⇑ X (37)
(P ⇓ X) ∗Q ≈ (P ∗Q) ⇓ X (38)

(P ∗Q) ⇑ X ≈ (P ⇑ XP) ∗ (Q ⇑ XQ) (39)
(P ∗Q) ⇓ X ≈ (P ⇓ XP) ∗ (Q ⇓ XQ) (40)

(P ↑ X) ∗Q ≈ ((P ∗Q) ↑ X) ⇓ V ars(Q) (41)

7. Laws connecting ⇑, ⇓ and ↑:

(P ⇑ X\U) ⇓ (U\X) ≈ P (42)
(P ⇓ X\U) ⇑ U\X) ≈ P (43)

(P ↑ x) ⇓ (V ars(P ↑ x)) ≈ P (44)
P ⇑ X ≈ (P ↑ X) ⇓ ((V ars(P ↑ X))−X↑) (45)

8. Laws connecting # with others:

P#(X • c) ≈ P [∃X · c] (46)
P ⇓ (xs\x) ≈ P#({x : T} • (xs ≈ {x}) (47)

P ⇑ x\xs ≈ P#({xs : P(T)} • (∀x ∈ xs · Pred(P)) (48)
P [c] ≈ P#(∅ • c) (49)

P ≈ TRUE#(V ars(P) • Pred(P)) (50)
P ∗Q ≈ P#(V ars(Q) • Pred(Q)) (51)

P ↑ X ≈ P#(V ars(P ↑ X) • Pred(P ↑ X)) (52)

9. Laws connecting [c] with ⇑, ⇓ and ↑:

P [c] ⇑ X ≈ (P ⇑ X)[c⇑] (53)
P [c] ↑ X ≈ (P ↑ X)[c↑] (54)
P [c] ⇓ X ≈ (P ⇓ X)[c⇓] (55)

Fig. 3. Laws of Pattern Operators

Definition 7: (Completeness of Pattern Specification) Let
P = ⟨V ars, Pred⟩ be a formal specification of a given
pattern, Thm be a set of statements on the properties that
all instances of the pattern should possess. The specification
P is complete with respect to Thm, if for all p ∈ Thm, we
have that Spec(P) ⊢ p. ⊓&

Because design patterns are documented informally and
represent empirical knowledge, the completeness of a formal
specification can only be judged manually, perhaps with the
aid of examples. However, we would want a composition
to preserve completeness when its components do. More
formally,

Definition 8: (Completeness Preservation) A unary operator
⊕ on patterns is completeness preserving, if, for any pattern
P and set Thm of statements, P is complete with respect to
Thm implies that ⊕P is also complete with respect to Thm.

A binary operator ⊕ on patterns is completeness preserving,
if for any patterns P and Q and any sets ThmP and ThmQ

of statements, P is complete w.r.t. ThmP and Q is complete
w.r.t. ThmQ imply that P ⊕ Q is complete w.r.t. ThmP ∪
ThmQ. ⊓&

Fortunately, completeness preservation is guaranteed by
feature preservation, as the following lemma states

Lemma 2: (Completeness Preservation Lemma)
(a) An unary pattern operator ⊕ is completeness preserving,

if it is feature preserving.
(b) A binary pattern operator ⊕ is completeness preserving,

if it is feature preserving.
Proof:

(a) Let P be any pattern specification that is complete w.r.t. a
given set of statements Thm. By Definition 7, we have that for
all p ∈ Thm, Spec(P) ⇒ p. Because ⊕ is feature preserving,
we have that Spec(⊕(P)) ⇒ p. Therefore, statement (a) of
the lemma is true.

(b) Similarly, let P and Q be any pattern specifications com-
plete w.r.t. sets of statements ThmP and ThmQ, respectively.

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 7

By Definition 7, we have that

∀p ∈ ThmP · (Spec(P) ⇒ p), (56)
∀q ∈ ThmQ · (Spec(Q) ⇒ q). (57)

Now, let s ∈ ThmP ∪ ThmQ. So s ∈ ThmP or s ∈ ThmQ.
If s ∈ ThmP , by (56) and statement (b) of Lemma 1, we
have that Spec(P ⊕Q) ⇒ s. Similarly, if s ∈ ThmQ then by
(57) and statement (b) again, Spec(P ⊕ Q) ⇒ s. So for all
statements s ∈ ThmP∪ThmQ implies that Spec(P⊕Q) ⇒ s.
This means that ⊕ preserves completeness.

Example 2: Consider the patterns in Example 1. It is easy
to see that Spec(R1) ⇒ Spec(P). Thus, we can prove that for
all p, Spec(P) ⇒ p implies that Spec(R1) ⇒ p by transitivity
of ⇒. This means that for all properties p that pattern P has,
pattern R1 also has property p. In other words, pattern R1

preserves the features of pattern P . Similarly, we also have

Spec(R2) ⇒ Spec(Q)

Spec(R3) ⇒ Spec(Q)

Spec(R4) ⇒ Spec(P) and Spec(R4) ⇒ Spec(Q).

This means that patterns R2 and R3 preserve the features
of pattern Q and pattern R4 preserves the features of pattern
Q.

Note we do not allow the empty set ∅ to be an instance
of power set type P(T), since if Bs = ∅ then Spec(R2) and
Spec(R3) are vacuously true, even if Spec(Q) is false. So
this requirement is necessary for R2 and R3 to be feature
preserving.
⊓&

B. Preservation of Semantics
The semantics of a pattern is the set of designs that conform

to it. More formally, we have
Definition 9: (Denotational Semantics of Patterns) Let P be

a pattern specification. The denotational semantics (or simply
semantics) of P , denoted by [[P]], is the set of models m that
satisfy the specification. Formally,

[[P]] " {m|m |= Spec(P)}. ⊓&

By the above definition, it is easy to see that, for all patterns
P and Q, we have

P ≈ Q ⇔ [[P]] = [[Q]], (58)
P ! Q ⇔ [[P]] ⊆ [[Q]]. (59)

Some operators preserve the denotational semantics while
changing the structural requirements, while others introduce
new restrictions, and thereby change the semantics. Semantics
preservation is formally defined as follows.

Definition 10: (Semantics Preservation Property) A unary
operator ⊕ on patterns is semantics preserving if for all
patterns P we have that [[P]] = [[⊕P]].

A binary operator ⊕ on patterns is semantics preserving if,
for all patterns P and Q, we have [[P ⊕Q]] = [[P]]∩ [[Q]]. ⊓&

Obviously, a unary operator ⊕ preserves semantics, if and
only if for all models m, (m |= P) ⇔ (m |= ⊕P). For a
binary operator ⊕, the operator ⊕ preserves semantics if and

only if for any patterns P and Q, we have for all models m,
(m |= P ⊕Q) ⇔ ((m |= P) ∧ (m |= Q)).

Example 3: Consider patterns P , Q and R4 defined in
Example 1. We have that

m |= Spec(R4)

⇔ m |= ∃A,B : Class · (A.isAbstract ∧B −−◃A)

⇒ m |= ∃A : Class · (A.isAbstract)

∧ ∃A,B : Class · (B −−◃A)

⇔ m |= ∃A : Class · (A.isAbstract) ∧
m |= ∃A,B : Class · (B −−◃A)

⇔ m |= Spec(P) ∧m |= Spec(Q)

Therefore, [[R4]] ⊆ [[P]] ∩ [[Q]].
On the other hand, [[R4]] ̸= [[P]] ∩ [[Q]], because

∃A : Class · (A.isAbstract) ∧ ∃A,B : Class · (B −−◃A)

̸⇒ ∃A,B : Class · (A.isAbstract ∧B −−◃A).

Therefore, pattern R4 does not preserve the semantics of
patterns P and Q, even though, as we saw in Example 2,
it preserves their features. ⊓&

C. Preservation of Soundness

A design pattern is sound if it has at least one instance. For
example, the FALSE pattern is not sound because it cannot
be satisfied. Any operation ⊕ is soundness preserving if when
applied to a sound pattern P it gives a sound pattern ⊕P .

Definition 11: (Soundness Preservation Property) A unary
operator ⊕ on patterns is soundness preserving if for any
pattern P we have

∃m · (m |= P) ⇒ ∃m · (m |= ⊕P).

A binary operator ⊕ on patterns is soundness preserving if
for any patterns P and Q we have

(∃m ·m |= P) ∧ (∃m ·m |= Q) ⇒ ∃m ·m |= (P ⊕Q). ⊓&

The following lemma is useful.
Lemma 3: If a pattern operator preserves semantics, it also

preserves soundness.
Proof: Here, we only give the proof for unary pattern

operators. The proof for binary operators is similar.
Let ⊕ be a unary operator that preserves semantics. By

definition of semantics preservation, for all patterns P and
models m, we have that m |= P ⇔ m |= ⊕P . If P is sound,
i.e. there is a model m such that m |= P , then, we have
that m |= ⊕P . That is, ⊕P is also sound. Thus, ⊕ preserves
soundness.

Example 4: Let pattern P be as defined as in Example 1.
Let pattern Q′ be the following.

⟨{B,C : Class}, (B −−◃ C ∧ ¬B.isAbstract)⟩

Then, we have that

Spec(Q′) = ∃B,C : Class · (B −−◃ C ∧ ¬B.isAbstract)

8 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

Although P and Q′ are sound, their composition need not
be. For example, pattern R5 is not sound

R5 = P ∗Q′[A = B]

because the following is not satisfiable.

Spec(R5) = ∃A,C : Class · ((A−−◃ C) ∧
¬A.isAbstract ∧A.isAbstract),

⊓&
From Examples 2 to 4, we can see that not all pattern

compositions preserve semantics nor even soundness. The next
section analyses which operators preserves these properties.

Knowledge of this will make validity much easier to deter-
mine without recourse again to logic as required above.

VI. ANALYSIS OF PATTERN OPERATORS

Now we analyse the preservation properties of the operators,
proving a set of general theorems. The lengthier proofs are in
the appendix.

A. Feature Preservation Properties
Theorem 1: (Feature Preservation Properties of Pattern Op-

erators) The restriction, extension, flattening, generalisation,
superposition and lifting operators all preserve features. ⊓&

Proof: (Theorem 1)
In each case, we prove Spec(⊕(P)) ⇒ Spec(P) by using

Definition 5, which defines the operators, and then use Lemma
1 to conclude that the operator is feature preserving. We give
proofs for just three of the operators. The other three proofs
are similar. Let X = {x1 : T1, · · · , xn : Tn} in each case.

(1) Restriction. Let V ars(P) = X . By the definition of the
operator,

Spec(P [c]) = ∃X · (Pred(P) ∧ c)

⇒ ∃X · (Pred(P)) = Spec(P).

(2) Extension. Let V = {y1 : T ′
1, · · · , yk : T ′

k}. By the
definition of the operator, and since V ∩X = ∅, we have that

Spec(P#(V • c)) = ∃X ∃V · (Pred(P) ∧ c)

⇒ ∃X ∃V · (Pred(P)) ⇒ ∃X · (Pred(P)) = Spec(P)

(3) Flattening. We first consider P ⇓ x\x′ where x :
P (T). Let V ars(P) = {x : P(T)} ∪ X and Pred(P) =
p(x, x1, · · · , xn). We have that

Spec(P ⇓ x\x′) = ∃x′ : T · ∃X · (p({x′}, x1, · · · , xn))

⇒ ∃x : P(T) · ∃X · (p(x, x1, · · · , xn)) = Spec(P)

We now extend this by mathematical induction to all finite
sets of variables.

Assume that the flatten operator has the following property
for all variable sets X of size k > 0.

Spec(P ⇓ X) ⇒ Spec(P). (60)

Then, for all variable sets X ′ of size k + 1, X ′ = {x} ∪X ,
where X is of size k. By algebraic law (32) in Fig. 3, the
following equality is true.

P ⇓ ({x} ∪X) ≈ (P ⇓ x) ⇓ X.

Therefore, we have that

Spec(P ⇓ X ′) = Spec(P ⇓ ({x} ∪X))

= Spec((P ⇓ x) ⇓ X)

⇒ Spec(P ⇓ x) ⇒ Spec(P)

Therefore, for all variable sets of size k+1, we also have the
property (60).

So by mathematical induction, 60 is true for finite sets
of variables X and by Lemma 1, the operator ⇓ is feature-
preserving.

Note that, for all patterns P and Q, if Spec(P) ⇒ Spec(Q),
we have that P ! Q. Therefore, the feature preservation
theorem means that applying any of the six pattern operators
will not increase the set of instances of the pattern. This is
because each of these operators either introduces additional
constraints on the instances, or modifies the structure of the
pattern without changing its semantics.

As shown in the case studies and examples given in [53],
pattern compositions are expressions formed from patterns and
the six operators. Using Theorem 1, by induction on the struc-
ture of expression, we can prove all such pattern expressions
are feature preserving. Thus, we have the following theorem.

Theorem 2: (Feature Preservation Property of Expressions)
For any expression E made up by applying the six operators
to ground patterns Pi, for each i we have that Spec(E) ⇒
Spec(Pi). This means that E preserves the features of Pi. ⊓&

Proof: (Theorem 2)
The theorem follows by induction on the structure of

expression E.
For the base case, E = Pi for some i such that Pi is the

only constituent pattern so Spec(E) ⇒ Spec(Pi).
Suppose, as the induction hypothesis, that for some expres-

sion E′ we have for each i that Spec(E′) ⇒ Spec(Pi).
Then, for any of the five unary operators ⊕, we have that

Spec(⊕E′) ⇒ Spec(E′) because of their feature preservation
properties. And, by transitivity of ⇒, for each i, the statement
Spec(⊕E′) ⇒ Spec(Pi) follows from the induction hypothe-
sis. The argument for a binary operator ⊕ is similar.

Informally, Theorem 2 guarantees that any expression made
up from the operators preserves features. We regard this as
essential for the correctness of using patterns.

B. Semantics Preservation Properties
Theorem 3: (Semantics Preservation Properties) Superposi-

tion, lifting and generation operators preserve semantics. That
is, for all patterns P and Q, all sets X ⊆ V ars(P), we have
that for all models m,

(m |= P ∗Q) ⇔ ((m |= P) ∧ (m |= Q)), (61)
(m |= (P ↑ X)) ⇔ (m |= P), (62)
(m |= (P ⇑ X)) ⇔ (m |= P). (63)

⊓&
Proof: (Theorem 3)

(1) Superposition.
By definition, m |= (P ∗ Q) if and only if there is an

assignment α from V ars(P ∗Q) to elements in m such that
[[Pred(P ∗Q)]]mα is true.

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 9

By Definition 5, Pred(P ∗ Q) = Pred(P) ∧ Pred(Q). In
predicate logic, we have that [[Pred(P)∧Pred(Q)]]mα = true
if and only if [[Pred(P)]]mα = true and [[Pred(Q)]]mα = true.

Because V ars(P ∗ Q) = V ars(P) ∪ V ars(Q), let αP

and αQ be the assignments obtained by restricting α on
V ars(P) and V ars(Q), respectively. Then, we have that
[[Pred(P)]]mα = true is true if and only if [[Pred(P)]]mαP

=
true.

By definition, we have that [[Pred(P ∗Q)]]mαP
= true if and

only if m |= P . Similarly, we have that [[Pred(Q)]]mα = true
if and only if m |= Q.

Therefore, the theorem holds for the superposition operator.
(2) Lifting.
Without lost of generality, we assume that V ars(P) = {x1 :

T1, · · · , xn : Tn} and X = {x1 : T1, · · · , xk : Tk} with
n > k > 0, and α(xi) = ai for each i. Let Pred(P) =
p(x1, · · · , xn), and Y = V ars(P)−X .

(⇒) Let m |= P . By Definition 2, there is an assignment α
such that

[[Pred(P)]]mα = true. (64)

We have that Equ (64) means that p(a1, a2, · · · , an) is true
in model m.

Define α′(xsi) = {ai}, for i ∈ 1 . . . n. We also have that
xsi ̸= ∅ for all i ∈ 1 · · · k. Then the following predicate must
be true under assignment α′.

∀X ∈ X↑ · ∃Y ∈ Y ↑ · p(x1, x2, · · · , xn)

In other words, [[Pred(P ↑ V)]]mα′ = true. Therefore, we have
that m |= P ↑ V .

(⇐) Let m |= P ↑ V . By Definition 2, there is an
assignment α such that

[[Pred(P ↑ V)]]mα = true. (65)

Let α(vsi) = Ai. Equ (65) means that the following
predicate is true in model m for all a1 ∈ A1, · · · , ak ∈ Ak.

∃vk+1 · · · ∃vn · p(a1, · · · , ak, vk+1, · · · , vn)

Let ak+1, · · · , an be the witnesses for vk+1, · · · , vn in the
above. Then, we have that p(a1, · · · , an) is true in model m.
Define assignment α′(vi) = ai for each i ∈ 1 . . . n. We have
that [[p(v1, v2, · · · , vn)]]mα′ = true. That is, m |= P .

(3) Generalisation.
(⇒) Algebraic law (45) in Fig. 3 states that

P ⇑ X ≈ (P ↑ X) ⇓ (V −X↑),

where V = V ars(P ↑ X) and X↑ is X with all the variables
lifted.

Using reflexivity of ! on this and proof (2), we get for all
valid Y that (P ↑ X) ⇓ Y ! (P ↑ X) ! P . Since ! is
transitive, and taking Y = ∅, we have P ⇑ X ! P . By the
definition of the ! relation, we have that for all models m
that m |= P ⇑ X ⇒ m |= P .

(⇐) We prove the statement for a single variable v. The
general statement can then easily be proved by induction on
the number of variables in the set X .

Let v ∈ V ars(P). Assume that m |= P . By definition, there
is an assignment α such that [[Pred(P)]]mα = true. Let α′ =
α[vs := {a}], where a = α(v). Then, α′ is an assignment for
P ⇑ v. By the definition of Pred(P ⇑ V), we have

[[Pred(P ⇑ v)]]mα′ = [[∀v ∈ vs · Pred(P)]]mα′

= [[∀v ∈ {a} · Pred(P)]]mα′ = [[Pred(P)]]mα = true.

By the definition of |=, we then have that m |= P ⇑ v.
An immediate corollary is the following.
Corollary 1: For all patterns P and Q, we have that
1) [[P ∗Q]] = [[P]] ∩ [[Q]];
2) [[P ⇑ x]] = [[P]], for all x ∈ V ars(P);
3) [[P ↑ x]] = [[P]], for all x ∈ V ars(P). ⊓&
These operators change the structure of the pattern without

affecting conformance. They are usually applied, as seen in
[53], in preparation for restriction and extension, which do
affect conformance since they add constraints.

Theorem 4: (Semantics of Restriction, Extension and Flat-
tening) Let P be any given pattern, V a set of variables disjoint
to V ars(P), and c a given predicate. We have that

[[P [c]]] = {m|m ∈ [[P]] ∧m |= c}, (66)
[[P#(V • c)]] = {m|m ∈ [[P]] ∧m |= ∃V · c}, (67)
[[P ⇓ x]] = {m|m ∈ [[P]] ∧m |= (||x|| = 1).} (68)

⊓&
Proof: (Theorem 4)

In each case, the (⇐) case is similar to the (⇒) case.
(1) Restriction.
(⇒): Let m ∈ [[P [c]]]. By definition of the denotational

semantics of a pattern, we have that m |= Spec(P [c]). That
is, there is an assignment α such that [[Pred(P) ∧ c]]mα =
true. This means [[Pred(P)]]mα = true and [[c]]mα = true. The
former means that m |= Spec(P), thus m ∈ [[P]]. And, the
latter means m |= c. Therefore, we have that m ∈ {m|m ∈
[[P]] ∧m |= c}.

(2) Extension.
(⇒): Let m ∈ [[P#(V •c)]]. By definition, we have that m |=

Spec(P#(V • c). Thus, there is an assignment α such that
[[Pred(P)∧∃V ·c]]mα = true. This means [[Pred(P)]]mα = true
and [[∃V · c]]mα = true. The former means that m |= Spec(P),
so m ∈ [[P]]. The latter means that m |= (∃V · c). Therefore,
we have that m ∈ {m|m ∈ [[P]] ∧m |= ∃V · c}.

(3) Flattening.
(⇒): Let m ∈ [[P ⇓ x]]. By definition, we have that m |=

Spec(P ⇓ x). This means there is an assignment α such that
[[Pred(P)∧x = {x′}]]mα = true. This means [[Pred(P)]]mα =
true and [[x = {x′}]]mα = true. The former means that m ∈
[[P]]. The latter means that m |= x = {x′} for some x′, which
is equivalent to m |= ||x|| = 1. Therefore, m ∈ {m|m ∈
[[P]] ∧m |= ||x|| = 1}.

Note that Theorem 4 implies that [[P [c]]] ⊆ [[P]], [[P#(V •
c)]] ⊆ [[P]], and [[P ⇓ x]] ⊆ [[P]]. Using Theorem 3 as well, and
induction on the structure of pattern expressions, we obtain:

Corollary 2: For any expression E made up by applying
the six operators to ground patterns Pi, for each i, we have
that [[E]] ⊆ [[Pi]]. ⊓&

10 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

C. Soundness Preservation Properties
While each of the six operators preserve features, some

do not preserve soundness. For example, restriction does
not because P [false] cannot be sound even if P is sound.
However, Lemma 3 tells us that semantics preserving operators
also are soundness preserving so we conclude:

Corollary 3: The superposition, lifting and generalisation
operators preserve soundness. ⊓&

Restriction, extension and flattening do not, however, as the
following counterexamples show.

Example 5: (Counterexamples of Soundness Preservation)
(1) Restriction. Suppose [[P]] ̸= ∅. But [[P [false]]] = ∅

because P [false] ≈ FALSE.
(2) Extension. Suppose [[P]] ̸= ∅ again. But [[P#(V •

false)]] = ∅ because P#(V • false) ≈ FALSE.
(3) Flattening. Suppose P = ⟨{v : P(Class)}, ||v|| ≥ 2⟩.

Then designs exist that satisfy P so [[P]] ̸= ∅. However,
from the definition of the flatten operator, P ⇓ v = ⟨{v′ :
Class}, (||{v′}|| ≥ 2)⟩. But ||{v′}|| ≥ 2 is not satisfiable so
[[P ⇓ v]] = ∅. ⊓&

From Theorem 4, we obtain the following conditions for
these operators to lose soundness.

Corollary 4: (Conditions of losing soundness)
Let P be any given pattern. We have that
1) P [c] is not sound, if Pred(P) ⇒ ¬c.
2) P#(V • c) is not sound if Pred(P) ⇒ ¬∃V · c.
3) P ⇓ x is not sound if Pred(P) ⇒ (||x|| ̸= 1). ⊓&
Informally, semantics is lost if a conflicting condition is

introduced. These conditions are necessary as well as sufficient
if the logic system is complete in the sense that c ̸= false
implies that there is a model m such that m |= c, so these
conditions are the strongest that one can get.

D. An Example
We now conclude the section by applying these theorems

to our original motivating example of Fig. 1.
• Feature Preservation.

The compositions (c), (d) and (f) in Fig. 1 can be formally
expressed using the operators as follows.

(c) = Composite ∗Adapter[Leaves = Target]

(d) = Composite ∗Adapter[Composite = Target]

(f) = Composite ∗Adapter[Leaves = Target

∧ Component = Adapter]

So by Theorem 2, all the features of Composite and Adapter
are present in these compositions. This is not true of (e),
however, because the structural feature Composite ⋄ −→
Component is missing. So, (e) is not valid, and thus, cannot
even be written as an expression.

• Semantics Preservation.
By Theorem 4, we have the semantics of (c)

[[(c)]] = {m|m ∈ [[Composite ∗Adapter]]
∧m |= (Leaves = Target)}

⊆ [[Composite ∗Adapter]]
= [[Composite]] ∩ [[Adapter]]

As [[Composite]] ̸= [[Adapter]], we have [[(c)]] ⊂ [[Adapter]]
and [[(c)]] ⊂ [[Composite]].

So (c) does not preserve semantics but instead restricts the
semantics with a further condition. Compositions (d) and (f)
are similar.

Informally, this means that the composition does not com-
pletely preserve the semantics of the composted patterns, but
restricts the semantics with an additional condition. This is
what one would expect.

In the same way, we can also prove a similar property for
compositions (d) and (f).

• Soundness Preservation.

By Corollary 4 we have that composition (c) is not sound, if

Pred(Composite ∗Adapter) =⇒ ¬(Leaves = Target).

However, it is not provable. Since the logic system is com-
plete, and Composite and Adapter are sound, we have that
composition (c) is sound. Compositions (d) and (e) are also
sound for similar reasons, but (f) is not. By Theorem 4, the
semantics of (f) is

{m|m ∈ [[Composite ∗Adapter]]

∧m |= Leaves=Target ∧ Component=Adapter}.

Assume that a software system m satisfies the specifications
of Composite and Adapter patterns as well as the conditions
Leaves = Target and Component = Adapter. Because

Pred(Composite) =⇒ Leaves−−◃ Component,

Pred(Adapter) =⇒ Adapter −−◃ Target,

we have that Leaves−−◃Adapter and Adapter −−◃ Leaves.
This contradicts the axioms about inheritance relation between
classes, i.e. Equ. (3). So we have

Pred(Composite ∗Adapter) =⇒
¬(Leaves = Target ∧ Component = Adapter).

In summary, compositions (c) and (d) are valid. However,
(e) and (f) are not, because (e) is not feature-preserving
though it is implementable, and (f) is not sound and thus not
implementable.

Note that proofs of the conditions of lost soundness can be
performed by employing a theorem prover such as SPASS1.
Appendix 3 gives the details of using SPASS in the proof of
above example.

In conclusion, the validity of a pattern composition can
be determined in three steps. First, represent it using the six
pattern operators. If this can be done then the composition
is feature-preserving. Then, determine whether semantics and
soundness are preserved. This is best done by applying the
theorems we proved in this section rather than using the formal
definitions directly. This is demonstrated in the next section
in the analysis of overlap-based pattern compositions.

1http://www.spass-prover.org

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 11

VII. ANALYSIS OF OVERLAP-BASED COMPOSITIONS

In both Dong et al’s and Taibi’s approaches, the composition
of patterns A and B is formally expressed as mapping of
components of patterns A and B to the components in the
result pattern. This describes how components in the composed
patterns overlap. This approach is further developed in our
previous work [52], where pattern composition is formally
defined in terms of overlaps between components in the
patterns composed. Three types of overlaps were identified and
pattern compositions were defined for each kind of overlaps.
In this section, we re-express them in terms of the pattern
operators. By doing so, we can deduce their validity properties
from the theorems proved above.

A. Expression of Overlaps in Pattern Operators
To define the notion of overlap, suppose that patterns P

and Q are composed together in the form P ⊗ Q. Then,
if a model m conforms to this composition then m also
conforms both to P and to Q, provided that the composition
is sound. By the definition of conformance, we must have
assignments α1 and α2 such that [[Pred(P)]]mα1

= true and
[[Pred(Q)]]mα2

= true. There is an overlap between two
assignments if there is an element of the model m assigned
to two variables, one in V ars(P) and the other in V ars(Q).
There are three types of overlaps, distinguished by whether the
variables are elements (one-to-one), sets of elements (many-
to-many) or one of each (many-to-one or one-to-many). The
following defines composition with various types of overlaps
using the pattern operators.

Definition 12: (Composition with One-to-One Overlap) Let
P and Q be design patterns. Let v ∈ V ars(P) and u ∈
V ars(Q) be variables of the same type T , i.e. v, u : T . Then,
the composition of P and Q with one-to-one overlap v −−u,
written P ⟨v −−u⟩Q, is defined as follows:

P ⟨v −−u⟩Q " (P ∗Q)[v = u]. ⊓&
Definition 13: (Composition with Many-to-Many Overlap)

Let P and Q be design patterns. Let vs ∈ V ars(P) and us ∈
V ars(Q) be variables assigned to sets of model elements of
the same type P(T), i.e. vs, us : P(T). Then, the composition
of P and Q with many-to-many overlap vs >−< us, written
P ⟨vs >−< us⟩Q, is defined as follows:

P ⟨vs >−< us⟩Q " (P ∗Q)[vs ∩ us ̸= ∅]. ⊓&
For example, in Definition 12, T could be the type Class,

then v and u would be classes. In Definition 13, vs and us
would be sets of classes.

Alternative formulations of many-to-many overlaps are pos-
sible, by instantiating the general form below for R bound to
⊆, ⊂ and =.

P ⟨vs >−<R us⟩Q " (P ∗Q)[vs R us].

Theorem 5: (Ordering among Many-to-Many Composi-
tions) For all patterns P and Q, we have that

(P ⟨vs >−<⊂ us⟩Q) ! (P ⟨vs >−<⊆ us⟩Q) (69)
(P ⟨vs >−<= us⟩Q) ! (P ⟨vs >−<⊆ us⟩Q) (70)
(P ⟨vs >−<⊆ us⟩Q) ! (P ⟨vs >−< us⟩Q) (71)

Proof: The ordering relations follow Law (8) in Fig. 3,
and the fact that (vs ⊂ us) ⇒ (vs ⊆ us), (vs = us) ⇒
(vs ⊆ us) and (vs ⊆ us) ⇒ (vs ∩ us ̸= ∅).

The third sort of composition is defined as follows.
Definition 14: (Composition with One-to-Many Overlap)

Let P and Q be design patterns. Let v ∈ V ars(P) be a
variable assigned to a model element and let us ∈ V ars(Q)
be a variable assigned to sets of model elements of the type of
v; i.e., v : T and us : P(T). Then, the composition of P and
Q with one-to-many overlap v−−< us, written P ⟨v−−< us⟩Q,
is defined as follows:

P ⟨v −−< us⟩Q " (P ∗Q)[v ∈ us] ⊓&

Naturally, a composition with many-to-one overlap can also
be defined by symmetry. The version in [52] however is
slightly more complex in that P is first lifted to duplicate
its class components. It is defined as follows.

Definition 15: (Composition with Lifted One-to-Many
Overlap) Let P and Q be design patterns. Let v ∈ V ars(P) be
a variable assigned to a model element and let us ∈ V ars(Q)
be a variable assigned to sets of model elements of the type
of v; i.e., v : T and us : P(T). Then, the lifted composition
of P and Q with one-to-many overlap v−−< us is defined as
follows:

P ⟨v↑ −−<⊆ us⟩Q " (P ↑ (v\vs) ∗Q)[vs ⊆ us] ⊓&

Many alternatives to this are possible. Lifting could be
replaced by generalisation, for example, duplicating only the
generalised component. Also, the constraints vs ⊆ us could
be specialised to vs = us, vs ⊂ us, etc.

P ⟨v↑ −−<⊂ us⟩Q " (P ↑ (v\vs) ∗Q)[vs ⊂ us]

P ⟨v↑ −−<= us⟩Q " (P ↑ (v\vs) ∗Q)[vs = us]

P ⟨v⇑ −−<⊆ us⟩Q " (P ⇑ (v\vs) ∗Q)[vs ⊆ us]

P ⟨v⇑ −−<⊂ us⟩Q " (P ⇑ (v\vs) ∗Q)[vs ⊂ us]

P ⟨v⇑ −−<= us⟩Q " (P ⇑ (v\vs) ∗Q)[vs = us]

By applying the algebraic laws we can prove that these
compositions have the following relationships.

Theorem 6: For all patterns P and Q, we have that

P ⟨v↑ −−<R us⟩Q ! P ⟨v⇑ −−<R us⟩Q,

P ⟨v↑ −−<⊆ us⟩Q ! P ⟨v −−< us⟩Q.

where R is one of the relations ⊆, ⊂ and =.
The proof of the theorem is omitted for the sake of space.
Note that, by definition of many-to-many overlaps and one-

to-many overlaps, the ordering relations given in Theorem 5
also hold among P ⟨v↑ −−<R us⟩Q for R to be ⊆, ⊂ and =,
and among P ⟨v⇑ −−<R us⟩Q.

The above ! relationships between these composition oper-
ators are summarised in Fig. 4, where nodes represent various
composition operators and an arrow from node A to node B
means A ! B. On the right-hand side of Fig. 4 are the ordering
relations given in Theorem 5. On the left-hand side are the
! relationships between the one-to-many overlap composition
operators.

12 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

�

 �

�n

= n
� �

�n

= � ��

Fig. 4. Relationships Between Compositions with Overlaps

B. Validity of Overlap-based Compositions
By the theorems of feature preservation, semantics preser-

vation and soundness preservation of the operators used to
define the composition with overlaps, we know at once that
the validity of overlap-based composition follows from their
definitions.

Theorem 7: (Validity of Overlap Compositions) By the
theorems of feature preservation, semantics preservation and
soundness preservation for the operators we can draw conclu-
sions about their validity.

(I) One-to-One Overlaps. For a one-to-one overlap compo-
sition P ⟨v −−u⟩Q, we have that

1) it preserves features;
2) its semantics [[P ⟨v −−u⟩Q]] is:

{m|m ∈ [[P]] ∩ [[Q]] ∧m |= (v = u)};

3) it loses soundness, if Pred(P)∧Pred(Q) ⇒ ¬(v = u).
(II) Many-to-Many Overlaps. For a many-to-many overlap

composition P ⟨vs >−<R us⟩Q, we have that
1) it always preserves features;
2) its semantics is:

{m|m ∈ [[P]] ∩ [[Q]] ∧m |= (vs R us)};

3) it loses soundness, if

Pred(P) ∧ Pred(Q) ⇒ ¬(vs R us),

where (vs R us) is (vs ⊆ us), (vs ⊂ us), (vs = us), or
(vs ∩ us ̸= ∅).

(III) One-to-Many Overlaps. For a one-to-many overlap
composition P ⟨v† −−<R us⟩Q, where † is either ↑ or ⇑ and
R is the same as in (II), we have that

1) it always preserves features;
2) its semantics is

{m|m ∈ [[P]] ∩ [[Q]] ∧m |= (vs R us)};

3) it loses soundness, if

(Pred(P †v/vs) ∧ Pred(Q) ⇒ ¬(vs R us)).

Proof: To save space, we only give the proof of (I). The
proofs for (II) and (III) are similar.

(1) As shown in the previous subsection, a one-to-one
overlap composition P ⟨v −−u⟩Q can be expressed with the
pattern operators as follows.

P ⟨v −−u⟩Q = (P ∗Q)[v = u] (Def. 12)

Therefore, by Theorem 2, such a one-to-one overlap compo-
sition preserves features.

(2) For statement 2), we have that

[[P ⟨v −−u⟩Q]]

= [[(P ∗Q)[v = u]]] (Def. 12)

= {m|m ∈ [[P ∗Q]] ∧m ⊢ v = u} (Thm. 4)

= {m|m ∈ [[P]] ∩ [[Q]] ∧m ⊢ v = u} (Thm. 3)

(3) By Corollary 4 and Definition 12, a one-to-one overlap
composition P ⟨v−−u⟩Q loses its soundness, if Pred(P ∗Q) ⇒
¬(v = u). By Definition 5, we have that Pred(P ∗ Q) =
Pred(P) ∧ Pred(Q). Thus, statement 3) is true.

VIII. A CASE STUDY

In this section we report a case study in which a pattern-
oriented design approach is used to develop a general request
handling framework RHF [42].

Pattern-oriented design is a process of repeatedly recognis-
ing a design problem, identifying a design pattern to solve it
and then applying the pattern by instantiating it and composing
it to the design [29]. Table I summarises the five design
decisions that result in the design depicted in Figure 5. 2 A
case study with this example on how design decisions can be
formally expressed using pattern operators can be found in
[32].

We now turn to the validity problem, applying the same
three-step process as before. As we shall see, it will not only
identify two differences between the original manual design
presented in [42] and the design formally derived from the
algebra of design patterns as detected in our previous case
study [32]. It will also enable us to prove that the differences
are indeed errors in the manual design and to prove that the
formal design is valid.

A. Feature Preservation
As pointed out in [32], there is a mistake in the original

design. That mistake is that, in the definition of the Memento
pattern, the originator creates a state and passes it to the
caretaker component, which then holds the state and passes it
back to the originator when needed [2]. However, in the design
presented in [42], the caretaker creates the states. Therefore,
the feature in design pattern is not preserved in the design.

B. Semantics Preservation
Another problem with the original design is that it has a

structural feature that Client −→ command. By Theorem 3,
we have that

m ∈ [[RHFO]] =⇒ m |= (Client −→ Command).

where RHFO denote the original design presented in [42].
Informally, this means the design allows the client to send
requests directly to the command, bypassing command pro-
cessor, and therefore not logging. We believe this is not what

2Note that, there are two different versions of Command Processor pattern
in the literature by the same group of authors [9], [66]. The one used in [42]
is the one given in [9].

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 13

TABLE I
DESIGN DECISIONS MADE IN THE DESIGN OF RHF

Design problem Solution
The requests to the system are issued by the clients,
who may be human users or other computer systems.
Such requests must be objectified.

Apply the Command pattern that consists of an abstract class Command which de-
clares a set of abstract methods to execute client requests. A set of ConcreteCommand
subclasses implement these methods.

Multiple clients issue requests independently. A cen-
tral component should coordinate the handling of
these requests.

Use the Command Processor pattern to provide such coordination. The clients pass
concrete commands to a CommandProcessor component for further handling and
execution. It is inserted in between client and the Command class.

The system need to support undoing the actions
performed in response to requests.

Use Memento pattern. The Memento component maintains copies of the states of
the Originator, which is the Application class. The Caretaker component creates a
memento, holds it over time, and if needed, passes it back to the Originator.

Requests from client must be logged. Requests from
different users may be logged differently.

Apply Strategy pattern. The CommandProcessor passes the requests it received to
a logging context, i.e. the context role in Strategy, which implements the invariant
parts of the logging service and delegates the customer-specific logging aspects to the
ConcreteStrategy component in Strategy.

The system should support compound commands,
which are aggregates of other commands executed
in a particular order.

Use the Composite pattern with atomic commands as the Leaves and compound
commands as the Composite. Thus, add a new class CompoundCommand and an
whole-part relation from this new class to the Command class.

Client Command
Processor Logging

Concrete
Logging

Strategy A

Concrete
Logging

Strategy B

Command

Composite
Command

Concrete
Command A

Concrete
Command B

Application

Memento

Command Processor: command processor
Strategy: context

Strategy: strategy

Command Processor: command
Command: command
Composite: component
Memento: caretaker

Memento: memento

Memento: originator

Command: concrete command
Composite: leaf
Memento: caretaker

Command: concrete command
Composite: composite
Memento: caretaker

Strategy: concrete
strategy

Fig. 5. Original Design of Request Handling Framework as in [42]

the designer intended to do, so it is a semantics error and is
removed from the our revised version of the design.

Fixing the above two problems led to the revised design
depicted in Fig. 6.

On the other hand, the design decisions given in Table I
can be formally expressed using pattern operators as follows,
where RHF is the final result.

RHF1 " Command[Invoker = Client, Receiver\Application]
RHF2 " RHF1 ∗ CommandProcessor

[Command = Component
∧ Client = CommandProcessor]

RHF3 " RHF2 ∗Memento
[Originator = Application,Command −→ Caretaker]

RHF4 " RHF3 ∗ Strategy
[Context\LoggingContext, Strategy\Logging,
ConcreteStrategies\ConcreteLoggingStrategies]
[CommandProcessor −→ LoggingContext]

RHF5 " RHF4 ∗ Composite
[Leaves = ConcreteCommands
∧ Component = Command]
[Composite\CompositeCommand]

RHF " RHF5[Caretaker = Command]
[CommandProcessor = LoggingContext]

By applying algebraic laws, we can rewrite this to the
following, which exactly matches the diagram in Fig 6.

RHF ≈ TRUE
#({Client, Application, CommandProcessor, Logging,

Command,CompositeCommand,Memento : Class,
ConcreteLoggingStrategies,
ConcreteCommands : P(Class)}

• ((Client −→ CommandProcessor)∧
∀CC ∈ ConcreteCommands · (CC −→ Application∧

CC −−◃ Command ∧ ¬isAbstract(CC))∧
(CommandProcessor −→ Command)∧
(Command ⋄−→ Memento)∧
(Application −→ memento)∧
(CommandProcessor ⋄−→ Logging)∧
∀CL ∈ ConcreteLoggingStrategies · (CL−−◃ Logging)∧
isInterface(Command)∧
isInterface(Logging)∧
(CompositeCommand−−◃∗ Command)∧
(CompositeCommand ⋄−→+ Command)))

Therefore, by Theorem 2, we can conclude that the revised
design is feature preserving.

14 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

Client Command
Processor Logging

Concrete
Logging

Strategy A

Concrete
Logging

Strategy B

Command

Composite
Command

Concrete
Command A

Concrete
Command B

Application

Memento

Fig. 6. Revised Design of Request Handling Framework

C. Soundness Preservation
By applying the algebraic laws of pattern operators [32],

we can also prove that

RHF ≈ (Command ∗ CommandProcessor ∗Memento∗
Strategy ∗ Composite)[Connection]

where Connection is the conjunction of the following predi-
cates.

Command = Caretaker,
Command = Component,
Originator = Application,
Command.Client = CommandProcessor,
Originator = Application,
Leaves = ConcreteCommands,
Component = Command,
CommandProcessor = Context,
Caretaker = Command

By Corollary 4, the revised design loses its soundness if the
following is true.

Pred(Command ∗ CommandProcessor ∗Memento ∗
Strategy ∗ Composite) =⇒ ¬Connection.

Using the theorem prover SPASS, we can show this is not
true; see Appendix 3.B. So, soundness isn’t lost.

In conclusion, we have demonstrated again how to analyse
the validity of a pattern composition. In our previous case
study [32], we found two differences between the original
manual design and our formal design. In this paper, we can
confirm that the differences are errors in the manual design;
one is feature preservation error and the other is a semantics
error. We have also proved that our revised design is valid in
terms of its preservation of feature and soundness.

IX. CONCLUSION

In this paper, we formalised the notion of the validity of
pattern compositions and instantiations by defining feature
preservation, semantics preservation and soundness preserva-
tion. We studied these properties for the operators proposed in
[32], [53]. The theory is applied this the theoretical analysis of
pattern composition represented as overlaps between patterns
and a case study of a real pattern-oriented design, thereby

demonstrating their utility in formally proving the validity of
designs. Where there is an error, we can distinguish feature
preservation problems from semantic errors and soundness
lost.

A. Comparison with Related Works
Dong et al.’s [48] were perhaps the first to study compo-

sitions of design patterns and their ’correctness’. For a com-
position P of P1, · · · , Pn, Dong et al. define a composition
mapping C : P1 × · · · × Pn → P that associates names of
component pattern Pi to those of P .3 Let each Pi have a
set θi of properties and the composition have the set θ′ of
properties. A mapping M translates the sentences in each θi
to θ′, preserving the types of each variable. Their faithfulness
conditions are as follows:

1) for every sentence S, if S ∈ θi then M(S) ∈ θ′;
2) if S ̸∈ θi then M(S) ̸∈ θ′.

Condition (1), that composition should not lose properties, is
equivalent to our feature preservation condition, but limited to
one-to-one overlaps. Condition (2), means that composition
should not gain properties, but it is very difficult if not
impossible to prove, and not necessary, as argued by Taibi
and Ngo [59]: ”while the second condition of faithfulness is
relevant to component, it is not always necessary in the case
of patterns”.

Taibi and Ngo’s approach [49], [59] is similar, but they
represent compositions as combinations of predicates. These
predicates are first substituted with the variables of the com-
posite pattern or with constants to represent instantiation. More
formally, for patterns P1 and P2 with properties ϕ1 and ϕ2

their composition is given by

Subst{v1\t1, · · · , vn\tn}(ϕ1 ∧ ϕ2)

where the terms ti are either variables or constants.
Mathematically speaking, these substitutions are equivalent

to the name mappings of Dong et al. Both must preserve types
of variables for the resulting formulae to be well-typed and
for that reason both approaches can only express one-to-one

3In fact, they use a set of name mappings Ci : Pi → P .

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 15

and many-to-many overlaps, but not one-to-many overlaps.
Taibi observed the faithfulness conditions of Dong but only
informally explained why his example satisfied condition (2).
There is a lack of formal methods either for proving or for
disproving faithfulness.

Our feature preservation property ensures that no features
are lost from the original pattern, whereas semantic preser-
vation property ensures that no features are added. This latter
property may be too strong, as extra features are often wanted,
so soundness preservation is used instead as a minimal require-
ment that the added features do not cause a conflict. Dong and
Taibi do not have such a condition. But, what distinguishes our
approach even more is that they have no systematic methods
to prove their faithfulness conditions, whereas we can apply
laws for the operators and logic reasoning, even automated
theorem provers, to prove feature preservation and soundness
as demonstrated in the case study.

Interactions and conflicts between patterns were also dis-
cussed by Bottoni et al. for a different approach to pattern for-
malization [67]. Their pattern formalization approach is gen-
eral for specifying patterns of all types of models, including
OO designs, workflow models, etc. Their approach is graphical
but formally based on category theory. They express patterns
as triples of graphs (source, target and correspondence). These
represent, respectively, the structure or configuration of the
pattern, the roles of the pattern, giving the vocabulary of the
application domain, and the mapping from this structure to
these roles. Pattern satisfaction, composition and expansion
were all defined as graph operations. Graphs also represent
constraints with constraint satisfaction defined in terms of
graph matching. Our power set types are represented by
variable parts, visualized as triangles. They discuss pattern
composition informally with an example and identify three
types of conflicts.

• Fatal conflicts, which result in unsatisfiable compositions,
i.e., loss of soundness.

• Conflicts affecting satisfaction, which change parts of
elements in the design that constitute an instance of the
pattern.

• Conflicts between invariants, which change the semantics
of the invariants.

Obviously, the second and third types of conflict cannot be
considered to be invalid pattern compositions. It is unclear
however how to validate a pattern composition, e.g. to prove
that it satisfiable without a conflict.

B. Future work
It would be useful to have tools to prove soundness for

specific compositions and to support equational reasoning on
them. Our case study employed automated theorem prover
SPASS. It indicates that it is is feasible to design and im-
plement such a tool.

REFERENCES

[1] P. Coad, “Object-oriented patterns,” Communications of the ACM,
vol. 35, no. 9, pp. 152– 159, September 1992, special issue on analysis
and modeling in software development.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[3] M. Grand, Patterns in Java: A Catalog of Reusable Design Patterns
Illustrated with UML,Volume 1. New York, NY, USA: John Wiley &
Sons, Inc., 2002.

[4] ——, Patterns in Java, volume 2. New York, NY, USA: John Wiley
& Sons, Inc., 1999.

[5] ——, Java Enterprise Design Patterns. New York, NY, USA: John
Wiley & Sons, Inc., 2002.

[6] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices
and Design Strategies, 2nd ed. Prentice Hall, June 2003.

[7] M. Fowler, Patterns of Enterprise Application Architecture. Boston,
USA: Addison Wesley, 2003.

[8] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, USA: Addison
Wesley, 2004.

[9] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture: A Pattern Language for Distributed Computing.
West Sussex, England: John Wiley & Sons Ltd., 2007, vol. 4.

[10] M. Voelter, M. Kircher, and U. Zdun, Remoting Patterns. West Sussex,
England: John Wiley & Sons, 2004.

[11] M. Schumacher, E. Fernandez, D. Hybertson, and F. Buschmann,
Security Patterns: Integrating Security and Systems Engineering. West
Sussex, England: John Wiley & Sons, 2005.

[12] C. Steel, Applied J2EE Security Patterns: Architectural Patterns & Best
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[13] L. DiPippo and C. D. Gill, Design Patterns for Distributed Real-Time
Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[14] B. P. Douglass, Real Time Design Patterns: Robust Scalable Architecture
for Real-time Systems. Boston, USA: Addison Wesley, 2002.

[15] R. S. Hanmer, Patterns for Fault Tolerant Software. West Sussex,
England: Wiley, 2007.

[16] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh,
“Towards pattern-based design recovery,” in Proceedings of the 22nd
International Conference on Software Engineering (ICSE 2002). Or-
lando, Florida, USA: IEEE CS, May 2002, pp. 338–348.

[17] D. Hou and H. J. Hoover, “Using SCL to specify and check design intent
in source code,” IEEE Transactions on Software Engineering, vol. 32,
no. 6, pp. 404–423, June 2006.

[18] N. Nija Shi and R. Olsson, “Reverse engineering of design patterns from
Java source code,” in Proc. of ASE’06, Tokyo, Japan. IEEE Computer
Society, September 2006, pp. 123–134.

[19] A. Blewitt, A. Bundy, and I. Stark, “Automatic verification of design
patterns in Java,” in Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005). Long
Beach, California, USA: ACM Press, Nov. 2005, pp. 224–232. [Online].
Available: http://www.inf.ed.ac.uk/∼stark/autvdp.html

[20] D. Maplesden, J. Hosking, and J. Grundy, “Design pattern modelling and
instantiation using DPML,” in Proceedings of the Fortieth International
Conference on Tools Pacific (TOOLS Pacific 2002). Darlinghurst,
Australia: Australian Computer Society, Inc., 2002, pp. 3–11.

[21] J. Dong, Y. Zhao, and T. Peng, “Architecture and design pattern discov-
ery techniques - a review,” in Proceedings of the 2007 International
Conference on Software Engineering Research and Practice (SERP
2007), H. R. Arabnia and H. Reza, Eds., vol. II. Las Vegas Nevada,
USA: CSREA Press, June 25-28 2007, pp. 621–627.

[22] D.-K. Kim and L. Lu, “Inference of design pattern instances in UML
models via logic programming,” in Proceedings of the 11th International
Conference on Engineering of Complex Computer Systems (ICECCS
2006). Stanford, California, USA: IEEE Computer Society, August
2006, pp. 47–56.

[23] D.-K. Kim and W. Shen, “An approach to evaluating structural pattern
conformance of UML models,” in Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC’07). Seoul, Korea: ACM Press,
March 2007, pp. 1404–1408.

[24] ——, “Evaluating pattern conformance of UML models: a divide-and-
conquer approach and case studies,” Software Quality Journal, vol. 16,
no. 3, pp. 329–359, 2008.

[25] H. Zhu, I. Bayley, L. Shan, and R. Amphlett, “Tool support for design
pattern recognition at model level,” in Proc. of COMPSAC’09. Seattle,
Washington, USA: IEEE Computer Society, July 2009, pp. 228–233.

[26] H. Zhu, L. Shan, I. Bayley, and R. Amphlett, “A formal descriptive
semantics of UML and its applications,” in UML 2 Semantics and
Applications, K. Lano, Ed. John Wiley & Sons, Inc., Nov. 2009, iSBN-
13: 978-0470409084.

16 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

[27] F. Khomh and Y.-G. Guéhéneuc, “Do design patterns impact software
quality positively?” in Proceedings of the 12th European Conference
on Software Maintenance and Reengineering (CSMR 2008). Athens,
Greece: IEEE, April 1-4 2008, pp. 274–278.

[28] B. Venners, “How to use design patterns: A conversation with Erich
Gamma, part i,” http://www.artima.com/lejava/articles/gammadp.html.,
May 2005.

[29] S. M. Yacoub and H. H. Ammar, “Uml support for designing software
systems as a composition of design patterns,” in ?UML? 2001 Pro-
ceedings of the 4th International Conference on The Unified Modeling
Language – Modeling Languages, Concepts, and Tools (UML 2001),
Lecture Notes in Computer Science, Vol. 2185, Toronto, Canada, Oct.
2001, pp. 149–165.

[30] P. Wendorff, “Assessment of design patterns during software reengineer-
ing: lessons learned from a large professional project,” in Proceedings
of the 5th European Conference on Software Maintenance and Reengi-
neering (CSMR 2001), Lisbon, Portugal, March 2001, pp. 77C–84.

[31] M. Mouratidou, V. Lourdas, A. Chatzigeorgiou, and C. K. Georgiadis,
“An assessment of design patterns’ influence on a Java-based e-
commerce application,” Journal of Theoretical and Applied Electronic
Commerce Research, vol. 5, no. 1, pp. 25–38, April 2010.

[32] H. Zhu and I. Bayley, “An algebra of design pattern composition,” ACM
Transactions on Software Engineering and Methdology, In press.

[33] K. Lano, J. C. Bicarregui, and S. Goldsack, “Formalising design pat-
terns,” in BCS-FACS Northern Formal Methods Workshop, Ilkley, UK,
September 1996.

[34] T. Mikkonen, “Formalizing design patterns,” in Proc. of ICSE’98, Kyoto,
Japan. IEEE CS, April 1998, pp. 115–124.

[35] J. Dong, P. S. C. Alencar, and D. D. Cowan, “Correct composition of
design components,” in Proceedings of the 4th International Workshop
on Component-Oriented Programming in conjunction with ECOOP99,
1999.

[36] A. Lauder and S. Kent, “Precise visual specification of design patterns,”
in Lecture Notes in Computer Science Vol. 1445, ECOOP’98. Springer,
1998, pp. 114–134.

[37] A. H. Eden, “Formal specification of object-oriented design,” in Interna-
tional Conference on Multidisciplinary Design in Engineering, Montreal,
Canada, November 2001.

[38] T. Taibi, D. Check, and L. Ngo, “Formal specification of design patterns-
a balanced approach,” Journal of Object Technology, vol. 2, no. 4, July-
August 2003.

[39] I. Bayley and H. Zhu, “Formalising design patterns in predicate logic,” in
5th IEEE International Conference on Software Engineering and Formal
Methods. London, UK: IEEE Computer Society, Sept. 2007, pp. 25–36.

[40] E. Gasparis, A. H. Eden, J. Nicholson, and R. Kazman, “The design
navigator: charting Java programs,” in Proc. of ICSE’08, vol. Companion
Volume, 2008, pp. 945–946.

[41] I. Bayley and H. Zhu, “Formal specification of the variants and be-
havioural features of design patterns,” Journal of Systems and Software,
vol. 83, no. 2, pp. 209–221, Feb. 2010.

[42] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture: Vol.5: On Patterns and Pattern Languages. West
Sussex, England: John Wiley & Sons, 2007.

[43] W. B. McNatt and J. M. Bieman, “Coupling of design patterns: Common
practices and their benefits,” in Proceedings of the 25th Computer
Software and Applications Conference (COMPSAC 2001). IEEE
Computer Society Press, October 2001, pp. 574 – 579.

[44] D. Riehle, “Composite design patterns,” in Proceedings of the 1997
ACM SIGPLAN Conference On Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’97). Atlanta, Georgia: ACM
Press, October 5-9 1997, pp. 218–228.

[45] J. Vlissides, “Notation, notation, notation,” C++ Report, April 1998.
[46] J. Dong, S. Yang, and K. Zhang, “Visualizing design patterns in

their applications and compositions,” IEEE Transactions on Software
Engineering, vol. 33, no. 7, pp. 433–453, July 2007.

[47] J. M. Smith, “The pattern instance notation: A simple hierarchical visual
notation for the dynamic visualization and comprehension of software
patterns,” Journal of Visual Languages and Computing, vol. 22, no. 5,
pp. 355–374, Oct. 2011, doi:10.1016/j.jvlc.2011.03.003.

[48] J. Dong, P. S. Alencar, and D. D. Cowan, “Ensuring structure and
behavior correctness in design composition,” in Proceedings of the IEEE
7th Annual International Conference and Workshop on Engineering
Computer Based Systems (ECBS 2000). Edinburgh, Scotland: IEEE
CS Press, April 2000, pp. 279–287.

[49] T. Taibi, “Formalising design patterns composition,” Software, IEE
Proceedings, vol. 153, no. 3, pp. 126–153, June 2006.

[50] J. Dong, T. Peng, and Y. Zhao, “Automated verification of security
pattern compositions,” Information and Software Technology, vol. 52,
no. 3, p. 274C295, March 2010.

[51] ——, “On instantiation and integration commutability of design pattern,”
The Computer Journal, vol. 54, no. 1, pp. 164–184, January 2011.

[52] I. Bayley and H. Zhu, “On the composition of design patterns,” in
Proceedings of the Eighth International Conference on Quality Software
(QSIC 2008). Oxford, UK: IEEE Computer Society, Aug. 2008, pp.
27–36.

[53] ——, “A formal language of pattern composition,” in Proceedings of
The 2nd International Conference on Pervasive Patterns (PATTERNS
2010). Lisbon, Portugal: XPS (Xpert Publishing Services), Nov. 2010,
pp. 1–6.

[54] H. Zhu and I. Bayley, “Laws of pattern composition,” in Proceedings of
12th International Conference on Formal Engineering Methods (ICFEM
2010), ser. LNCS, vol. 6447. Shanghai, China: Springer, Nov. 17-19
2010, pp. 630–645.

[55] B. Huston, “The effects of design pattern application on metric scores,”
Journal of Systems and Software, vol. 58, no. 3, pp. 261–269, September
2001.

[56] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta, “A
controlled experiment in maintenance: comparing design patterns to
simpler solutions,” IEEE Transactions on Software Engineering, vol. 27,
no. 12, pp. 1134 – 1144, 2001.

[57] N.-L. Hsueh, P.-H. Chu, and W. Chu, “A quantitative approach for
evaluating the quality of design patterns,” The Journal of Systems and
Software, vol. 81, pp. 1430–1439, 2008.

[58] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, “A methodology to
assess the impact of design patterns on software quality,” Information
and Software Technology, vol. 54, no. 4, pp. 331–346, April 2012.

[59] T. Taibi and D. C. L. Ngo, “Formal specification of design pattern com-
bination using BPSL,” Information and Software Technology, vol. 45,
no. 3, pp. 157–170, March 2003.

[60] A. H. Eden, Codecharts: Roadmaps and Blueprints for Object-Oriented
Programs. Hoboken, New Jersey: Wiley-Blackwell, 2011.

[61] A. H. Eden, E. Gasparis, J. Nicholson, and R. Kazman, “Modeling and
visualizing object-oriented programs with codecharts,” Formal Methods
in System Design, vol. 42, no. 1, p. 128, 2013.

[62] J. Nicholson, A. H. Eden, E. Gasparis, and R. Kazman, “Automated
verification of design patterns: A case study,” Science of Computer
Programming, vol. 80, no. B, p. 211222, Feb. 2014.

[63] H. Zhu, “On the theoretical foundation of meta-modelling in graphically
extended BNF and first order logic,” in Proceedings of the 4th IEEE
Symposium on Theoretical Aspects of Software Engineering (TASE
2010). Taipei, Taiwan: IEEE CS, August 2010, pp. 95–104.

[64] ——, “An institution theory of formal meta-modelling in graphically
extended BNF,” Frontiers of Computer Science, vol. 6, no. 1, pp. 40–
56, 2012.

[65] I. Bayley and H. Zhu, “Specifying behavioural features of design pat-
terns,” Department of Computing, Oxford Brookes University, Oxford,
UK, Tech. Rep. TR-08-01, 2008.

[66] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-oriented Software
Architecture, Vol. 1: A System of Patterns. West Sussex, England: John
Wiley & Sons, 1996.

[67] P. Bottoni, E. Guerra, and J. de Lara, “A language-independent and for-
mal approach to pattern-based modelling with support for composition
and analysis,” Information and Software Technology, vol. 52, no. 8, p.
821844, 2010.

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 17

APPENDIX: THE USE OF SPASS THEOREM PROVER

We have employed SPASS Theorem Prover in the analysis
of the validity of pattern compositions. In this section, we give
the details about how SPASS is used, i.e. the input to SPASS
Theorem Prover and the corresponding output generated by
SPASS, for the examples and case study reported in the paper.

A. Proof of Lost Soundness
The input to SPASS for proving the lost of soundness of

the pattern composition (e) of the motivative example is listed
below. It consists of three parts:

1) A list of symbol declarations. It contains the declarations
of components in the patterns.

2) A list of axioms. It contains the consistency and com-
pleteness constraints on UML models, and the specifi-
cation of the patterns.

3) A list of conjectures to be proved. It is the condition of
lost of soundness.

begin_problem(CA).

list_of_descriptions.
name({*Composite Adapter*}).
author({*Ian Bayley*}).
status(unsatisfiable).
description({* Attempt to show that the composition (f) of
Composite and Adapter in IEEE paper is invalid *}).
end_of_list.

list_of_symbols.
functions[

(component,0),
(composite, 0),
(leaf, 0),
(target, 0),
(adapter, 0),
(adaptee, 0)

].

predicates[
(Class,1),
(Associated,2),
(Inherit,2),
(AggComp,2),
(IsAbstract,1),
(IsInterface,1)
].

end_of_list.

list_of_formulae(axioms).
formula(forall([x,y], implies(Inherit(x,y),

not(Inherit(y,x))))).
formula(forall([x,y,z], implies(and(Inherit(x,y),

Inherit(y,z)), Inherit(x,z)))).

formula(and(
Class(leaf),
Class(component),
Class(composite),
Inherit(leaf,component),
Inherit(composite,component),
AggComp(composite,component),
not(AggComp(leaf,component)),
IsAbstract(component)

)).

formula(and(
Class(target),
Class(adapter),
Class(adaptee),
Inherit(adapter,target),
AggComp(adapter,adaptee)

)).

end_of_list.

list_of_formulae(conjectures).

formula(not(
and(
equal(target, leaf),
equal(component, adapter)

))).
end_of_list.

end_problem.

The theorem prover was invoked via its web interface by
submitting the above input. The prover executed for 0.01
seconds and generated the following output.

WebSPASS - Interactive SPASS

Input Form Submission

You are running ’Mozilla/5.0
(Macintosh; Intel Mac OS X 10_9_4)
AppleWebKit/537.78.2 (KHTML, like Gecko) Version/7.0.6
Safari/537.78.2’ from ’81.109.126.224’

Your WebSPASS form submission is now being processed...

--------------------------SPASS-START-----------------------
Input Problem:
1[0:Inp] || -> Class(target)*.
2[0:Inp] || -> Class(adapter)*.
3[0:Inp] || -> Class(adaptee)*.
4[0:Inp] || -> Class(leaf)*.
5[0:Inp] || -> Class(component)*.
6[0:Inp] || -> Class(composite)*.
7[0:Inp] || -> IsAbstract(component)*.
8[0:Inp] || -> Inherit(adapter,target)*.
9[0:Inp] || -> AggComp(adapter,adaptee)*.
10[0:Inp] || -> Inherit(leaf,component)*.
11[0:Inp] || -> Inherit(composite,component)*.
12[0:Inp] || -> AggComp(composite,component)*.
13[0:Inp] || -> equal(target,leaf)**.
14[0:Inp] || -> equal(adapter,component)**.
15[0:Inp] || AggComp(leaf,component)* -> .
16[0:Inp] || Inherit(U,V)* Inherit(V,U)* -> .
17[0:Inp] || Inherit(U,V)* Inherit(W,U)* -> Inherit(W,V)*.
This is a first-order Horn problem containing equality.
This is a problem that has, if any, a finite domain model.
There are no function symbols.
The conjecture is ground.
The following monadic predicates have finite extensions:

IsAbstract, Class.
Axiom clauses: 15 Conjecture clauses: 2
Inferences: ISpR=1 ISpL=1 IORe=1
Reductions: RFRew=1 RBRew=1 RFMRR=1 RBMRR=1 RObv=1

RUnC=1 RTaut=1 RFSub=1 RBSub=1 RCon=1
Extras : Input Saturation, Always Selection, No Splitting,

Full Reduction, Ratio: 5, FuncWeight: 1, VarWeight: 1
Precedence: div > id > Class > Associated > Inherit > AggComp

> IsAbstract > IsInterface > adaptee > adapter > target
> leaf > composite > component

Ordering : KBO
Processed Problem:

Worked Off Clauses:

Usable Clauses:
7[0:Inp] || -> IsAbstract(component)*.
6[0:Inp] || -> Class(composite)*.
5[0:Inp] || -> Class(component)*.
4[0:Inp] || -> Class(leaf)*.
3[0:Inp] || -> Class(adaptee)*.
14[0:Inp] || -> equal(adapter,component)**.
13[0:Inp] || -> equal(target,leaf)**.
12[0:Inp] || -> AggComp(composite,component)*.
20[0:Rew:14.0,9.0] || -> AggComp(component,adaptee)*.
11[0:Inp] || -> Inherit(composite,component)*.
10[0:Inp] || -> Inherit(leaf,component)*.
21[0:Rew:14.0,8.0,13.0,8.0] ||

-> Inherit(component,leaf)*.
15[0:Inp] || AggComp(leaf,component)* -> .
24[0:Res:21.0,16.1] || Inherit(leaf,component)* -> .
25[0:Res:21.0,17.1] || Inherit(leaf,U)*

-> Inherit(component,U).
22[0:Res:21.0,17.0] || Inherit(U,component)

-> Inherit(U,leaf)*.

18 TECHNICAL REPORT CCT-AFM-2014-01, OCT. 17, 2014

16[0:Inp] || Inherit(U,V)* Inherit(V,U)* -> .
17[0:Inp] || Inherit(U,V)* Inherit(V,W)*

-> Inherit(U,W)*.
SPASS V 3.0
SPASS beiseite: Proof found.
Problem: /tmp/webspass-webform_2014-09-15_

23:42:42_5970l.txt
SPASS derived 6 clauses, backtracked 0 clauses and

kept 18 clauses.
SPASS allocated 559 KBytes.
SPASS spent 0:00:00.01 on the problem.
0:00:00.00 for the input.
0:00:00.00 for the FLOTTER CNF translation.
0:00:00.00 for inferences.
0:00:00.00 for the backtracking.
0:00:00.00 for the reduction.

Here is a proof with depth 1, length 8 :
8[0:Inp] || -> Inherit(adapter,target)*.
10[0:Inp] || -> Inherit(leaf,component)*.
13[0:Inp] || -> equal(target,leaf)**.
14[0:Inp] || -> equal(adapter,component)**.
16[0:Inp] || Inherit(U,V)* Inherit(V,U)* -> .
21[0:Rew:14.0,8.0,13.0,8.0] || -> Inherit(component,leaf)*.
23[0:Res:21.0,16.0] || Inherit(leaf,component)* -> .
26[0:MRR:23.0,10.0] || -> .
Formulae used in the proof: axiom3 axiom2 conjecture0 axiom0

--------------------------SPASS-STOP------------------------

SPASS proved that the condition of lost soundness is true,
thus the composition is not sound. It is consistent with the
manual proof given in Section VI-D.

B. Proof of RHF Soundness
The input for analysing the soundness of RHF design is of

the same structure as the previous section shown below.

begin_problem(RHF).

list_of_descriptions.
name({*Request Handling Framework*}).
author({*Ian Bayley*}).
status(unsatisfiable).
description({* Attempt to show that the RHF composition

is valid *}).
end_of_list.

list_of_symbols.
functions[
(client,0),
(command,0),
(concreteCommand,0),
(invoker,0),
(receiver,0),
(commandProcessor,0),
(componentCP,0),
(originator,0),
(memento,0),
(caretaker,0),
(context,0),
(strategy,0),
(concreteStrategy,0),
(component,0),
(composite,0),
(leaf,0)
].

predicates[
(Class,1),
(Associated,2),
(Inherit,2),
(AggComp,2),
(Creates,2),
(IsAbstract,1),
(IsInterface,1)
].
end_of_list.

list_of_formulae(axioms).

formula(forall([x,y], implies(Inherit(x,y), not(Inherit(y,x))))).
formula(forall([x,y,z], implies(and(Inherit(x,y), Inherit(y,z)),

Inherit(x,z)))).

formula(and(
AggComp(invoker,command),
Inherit(concreteCommand,command),
Associated(concreteCommand,receiver),
Associated(client, receiver),
Creates(client, concreteCommand)
)).

formula(
Associated(commandProcessor, componentCP)
).

formula(and(
Creates(originator, memento),
AggComp(caretaker, memento)
)).

formula(and(
AggComp(context,strategy),
Inherit(concreteStrategy,strategy)
)).

formula(and(
Inherit(leaf,component),
Inherit(composite,component),
AggComp(composite,component),
not(AggComp(leaf,component)),
IsAbstract(component)
)).

end_of_list.

list_of_formulae(conjectures).

formula(not(exists([Application],and(
equal(command,caretaker),
equal(command, componentCP),
equal(originator, Application),
equal(client, commandProcessor),
equal(originator, Application),
equal(leaf, concreteCommand),
equal(component, command),
equal(commandProcessor, context),
equal(caretaker, command)
)))).
end_of_list.

end_problem.

The execution of the the SPASS theorem prover on the
above input takes 0.01 seconds to conclude that ”Completion
found”, which means no proof of the conjecture. In other
words, the condition of lost soundness cannot be proved from
the pattern specification and consistency and completeness
constraints.
WebSPASS - Interactive SPASS

Input Form Submission

You are running ’Mozilla/5.0
(Macintosh; Intel Mac OS X 10_9_4)
AppleWebKit/537.78.2 (KHTML, like Gecko) Version/7.0.6
Safari/537.78.2’ from ’81.109.126.224’
Your WebSPASS form submission is now being processed...

------------------------SPASS-START-----------------------
Input Problem:
1[0:Inp] || -> IsAbstract(component)*.
2[0:Inp] || -> Inherit(leaf,component)*.
3[0:Inp] || -> Inherit(composite,component)*.
4[0:Inp] || -> AggComp(composite,component)*.
5[0:Inp] || -> AggComp(context,strategy)*.
6[0:Inp] || -> Inherit(concreteStrategy,strategy)*.
7[0:Inp] || -> Creates(originator,memento)*.
8[0:Inp] || -> AggComp(caretaker,memento)*.
9[0:Inp] || -> Associated(commandProcessor,componentCP)*.
10[0:Inp] || -> AggComp(invoker,command)*.

H. ZHU AND I. BAYLEY: ON THE COMPOSABILITY OF DESIGN PATTERNS 19

11[0:Inp] || -> Inherit(concreteCommand,command)*.
12[0:Inp] || -> Associated(concreteCommand,receiver)*.
13[0:Inp] || -> Associated(client,receiver)*.
14[0:Inp] || -> Creates(client,concreteCommand)*.
15[0:Inp] || -> equal(command,componentCP)**.
16[0:Inp] || -> equal(commandProcessor,client)**.
17[0:Inp] || -> equal(originator,originator)*.
18[0:Inp] || -> equal(leaf,concreteCommand)**.
19[0:Inp] || -> equal(command,component)**.
20[0:Inp] || -> equal(commandProcessor,context)**.
21[0:Inp] || -> equal(command,caretaker)**.
22[0:Inp] || AggComp(leaf,component)* -> .
23[0:Inp] || Inherit(U,V)* Inherit(V,U)* -> .
24[0:Inp] || Inherit(U,V)* Inherit(W,U)* -> Inherit(W,V)*.
This is a first-order Horn problem containing equality.
This is a problem that has, if any, a finite domain model.
There are no function symbols.
The conjecture is ground.
The following monadic predicates have finite extensions:

IsAbstract.
Axiom clauses: 17 Conjecture clauses: 7
Inferences: ISpR=1 ISpL=1 IORe=1
Reductions: RFRew=1 RBRew=1 RFMRR=1 RBMRR=1 RObv=1

RUnC=1 RTaut=1 RFSub=1 RBSub=1 RCon=1
Extras : Input Saturation, Always Selection,

No Splitting, Full Reduction, Ratio: 5,
FuncWeight: 1, VarWeight: 1

Precedence: div > id > Class > Associated > Inherit
> AggComp > Creates > IsAbstract > IsInterface
> leaf > composite > command > component
> concreteStrategy > strategy > commandProcessor
> context > caretaker > memento > originator
> componentCP > receiver > invoker > concreteCommand
> client

Ordering : KBO
Processed Problem:

Worked Off Clauses:

Usable Clauses:
32[0:Rew:29.0,26.0] ||

-> IsAbstract(componentCP)*.
18[0:Inp] ||

-> equal(leaf,concreteCommand)**.
27[0:Rew:20.0,16.0] ||

-> equal(context,client)**.
29[0:Rew:21.0,15.0] ||

-> equal(caretaker,componentCP)**.
28[0:Rew:27.0,20.0] ||

-> equal(commandProcessor,client)**.
30[0:Rew:29.0,21.0] ||

-> equal(command,componentCP)**.
31[0:Rew:29.0,25.0] ||

-> equal(component,componentCP)**.
14[0:Inp] ||

-> Creates(client,concreteCommand)*.
7[0:Inp] ||

-> Creates(originator,memento)*.
13[0:Inp] ||

-> Associated(client,receiver)*.
12[0:Inp] ||

-> Associated(concreteCommand,receiver)*.
36[0:Rew:28.0,9.0] ||

-> Associated(client,componentCP)*.
33[0:Rew:29.0,8.0] ||

-> AggComp(componentCP,memento)*.
34[0:Rew:27.0,5.0] ||

-> AggComp(client,strategy)*.
38[0:Rew:30.0,10.0] ||

-> AggComp(invoker,componentCP)*.
39[0:Rew:31.0,4.0] ||

-> AggComp(composite,componentCP)*.
6[0:Inp] ||

-> Inherit(concreteStrategy,strategy)*.
37[0:Rew:30.0,11.0] ||

-> Inherit(concreteCommand,componentCP)*.
40[0:Rew:31.0,3.0] ||

-> Inherit(composite,componentCP)*.
42[0:Rew:18.0,22.0,31.0,22.0] ||

AggComp(concreteCommand,componentCP)* -> .
44[0:Res:37.0,23.0] ||

Inherit(componentCP,concreteCommand)* -> .
48[0:Res:40.0,23.0] ||

Inherit(componentCP,composite)* -> .
46[0:Res:37.0,24.1] ||

Inherit(componentCP,U)* -> Inherit(concreteCommand,U).

50[0:Res:40.0,24.1] ||
Inherit(componentCP,U) -> Inherit(composite,U)*.

43[0:Res:37.0,24.0] ||
Inherit(U,concreteCommand) -> Inherit(U,componentCP)*.

47[0:Res:40.0,24.0] ||
Inherit(U,composite)* -> Inherit(U,componentCP).

23[0:Inp] ||
Inherit(U,V)* Inherit(V,U)* -> .

24[0:Inp] ||
Inherit(U,V)* Inherit(V,W)* -> Inherit(U,W)*.

Given clause: 32[0:Rew:29.0,26.0] ||
-> IsAbstract(componentCP)*.

Given clause: 18[0:Inp] ||
-> equal(leaf,concreteCommand)**.

Given clause: 27[0:Rew:20.0,16.0] ||
-> equal(context,client)**.

Given clause: 29[0:Rew:21.0,15.0] ||
-> equal(caretaker,componentCP)**.

Given clause: 28[0:Rew:27.0,20.0] ||
-> equal(commandProcessor,client)**.

Given clause: 30[0:Rew:29.0,21.0] ||
-> equal(command,componentCP)**.

Given clause: 31[0:Rew:29.0,25.0] ||
-> equal(component,componentCP)**.

Given clause: 14[0:Inp] ||
-> Creates(client,concreteCommand)*.

Given clause: 7[0:Inp] ||
-> Creates(originator,memento)*.

Given clause: 13[0:Inp] ||
-> Associated(client,receiver)*.

Given clause: 12[0:Inp] ||
-> Associated(concreteCommand,receiver)*.

Given clause: 36[0:Rew:28.0,9.0] ||
-> Associated(client,componentCP)*.

Given clause: 33[0:Rew:29.0,8.0] ||
-> AggComp(componentCP,memento)*.

Given clause: 34[0:Rew:27.0,5.0] ||
-> AggComp(client,strategy)*.

Given clause: 38[0:Rew:30.0,10.0] ||
-> AggComp(invoker,componentCP)*.

Given clause: 39[0:Rew:31.0,4.0] ||
-> AggComp(composite,componentCP)*.

Given clause: 6[0:Inp] ||
-> Inherit(concreteStrategy,strategy)*.

Given clause: 37[0:Rew:30.0,11.0] ||
-> Inherit(concreteCommand,componentCP)*.

Given clause: 40[0:Rew:31.0,3.0] ||
-> Inherit(composite,componentCP)*.

Given clause: 42[0:Rew:18.0,22.0,31.0,22.0] ||
AggComp(concreteCommand,componentCP)*+ -> .

Given clause: 44[0:Res:37.0,23.0] ||
Inherit(componentCP,concreteCommand)*+ -> .

Given clause: 48[0:Res:40.0,23.0] ||
Inherit(componentCP,composite)*+ -> .

Given clause: 46[0:Res:37.0,24.1] ||
Inherit(componentCP,U)*+ -> Inherit(concreteCommand,U).

Given clause: 50[0:Res:40.0,24.1] ||
Inherit(componentCP,U)+ -> Inherit(composite,U)*.

Given clause: 23[0:Inp] ||
Inherit(U,V)*+ Inherit(V,U)* -> .

Given clause: 57[0:Res:6.0,23.0] ||
Inherit(strategy,concreteStrategy)*+ -> .

Given clause: 43[0:Res:37.0,24.0] ||
Inherit(U,concreteCommand)+ -> Inherit(U,componentCP)*.

Given clause: 47[0:Res:40.0,24.0] ||
Inherit(U,composite)*+ -> Inherit(U,componentCP).

Given clause: 24[0:Inp] ||
Inherit(U,V)*+ Inherit(V,W)* -> Inherit(U,W)*.

Given clause: 60[0:Res:6.0,24.0] ||
Inherit(strategy,U)+ -> Inherit(concreteStrategy,U)*.

SPASS V 3.0
SPASS beiseite: Completion found.
Problem: /tmp/webspass-webform_2014-09-16_

00:02:27_14946l.txt
SPASS derived 31 clauses, backtracked 0 clauses and

kept 41 clauses.
SPASS allocated 568 KBytes.
SPASS spent 0:00:00.01 on the problem.
0:00:00.00 for the input.
0:00:00.00 for the FLOTTER CNF translation.
0:00:00.00 for inferences.
0:00:00.00 for the backtracking.
0:00:00.00 for the reduction.

----------------------SPASS-STOP-----------------------

