

Submitted to The Journal of Software Testing, verification and Reliability

Technical Report OBU-ECM-AFM-2018-01

Software Testing as A Problem of Machine Learning

-- A Survey and Critical Review

Hong Zhu

Applied Formal Method Research Group
School of Engineering, Computing and Mathematics

Oxford Brookes University
Oxford OX33 1HX, UK

Tel.: ++44 01865 484580, Email: hzhu@brookes.ac.uk

12 December 2018

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 i

Abstract

This paper reviews the research on employing machine learning (ML) to solve software testing problems.
Existing works can be classified into four categories according to the type of testing problems addressed:
(a) adequacy problem, i.e. how to measure test adequacy, (b) oracle problem, i.e. how to determine the
correctness of software’s outputs on test cases, (c) design problems, i.e. how to generate, prioritise and
optimise test cases, and (d) testability problem, i.e. how to measure software’s testability. For each of these
problems, various approaches proposed and studied in the literature are identified, summarised and
critically analysed. Three observations are made on the current state of art and future research directions are
identified: (1) No easy money. Applying ML techniques to testing is labour intensive and expensive. It is
not economically viable as a practical technique, yet. (2) No free lunch. Wolpert’s No-Free-Lunch theorem
is observed; that is, there is no single ML algorithm that consistently performed better than other ML
techniques. (3) No silver bullet. Existing ML techniques cannot deal with the complexity confronted
software engineers in current practices. Although ML in its current state is still far from a practically
applicable testing technique, it can potentially bring significant and profound impacts on both research and
practice. In particular, it is worth further exploring a novel theoretical model of software testing in parallel
with the PAC learning theory by treating testing as inductive inference. A break through in this direction
could foster a paradigm shift in testing and reliability assessment.

Keywords: Software Testing, Machine learning, Learnability, Neural networks, Inductive inference,
Clustering, Data mining, Test adequacy, Test oracle, Test case generation, Test case prioritization, Test
case reduction, Testability.

Technical Report OBU-ECM-AFM-2018-01

 ii

Table	of	Contents	
1.	 Introduction .. 1	
2.	 Introduction of ML Theories and Techniques .. 2	

2.1	 Theories of Machine Learning ... 2	
2.1.1	 Basic Concepts of ML ... 2	
2.1.2	 Identification in The Limit .. 4	
2.1.3	 Probably Approximately Correct (PAC) Learning ... 6	

2.2	 ML Techniques .. 7	
2.2.1	 ML Paradigms ... 7	
2.2.2	 Artificial Neural Networks .. 8	
2.2.3	 Clustering .. 12	

3.	 Test Adequacy .. 13	
3.1	 The Notion of Test Adequacy .. 13	
3.2	 Weyuker’s Inference Adequacy Criterion .. 14	
3.3	 Testing as Inductive Inference ... 15	
3.4	 Fraser and Walkingshaw’s Behavioural Adequacy Criterion .. 18	

4.	 Test Oracle ... 20	
4.1	 Basic Concepts of Test Oracles .. 20	
4.2	 Predictors of Software Outputs .. 21	
4.3	 Classifiers of Test Results .. 23	
4.4	 Learning Specifications .. 25	

5.	 Test Case Design .. 26	
5.1	 Predicting Test Case’s Fault Detection Ability .. 27	
5.2	 Clustering Test Cases ... 27	
5.3	 Predicting Path Feasibility ... 28	
5.4	 Relating input-output features .. 28	

6.	 Testability ... 29	
7.	 Conclusion .. 30	
REFERENCES ... 32	

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 1

Software Testing as A Problem of Machine Learning
-- A Survey and Critical Review

Hong Zhu
School of Engineering, Computing and Mathematics
Oxford Brookes University, Oxford OX33 1HX, UK

Tel.: ++44 01865 484580, Email: hzhu@brookes.ac.uk

Abstract

This paper reviews the research on employing machine learning (ML) to solve software testing problems.
Existing works can be classified into four categories according to the type of testing problems addressed:
(a) adequacy problem, i.e. how to measure test adequacy, (b) oracle problem, i.e. how to determine the
correctness of software’s outputs on test cases, (c) design problems, i.e. how to generate, prioritise and
optimise test cases, and (d) testability problem, i.e. how to measure software’s testability. For each of these
problems, various approaches proposed and studied in the literature are identified, summarised and
critically analysed. Three observations are made on the current state of art and future research directions are
identified: (1) No easy money. Applying ML techniques to testing is labour intensive and expensive. It is
not economically viable as a practical technique, yet. (2) No free lunch. Wolpert’s No-Free-Lunch theorem
is observed; that is, there is no single ML algorithm that consistently performed better than other ML
techniques. (3) No silver bullet. Existing ML techniques cannot deal with the complexity confronted
software engineers in current practices. Although ML in its current state is still far from a practically
applicable testing technique, it can potentially bring significant and profound impacts on both research and
practice. In particular, it is worth further exploring a novel theoretical model of software testing in parallel
with the PAC learning theory by treating testing as inductive inference. A break through in this direction
could foster a paradigm shift in testing and reliability assessment.

Keywords: Software Testing, Machine learning, Learnability, Neural networks, Inductive inference,
Clustering, Data mining, Test adequacy, Test oracle, Test case generation, Test case prioritization, Test
case reduction, Testability.

1. Introduction
Can machine learning (ML) solve problems of software testing? This paper reviews the current state of
research in an attempt to identify the potential future directions.

By machine learning, we meant the group of artificial intelligence techniques and their underlying theories
that produce a general rule from a finite subset of the instances of the rule. A typical example of such
techniques is inductive inference, which infers a mathematical function or relation from a finite set of
carefully selected instances of the function/relation. For example, learning a language’s grammar from a
finite set of sentences obtained by a certain way of sampling is a typical inductive inference problem.
Another example of ML techniques is data mining, which discovers unknown patterns/rules in a set of
observed data on certain phenomena. A particular type of ML techniques that is closely related to the theme
of this paper is program synthesis, which aims at producing a program in a given programming language
from a finite set of instances of input/output pairs. ML has been an active research area of artificial
intelligence in the past five decades. In recent years, it has been wide applied partly because various ML
tools and systems have become widely available for solving practical problems, and partly because a large
volume of data has become available for many application domains.

Software testing is indispensable to all software development. However, it is labour intensive, costly, and
error-prone. It is one of the most studied topics in software engineering. Attempts to solve problems in
software testing by employing ML techniques can be back dated to 1980s, for example, to solve test
adequacy problems [58]. Since then, there are continuous efforts reported in the literature. Among the most
notable work reported in the literature are those experiments on the uses of ML techniques to develop test
oracles [5], to measure test adequacy[22] [23], to generate test cases [48], to reduce test costs [20], and to
understand the notion of software testability [18], etc. In general, software testing is an inductive inference

Technical Report OBU-ECM-AFM-2018-01

 2

process in the course of which the tester attempts to deduce general properties of a software system (such
as correctness and reliability) by observing the behaviours of the system on a finite number of test cases
[68]. The theories of ML have also being employed to answer fundamental theoretical questions about
software testing, such as “can testing guarantee software correctness?” [66]. In recent years, the application
of ML techniques to software testing has become more active, but the progress is slow. It is desirable to
review the current state of research and draw a road map for future development.

The scope of this paper will cover all aspects of the application of ML to software testing, from theoretical
studies to empirical experiments. We will identify the existing approaches to various types of software
testing problems and discuss their potential benefits and limitations. Four types of software testing
problems are surveyed: adequacy problems, oracle problems, test design problems, and testability
problems.

The paper is organized as follows. Section 2 is a brief introduction to the theories and techniques of ML in
the context of software testing. Section 3 reviews the work on application of ML techniques and theories to
test adequacy problems. Section 4 is devoted to the test oracle problems. Section 5 is concerned with the
application of ML to the test design problems. Section 6 is about testability. Section 7 concludes the paper
with a summary of the current state of art and a discussion of future research directions.

2. Introduction of ML Theories and Techniques
The research on ML back dates to 1960s and many pioneering work emerged in 1980s, which laid the
foundations for the current development of inductive inference, data mining and data analytics techniques.
This section is a brief introduction to the theories and techniques of ML in the context of research on their
applications in software testing. It serves as the bases for the description and discussion of the work on
software testing by defining the terminologies and the providing the basic theorems. Being an active
research area for more than 50 years, a thorough survey of the topic is beyond the scope of this paper. The
readers are referred to the literature of ML, e.g. [34], [36] and [51], for more systematic and in depth
coverage of the topic. Readers who are familiar with ML theories and techniques can skip this section.

2.1 Theories of Machine Learning

This subsection is a very brief introduction to two theoretical frameworks of ML. We will start with
definitions of the basic concepts of ML theories, then give brief introductions to two widely used theories
of ML: (a) the theory of learnability in the identification in the limit, (b) the theory of learnability in PAC
learning.

2.1.1 Basic Concepts of ML

There are a number of different abstract models of ML, which are also called inductive inference protocols
or ML schemes in the literature. Although these models differ from each other significantly, they share
some common basic concepts, which are introduced below.

• Object Space.

The object space is the set of objects to learn, which are often called the target rules to learn, or simply the
targets. Typical examples of object spaces studied in ML literature are:

a) the set of all one-variable polynomial functions,

b) the set of all Boolean functions,

c) the set of threshold functions on the unit interval of real numbers,

d) the set of close intervals [𝑎, 𝑏] of real numbers,

e) the set of context-free languages on a given alphabet,

f) the set of regular languages on a given alphabet, etc.

Typically, a rule 𝑟 in an object space is assumed to be a function from a domain 𝐷 to a codomain 𝐶. For
example, a regular language 𝑙 can be defined as a function from strings of the alphabet to {0,1} such that
𝑙(𝑠) = 1 if and only if string 𝑠 is a valid sentence of the language 𝑙. Often, the codomain is assumed to be

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 3

the set {0, 1}. For example, a function 𝑓:ℕ → ℕ mapping from natural numbers to nature numbers can be
equivalently represented as a function 𝜙!:ℕ×ℕ → {0,1} such that 𝜙! 𝑥, 𝑦 = 1 if and only if 𝑦 = 𝑓(𝑥).

• Hypothesis Space.

The result of a learning process is a description of the object to learn. Such a description represents the rule
to learn in certain format. For example, a regular language can be represented in the form of a regular
expression. An threshold function 𝑓(𝑥) = 𝑥 > 𝛼 can be simply represented by a real number 𝛼. The set 𝐻
of all possible descriptions of the objects in the object space 𝑅 is called the hypothesis space. In many
cases, a rule 𝑟 in 𝑅 may have many syntactically different but semantically equivalent representations in the
hypothesis space. A hypothesis ℎ may describe a rule 𝑟 correctly according to a correctness criterion; see
discussion below. If such a correct hypothesis is not always available in 𝐻 for all rules in 𝑅, the learning
problem is called agnostic.

• Instances.

An inductive inference/learning process takes a sequence (sometimes, a set) of the instances of a rule 𝑟 in 𝑅
as the input. The form of instances varies in different inductive inference models. Typically, an instance
can be a pair < 𝑥, 𝑦 >, where x is in the domain 𝐷 of the rule 𝑟 and 𝑦 is the corresponding value of 𝑟 in the
codomain 𝐶, i.e. 𝑦 = 𝑟(𝑥). Such instances are called positive examples, or simply examples for short.
Another form of instances is counterexamples, which is a pair < 𝑥, 𝑦 >, where 𝑥 is the input in the domain
D, but 𝑦 in the codomain 𝐶 is not the corresponding value of 𝑟 , i.e. 𝑦 ≠ 𝑟(𝑥) . Examples and
counterexamples are often used in the so-called supervised learning.

Some learning algorithms require the input of instances to be in certain order. For example, to learn a total
function f on natural numbers, one may require that the instances are in the form of < 0, 𝑓(0) >,<
1, 𝑓(1) >,… ,< 𝑛, 𝑓(𝑛) >,… . Other may be able to take any sequence of examples of the function as input
in any order. Another way is that the learning algorithm queries about the value of the rule on a specific
point of the domain.

In clustering and classification type of ML processes, the input often contains only a set of values in the
domain sampled according to certain probability distribution without the corresponding values of the rule.
These values represent a set of entities to be classified. In such cases, assumptions on the rule space are
made, for example, the similarity between the entities can be measured by a given distance function on the
data.

• Inference Device.

An inductive inference device 𝑀 is a computational device, such as a Turing machine, an algorithm, or a
neural network, etc. It takes as input a sequence of the instances of a target rule 𝑟 in the object space 𝑅, and
produces a description ℎ of the rule 𝑟 in the hypothesis space 𝐻 as the result of learning.

• Correctness criterion.

Usually, the hypothesis ℎ produced by an inductive inference device 𝑀 is required to be correct on the
input instances, i.e. ℎ is consistent with the rule 𝑟 on the input instances, or within a tolerable margin of
error. Whether the produced hypothesis is acceptable is judged according to a correctness criterion.

One of the most often used correctness criteria is logical equivalence, written 𝑟 = ℎ, i.e. for all data 𝑥 in 𝐷,
𝑟(𝑥) = ℎ(𝑥). Sometimes a finite number of anomalies are allowed. Let 𝑛 be a natural number, 𝑟 =! ℎ is
defined as follows:

𝑟 =! ℎ ⟺ 𝑥 ∈ 𝐷|𝑟(𝑥) ≠ ℎ(𝑥) ≤ 𝑛.

And, 𝑟 =∗ ℎ is defined as follows.

𝑟 =∗ ℎ ⟺ 𝑥 ∈ 𝐷|𝑟(𝑥) ≠ ℎ(𝑥) 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒.

The most commonly used correctness criterion in statistical learning is defined in the form of the
probability of correctness. Let 𝑃 be a probability distribution on 𝐷. A hypothesis ℎ is probably correct
w.r.t. rule 𝑟 with probability better than ε, written as 𝑟 =(!,!) ℎ, if

Technical Report OBU-ECM-AFM-2018-01

 4

𝑃𝑟(𝑥 ∈ 𝐷|𝑟(𝑥) ≠ ℎ(𝑥)) ≤ 𝜀.

Another important correctness criterion is concerned with the loss or risks of failure. Let 𝑙:𝐷×𝐶×𝐶 → ℝ!
be a loss function. A risk function 𝑅𝑖𝑠𝑘!(𝑟, ℎ) can be defined as the expected loss for a hypothesis ℎ with
respect to a rule 𝑟 as follows.

𝑅𝑖𝑠𝑘! 𝑟, ℎ = 𝐸𝑥!" 𝑙 𝑥, ℎ 𝑥 , 𝑟 𝑥 𝑥 ∈ 𝐷 𝑟, ℎ ,

where 𝐷(𝑟, ℎ) = {𝑥 ∈ 𝐷| 𝑟 𝑥 ≠ ℎ 𝑥 }.

• Convergence criterion.

In general, inductive inference is a process that takes more and more instances of the rule to learn and
produces a sequence of hypothesis. A convergence criterion determines when an inductive inference
process reaches a conclusion, and thus can stop. It determines how close the hypothesis produced is to the
rule to learn. The next subsection reviews various convergence criteria together with the abstract models of
ML and the corresponding notion of learnability.

2.1.2 Identification in The Limit

One of the most well-known and earliest abstract models of ML is identification in the limit. It has its
origin in the work of Gold in 1967 on learning languages [27]. It views inductive inference as an infinite
process in which an inductive inference device M is run repeatedly on more and more of examples of a rule
𝑟, say 𝑥!, 𝑥!,… , 𝑥!,… , and it outputs an infinite sequence of hypothesis ℎ!, ℎ! ,… , ℎ! ,… . If the inductive
inference device makes the same hypothesis after some finite number 𝑚 of changes, the process is defined
as convergent after 𝑚 changes. Identification in the limit can be formally defined as follows.

Definition 2.1 (Identification in the Limit)

Suppose that 𝑀 is an inductive inference device, 𝑅 is a set of rules, 𝑟 ∈ 𝑅 is a rule to learn, and 𝑥 =
𝑥!, 𝑥!,… , 𝑥!,… be an infinite sequence of instances of rule 𝑟. Let ℎ! = 𝑀 𝑥!,… , 𝑥! . If there exists
some natural number 𝑚 such that, for all 𝑖 > 0, ℎ! = ℎ!!!, then we say that 𝑀 converges to ℎ!, written
as 𝑀(𝑥) ↓ ℎ!. If ℎ! ≡ 𝑟, we say that 𝑀 behaviourally identifies 𝑟 in the limit. If ℎ! = 𝑟, we say that 𝑀
explanatorily identifies 𝑟 in the limit. ☐

Definition 2.2 (Behavioural or explanatory identifiability)

If there is an inductive inference device 𝑀 such that for every rule 𝑟 in 𝑅, 𝑟 is behaviourally (explanatorily)
identifiable in the limit by 𝑀, we say that 𝑅 is behaviourally (explanatorily) identifiable. ☐

Let BC and EX denote the collections of rule sets 𝑅 that are behaviourally and explanatorily identifiable in
the limit, respectively. Moreover, let 𝑛 be any given natural number. If replacing the equals to = relation in
the definition of EX with relation =! and =∗, the collections of identifiable rule sets are denoted by 𝐸𝑋!
for each natural number 𝑛 and 𝐸𝑋∗, respectively. Similarly, we define 𝐵𝐶! and 𝐵𝐶∗. Case and Smith
(1978, 1983) proved the following theorem about the learnability of identification in the limit [14].

Theorem 2.1 (Case and Smith 1978, 1983)

𝐸𝑋 = 𝐸𝑋! ⊂ 𝐸𝑋! ⊂ ⋯ ⊂ 𝐸𝑋! ⊂ ⋯ ⊂ 𝐸𝑋!
!∈!

⊂ 𝐸𝑋∗

⊂ 𝐵𝐶 = 𝐵𝐶! ⊂ 𝐵𝐶! ⊂ ⋯ ⊂ 𝐵𝐶! ⊂ ⋯ ⊂ 𝐵𝐶!
!∈!

⊂ 𝐵𝐶∗

☐

An example of learnable sets of rules in 𝐸𝑋 is the set 𝑃𝑜𝑙𝑦 of one-variable polynomial functions, i.e.
𝑃𝑜𝑙𝑦 ∈ 𝐸𝑋. An example of an unlearnable set of rules for 𝐵𝐶 is the set 𝑇𝑜𝑙 of total computable functions,
i.e. 𝑇𝑜𝑙 ∉ 𝐵𝐶, but 𝑇𝑜𝑙 is learnable with respect to 𝐵𝐶∗, i.e. 𝑇𝑜𝑙 ∈ 𝐵𝐶∗.

Identification in the limit was originally proposed by Gold for the study of the computational learning of
language grammars [27]. The learnability of various classes of languages depends on the learning model
which consists of two factors: (a) how the instances of the language are presented to the learner, and (b) the

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 5

representation of learning outcomes. Gold used two representations of the learning outcomes:

• Turing machines as the generators of the languages;
• Turing machines as the decision procedures for the languages.

He used the following three presentations of the input.

• Text presentation: The learner is presented with a text, which is a sequence 𝑥!, 𝑥!,… , 𝑥!,…, of valid
sentences in the language. That is, the instances only contain positive examples. In general, the text can
be any arbitrary function from 𝑁 to the sentences. If the sequence is a recursive function (or primitive
recursive function) from 𝑁 to the set of sentences in the language, the text is called recursive text (or
primitive recursive text).

• Complete presentation: The learner is presented with a sequence of instances of the language; some are
positive and some are negative.

• Request presentation: The learner makes a sequence of queries about whether a text is a valid sentence
of the language, and presented with answers of “yes” or “no”, where “yes” for the text being a positive
example, or “no” for a counterexample.

Although there are six combinations of these two factors, Gold proved that there are only three learning
models that have different learning power. These learning models are:

• Anomalous Text learning model, in which the learner is presented with primitive recursive text of the
language as input and produces hypothesis in the form of a Turing machine that enumerate the
language.

• Informant model, which uses the complete text as the input to the learner in the form of requests on
whether a specific sentence is an instance of the language and get replies of yes or no. It generates an
output in the form of a generator.

• Text model, which uses primitive recursive text as the input, but produces a Turing machine as the
decision procedure for the language.

The main results of Gold’s work [27] are shown in Figure 1. On the right-hand side, various language
classes are listed in the order of set inclusion, i.e. a class of language is a superclass of all classes below
it. On the left-hand side are three different learning models showing the classes of languages that are
learnable. Anomalous Text learning model is the most powerful one among these three models. Informant
model is less power than Anomalous Text model, while Text is the weakest one, which can only learn finite
languages by identification in the limit.

Class of Learnable Languages

Recursively enumerable
Recursive
Primitive recursive
Context-sensitive
Context-free
Regular
Superfinite
Finite cardinality languages

Figure 1. Learnable Language Classes by Identification in The Limit [27]

Language identification in the limit is relevant to the application of ML theories and techniques to software
testing, because finite state machines, automata, and flow graph models are widely used in software testing.
Whether a type of software model is learnable can be derived from the learnability of their corresponding
language classes. Useful results on the characteristics of learnability can be found in Angluin’s work [8].

Identification in the limit is useful to answer theoretical questions about ML, but it has limitations in
practical applications. As Gold pointed out [27], even if a language belongs to a learnable class, one would
not necessarily be able to know when the hypothesis produced by the learning device is correct. The
inductive inference process must go on forever because there is always the possibility that the input

Te
xt

 In
fo

rm
an

t

A
no

m
al

ou
s

Te
xt

Technical Report OBU-ECM-AFM-2018-01

 6

instance will appear that forces the learning device to change the output hypothesis. If it is required to know
when the output hypothesis is correct, the inductive inference model is called finite identification, and then,
none of the language classes in the above table are learnable. Fixed time identification is an abstract model
that is even weaker than finite identification. It requires the language can be learned after a fixed number of
steps specified a priori and independent of the specific language to learn. Gold justified the use of
identification in the limit as a right model to study the learnability of language classes by arguing that “a
person does not know when he is speaking a language correctly; there is always the possibility that he will
find that his grammar contains error. But, we can guarantee that a child will eventually learn a language,
even if it will not know when it is correct”. Applying the same argument to software testing, we have that
“a tester does not know when the program passed his test is correct; there is always the possibility that he
will find that his program contains error. But, we can guarantee that a tester will eventually get a correct
program, even if it will not know when it is correct.”

Based on identification in the limit, Gold also defined the notion of effective identification in the limit if
there is an algorithm that computes the inductive inference device. Otherwise, it is ineffective.

2.1.3 Probably Approximately Correct (PAC) Learning

PAC learning is an abstract model of ML proposed by Valiant in 1984 [54]. In a PAC learning process,
examples of the unknown target rule to learn are generated at random according to a given probability
distribution, but unknown to the induction device, on the example space. The inductive inference device is
given two real number parameters: 𝛿 for the confidence in the inference result and 𝜀 for the reliability of
the result, both are real numbers greater than 0 and less than 1. A natural number 𝑛 is calculated from 𝜀 and
𝛿. The inductive inference device asks the environment to input 𝑛 examples of the target rule 𝑟 generated at
random. The inference machine then produces a hypothesis ℎ of the rule. The inference is said to be
successful at learning the rule 𝑟 if it outputs a hypothesis ℎ such that, with probability at least 1 − 𝛿, the
likelihood that ℎ is incompatible with the next randomly generated example is at most 𝜀 . Perhaps
surprisingly, the number 𝑛 of input examples is not dependent of the probability distribution. Formally,

Definition 2.3 (PAC Learnability)

A class 𝑅 of rules with domain 𝐷 and codomain 𝐶 is PAC learnable if there exists a function 𝑚!: 0,1 ! →
𝑁 and an inductive inference device 𝑀 with the following property: for every 𝜖, 𝛿 ∈ (0,1), for every
probability distribution 𝑃𝑟 over 𝐷, for every 𝑟 in 𝑅, and every set 𝑡 of 𝑛 = 𝑚!(ε, δ) examples of rule 𝑟, if
the elements in 𝑡 are drawn at random independently and identically distributed (i.i.d) according to 𝑃𝑟, the
likelihood that the following inequality holds is greater than or equal to 𝛿 when 𝑥 is drawn at random i.i.d.
over 𝐷 with distribution 𝑃𝑟.

𝑃𝑟(𝑥 ∈ 𝐷|𝑟(𝑥) ≠ ℎ(𝑥)) ≤ 𝜀.

where ℎ = 𝑀 𝑡 . The smallest such integer-valued function 𝑚! for all inductive inference devices that 𝑅 is
learnable is called the sample complexity of 𝑅. ☐

The PAC learnability for a set 𝑅 of rules is characterized by the VC dimension of the set 𝑅. Let 𝑅 be a
class of functions from 𝐷 to {0,1}, and let 𝐴 = 𝑎!, 𝑎,… , 𝑎! ⊂ 𝐷 be a finite subset of 𝐷. The restriction of
𝑅 on 𝐴 is defined as the set of functions from 𝐴 to {0,1} that are derived from 𝑅. That is,

𝑅! = < 𝑟 𝑎! , 𝑟 𝑎! ,… , 𝑟 𝑎! > 𝑟 ∈ 𝑅},

where each function from 𝐴 to {0,1} is represented as a vector in 0,1 ! . If the restriction of 𝑅 to 𝐴 is the
set of all functions from 𝐴 to {0,1}, then we say that 𝑅 shatters the set 𝐴.

Definition 2.4 (VC Dimension)

The VC dimension of a set 𝑅 of rules denoted by 𝑉𝐶𝐷𝑖𝑚(𝑅), is the maximal size of the sets 𝐴 ⊂ 𝐷 that
can be shattered by 𝑅. If 𝑅 can shatter sets of arbitrarily large size, we say that 𝑅 has an infinite VC
dimension. ☐

The following theorem gives the characteristics of PAC learnability and the sample complexities of sets 𝑅
of rules; see e.g. [51].

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 7

Theorem 2.2.

A set 𝑅 of rules is PAC learnable if and only if its VC dimension is finite. Moreover, if a set 𝑅 of rules has
a finite VC dimension 𝑑, then there are absolution constants 𝐶! and 𝐶! such that

𝐶!
!!log ! !

!
≤ 𝑚! 𝜖, 𝛿 ≤ 𝐶!

! log ! ! !!"# !
!

!
. ☐

The following are the VC dimensions of some example sets of rules/functions.

Table 1. Examples of VC-Dimensions

Set of Rule/Functions VC-Dim

Threshold functions over the set ℝ of real numbers 1

Intervals over the set ℝ of real numbers 2

Axis aligned rectangles over the set ℝ2 of two
dimensional space of real numbers

4

Finite set H of functions ≤ 𝑙𝑜𝑔!(𝐻)

{ 0.5 sin 𝜃𝑥 |𝜃 ∈ ℝ} ∞

As shown in Table 1, any finite set of rules is PAC learnable because its VC dimension is finite. The
following inequality about the sample complexity of finite set of rules is useful; see e.g. [51].

Theorem 2.3.

If a set 𝑅 of rules is a finite set, its sample complexity has the following property.

𝑚! 𝜖, 𝛿 ≤
!"# !

!
!

 . ☐

In the next subsection, we give a brief introduction to ML techniques.

2.2 ML Techniques

By ML techniques, we meant various algorithms of inductive inference devices and their implementations
in ML software tools. We start with a brief discussion of various paradigms of machine learning, which
differs from each other in terms of how data (i.e. instances of the target rule) are obtained and presented to
the learning device. Then, we introduce two most commonly used ML algorithms: (a) artificial neuron
networks, and (b) clustering algorithms.

2.2.1 ML Paradigms

There are four different paradigms of ML.

• Supervised learning.

In this paradigm, a ML device is provided with instances of the rule to learn. For a rule 𝑟 ⊆ 𝐷×𝐶 with
domain D and codomain C, the input to the inductive inference device will be a set of elements <
𝑎! , 𝑏! , 𝑙! >, 𝑖 = 1, 2,… , 𝑘, where 𝑎! ∈ 𝐷, 𝑏! ∈ 𝐶, and 𝑙! is called the label for the instance 𝑎! , 𝑏! , which

is either true or false for the pair 𝑎! , 𝑏! ∈ 𝑟 or not. Supervised learning is applicable to learn functions and
relations.

• Unsupervised learning.

For unsupervised learning, no labels like 𝑙! in the supervised learning on the data are provided. Instead, a
notion of similarity between the observed data is defined for, or assumed known to, the inference device.
Such a notion of similarity is often defined in the form of a distance measure between the data, which is a
function || x, y || from pairs of elements 𝑥 and 𝑦 in the space 𝑆 of examples to positive real numbers 𝑟 ∈ ℝ!.
A distance function that satisfies the following properties is called a metrics.

(1) ∀𝑥, 𝑦 ∈ 𝑆. 𝑥, 𝑦 ≥ 0;

Technical Report OBU-ECM-AFM-2018-01

 8

(2) ∀𝑥, 𝑦 ∈ 𝑆. 𝑥, 𝑦 = 0 ⟺ (𝑥 = 𝑦);
(3) ∀𝑥, 𝑦 ∈ 𝑆. 𝑥, 𝑦 = 𝑦, 𝑥 ;
(4) ∀𝑥, 𝑦, 𝑧 ∈ 𝑆. 𝑥, 𝑦 ≤ 𝑥, 𝑧 + 𝑧, 𝑦 .

If condition (2) above is replaced by the following condition, it is called a pseudometrics.

(5) ∀𝑥 ∈ 𝑆. 𝑥, 𝑥 = 0.

The set of examples in an unsupervised learning is often in a multiple dimensional space, where each
dimension represents a feature of the element. The most common unsupervised learning methods is cluster
analysis, which aims at discovering the hidden patterns in data by grouping elements similar to each other
into classes. Clustering methods will be discussed in Section 2.2.3.

• Semi-supervised learning.

In this type of learning process, a part of the input to the inductive inference machine is labelled as in
supervised learning, but some are not labelled.

• Reinforcement learning.

In a reinforcement learning process, an inductive inference device (often called the learning agent in the
literature of reinforcement learning) engages in repeated sequential interactions with an environment. At
each time moment 𝑡, the agent receives an observation 𝑜! on the environment, and takes an action 𝑎! of its
choice from the set of available actions, which is subsequently sent to the environment. The environment
moves to a new state 𝑠!!!, and a reward 𝑟!!! associated with the transition (𝑠! , 𝑎! , 𝑠!!!) is determined. The
agent aims at collecting as much reward as possible in the process of interactions with the environment.
When the agent's performance is compared to that of an agent that acts optimally, the difference in
performance gives rise to the notion of regret. In order to act near optimally, the agent must reason about
the long-term consequences of its actions (i.e., maximize future income), although the immediate reward
associated with this might be negative. Thus, it is well-suited to problems that include a long-term versus
short-term reward trade-off. It has been applied successfully to various problems, including robot control,
elevator scheduling, telecommunications, and play games such as checkers and go.

2.2.2 Artificial Neural Networks

An artificial neural network (ANN), or simply neural network (NN), is a network of computing nodes that
are artificial neurons inspired from neurons (i.e. nerve cells).

• Artificial Neurons

As shown in Figure 2, each artificial neuron has a number of numerical inputs 𝑥!,… , 𝑥! and a numerical
output 𝑦. The output is calculated by a formula 𝑦 = 𝜑 𝑤!𝑥!!

!!! , where for 𝑖 = 1,… , 𝑛, 𝑤! are called the
weights, and 𝜑 is called the transfer function or activation function, which produces the value transferred
from one neuron cell to the others that connected to the neuron’s output as their inputs.

 (a) Nerve cell (b) Artificial neuron

Figure 2. Neuron Cell and Artificial Neuron

In most neuron networks, the input to a neuron may have a bias value 𝑏 in addition to the inputs such that
𝑦 = 𝜑 𝑏 + 𝑤!𝑥!!

!!! . In this case, we regard the bias value as from a constant input 𝑥! = 1, called the
bias input, with the weight 𝑤! = 𝑏 equals to the bias value. Thus, the function can also be represented in
the form of

x1

x2

xn

y

w1
w2

wn

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 9

𝑦 = 𝜑 𝑤!𝑥!

!

!!!

. (∗)

There are a few different types of transfer functions studied in ANN. The most commonly used ones are:

• Step functions: 𝜑 𝑥 = 1; 𝑥 ≥ 𝜃
0; 𝑥 < 𝜃 , where 𝜃 is the threshold.

• Sigmoid functions: These are S-curved functions. For example, the following logistic function is a
sigmoid function.

𝜑 𝑥 =
1

1 + 𝑒!!
.

There are a few such sigmoid functions that have been studied in the ANN literature. Figure 3 shows the
curves for a few often used ones.

Figure 3. S-Curves of Commonly Used Sigmoid Functions

• Rectifier function: The rectifier function is defined as follow.

𝜑 𝑥 = 𝑥! = 𝑀𝑎𝑥 0, 𝑥 .

It is also known as the ramp function. A smooth approximation of the rectifier function is the analytic
function 𝜑 𝑥 = 𝑙𝑜𝑔 (1 + 𝑒!), which is also called the softplus function; see Figure 4 for the curves of
rectifier and softplus functions.

Figure 4. The Curves of Rectifier and Softplus Functions

Note that the derivative of the softplus function is the logistic function. The rectifier was introduced by
Hahnloser et al. in 2000 as an activation function for neural networks [30]. It was demonstrated to enable

Technical Report OBU-ECM-AFM-2018-01

 10

better training for deep neural networks in 2011 [61]. It is currently the most popular in the study and
application of deep learning ANN. A node in ANN employs the rectifier is called a rectified linear unit
(reLU). There are a few variants of ReLU in the literature of ANN. A thorough review of them is beyond
the scope of this paper.

• Types of Neural Networks

As shown in Figure 5, a neural network typically consists of an input layer of neurons that takes inputs, an
output layer of neurons that gives the outputs, and in between, a number of hidden layers. When the
number of hidden layers in a neural network is large, typically from 5 to 20 or above, it is called a deep
neural network.

Figure 5. Multilayer Artificial Neural Networks

In general, a neural network does not need to be fully connected between two layers as in Figure 5, and
these layers may have different numbers of neurons, even using different activation functions. When a
neural network consists of multiple non-linear layers of different sizes, it is called convolutional, which is
proven to be successful to be trained for image recognition. A neural network is traditionally an acyclic
directed graph, but recurrent nets that allow cycles have been developed to process sequential inputs like
text and for speech recognition.

• Forward Propagation and Backpropagation

For a neural network shown in Figure 5, given the inputs values 𝑥!,… , 𝑥! fed into the input layer, the
neurons calculates the output and feed forward to the next layer according to formula (*) and so forth until
the results is propagated to the output layer. This process is called forward propagation.

Therefore, a neural network can be mathematical represented as a function 𝑓! 𝑥!,… , 𝑥! = (𝑦!,… , 𝑦!),
where 𝑊 = (𝒘!,… ,𝒘!), for 𝑖 = 0, 1,… , 𝑘, 𝒘! is the 𝑛!×𝑛!!! matrix of the weights between neurons of
layer 𝑖 and neurons of layer 𝑖 + 1, 𝑛! is the number of neurons of layer 𝑖. In particular, the element 𝑤!,!

(!) on
row 𝑢 column 𝑣 of matrix 𝒘! is the weight of the link from neuron 𝑢 of layer 𝑖 to neuron v of layer 𝑖 + 1.

Backpropagation is the most popular training algorithm for artificial neural networks. It is a supervised
learning process with a set of input-output pairs of the required function as the training data. It starts with
an initialization of the network with random weights assigned to the edges between the neurons. For each
pair of input-output 𝑥!,… 𝑥! → (𝑦!,… , 𝑦!) in the training data, the learning process consists of two
stages: forward phase and backward phase.

The forward phase is a forward propagation of the input vector 𝑥!,… 𝑥! through the network as a cascade
of computation across the layers using the current weights 𝑊 associated to the links until it reaches the
output layer. Thus, the network computes the output 𝑦′!,… , 𝑦′! = 𝑓! 𝑥!,… , 𝑥! . The output
𝑦′!,… , 𝑦′! of the network is then compared to the expected output (𝑦!,… , 𝑦!) of the training data, and

their discrepancy defines the error vector 𝑒!,… . , 𝑒! = (𝑦!! − 𝑦!,… , 𝑦!! − 𝑦!). The error shows whether
the network has learned to compute the output correctly.

In the second stage, i.e. the backward phase, the output error propagates backward to update the weights
associated to the links between neurons. The most popular training algorithm to update the weights is the
gradient decent method, which can be understood as a solution to the optimization problem to minimize the
cost of errors defined by a loss function 𝐸(𝑒!,… , 𝑒!) on the errors. A typical loss function is the square
sum of errors:

x1

x2

xn

Input
layer

…

…

y2

y1

ym

Output
layer Hidden layer

…

… … … … …

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 11

𝐸 𝑒!,… , 𝑒! =
1
2

𝑒!!
!

!!!

=
1
2

𝑦!! − 𝑦! !
!

!!!

.

By the gradient descent method, the training of the network is to adjust the weights by using the gradient to
calculate the steepest descent direction. The gradients of weights associated to the links in the neural
network can be calculated from the output layer backwards layer by layer until the input layer according to
a recursive formula derived from the activation function associated to the neurons.

Given the gradients of the weights and the output of the neuron on the training data, the weights are
updated by subtracting the old weight by the multiplication of the gradient to the old weight and a
percentage, which is call the learning rate. If the learning rate is too small, it will take a large number of
iterations of the training to converge, while if it is too large the training may results in a suboptimal
solution.

The training process goes through each example in a set of training data one by one and updates the
weights. One cycle of this training is called an epoch. One epoch may not result in a network that has
acceptable error rate. Therefore, the training process may need to go through a number of epochs until
either the training converges (i.e. the modifications to the weights are very small) or the error is acceptable.
The training may fail, if after a large number of epochs the training still does not converge, or it converges
to a network that the error is larger than acceptable.

It is worth noting that training a neural network using backpropagation implements the so-called empirical
risk minimization (ERM) rule, i.e. to minimalize the average of the loss function on training data.

• Theoretical Properties of Neural Networks

We use 𝑉,𝐸,𝜑 to denote such a neural network that consists of a set V of neurons and a set E of
connecting edges between the neuron, and 𝜑 is the activation function on all the neurons in the network.
Given a mapping 𝜔:𝐸 → ℝ from the set E to real numbers ℝ, i.e. the weights associated to the links
between neurons, the neural network computes a function ℎ!,!,!,!:ℝ! → ℝ!, where n is the number of
neurons on the input layer, and m is the number of neurons on the output layer. The set of rules that can be
represented by such a neural network is, therefore,

𝐻!!,!,!! = ℎ!,!,!,! 𝜔:𝐸 → ℝ .

The following theorem gives the expressiveness of neural network. It states what kinds of functions are
implementable by neural networks.

Theorem 4.

(1) For every natural number n>0, there exists a neural network 𝑉,𝐸, 𝑠𝑖𝑔𝑛 of depth 2 such that
𝐻!!,!,!"#$! contains all n-ary Boolean functions, i.e. functions from 0,1 ! → {0,1}.

(2) The neural network 𝑉,𝐸,𝜑 that contains all functions of n-ary Boolean functions has the property
that |V| is exponential in n. ☐

The following theorem gives the sample complexity of neural networks. The sample complexity determines
how many different training data are required to train a neural network.

Theorem 5. Let 𝝈 be the sigmoid function.

(1) If the weights associated to the links can be any real numbers, the VC-dimension of 𝐻!!,!,!! is lower
bounded by Ω(𝐸 !) and upper bounded by 𝑂(𝑉 ! 𝐸 !).

(2) If the weights associated to the links are b bits of floating point numbers, the VC-dimension of
𝐻!!,!,!! is O(𝑏 𝐸). ☐

The following theorem gives the computational complexity to implement ERM. It indicates how many
epochs are needed to train a neural network.

Theorem 6.

It is NP hard to implement the ERM rule using neural network 𝑉,𝐸, 𝑠𝑖𝑔𝑛 which contains n input neurons,

Technical Report OBU-ECM-AFM-2018-01

 12

and a single hidden layer that contains at least 3 neurons. ☐

2.2.3 Clustering

Clustering is a ML technique widely used in data mining to uncover hidden rules in the data. The input to a
clustering algorithm is a set 𝐷 = 𝑥!, 𝑥!,… , 𝑥! of unlabeled data, where each element 𝑥! is a value in a k-
dimensional space 𝐷!×𝐷!×…×𝐷!. Typically, each dimension represents a feature of the elements, and a
distance function . , . !:𝐷!×𝐷! → ℝ! is defined on the values of the feature. The distance between two
points in a k-dimensional space 𝐷 can be calculated from the distances on each dimension, for example,
using Euclidean distance defined as follows.

𝛿 𝒙,𝒚 = 𝑥! , 𝑦! !

!

!!!

!

where 𝒙 = 𝑥!,… , 𝑥! and 𝑦 = 𝑦!,… , 𝑦! . However, one may use other distance functions as far as it
satisfies the properties of metrics or pseudometrics.

A clustering 𝑪 = 𝐶!,𝐶!,… ,𝐶! is a partition of the data set 𝐷 . That is, 𝐶 must have the following
properties.

• Each cluster 𝐶! is a non-empty subset of data in 𝐷, i.e. ∀𝑖 = 1,… , 𝑘. (∅ ⊂ 𝐶! ⊆ 𝐷);
• The clusters are pairwise disjoint, i.e. ∀𝑖 ≠ 𝑗 ∈ 1,2,… , 𝑘 . (𝐶! ∩ 𝐶! = ∅);
• The clusters cover all elements of the data set D, i.e. 𝐶!!

!!! = 𝐷.

The goal of clustering is to partition the data set into k clusters that each cluster contains elements that are
similar to each other (i.e. have a small distances from each other) and elements from different clusters are
less similar to each other (or have a larger distance between them). There are a number of clustering
algorithms available for different types of data spaces. Among them, one of the most frequently used
clustering techniques is hierarchical clustering, which have been applied in the research on software
testing; see, for example, [20].

Given a data set 𝐷 = 𝑥!, 𝑥!,… , 𝑥! , a clustering 𝑨 = 𝐴!,𝐴!,… ,𝐴! is nested in clustering 𝑩 =
{𝐵!,… ,𝐵!}, if for each 𝐴! ∈ 𝑨, there is a 𝐵! ∈ 𝑩 such that 𝐴! ⊆ 𝐵! . Hierarchical clustering yields a
hierarchical structure of clustering, or formally, a sequence 𝑪!,𝑪!,… ,𝑪! of clusterings such that for each
𝑖 = 1,… ,𝑚 − 1, clustering 𝑪! is nested in clustering 𝑪!!!, and the sequence of clusterings ranges from
𝑪! = 𝑥 |𝑥 ∈ 𝐷 to 𝑪! = {𝐷}. Figure 6 shows an example of hierarchical clustering of a set of 5 elements
{a, b, c, d, e}.

Clustering Clusters
C1 {a}, {b}, {c}, {d}, {e}
C2 {a}, {b, c}, {d}, {e}
C3 {a}, {b, c}, {d, e}
C4 {a}, {b, c, d, e}
C5 {a, b, c, d, e}

Figure 6. Example of Hierarchical Clustering

There are two main approaches to generate hierarchical clustering: agglomerative and divisive.

The agglomerative approach works bottom-up starting from the finest clustering 𝑪! = {𝑥} 𝑥 ∈ 𝐷 . Each
step it merges two most similar clusters until it reaches the most coarse cluster 𝑪! = {𝐷}.

The divisive approach starts from the most coarse clustering 𝑪! = {𝐷} and works top-down. At each step,
it spilt one cluster into two until it reaches the finest clustering 𝑪! = {𝑥} 𝑥 ∈ 𝐷 .

Agglomerative approach is more suitable for analysing numerical data, while divisive approach is more
efficient for analysing graphs. The key step in the agglomerative algorithms of hierarchical clustering is to
calculate the distances between a pair of clusters. Let 𝛿 𝑥, 𝑦 be a distance function between two points in
the d-dimensional space D. The following distance functions between two clusters are often used in

a b c d e

bc de

bcde

abcde

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 13

clustering. We will use 𝛿 𝑋,𝑌 to denote the distance between two clusters X, and Y.

• Single Link: The distance between two clusters X and Y is the minimal distance between a point x in X
and a point y in Y. Formally,

𝛿 𝑋,𝑌 = 𝑚𝑖𝑛 {𝛿(𝑥, 𝑦)|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}.

• Complete Link: The distance between two clusters X and Y is the maximal distance between a point x
in X and a point y in Y. Formally,

𝛿 𝑋,𝑌 = 𝑚𝑎𝑥 {𝛿(𝑥, 𝑦)|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}.

• Group Average: The distance between two clusters X and Y is the defined as the average pairwise
distances between the points in X and Y. Formally,

𝛿 𝑋,𝑌 =
𝛿(𝑥, 𝑦)!∈!!∈!

𝑋 × 𝑌

• Mean Distance: The distance between two clusters X and Y is the defined as the distances between the
mean (or centroids) of the clusters X and Y. Formally,

𝛿 𝑋,𝑌 = 𝛿(𝜇!, 𝜇!)

where 𝜇! =
!
!

𝑥!∈! .
• Minimum Variance (Ward’s Method): The distance between two clusters is defined as the increase in

the sum of square errors (SSE) when the two clusters are merged. Formally, the sum of square errors
SSE(X) of a cluster X is defined as follows,

𝑆𝑆𝐸 𝑋 = 𝑥 − 𝜇! !

!∈!

.

Then, the distance between clusters X and Y is defined as follows.

 𝛿 𝑋,𝑌 = 𝛥𝑆𝑆𝐸 𝑋,𝑌 = 𝑆𝑆𝐸 𝑋 ∪ 𝑌 − 𝑆𝑆𝐸 𝑋 − 𝑆𝑆𝐸 𝑌 .

Note that 𝛥𝑆𝐸𝐸 𝑋,𝑌 = ! × !
! ! !

𝜇! − 𝜇! !. Therefore, minimum variance is actually a weighted mean
distance measure if we use Euclidean distance.

The computational complexity of agglomerative clustering is 𝑂(𝑛! log 𝑛), where n is the number of
elements in the data set to be analysed. Note that to achieve a perfect clustering is NP hard. Agglomerative
clustering does not guarantee to general a perfect clustering.

3. Test Adequacy
The test adequacy problem is concerned with how to measure the thoroughness of a software test and how
to determine when a test can stop. It has been intensively investigated since Goodenough and Gerhart
introduced the notion of test adequacy criteria in 1976 [28]. Several dozens of test adequacy criteria have
been proposed and studied in the literature; see, e.g. [69] for a survey of unit test adequacy criteria. Some of
them are widely used in software testing practices. However, how to measure test adequacy is still an open
problem in software testing research. In particular, despite of the large number research papers on test
adequacy criteria published in the literature, we still cannot claim that the software is correct or reliable if it
passes an adequate test successfully. In this section, we review how ML theories and techniques are
employed to solve research problems related to test adequacy.

3.1 The Notion of Test Adequacy

A test adequacy criterion can be defined as a stop rule or a measurement. The former can be formally
defined as a predicate on test sets and the software under test, which consists of a program and a
specification [69]. The later can be defined as a mapping from test sets and software to a real number in the
unit interval.

Definition 3.1 (Test Data Adequacy Criteria as Stopping Rules)

A test data adequacy criterion 𝐶 is a function 𝐶:𝑃×𝑆×𝑇 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}. 𝐶(𝑝, 𝑠, 𝑡) = 𝑡𝑟𝑢𝑒 means that

Technical Report OBU-ECM-AFM-2018-01

 14

the test set 𝑡 is adequate for testing program 𝑝 against specification 𝑠 according to the criterion 𝐶, otherwise
𝑡 is inadequate. ☐

Definition 3.2 (Test Data Adequacy Measurements)

A test data adequacy measurement 𝑀 is a function 𝑀:𝑃×𝑆×𝑇 → [0,1]. 𝑀(𝑝, 𝑠, 𝑡) = 𝑟 means that the
adequacy of testing the program 𝑝 by the test set 𝑡 with respect to the specification 𝑠 is of degree 𝑟
according to the criterion 𝑀. The greater is the real number 𝑟, the more adequate is the testing. ☐

In practice as well as in research, a test adequacy criterion is often represented as a test case design rule for
the generation of test cases, which can be formally defined as follows.

Definition 3.3 (Test Data Adequacy Criteria as Design rules)

A test data adequacy criterion 𝐶 is a function 𝐶:𝑃×𝑆 → 𝒫(𝐷), where 𝐷 is the input domain of the
software, 𝒫(𝐷) is the power set of 𝐷, i.e. the set of all possible test sets. A test set 𝑡 ∈ 𝐶(𝑝, 𝑠) means that 𝑡
is an adequate test set for testing program 𝑝 against specification 𝑠 according to the criterion 𝐶, otherwise 𝑡
is inadequate. ☐

Test adequacy criteria as design rules are mathematically equivalent to as stop rules.

There are a large number of test adequacy criteria proposed and studied in the literature. As discussed in
[69], there are a number of different ways to classify these criteria. One of the ways is according to the
basic ideas underneath the testing method and which leads to the following types of test adequacy criteria.

• Structural test criteria, such as statement coverage, branch coverage, path coverage, etc. in control
flow testing, and definition-use path coverage, definition context coverage, etc. in data flow testing.

• Fault-based test criteria, such as mutation score;
• Error-based test criteria, such as boundary coverage in partitioning testing and functional adequacy in

Howden’s algebraic testing.

Since 1980s, ML techniques and theories of inductive inferences have been applied to define the ideal test
adequacy criteria, to analyze the weakness of existing ones, and more recently, to develop prototype tools
to measure test adequacy. The following subsections review these works.

3.2 Weyuker’s Inference Adequacy Criterion

In search for an ideal test adequacy criterion, Weyuker (1983) proposed an adequacy criterion explicitly
employing ML [58]. As shown in Figure 7, Weyuker’s idea is that, given an inductive inference tool that
can generate a rule from examples, a test is defined to be adequate if the rule generated from the test cases
is equivalent to both the program under test and its specification.

Figure 7. Weyuker’s Inference Adequacy [58]

Definition 3.4 (Inference Adequacy Criterion)

Let 𝑝 be a program under test and 𝑠 be its specification, 𝑡 = {< 𝑥! , 𝑦! > |𝑖 = 1,2,… , 𝑛} be a set of test
cases where 𝑥! are the inputs and 𝑦! are the corresponding expected outputs, and 𝑀 be a program synthesis
device. The test set T is defined to be adequate according to the inference adequacy criterion, if 𝑝⟺ 𝑀(𝑡)
and 𝑠⟺ 𝑀(𝑡). ☐

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 15

Weyuker proved the following properties of inference adequacy.

Theorem 3.1 (Weyuker Theorem)

Let 𝑝 be a program intended to fulfil specification 𝑠. Then, we have that:

(1) If program 𝑝 can be inferred from test set 𝑡, then 𝑡 is branch adequate for 𝑝, i.e. the coverage of all
branches of program 𝑝, if 𝑝 has no dead code.

(2) If test set 𝑡 is inference adequate for 𝑝 relative to 𝑠, then 𝑡 is an ideal test set for 𝑝, i.e. we can
guarantee the correctness of program 𝑝 w.r.t. 𝑠 if 𝑝 passes on all test cases in 𝑡.

(3) There exists a test set 𝑡 that is ideal for 𝑝, but is not inference adequate for 𝑝 relative to 𝑠. ☐

In the paper [58], Weyuker analysed the practical limitations of inference adequacy. Summer’s program
synthesis system [53], from which Weyuker drawn an example to illustrate how inference adequacy would
work, is very limited in the power to generate complex programs. Program synthesis techniques were
actively developed in the 1980s and 1990s and improved on the power to generate more complicated
programs from examples than Summer’s work; see for example, [34],[52],[64],[65]. However, the powers
of such systems are still very limited even today; see for example, [41]. Weyuker considered plausible
approximations to the inference adequacy criterion. She pointed out that restriction on a subset of
programs, such as finite state machines “is not likely to be productive.” However, relaxations on the
conditions that the inference result is equivalent to both program and the intended specification could be
useful. In particular, if the test set is generated from specification, one could use “program-adequate”, i.e.
the test is adequate if the program is equivalent to the derived rule. If the test set is generated from
program, one could use “specification-adequate”, i.e. the derived rule is equivalent to the specification.

Weyuker is the first person who applied a ML technique to software testing. Her pioneering work is of
greater theoretical value than practice. First of all, equivalence between a generated rule and a
program/specification is undecidable in general. Second, if one can prove that the function generated from
a set of test cases (including inputs and the expected outputs) is equivalent to both the program and the
specification, it actually proved indirectly that the program is equivalent to the specification. There seems
no reason why the generated function is easier to prove its equivalence to the program or the specification
than to prove the program is equivalent to the specification directly.

Weyuker also pointed out that “it would be both interesting and useful to attempt to develop practical
approximations to program inference” [58]. One form of practical approximation approach to program
synthesis is Valiant’s PAC ML protocol proposed in 1984, where PAC stands for Probably Approximately
Correct [54]. It does not require the generated rule to be absolutely correct, but tolerant the error as far as
the probability of error occurrence is small enough. This approach is taken by Zhu et al. in the 1990s and
by Fraser et al. more than 30 years later; see subsections below.

3.3 Testing as Inductive Inference

Inspired by Weyuker’s work, Zhu, Hall and May compared the structure of software testing processes with
inductive inference processes and made two observations [68].

First, software testing is actually an inductive inference process in the course of which one observes the
program’s behaviour on a finite subset of samples and attempts to draw a general conclusion on the whole
behaviour space.

Second, test adequacy criteria play the same role as the convergence criteria in inductive inference process
[68]. A question is, therefore, whether those test adequacy criteria proposed in the literature and used in
practice are actually rules for determining the convergence of inductive inference underlying the testing
process.

Unfortunately, there is no evidence to believe that practically used test adequacy criteria are convergence
rules of the inductive inference underneath testing process. Instead, these test adequacy criteria reported in
the literature are approximations of the so-called ideal test adequacy criteria. Thus, the question becomes:
whether or not the so-called ideal test adequacy criteria are actually convergence criteria of inductive
inference? Zhu addressed this question in [66] by proving that Weyuker’s inference adequacy criteria
satisfy the axioms that characterises the ideal test adequacy criteria.

Technical Report OBU-ECM-AFM-2018-01

 16

There are four axiom systems of test adequacy criteria reported in the literature.

• Weyuker’s axiom system on program based test adequacy criteria; see Table 2. It is the first set of
axioms of test adequacy criteria. It was proposed in [59] and extended in [57] by Weyuker, formalised
and analysed by Parrish and Zweben [41][43], Hamlet [31], and Zweben and Gourlay [72].

• Zhu’s axiom system on control flow test adequacy criteria [67]. It extends Weyuker’s axioms and
adapts Baker et al’s required properties of control test adequacy criteria [10];

• Miao and Liu’s axiom system on predicate coverage criteria. It is an adaptation of Zhu’s axioms of
control flow adequacy criteria to predicate coverage criteria [39].

• Zhu and Hall’s axiom system on test adequacy measurements [63]; see Table 3.

Table 2. Weyuker Axiom System of Program-Based Test Adequacy Criteria

Name Meanings

Finite Applicability For every program, there exists a finite adequate test set.

Non-exhaustive
Applicability

There is a program p and a test set t such that p is adequately tested by t and t is not an
exhaustive test set.

Monotonicity If test set t is adequate for testing program p and 𝑡 ⊆ 𝑡!, then test set t’ is also
adequate for testing p.

Inadequate Empty Set The empty set is not adequate for any program.

Anti-extensionality There are semantically equivalent programs p and q such that there is a test set t that is
adequate for testing p, but not adequate for testing q.

General Multiple
Change

There are programs p and q which are of the same shape and a test set t such that t is
adequate for testing p, but not adequate for testing q.

Anti-decomposition There exist a program p, its component q and a test set t such that t is adequate for
testing p, but test set t' is not adequate for testing q, where t' is the set of vectors of
values that variables can assume on entrance to q for some test cases x in t.

Anti-composition There exist programs p and q and test sets t such that t is adequate for testing p and
p(t) is adequate for testing q, but t is not adequate for (p;q), where (p;q) is the
sequential composition of p and q.

Renaming Property Let p be obtained by systematically renaming some variables in q. Then, for all test
sets t, t is adequate for testing p if and only if t is adequate for testing q.

Complexity property For every natural number n>0, there is a program p, such that p can be adequately
tested by a size n test set, but not by any size n−1 test set.

Statement Coverage
Property

If a test set t is adequate for testing p, then, every feasible statement in p will be
executed when p is tested on t.

Zhu formally defined the notion of adequacy criterion induced from an inductive inference device as
follows [66].

Definition 3.5 (Program-based adequacy criterion induced from an inductive inference device)

Let 𝑀 be any given inductive inference device. An adequacy criterion as a stop rule induced from inductive
inference device 𝑀, written 𝐶!(𝑡, 𝑝), it is the adequacy criterion such that for all programs 𝑝 and test sets 𝑡,
𝐶! 𝑡, 𝑝 ⟺ 𝑀 𝑝 ↓ 𝑡 = 𝑝, where 𝑡 is a finite test set for program 𝑝, 𝑝 ↓ 𝑡 is the subset of input/output
pairs of 𝑝 with input from 𝑡. ☐

Using properties of Identification in the limit, Zhu proved that the adequacy criterion induced from an
inductive inference device is a valid interpretation of the main axioms in the Weyuker system of program
based adequacy criteria. Let 𝑀 be an inductive inference device and 𝐶!(𝑡, 𝑝) be the adequacy criterion
induced from 𝑀 as defined by Definition 3.5. Formally,

Theorem 3.2 (Zhu 1996)

The adequacy criterion 𝐶!(𝑡, 𝑝) for a set of programs 𝑃 satisfies the Weyuker’s axioms of finite

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 17

applicability, monotonicity, inadequacy of the empty test set, complexity property, and statement coverage
property for program-based test adequacy criteria, if 𝑀 has the following properties.

(1) 𝑀 is conservative, which means that 𝑀 changes its output hypothesis only if the hypothesis is not
consistent with a new input instance.

(2) 𝑀 has the simplest hypothesis property.

(3) 𝑃 is explanatorily learnable by 𝑀 in the identification in the limit.

☐

The original motivation of Weyuker’s inference adequacy criterion is to ensure the correctness of the
program if it passes an adequate test. The following theorem proved in [66] shows that this is achievable
without actually prove the equivalence between programs and without actually generate a program from the
test cases. The condition for the correctness is the learnability of the program and the specification by the
inductive inference device.

Theorem 3.3 (Zhu 1996)

A program 𝑝 is correct w.r.t. a specification 𝑠 after successfully tested on a finite test set 𝑡, if 𝑡 is adequate
according to criterion 𝐶!(𝑡, 𝑝), p is explanatorily learnable by 𝑀, 𝑠 is behaviourally learnable by 𝑀, and 𝑀
converges to a function that is consistent with 𝑠 on 𝑡. ☐

Zhu also explored the possibility of using PAC learning to define test adequacy measurements. The
following definition was given in [66].

Definition 3.6 (Adequacy measurement induced from an inductive inference device)

Let 𝑃 be a set of programs and 𝑀 be an inductive inference device such that 𝑚! 𝜖, 𝛿 : 0,1 ! → ℕ is the
sample complexity of 𝑃 for 𝑀 . The function 𝐾!,! 𝑡, 𝑝 from test sets 𝑡 and programs 𝑝 in 𝑃 to real
numbers in the unit interval [0,1] is defined as follows.

𝐾! 𝑡, 𝑝 = 1 − 𝑠𝑢𝑝 {𝜖|𝑚! 𝜖, 𝛿 ≥ | 𝑡 |}

where 𝑠𝑢𝑝 ∅ = 0. The function 𝐾!,! 𝑡, 𝑝 is called the adequacy measurement for programs in 𝑃 induced
from inductive inference device 𝑀 and sample complexity function 𝑚! 𝜖, 𝛿 . ☐

It was also proved that if the set of programs 𝑃 is PAC learnable by 𝑀 with sample complexity function
𝑚! 𝜖, 𝛿 , the adequacy measurement induced from (𝑀, 𝑚! 𝜖, 𝛿) is a valid model of Zhu and Hall axiom
system of test adequacy measurement. These axioms are given in Table 3.

Theorem 3.4 (Zhu 1996)

If a set of programs 𝑃 is PAC learnable by 𝑀 with sample complexity function 𝑚! 𝜖, 𝛿 , for any given real
number 0 < 𝛿 < 1, 𝐾! 𝑡, 𝑝 defined by Definition 3.6 satisfies the axioms of Zhu and Hall axiom system
of test adequacy measurements. ☐

Table 3. Zhu, Hall and May’s Axiom of Program-Based Test Adequacy Measurement

Name Meanings Formal definition

Inadequacy of an
empty test

The empty set is inadequate as a test
set for all software.

∀𝑝 ∈ 𝑃.𝑀 𝑝,∅ = 0

Adequacy of
exhaustive testing

The exhaustive test set is adequate
for all software.

∀𝑝 ∈ 𝑃.𝑀 𝑝,𝐷 = 1, where D is the input
domain of program p.

Monotonicity The more test cases are used, the
more adequate the test.

∀𝑝 ∈ 𝑃.∀𝑡, 𝑡!. 𝑡 ⊆ 𝑡! ⇒ 𝑀 𝑝, 𝑡 ≤ 𝑀(𝑝, 𝑡!)

Law of
diminishing
returns

The more a program has been tested,
the less a test set can further
contribute to test adequacy in the
context.

∀𝑝 ∈ 𝑃.∀𝑡,𝑢, 𝑣 ⊆ 𝐷.
(𝑢 ⊆ 𝑣 ∧ 𝑡 ∩ 𝑢 = ∅ ∧ 𝑡 ∩ 𝑣 = ∅ ⇒
𝑀 𝑝, 𝑣|𝑡 ≤ 𝑀 𝑝,𝑢|𝑡),
where 𝑀 𝑝, 𝑥 𝑡 = 𝑀 𝑝, 𝑥 ∪ 𝑡 −𝑀 𝑝, 𝑥)

Technical Report OBU-ECM-AFM-2018-01

 18

Convergence Take a sequence (even infinitely
many) of test sets and measuring test
adequacy for each step is equal to
measuring the adequacy of the
overall test set.

∀𝑝 ∈ 𝑃.∀𝑡!,… , 𝑡!,… .
(lim!→!𝑀 𝑝, 𝑡! = 𝑀(𝑝, 𝑡!)),
where 𝑡! = 𝑡!)!

!!! .

Finite
applicability

An adequacy criterion is finitely
applicable if, for all degrees of
adequacy less than 1, there always
exists a finite set of test cases that
achieves the required adequacy
degree.

∀𝑝 ∈ 𝑃.∀𝑟 < 1.∃𝑡. (𝑀 𝑝, 𝑡 ≥ 𝑟 ∧ 𝑡 < ∞)

Analysing the relationship between PAC learnability and software reliability, Zhu introduced a new
concept about software reliability: probable reliability.

Definition 3.7 (Probable reliability)

Assume that a software system 𝑝 is tested on a set 𝑡 of test cases selected at random independently
according to an identical distribution 𝑃𝑟. If the probability that the failure rate of 𝑝 on 𝑡 is less than or equal
to 𝜀 is at most 𝛿, we say that the 𝛿-probable reliability of the software is 𝜀. ☐

Probable reliability is an extension of Hamlet’s concept of probable correctness [32]. Based on the notion
of probable reliability, Zhu further explored how to take software complexity into consideration in the
assessment of software reliability rather than simply treating software as a black box [71]. In fact, the
probable reliability of a program that passes a test can be estimated according to the adequacy measurement
induced from an inductive inference machine if the program and specification is PAC learnable.

Theorem 3.5 (Zhu 1996)

For a finite random test set 𝑡, if the program 𝑝 is correct on test cases in 𝑡 w.r.t specification 𝑠, and 𝑝 and s
are in a set 𝑅 of functions that are PAC learnable, then the δ-probable reliability of program 𝑝 with respect
to specification 𝑠 is 𝐾! 𝑡,𝑅 . ☐

It is worth noting that, firstly, the assertion on the test adequacy measurement of a random test and the
assessment of probable reliability according to the above theorem does not require the program or the
specification to be actually generated by the inductive inference device. Secondly, 𝐾! 𝑡,𝑅 depends on the
sample complexity of the set 𝑅 of rules, which can be determined by the VC dimension of the set 𝑅. Thus,
probable reliability of the software that passes a random testing depends on the complexity of the software.

3.4 Fraser and Walkingshaw’s Behavioural Adequacy Criterion

More recently, Fraser and Walkinshaw employed PAC inductive inference protocol to define the so-called
behavioural adequacy criterion, which requires an accurate model of the software to be derivable from test
cases [22], [23]. The process of testing in Fraser and Walkinshaw’s approach as proposed in [23] is
illustrated in Figure 8, where the arcs are numbered to indicate the flow of events.

Figure 8. Fraser and Walkingshaw’s Behaviour Adequacy Criterion [23]

754 G. FRASER AND N. WALKINSHAW

amount of time available. For example, if the number of examples is low and k is too high, the
partition used for evaluation could be too small, yielding a misleading score. If there are lots of
examples and k is high, it could take too much time to iterate through all of the partitions.

A common choice for k when CV is used to evaluate machine learning techniques is 10 (the CV
technique as a whole is often referred to as ‘10-folds cross validation’). Alternatively, if the number
of examples is not too high, it is possible to use ‘leave-one-out cross validation’, where k D n ! 1,
and the evaluation set always consists of just one example. Ultimately, however, given the lack of
concrete guidance, the choice of k is left to the user, and their judgement of the extent to which the
set of examples is representative of the system in question.

2.4.2. Choosing a scoring function. Another important parameter is the choice of evaluation metric.
In other words, given an inferred model and a sample of inputs and outputs that were not used
for the inference, how can we use this sample to quantify the predictive accuracy of the model?
To provide an answer, there are numerous approaches, the selection of which depends on several
factors, including the type of the model and whether its output is numerical or categorical.

For models that produce a single numerical output, the challenge of comparing expected outputs
to the outputs produced by a model is akin to the challenge of establishing a statistical corre-
lation. Accordingly, standard correlation-coefficient computation techniques (Pearson, Kendall or
Spearman rank) can be used.

For non-numerical outputs, assessing the accuracy of a model can be more challenging. Accuracy
is often assessed by measures that build upon the notions of true and false positives and negatives.
Popular measures include the F-measure (the harmonic mean of Precision and Recall [17]), the
receiver operating characteristic (ROC) and Cohen’s kappa measure on inter-rater agreement [18].

3. ASSESSING BEHAVIOURAL ADEQUACY

In this section, we show how the various notions presented in the previous section can be used to
compute inference-based measures of test adequacy. We firstly present a PAC-based measure [4] in
Section 3.1. This is then followed up by the k-folds CV measure in Section 3.2, which addresses
some of the limitations of PAC.

3.1. Using PAC to quantify behavioural adequacy

The PAC framework presents an intuitive basis for reasoning about test adequacy. Several authors
have attempted to use it in a purely theoretical setting to reason about ‘testability’, to reformulate
syntax-based adequacy axioms [6, 7, 10] or to place bounds on the number of tests required to
produce an adequate test set [19].

Figure 3. Probably approximately correct (PAC)-driven test adequacy assessment [19]

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 19

The test generator produces a set A of test cases according to some fixed probability distribution on the
input domain. They are executed on the software under test, which is treated as a black box. The test set A
is also to be assessed for test adequacy. The executions of the software under test are recorded and supplied
to the model inference tool to generate a hypothetical test oracle. To enable the assessment of the adequacy
of test set A, the test generator produces a further test set B. The observations of the software on test cases
in B are then compared against the expected observations from the model to compute the error rate. The
user may supply the acceptable error bounds ε and δ. If the error rate is smaller than ε, the model inferred
from observations on test set A is approximately accurate, and thus the test set can said be approximately
adequate. The δ parameter is used to assess the confidence in the assertion of the test adequacy. By running
multiple experiments on test sets B1, B2, …, Bn, one can count the proportion of times that the test set is
approximately adequate. If, over a number of experiments, this proportion is greater than or equal to 1 − 𝛿,
Fraser and Walkingshaw calls the test set A probably approximately adequate, to paraphrase the term
‘probably approximately correct’.

Fraser and Walkingshaw noticed that the test cases that are behaviourally adequate cannot guarantee to
cover all the statements and branched in the program under test. To overcome this problem, they employed
genetic algorithms to generate test sets that cover all statements and branches in search-based approach.
However, they later realised [22] that this approach potentially undermines the validity of using PAC ML
theory, which requires the examples are draw at random independently using the identical probability
distribution1. Therefore, an improved method is proposed [22], which replaced the A-B test sets by k-fold
cross-validation, a technique widely used in data mining.

Figure 9. Illustration of Fraser and Walkingshaw’s Improved Behavioural Testing Process

As illustrated in Figure 9, in the improved behavioural testing process, which is called BESTESTCV, the test
set is divided into 𝑘 > 1 subsets. Test cases in 𝑘 − 1 subsets are used to infer the model and to calculate the
average error rates on the 𝑘�1 test subsets, while the 𝑘’th subset is used to validate the model.

In both papers [23] and [22], experiments with testing Java programs were reported. The particular ML
algorithms used in [23] are C4.5, and M5, while in [22] a wider range of ML algorithms are used, which
are:

• The C4.5 Decision Tree learner for discrete systems [47]
• The M5 learner and the M5Rules variant for numeric systems [21]
• A Naive Bayesian Network learner for discrete systems [21]
• The AdaBoost learner for discrete systems [25]
• Multilayer Perceptron (neural network) learners for both numeric and discrete systems [21]
• Additive Regression for numeric systems [21]

Their experiments demonstrated that if configured properly, optimizing test generation with respect to
behavioural adequacy significantly outperformed current baseline techniques in terms of fault detection,
especially for larger functions with a complex branching structure. However, the subject programs used in

1 Fraser and Walkingshaw were concerned with the independence between test cases in test sets A and B. However, in
my opinion, there is another problem. That is, the test cases in A and B may be draw with different distributions if A
is generated by using a genetic algorithm while B is draw at random. Therefore, the assumption of independent
identical distribution made in PAC learning protocol does not hold.

756 G. FRASER AND N. WALKINSHAW

Figure 4. Illustration of k-folds cross validation applied to behavioural adequacy.

3.2. Using CV to quantify behavioural adequacy

This section shows how k-folds cross validation (introduced in Section 2.4) can be used instead of
PAC. This enables the use of a single large test set instead of two separate ones, which attenuates
the problem of bias that can arise with PAC and reduces the number of tests required.

The process is illustrated in Figure 4. The scoring process starts with a single test set. The test set
is partitioned into k sets of tests. Over k iterations, k!1 of the sets are used to infer a model, whilst
the remaining set is used for evaluation. The result is taken to be the average of the scores.

CV is commonly used under the assumption that the given set of examples collectively reflect
the complete range of behaviour of the underlying system. If this is the case, the resulting average
score can be taken as indicative of the accuracy of the model inferred from the complete set. This
assumption of a collectively representative set of examples does of course not always hold. In the
case of program executions, a truly representative set is notoriously difficult to collect [1]. This
gives rise to the question of what a CV score means when the test set is not necessarily complete
or representative.

In this scenario, a CV score has to be interpreted in a more nuanced manner. Although CV scores
are always ‘internally valid’ (they are always valid with respect to the data they are given), they
are not necessarily ‘externally valid’; they can easily be misled by a poor sample. For example,
looking forward to our inference of models from program executions, a set of examples that omits
a prominent function in a program could yield models that all presume that no such function exists.
Although the models may be very wrong, because they are all evaluated with respect to the same
incomplete sample, they could still yield a very high CV score.

As a result, for scenarios where sets of examples fail to collectively expose the full range of
behaviour of the system, there is the danger that the resulting score can be inaccurate. It is conse-
quently necessary to interpret CV in a conservative light. If the score is high, it could well be due
to a bias in the sample. A high CV score can at best corroborate the conclusion that an inference
technique is accurate but cannot offer any form of guarantee. However, if the score is low, this is
more reliably indicative of a problem, that is, with the sampling of the test set, or the inference of
the model.

3.3. Combining code coverage with behavioural adequacy

As discussed in Section 2.1, source code coverage alone is insufficient when used alone as a basis
for assessing test adequacy. Test sets that achieve code coverage often fail to expose crucial aspects
of software behaviour. Capturing the set of executions that fully expose the relationship between the
input to a program and its output generally entails more than simply executing every branch. It is
this line of reasoning that underpins the PAC and CV-driven behavioural adequacy approaches.

However, as discussed in the previous text, PAC and CV are limited by one common factor:
they will provide a misleading score if the test set(s) is incomplete. If a portion of a program that
contributes to the output of the program is not executed, it cannot be factored into a behavioural
model. In this respect, test adequacy is two-dimensional; it is necessary to make sure that all of

© 2015 The Authors. Software Testing, Verification and Reliability
published by John Wiley & Sons, Ltd.

Softw. Test. Verif. Reliab. 2015; 25:749–780
DOI: 10.1002/stvr

Technical Report OBU-ECM-AFM-2018-01

 20

the experiments are still quite small in size, range from 9 lines to 169 lines of source code, and 3 to 93
branches. The data types of the input and output of these subject programs are simple, too: numerical
and/or strings. However, scalability was not considered as a potential problem [22]. Instead, complexity
could be the main issue for the practical application of the technique. The time spent on inferring and
evaluating the models is a small proportion of the overall testing time, which is about 7.6% on average. The
accuracy of an inferred model can vary significantly, depending on a wide range of factors. Fraser and
Walkinshaw pointed that it is almost impossible to answer the question of how different factors lead to the
successful inference of a model (irrespective of whether the system in question is a software function). This
is a well-known problem of ML techniques: Wolpert and Macready’s theorem of ‘no free lunch’, which
states that no learning algorithm achieves consistently better generalization performance than any other
over all possible target functions [60].

It is worth noting that, in comparison with Zhu’s approach, Fraser and Walkinshaw do not consider the
program under test as an element in a set of rules to learn. As we have seen in the previous subsection, if
we know that the program is in a PAC learnable set of rules, it is unnecessary to actually derive the model
from test cases as far as the number of random test cases is greater than the sample complexity of the set of
rules for the inductive inference device.

Moreover, Fraser and Walkinshaw’s behaviour adequacy criterion is a program-based adequacy criterion,
which determines test adequacy solely based on the information contained in the program. Such a test
adequacy criterion cannot ensure that the software has no omission error even if it passes an adequate test.
That is, if the program omits a function required by the specification, a behaviourally adequate test does not
guarantee to detect the error. Therefore, behaviour adequacy criterion cannot guarantee the
correctness/reliability of the software under test.

4. Test Oracle
The test oracle problem is concerned with how to determine the correctness of software’s output or
behaviour on test cases. A test oracle is a device or mechanism that can determine the correctness of
software’s behaviour and/or output observed during a test execution. Often, a qualified tester plays the role
of test oracle to decide whether a test execution is correct. A common practice to solve the test oracle
problem is to generate test cases with expected output on the input. The actual output from the program
obtained from testing is then compared against the expected output. Another approach to the test oracle
problem is to employ formal specifications to check the correctness of test output; see [33] for a survey on
the uses of formal specification in software testing. Test oracle problem is still one of the most costly and
difficult problems in software testing.

The application of ML to test oracle can be dated to 2002 [55]. The basic idea is first to use a set of know
test cases and/or software behaviours to learn a rule. And, then, for unknown test cases, the learned rule is
used to determine whether the behaviour and/or output of the program are correct. Applying ML to the test
oracle problem is one of the most active research topics in the recent years. A variety of approaches have
been proposed and advanced in the literature. They can be classified into three categories according to the
outcomes of the learning process.

• Predictors of the software’s output or behaviour;

• Classifiers of the test results;

• Specifications of the software under test.

This section reviews these approaches one by one after a brief introduction to the basic concepts associated
to test oracles.

4.1 Basic Concepts of Test Oracles

When a test oracle does not quarantine the correctness of its classification of test results, it may make two
types of errors: false positive and false negative errors. By a positive test, we meant the program pass the
test, while by a negative test we mean the program fails on the test case. A false positive error is the
situation when the test oracle says the program pass the test while the program is actually incorrect on the
test. A false negative error occurs when the test oracle says that the program failed on the test but the

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 21

program is actually correct on the test case. Thus, the quality of a test oracle can be measured by precision,
recall, accuracy and error rate, which are defined below.

Let T be the total number of test cases executed, FP be the number of false positive test case in the test, FN
is the number of false negative test cases, TP be the number of true positive, and TN be the number of true
negative test cases.

• Precision: The proportion of the number of failures correctly detected by the test oracle over the total
number of failures detected by the test oracle, i.e.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

This parameter indicates how well the tester can be sure about the bugs detected by testing are real bugs. If
the precision is poor, a large amount of efforts will be wasted on investigate false bug reports.

• Recall: the proportion of the number of failures that are correctly detected by the test oracle over the
total number of failures that should be detected by a perfect test oracle, i.e.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

This parameter indicates the fault detection ability of the oracle. If recall is poor, a large number of failures
will not be detected and poor quality software could be released without noticing its poor reliability.

• Accuracy: the proportion of test cases that are correctly classified as failure or success over the total
number of test cases executed, i.e.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇
=

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

.

This parameter indicates the trustworthiness of the test oracle.

• Error Rate: the proportion of incorrect classification of test cases by the test oracle, i.e.

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇
=

𝐹𝑃 + 𝐹𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

= 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦.

Now, we review various approached to ML applications to the test oracle problem.

4.2 Predictors of Software Outputs

As illustrated in Figure 10, the basic idea of this approach is to use a set of input/output pairs as the input to
generate a function that is capable to predict the correct output when a new input is given. The predicted
output is compared with the output produced by the software under test. If the actual output does not match
the predicted output, it detects an error.

Figure 10. Use of Output Predictor as A Test Oracle

This is the approach taken by Vanmali, Last and Kandel in 2002 [55], which is the earliest work on the
application of ML to test oracle problem as far as we know. As shown in Figure 11, they used
backpropagation to train a neural network of three layers: the input layer, a hidden layer and the output
layer.

The input layer takes input of the test case, each neuron for one input variable. The output layer presents
the predictions on the output of the program. They used a 1-of-n encoding of outputs, where n neurons on
the output layer are used to predict the value of one output variable; each neuron represents a prediction on
the value of one output variable being in a given sub-range. If the output variable is a binary Boolean type

Test input data

Output
Predictor

Software
Under Test

Comparer

Actual
output

Predicted
output

Error
Report

Technical Report OBU-ECM-AFM-2018-01

 22

data, two neurons will be used: one for the value to be True and the other for the value to be False. If the
output is a numerical value, a number of neurons will be used: each represents an interval of the possible
values. The output neuron having the highest-value is activated as the winning output, which is taken as the
network’s prediction for the output of the tested program. The difference among the outputs is used as a
measure of the confidence in the network prediction.

Figure 11. Structure of Vanmali, Last and Kandel’s Neural Network

Vanmali, Last and Kandel reported an experiment with a credit card approval program. The program has
eight input variables for information about the credit card applicant and two output variables: one binary
value for whether to approve or not to approve the credit card application; one integer value for the amount
of credit limit. They used a set of 500 test cases as the training data with a learning rate of 0.5, and the
network required 1,500 epochs to produce a 0.2% misclassification rate (error rate) on the binary output
and 5.4% for the continuous output. Figure 8 shows the number of epochs versus the convergence of the
error rate.

Figure 12. Error Convergence [55]

After the training of the neuron network, 21 mutated programs with injected faults were tested on 1000 test
cases generated at random using the neuron network as the test oracle. The test oracle achieved the
minimum average error rate of 8.31% for the binary output, and the minimum average error rate of 20.79%
for the continuous output.

It is worth noting that the test oracle generated through ML is an approximation to the function of the
program because they use an interval to predict the actual value of numerical output. This can significantly
reduce the computational complexity of the test oracle, but consequently, higher error rate. Vanmali, Last
and Kandel noticed that no matter how to adjust the ranges of the intervals represented by the neurons on
the output layer, the average error rates on the numerical output variable cannot be reduced. Therefore, how
to improve the misclassification rate is one of the key issues for using ML to solve the test oracle problem.

An alternative to neural network is info-fuzzy networks (IFN) [37]. An IFN is a directed rooted graph that
represents a decision procedure. The classification for a given input starts from the root node and traverses
the graph until reaching a target node. Supervised learning can be used to train an IFN in a way that the
weights adjustment is done after the entire training set is presented to the system. Agarwal, Tamir, Last and
Kandel (2012) reported a set of experiments that compare neural network and info-fuzzy network as test

USING A NEURAL NETWORK IN THE SOFTWARE TESTING PROCESS 49

that consequently generates the neuron output signal yi

net =
n∑

j=1

x j wi j (1)

yi = 1
1 + e−net

(2)

A multi-layer feedforward neural network consists of an input layer of non-
computational units (one for each input), one or more hidden layers of computational
units, and an output layer of computational units. Backpropagation is the standard
training method that is applied to multi-layer feedforward networks. The algorithm
consists of passing the input signal forward and the error signal backward through
the network. In the forward pass, one input vector is presented to the input layer, and
the input signal is filtered forward through the subsequent layers of the network to
generate a set of outputs. The network outputs are compared with the actual outputs
of the training example and an error signal is generated. In the backward pass, the
synaptic weights are updated using the learning constant according to the effect they
have in generating the incorrect outputs (if the network output matches the actual
output, the error signal has no effect in adjusting the synaptic weights). Figure 4
demonstrates the passing of signals through a neural network and the structure of a
multi-layer network. The presentation of training examples to the network is repeated
until the network is stabilized and no more adjustments are required for the synaptic
weights, or the maximum number of epochs has been reached.

Input
layer

Output
signals

Input
signals

Feedforward of input signal

Hidden
layer

Output
layer

Backpropagation of error signal

x1

x2 y1

ym

x2

xn

. .
 .

. .
 .

. .
 .

Figure 4. Structure of a multi-layer network and signal propagation through the network.

58 VANMALI, LAST, AND KANDEL

Figure 8. Error convergence.

attribute (0 or 1). Thus for the network to be able to process the data uniformly,
the continuous input attributes have to be normalized to a number between 0 and 1.
The data are preprocessed by normalizing the values for all the input attributes
according to the maximum and minimum possible values for each attribute. The
output attributes were processed in a different manner. If the output attribute was
binary, the two possible network outputs are 0 and 1. On the other hand, continuous
outputs cannot be treated in the same way, since they can take an unlimited number
of values. To overcome this problem, we have divided the range (found by using the
maximum and minimum possible values) of the continuous output into ten equal-
sized intervals and placed the output of each training example into the corresponding
interval (a value between 0 and 9).

The architecture of the neural network is also dependent on the data. In this
experiment, we used eight non-computational input units for the eight relevant input
attributes (the first is not used, as it is a descriptor for the example), and twelve output
computational units for the output attributes. The first two output units are used for
the binary output. For the purposes of training, the unit with the higher output value
is considered to be the “winner.” Similarly, the remaining ten units are used for the
continuous output. The initial synaptic weights of the neural network were obtained
randomly and covered a range between –0.5 and 0.5. Experimenting with the neural
network and the training data, we concluded that one hidden layer with twenty-four
units was sufficient for the neural network to approximate the original application
to within a reasonable accuracy. A learning rate of 0.5 was used, and the network
required 1,500 epochs to produce a 0.2 percent misclassification rate on the binary
output and 5.4 percent for the continuous output. Figure 8 shows the number of
epochs versus the convergence of the error.

5. RESULTS OF THE EXPERIMENT

The results of applying the faults are displayed in Tables VI, VII, and VIII.
The first two tables display results for the binary output (credit approved). Table VI
summarizes the results for the error rate as a function of the threshold values, and

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 23

oracles [1]. They demonstrated that IFN significantly outperforms the ANN in terms of computation time
while providing nearly the same fault detection effectiveness.

In 2012, Shahamiri, Wan-Kadir, Ibrahim, and Hashim proposed a multi-networks approach to test oracle
problem [50]. The basic idea is that for each output variable Oi of the program, a separate neural network
ANNi is used to predict the output value of the variable Oi. Therefore, if there are n output variables, the
architecture of the test oracle consists of n neural networks; see Figure 13. Their case study on two example
systems demonstrated that multiple network approach consistently outperforms single network approach on
error rate, accuracy and fault detecting ability.

Figure 13. Architecture of Test Oracle in the Multi-Network Approach

4.3 Classifiers of Test Results

The second approach to apply ML technique to the test oracle problem is to learn a classifier that classifies
observed behaviours of the software under test into correct or incorrect without generating an expected
output. The observed behaviours are not limited to the input/output pairs, but more often contain
information about execution paths, such as branch profiles. The observed behaviours can be labelled as
pass or fail for supervised learning. When a model is trained on a set of instances such that new observed
behaviours can be classified correctly into pass or fail, test results can be determined as correct or not; thus
solves the test oracle problem.

Not only can such a classifier be used as a test oracle, but also useful for many other purposes in software
testing and analysis. In fact, many early works on learning behaviour classifiers are not just aiming at test
oracle problem. For example, Dickinson, Leon and Podgurski (2001) aims at reducing test costs in
behaviour-based testing [20]. Podgurski, Leon, Francis, Masri, and Minch (2003) is concerned with
debugging [44]. Bowring, Rehg and Harrold (2004) pointed out that such a classifier can be used in a
number of scenarios, including test case reduction and test oracle [12]. Their uses in test case prioritization
and test suite reduction will be covered in the next section.

A typical example of this type of works is reported by Lo et al. in 2009 [40]. They applied data mining
technique to mining the iterative patterns in program traces as the features for supervised learning. More
recently, Almaghairbe and Roper conducted a series of experiments on the uses of classifiers of program
behaviours as test oracles [1]-[5]. They demonstrated that a reasonably high accuracy can be achieved in
this approach.

The approach of learning a classifier can also perform well when it is not easy to give a precise definition
of the correctness of a program output and when it depends on fuzzy human evaluation. By using a ML
algorithm, a model can be trained with human evaluations of the correctness of program output as the
training data. The work by Frounchi et al. in 2011 is a typical example of this type [26].

Frounchi et al. are concerned with the test oracle problem in regression testing of programs that produce

312 Autom Softw Eng (2012) 19:303–334

Fig. 2 A single-network oracle

Fig. 3 A multi-networks oracle

Single-Network Oracles. A single network is defined for each of the output items of
the output domain; then, all of the networks together make the oracle. As an illus-
tration, if the SUT produces seven output items, we need seven ANNs to create the
Multi-Networks Oracle. Particularly, the complexity of the software is distributed be-
tween several networks instead of having a single network to do all of the learning.
Consequently, separating the ANNs may reduce the complexity of the training pro-
cess and increase the oracle practicality to find faults. Note that the training process
must be done for each of the ANNs separately using the same input vectors but only
the output to be generated by the ANN. Figure 2 shows a Single-Network Oracle and
Fig. 3 depicts the Multi-Networks Oracle.

There are other ways to distribute the complexity among the ANNs if the software
functionalities are increased. For example, it may be possible to consider software
modules instead of outputs. To put it differently, for each module of the software, we
can use an ANN to learn its related functionalities. Consequently, it may decrease
the complexity by inserting a new ANN to the oracle. Moreover, Multi-Networks
Oracles increase the flexibility to use several types of ANNs with different structures
and parameters.

Technical Report OBU-ECM-AFM-2018-01

 24

complicated output, such as image segmentation in the context of medical imaging [26]. Image
segmentation is to identify groups of pixels in a 2D or 3D image that belong to a certain type of objects. It
is widely used in the many applications involving image processing, for example, in object measurement or
object recognition for diagnosis or treatment planning in medical imaging. The development of an image
segmentation algorithm is an iterative process that the program is repeatedly tested on a set of images and
revised according to domain experts’ feedbacks on the correctness of the output. The complexity of the test
oracle problem stems from the feature that even a ground truth correct segmentation of a test case exists,
for a clinical task there is typically a range of segmentations that are considered to be correct (e.g., two
clinicians often provide slightly different manual segmentations). At the same time, even seemingly small
deviations from the ground truth segmentations can have clinical importance. Therefore, the test oracle
problem is how to judge two segmentations of the same image are consistent with each other, where one
segmentation is an expected output while the other is the output by the program. Frounchi et al. tackled this
problem through ML. They trained a ML model to distinguish between consistent and inconsistent
segmentation pairs, where the (dis)similarity between different segmentation pairs are quantified using
several measures and their consistency is determined from expert evaluations of the first few versions of
the segmentation algorithm. Figure 14 shows the activity flow in UML activity diagram for the training and
using the test oracle with the evolution of the segmentation software [26]. The swim lane on the right-hand-
side labelled as “Learning classifier” is the process that the test oracle is trained. On the left-hand-side, the
segmentation algorithm evolves, generates training data and uses the test oracle.

Figure 14. Activity Flow of Training And Using a Test Oracle [26]
The particular ML algorithms used in the case study are J48, JRIP and PART. J48 implements the C4.5
algorithm that creates decision trees. PART uses partial decision trees to construct rules from the branches
that lead to a leaf node covering the most instances. JRIP implements the Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) algorithm, which is a rule-induction technique. For each class, JRIP
starts by finding a rule that covers most of the training instances and has the best success rate (least number
of misclassified instances). This procedure is repeated recursively until all instances are covered for that
class and then repeated for the other classes. The use of decision branches and rules rather than neuron

from the consistency classifications of the learnt classifier. If the
classifier predicts segmentation Sn,i to be consistent (based on sim-
ilarity measures) with a correct segmentation Sn,j (j < i) then seg-
mentation Sn,i is predicted to be correct. If segmentation Sn,i is
predicted to be inconsistent with a correct segmentation or consis-
tent with an incorrect segmentation then it is predicted to be
incorrect. In the case, where segmentation Sn,i is predicted to be
inconsistent with an incorrect segmentation, no conclusion can
be drawn and the correctness of segmentation Sn,i has to be man-
ually evaluated by an expert. Depending on the adopted machine
learning algorithms, the accuracy of each prediction can be deter-
mined by the automated oracle such that the segmentation algo-
rithm designer can manually evaluate the questionable
predictions and understand how much emphasis he should put
on some results compared to others that have been made with
higher accuracies when creating a new version of the segmentation
algorithm.

As the number of iterations increases, more segmentations can
be used to compare new segmentations with and evaluate their
correctness. For example, if a segmentation Sn,i is inconsistent with
the incorrect segmentation Sn,i!1, but consistent with the correct
segmentation Sn,i!2, it would be considered to be correct. In deter-
mining the correctness of a new segmentation in the presence of
several prior segmentations of the same image, different policies
can be adopted. The most straightforward option is to use a simple

majority vote, where the segmentation is deemed (in)correct if it is
predicted to be consistent with an (in)correct segmentation in the
majority of comparisons. If one believes that the latest version of
the segmentation algorithm is superior to all previous versions,
then more weight could be given to the most recent version of
the segmentation algorithm. The best policy should be empirically
determined.

After either activities C or D, if more than an acceptable percent-
age threshold1 of image segmentations are evaluated to be incor-
rect, we go back to activity A, where the image segmentation
algorithm is revised. Otherwise, the testing process ends and the
current version of the image segmentation algorithm is deemed
to be satisfactory.

3.2. Learning classifier swimlane

This swimlane has three activities: activities E–G. In activity E
(Generating the learning set), pairs of segmentations obtained
from multiple versions of the image segmentation algorithm
(current version i, and version j, j < i) are compared using a set
of similarity measures (Section 2.1). At least the first two sets
of segmentations generated by the first two versions of the
segmentation algorithm are required to get the first set of simi-
larity measurements. In other words, at least two iterations of
the Segmentation evaluations swimlane (with manual evaluation
in activity C) are necessary. More iterations may add to the
accuracy of the classifier at the expense of more expert
intervention.

Pairing segmentations of the same images/patients across two
segmentation sets seti and setj results in three distinct subsets of
paired segmentations. The first set is composed of the pairs of seg-
mented images that were both deemed correct by an expert, de-
noted by setyy (i.e., ‘y’ for ‘‘yes’’ for the two versions). The second
set is composed of the pairs of segmented images, where either
the first or second segmented image was deemed incorrect and
the other deemed correct, denoted by setyn (one is correct: ‘y’,
and one is incorrect: ‘n’). The third set is the set of all the pairs of

Fig. 3. Image Segmentation Automated Oracle (ISAO).

Table 2
Mapping between classifier results and the correctness evaluation of the test image
segmentation.

Evaluation of
Sn,j (j < i)

Predicted consistency of
segmentation pair (Sn,j–Sn,i)

Evaluation of Sn,i

Correct Consistent Correct
Correct Inconsistent Incorrect
Incorrect Consistent Incorrect
Incorrect Inconsistent Requires manual

evaluation

K. Frounchi et al. / Information and Software Technology 53 (2011) 1337–1348 1341

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 25

networks in these ML algorithms allows technical and medical experts to easily interpret the classifiers and
gain more confidence in the decisions made by the classifier and the overall approach. Their case study on
the proposed approach with 3D segmentations of the cardiac left ventricle obtained from CT scans was
successful with promising results with an accuracy of 95%.

Behaviour classifiers use more information to train a model than output predictors, thus they can generate
test oracles of better accuracy. However, they also require more effort to label the training data. Classifiers
are checkers while predictors are generators. In some cases, checkers are of less computational complexity
than the equivalent generators. In such cases, checkers are easier to learn than the corresponding predictor.

It is worth noting that, as studied in the application of ML to the test adequacy problem, a test set is
adequate if it can learn a test oracle with sufficiently low error rate and high enough confidence. In other
words, if we can train a test oracle with a test set, then the testing is already adequate. There is no need to
perform further testing, and thus no need to check the correctness on new test cases. The value of ML in
solving the test oracle problem is very limited to certain special situations, such as regression testing.

4.4 Learning Specifications

One of the existing solutions of the test oracle problem is to employ formal specification to check the
correctness of the test results [33]. The question is how to get a formal specification. The approach taken by
Kanewala and Bieman (2013) is to apply a ML technique to generate metamorphic relations, which can be
regarded as a kind of formal specification of software properties [35].

Metamorphic testing was proposed in [15] as a technique for the test oracle problem as well as a test case
generation technique. Its basic idea is to use metamorphic relations as the criteria of program correctness.

Definition 4.1. (Metamorphic Relations)

Let program 𝑝 under test be a function on input domain 𝐷 that produces output in codomain 𝐶. Let 𝐾 ≥ 2
be a natural number. A 𝐾-ary metamorphic relation 𝑀 is a relation on 𝐷!×𝐶! such that program 𝑝 is
correct on input 𝑥!, 𝑥!,… , 𝑥! in 𝐷 implies that 𝑀 𝑥!, . . , 𝑥! , 𝑝 𝑥! ,… , 𝑝 𝑥! holds, where 𝑝 𝑥 is
program 𝑝’s output on input 𝑥. �
For example, for a program that computes 𝑆𝑖𝑛(𝑥) function on real numbers, the following is a
metamorphic relation.

𝑥! + 𝑥! = 𝜋 ⇒ 𝑆𝑖𝑛 𝑥! = 𝑆𝑖𝑛 𝑥! .

Given such a metamorphic relation, to apply metamorphic testing technique, the tester generates test cases
𝑥! and 𝑥! that satisfy the condition 𝑥! + 𝑥! = 𝜋, executes the program under test on these two test cases,
and records the test results 𝑆𝑖𝑛(𝑥!) and 𝑆𝑖𝑛(𝑥!). If these test results are not equal to each other, an error in
the software is detected.

Experiments reported in the literature shown that using a set of well designed metamorphic relations can
detect a high proportion of bugs in the software; see [49] and [15] for recent surveys of the research on
metamorphic testing. It is particularly useful when a complete formal specification of the software is not
available. However, when the set of metamorphic relations does not form a complete specification, it only
partially ensures correctness. Here, as defined in [70], a test oracle is capable of partially ensuring
correctness means that if the program fails a test according to the oracle implies that the program is not
correct on the test case. On the other hand, if the program passes a test according to the oracle, it does not
guarantee the program is correct on the test case. A key issue with metamorphic testing is to develop a set
of metamorphic relations for the software under test. Unfortunately, finding metamorphic relations is a
non-trivial task.

As illustrated in Figure 15, Kanewala and Bieman’s approach consists of three steps. The first step is to
construct a flow graph model from the source code of the program under test. The second step is to extract
features from the flow graph and a ML technique is applied to the features to build a predictive model.
Finally, metamorphic relations are generated from the predictive model.

Technical Report OBU-ECM-AFM-2018-01

 26

Figure 15. Illustration of Kanewala and Bieman’s Method [35]

It is worth noting that, firstly, Kanewala and Bieman were only concerned with a specific type of
metamorphic relations called algebraic relations, which are given in Table 4. It is unclear whether the
approach can be generalised to other types of metamorphic relations. Secondly, Kanewala and Bieman
require the availability of the program’s source code. In such cases, more accurate formal specifications of
the program can be generated automatically, for example, by using symbolic execution tools. Moreover, the
program under test should always satisfy such a formal specification if it is generated from the source code
even if it contains bugs. Thus, the test oracle will not detect any fault. Finally, in general, learning a formal
specification of the program under test is a kind of explanatory ML. As Theorem 2.1 indicates, explanatory
ML is much harder than behavioural ML, which neural networks belong to. Therefore, it is hard to be
convinced of any practical value of such a technique.

Table 4. The Type of Metamorphic Relations Studied by Kanewala and Bieman [35]

Relation Change made to the input
Additive Add or subtract a constant
Multiplicative Multiply by a constant
Permutative Randomly permute the elements
Invertive Take the inverse of each element
Inclusive Add a new element
Exclusive Remove an element
Compositional Combining two or more inputs

5. Test Case Design
The test case design problem is concerned with how to generate test cases, how to reduce test costs by
selecting a subset of existing test cases without significantly compromising the test effectiveness, and how
to prioritise test cases so that limited resources can be spent on the most important and effective test cases.
It is one of the most intensively studied problems of software testing, but it is still very much an open
problem; see [6] for a recent survey on test case generation. ML techniques have been employed to address
the test design problem in the following categories.

(a) Supervised learning to predict test case’s fault detecting ability so that test cases of high fault
detecting abilities are given higher priorities.

(b) Unsupervised learning to clustering test cases and/or the test results so that the similarity between
test cases and cluster sizes can be used to guide test case selection.

(c) Reinforcement-like learning to predict the feasibility of a path in the program so that infeasible
paths can be eliminated from the test set.

(d) To relate input domain conditions to output properties so that partitioning of the input space can
be established for test case generation, and redundant partitions can be removed to reduce the
number of test cases.

Fig. 2. Overview of the proposed method

code. Next, we extract a set of features from the CFGs, and
a machine learning algorithm uses these features to create a
predictive model. Finally, we use the developed predictive
model to predict the metamorphic relations in previously
unseen functions.

A. Function Representation

We hypothesize that the metamorphic relations in Table I are
related to the sequence of operations performed by a function.
Therefore, we represent a function using a statement level
CFG, since it models the sequence of operations. The CFG
G = (N,E) of a function f is a directed graph, where each
nx 2 N represents a statement x in f and E ✓ N ⇥ N . An
edge e = (nx, ny) 2 E if x, y are statements in f and y can
be executed immediately after executing x. Nodes nstart 2 N
and nexit 2 N represents the starting and exiting points of f.

We used the Soot2 framework to create CFGs. Soot gen-
erates control flow graphs in Jimple [16], a typed 3-address
intermediate representation, where each CFG node represents
an atomic operation. This representation should considerably
reduce the effects of different programming styles and models
the actual control flow structure of the function. Figure 3a
is the Jimple statement level CFG generated using the Soot
framework for the function in Figure 1. Converting Java code
to the Jimple 3-address intermediate representation would add
goto operations and labels to represent conditional jumps in the
original Java code. Then a labeled CFG is created by giving
a label to each node in the CFG in Figure 3a to indicate the
operation performed in the node. Figure 3b is the labeled CFG
created from the original CFG in Figure 3a.

B. Feature Extraction

We extracted two types of features based on the nodes and
paths in the CFG.

2http://www.sable.mcgill.ca/soot/

(a) Soot CFG (b) Labeled CFG

Fig. 3. CFG generated by Soot with 3-address code and Labeled CFG for
the program in Figure 1

1) Node Features: For a CFG, node features have the form
op�din�dout, where op is the operation performed in a node
n 2 N , din is the in-degree of n and dout is the out-degree of
n. The value for a given feature is the number of occurrences
of nodes of type op� din � dout in the CFG. Table II shows
the node features calculated for the labeled graph in Figure 3b.

2) Path Features: Features based on paths are created by
taking the sequence of nodes in the shortest path from Nstart

to each node and the sequence of nodes in the shortest path
from each node to Nexit. A path feature takes the form op1�
op2� ...� opk where opi(1  i  k) represents the operation
performed in the CFG nodes in the considered path. The value

3

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 27

The following subsections review the work in each of these categories.

5.1 Predicting Test Case’s Fault Detection Ability

In 1995, von Mayrhauser, Anderson and Mraz reported their application of neural network to predict the
fault detection abilities of test cases in the context of domain-based testing method [56][7]. The training
data consists of test cases, the types of faults and severity levels of faults if a test case detects a fault in the
software. A neural network model is then constructed so that for newly generated test cases, the severity
level of each test case can be predicted. Test cases that are predicted not to detect any fault are removed
from test while test cases that are predicted to detect sever faults are selected. Therefore, test effectiveness
can be improved.

The experiments reported in the paper employed the domain-based test generation tool Sleuth to generate
test data, and used a synthetic test oracle in that it did not model actual software behaviour to evaluate the
each test case for error classification. They trained four neural networks using backpropagation. Each
network predicts one fault severity level. Each of the neural networks contains 21 input nodes and 1 output
node. The number of hidden units was worked out experimentally to achieve the best Root Mean Square
(RMS) error during training. The test data set for neural network training included 180 observations, thirty
test cases from each of the six test subdomains. In their experiments, the accuracy (i.e. the rate of correct
classification) for each level of severities ranges from 82.8% to 94.4%.

5.2 Clustering Test Cases

The basic idea of this category of works is to classify test cases according to certain measures of similarity
such that if one or more test cases in a class detect a fault in the software, the other elements of the same
class can be predicted to also detect faults. Therefore, the elements in the same class are more effective to
use as test cases. Works in this category vary on how test cases are represented and how learning is
performed.

As one may expect, test cases that only contain input-output values contain too little information to be
meaningfully classified. Successful work reported in the literature all contain more information. In fact, all
successful works in this category used profiles of software behaviours. There is a variety of the forms of
profiling software behaviours, including statement / basic-block profiling, branch profiling, path profiling,
function-call profiling, and various forms of data flow profiling.

Dickinson, Leon, and Podgurski (2001) [20] were concerned with reducing the cost of observation-based
software testing, which involves the following steps.

(a) Taking an existing set of program inputs (possibly quite large).

(b) Executing an instrumented version of the software under test on those inputs to produce execution
profiles characterizing the executions.

(c) Analysing the resulting profiles, and selecting a subset of the profile for evaluating their
conformance to requirements.

Usually, a substantial manual effort is required to evaluate executions profiles for software’s conformance
to the requirements, or equivalently, to determine the correctness of the software on the test cases.
Dickinson, Leon, and Podgurski seek to reduce this effort by filtering out a subset of the original set of
executions that is more likely to contain failures than is a randomly chosen subset. They employed
agglomerative hierarchical clustering technique to group execution profiles into clusters. Then, one or more
execution profiles are selected from each cluster. Moreover, their previous experiment results on clustering
test execution profiles suggested that software failures are often isolated in small clusters [46][45]. Thus, a
higher priority can be given to small clusters.

Dickinson, Leon, and Podgurski [20] used various dissimilarity metrics to evaluate two strategies of cluster
sampling and compared them against the simple random sampling strategy in terms of their effectiveness
for locating the failures present in the populations of profiles. One-per-cluster sampling involves selecting
one execution at random from each cluster. Adaptive sampling involves initially selecting one execution at
random from each cluster and then including the remaining executions from the cluster if the first one
selected from it is a failure. The main results of their experiments are: (1) cluster filtering is more effective
than simple random sampling for finding failures in populations of operational executions; (2) adaptive

Technical Report OBU-ECM-AFM-2018-01

 28

sampling is more effective than one-per-cluster sampling; and (3) dissimilarity metrics which give extra
weight to unusual profile features are most effective.

Bowring, Rehg and Harrold (2004) improved the software behaviour clustering technique by an active-
learning paradigm to replace batch-learning [12]. In active learning, the classifier is trained incrementally
on a series of labelled data elements. They also explored the use of Markov processes as models of program
executions. These Markov models of individual program executions can be clustered and aggregated into
effective predictors of program behaviour.

Yoo, Harman, Tonella and Susi (2009) [62] also used agglomerative hierarchical clustering to classify test
cases according to their execution paths. However, the result of clustering was used to prioritise the classes
of test cases by manual comparisons between the classes of test cases. One of the features of agglomerative
hierarchical clustering is that it is possible to generate an arbitrary number of clusters. This allows for
control of the number of comparisons presented to the human tester. Therefore, the number of required
comparisons by domain expert can be significantly reduced. Their empirical evaluation of the technique
showed that such class prioritisations are more effective than pairwise prioritisation technique in terms of
fault detecting ability.

5.3 Predicting Path Feasibility

In structural testing, a test case corresponds to a complete path in the program from the entry node to the
exit node. However, a complete path may be infeasible. That is, there is no input data on which the program
can execute through the path. In general, it is not decidable whether a path is feasible, thus it often relies on
manual check to decide whether a path is feasible and test data for the path can be worked out. How to
check automatically the feasibility of a program path is a long lasting research problem in structural testing.

Baskiotis et al. addressed this problem through a ML approach [11]. After failed to solve the problem in a
discriminant learning approach, Baskiotis et al. [11] proposed a new ML algorithm called EXIST, which
stands for Exploration - eXploitation Inference for Software Testing. EXIST employs a probability
distribution on program paths to generate a path with highest probability of being feasible. This probability
distribution is updated after each time a new path is generated and labelled manually as feasible or
infeasible. It proceeds iteratively through cycles of generating a path and updating the distribution
according to the label assigned to the path. In this sense it is similarity to reinforcement learning, but its
goal is neither to learn a concept nor a fixed policy. Instead, it aims at maximising the number of distinct
feasible paths found along the process of generating program paths. It is also worth noting that Baskiotis et
al. extended Parikh map by providing a powerful propositional description of long structured sequences to
represent program paths. Their experimental data show that the proposed approach can dramatically
increase the ratio of (distinct) feasible paths generated, compared to the uniform sampling.

5.4 Relating Input-Output Features

In section 4, we have seen work by Last and Kandel and their colleagues on application of ML techniques
to test oracle problem. Their group also made a contribution to using ML for the test design problem [48].

Saraph, Last and Kandel are concerned with reducing the number of test cases in black-box testing [48]. In
particular, they are concerned with the situation when the software under testing has a large number of
input variables, and the values of each input variable that can be divided into a relatively small number of
subsets. Even if a small number of test data in each subset is adequate to test the software, the number of
combinations of these data over all input variable can be huge. However, some of the combinations are
ineffective and unnecessary to be tested on, for example, because the computation does not use values of
two variables at the same time. Analysis of the input-output relationship can help to reduce the number of
test cases by removing unnecessary combinations of input data. Saraph, Last and Kandel’s approach
consists of four steps as shown in Figure 16.

Figure 16. Saraph, Last and Kandel’s Process of Test Case Generation and Reduction

P. Saraph, M. Last, A. Kandel

10

rules. The most important contribution of rule-extraction phase is the
equivalence classes built on the data values of continuous inputs. This
can further reduce the number of test cases. In the sub-sections below we
explain the four phases in detail.

4.1.1. Network Construction and Training

The steps in the network construction phase include:
• Build a multi-layer NN which meets the specifications of the original

software such as number of inputs, number of outputs, types of
inputs and their range

• Generate training and test sets of execution data or use available
datasets

• Pre-process and normalize the data before presenting it to the NN
• Initialize various parameters of the training process such as learning

rate, number of epochs etc.
• Train the NN so that it can map the inputs to the outputs almost the

way the original software does
The algorithm used for training the NN is the weight decay back-

propagation algorithm. As summarized in [15] penalty-term methods add
a penalty function to the objective function of the back-propagation
which helps unimportant weights take smaller values during the training
phase itself. Now we explain the penalty function approach to pruning
feed-forward NN as described in [20],[15] and [10].

Neural

Network
Construction &

Training

Pruning &

Feature

Ranking

Rule

Extraction

Test

Case

Generation

•Training
Dataset

•Number of
Inputs

•Parameters
for Training

List of
Test
Cases

•Parameters for
pruning

•Weights of
trained neural
network

•Parameters for
rule-extraction

•Weights of the
pruned network

•I-O
relationships

Equivalence
Class
Definitions

Fig. 1. Overview of test generation methodology

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 29

At the first step, back-propagation is employed to train a neural network about the relationships between
input-output. The training data are the features of input-output pairs. The second step is to prune the neural
network to the minimal size and to rank the features according to the weights associated to the links
between neurons. The third step is to extract rules of the relationships between input and output from
trained and pruned neural network. These rules can then be used in step four to generate test cases and also
to reduce the number of test cases in an existing test set. Saraph et al. demonstrated the process with the
credit card approval software, which was also used in their earlier work on the application of ML to test
oracle problem [55].

6. Testability
Testability is a quality attribute of computer software. The testability problem is concerned with how to
define the notion of testability, how to measure the testability of a software under test, and how to improve
testability of a software system, for example, by transformation of the code while preserving the functional
correctness. However, the application of ML to testability problem so far is limited to understand the notion
of testability.

In comparison with learnability, testability is a much less investigated subject area. Freedman defined the
notion of software testability as the conjunction of observability and controllability of software [24]. It is
probably the most widely referenced definition of testability in the literature. In this definition,
observability refers to the ease of determining if specified inputs affect the outputs. Controllability refers to
the ease of producing a specified output from a specified input. Another popular definition of testability is
given by Bache and Mullerburg [9]. They defined testability in the context of a test method, or in fact, with
respect to an adequacy criterion. That is, the testability of a program is measured by the minimum number
of test cases to provide total test coverage, assuming that such coverage is possible.

In Gourlay’s mathematical framework of software testing [29], a program 𝑝 is testable with respect to a
specification 𝑠 if there exists a finite test set such that the program is correct with respect to 𝑠 if and only if
𝑝 is correct on all of the data in the test set. Such a test set is called a reliable test set, following a notion
from Goodenough and Gerhart [28]. Therefore, the power (or scope) of a testing method can be defined as
the set of (reliably) testable functions with respect to a set of corresponding specifications. Gourlay proved
some ordering of sets of functions on the power of testing methods. This approach is very similar to the
study of the power of inductive inference methods, for example, the results shown in Figure 1.

The link between testability and learnability was explored by Budd and Angluin [13], where the notion of
testability is defined based on distinguishability, which is a fundamental concept underlying mutation
testing.

Definition 6.1 (Testability as Distinguishability)

A set 𝑃 of programs on a domain 𝐷 is said to be testable, if there is a mapping 𝑇 from 𝑃 to finite subsets of
𝐷 such that for all programs 𝑝 and 𝑞 in 𝑃 there is at least one data 𝑑 in 𝑇(𝑝) such that 𝑝 𝑑 ≠ 𝑞 𝑑 . ☐

Budd and Angluin compared this notion of testability with the notion of learnability based on logic
identification [13]. Cherniavsky and Smith [16] used the explanatory learning with identification in the
limit to compare testability and learnability. Cherniavsky and Statman [18] further proposed the notions of
fixed time testability, finite time testability, and testability in the limit.

Definition 6.2 (Test in The Limit)

Let 𝑃 be a set of functions. The set 𝑃 of functions is fixed time testable if the set of functions are
distinguishable from each other using a fix number of test cases that the number is independent of the
function to be distinguished. The set 𝑃 of functions is finite time testable if the set of functions is
distinguishable using a number of test cases that the number may depend upon the function to be
distinguished, but independent of any ordering on the set of functions. The set 𝑃 of functions is testable in
the limit, if there is a well ordering of 𝑃 = {𝑝!, 𝑝!,… , 𝑝!,… }, such that there exists a function 𝑇 that maps
each 𝑝! in 𝑃 to a finite test set 𝑇! = 𝑇(𝑝!) with the property that for all 𝑗 < 𝑖, there is some 𝑥 in 𝑇(𝑝!) such
that 𝑝! 𝑥 ≠ 𝑝!(𝑥). ☐

Cherniavsky and Statman’s definition of finite time testable is exactly what Budd and Angluin’s notion of
testable is. An example of fixed time testable set of functions is the set of one-variable linear functions,

Technical Report OBU-ECM-AFM-2018-01

 30

which can be distinguished one from another by two different data. A set of functions is testable in the
limit, if the number of test cases may be dependent upon both the function to be distinguished and some
underlying ordering of the set of functions. An example of sets of functions that are testable in the limit is
the set of polynomial functions. A unary polynomial function of degree 𝑘 can be distinguished from all the
polynomial functions whose degrees are less than or equal to 𝑘, by a test set of 𝑘 + 1 data. Testable in the
limit means that it may be impossible to distinguish a function using a finite test set. Hence, testing such a
function needs an infinite sequence of test data. And, at any finite stage of testing, it is not known whether
testing has already been successful. In this sense, testing in the limit is a counterpart of identification in the
limit.

Instead of requiring the set of programs being well ordered, Davis and Weyuker [19] considered the
situation when the set of programs 𝑃 to be distinguished from a program 𝑝 is determined by a metric (or
distance function) on the program space. That is, 𝑃 is the set of programs within a given distance 𝑑 from
the program 𝑝 according to the metric.

Definition 6.3 (David-Weyuker Testable)

Let 𝑃 be a set of programs and 𝛿(𝑝, 𝑞) be a distance metric defined on 𝑃. The set of programs 𝑃 is David-
Weyuker testable with respect to 𝛿(𝑝, 𝑞), if for all programs 𝑝 in 𝑃 and every given number 𝑑 > 0, there is
a finite test set 𝑇 such that

∀𝑞 ∈ 𝑃. 𝛿 𝑝, 𝑞 < 𝑑 ∧ (𝑝 ≠ 𝑞) ⇒ ∃𝑡 ∈ 𝑇. 𝑝 𝑡 ≠ 𝑞 𝑡 .

☐	

It is easy to see that if a set of functions 𝑃 = {𝑝!, 𝑝!,… , 𝑝!,… } is testable in the limit, then it is David-
Weyuker testable with respect to the distance function 𝛿 𝑝! , 𝑝! = |𝑖 − 𝑗|. Therefore, David-Weyuker
testability is a further generalization of testability in the limit.

On the other hand, let 𝑃 be a set of functions that is David-Weyuker testable with respect to a distance
metrics 𝛿(𝑝, 𝑞) on . If the distance function has the property that there is a function 𝑝! in 𝑃 such that

∀𝑑 < ∞. {𝑝 ∈ 𝑃|𝛿 𝑝!, 𝑝 < 𝑑 < ∞ ,

∀𝑝 ∈ 𝑃. ∃𝑑 < ∞. 𝛿 𝑝!, 𝑝 < 𝑑 ,

then, it is also testable in the limit. Note that, if the distance metrics has the above properties, the functions
in the set P can be totally ordered according to the distance to 𝑝!.

However, David-Weyuker testable does not imply that the correctness of the program can be proved for
through successful testing. For example, let 𝑃 be all the programs written in a particular programming
language, such as Java. For any given programs 𝑝 and 𝑞 in 𝑃, we define the mutation distance between
𝑝 and 𝑞 as 𝛿 𝑝, 𝑞 = 𝑘 , if 𝑞 is a 𝑘 ’th order mutant of 𝑝 . Therefore, the set of all programs in a
programming language is David-Weyuker testable with respect to the mutation distance. However,
successfully testing a program on a test set that can distinguish the program from all non-equivalent
mutants of a given order 𝑘 does not imply that the program is correct. This example shows that the testable
by distinguishability does not implies the program’s correctness with respect to a specification. A similar
example can be constructed for testable in the limit because the number of mutants of any given order is
finite.

The main conclusions that we can draw are two folds. First, a function is learnable implies that it is
testable. Thus, learning is a more difficult computational problem than testing. Second, when a ML
technique is used to define testability, its inductive inference power (i.e. the set of functions that is
learnable for the inference device) determines the set of functions that are testable.

7. Conclusion
In this paper, we reviewed the current state of the research on application of ML techniques and theories to
solve software testing problems as reported in the literature. Existing work can be classified into four
categories according to the problems addressed while some research efforts have developed techniques that

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 31

can be applied to address multiple problems of software testing. The problems that have been tackled are
(1) test adequacy problem, i.e. how to measure test adequacy, (2) test oracle problem, i.e. how to check the
correctness of the outputs and execution behaviours of software on test cases; (3) test case design problems,
how to generate test cases, prioritize test cases, and reduced the sizes of test suites, and (4) testability
problem, i.e. how to measure software’s testability. These are among the most important but difficulty
problems of software testing. For each of these problems, various approaches employing ML are identified
summarised, and analysed.

The following general observations on the current state can be made from the review. For each of them, the
research directions to break through the current state if possible are discussed below.

(1) No easy money. Applying ML techniques to software testing is labour intensive and expensive. It is not
economically viable as a practical technique, yet.

In 2008, after a critical review of his own research on the application of ML to software testing, Brian [38]
pointed out that “There is very little evidence, for all existing applications of ML in software testing, that
such [ML] techniques bring any benefits.” The situation has not changed in the past ten years since then.
Generally speaking, applying ML technique to solve a software testing problem is a labour intensive,
difficult and frustrated task. The literature has not provided any good evidence that the cost of applying ML
techniques to software testing could be reduce by using automated or semi-automated tools. This is because
ML requires a large number of data to train the model. For supervised learning, this means a large amount
of data to be labelled, which are mostly done manually. Most of the successful research works reported in
the literature use unsupervised learning techniques like clustering, such as the works by Podgurski et al.
[20]. Theoretically speaking, the literature on the study of the relationships between testability and
learnability shows that learning is computationally harder then testing. A hypothesis is that applying ML to
solve testing problems is inevitably costly. However, one situation has been identified that ML is
potentially beneficial for software testing, that is, regression testing in software evolution process where the
cost of ML can be reduced by reusing the training data and/or the train results. A question worth further
research is on how to enable ML algorithms adapting with the evolution of the learning target so that it can
be applied to testing problems in the context of software evolution.

(2) No free lunch. Wolpert’s No-Free-Lunch theorem is observed in the experiments with the application of
ML to software testing problems. That is, there is no single ML algorithm that consistently performed
better than other ML techniques.

Fraser and Walkinshaw pointed out that in their experiments different ML techniques performed differently
on different programs under test. Moreover, it is impossible for them to predict which technique will
perform better than the others for a given software system [23]. This phenomenon is a mathematical
folklore called No Free Lunch Theorem, which was proved by Wolpert for ML in 1996 [60]. A direction
for future research is how to express the context of the software under test in order to apply the PAC ML
theory and select an appropriate ML algorithm. For example, to generate a test oracle from test cases, can
the software under test be considered as an element of a set of learnable rules? And how can we derive the
VC-dimension of the set of rules?

(3) No silver bullet. Existing ML techniques cannot deal with the complexity confronted software engineers
in current practices.

A variety of ML techniques have been explored to solve software testing problems. None of these
techniques are powerful enough to provide convincing results to show ML as a promising solution to
software testing problems. In particular, none of the ML techniques are capable of dealing with the
complexity of software systems. Especially, none of them can process program codes, software models,
and formal specifications etc. as ML algorithms’ input. Although there are many advanced ML techniques
(such as recurrent neural networks) that have not been employed in the research, it is fair to claim that
existing ML techniques are not powerful enough to process such structurally complex data. A direction for
future research is to study how to learn from structurally complex data.

Although applications of ML to software testing problems are still far away from practical uses, research on
this topic has shed a new light to software testing problems. There are potentially profound and significant
impacts that possibly foster a paradigm shift of software testing practice. In particular, a new conceptual
model of software testing can be built based on regarding software testing as inductive inference as

Technical Report OBU-ECM-AFM-2018-01

 32

discussed in Section 3. In this new model, an assertion on software reliability could be a probability
statement, e.g. the 𝛿-probable reliability of software is 𝜀. The assessment of software reliability by testing
could be guided by the complexity or testability of the software under test, where testability and complexity
could be measured by VC-dimension or something similar. This could significant change the practice of
software test engineering by including complexity/testability analysis as a part of testing process. It will
enable software testing be based on a solid theoretical foundation.

REFERENCES
[1] Agarwal, D., Tamir, D. E., Last, M. and Kandel, A., A Comparative Study of Artificial Neural

Networks and Info-Fuzzy Networks as Automated Oracles in Software Testing, IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.42, no.5, pp. 1183-1193, Sept.
2012.

[2] Almaghairbe, R. and Roper, M., Automatically Classifying Test Results by Semi-Supervised
Learning, Proc. of IEEE 27th International Symposium on Software Reliability Engineering (ISSRE
2016), pp. 116-126, 2016, ISSN 2332-6549.

[3] Almaghairbe, R. and Roper, M., Building Test Oracles by Clustering Failures, Proc. of IEEE/ACM
10th International Workshop on Automation of Software Test (AST 2015), pp. 3-7, 2015.

[4] Almaghairbe, R. and Roper, M., Separating passing and failing test executions by clustering
anomalies, Software Quality Journal, pp.803-840, 2017(25), ISSN 0963-9314.

[5] Almaghairbe, R., Formulating Test Oracles via Anomaly Detection Techniques. PhD Thesis,
University of Strathclyde, UK, 2017.

[6] Anand, S., et al., An orchestrated survey of methodologies for automated software test case
generation, Journal of Systems and Software, Vol. 86, No. 8, pp1978-2001, Aug. 2013.

[7] Anderson C, von Mayrhauser A, Mraz R. On the use of neural networks to guide software testing
activities. In Proceedings of the International Test Conference (ITC’95), October 21–26, 1995.

[8] Angluin, D., Inductive Inference of Formal Languages from Positive Data, Information and
Control 45, pp117–135, 1980. (doi:10.1016/S0019-9958(80)90285-5).

[9] Bache, R. and Mullerburg, M., Measures of testability as a basis for quality assurance, Software
Engineering Journal, 5 (2), pp86-92, March 1990.

[10] Baker, A. L., Howatt, J. W., and Bieman, J. M., Criteria for finite sets of paths that characterize
control flow. In Proceedings of the 19th Annual Hawaii International Conference on System Sciences,
pp158–163, 1986.

[11] Baskiotis, N., Sebag, M., Gaudel, M.-C. and Gouraud, S., A Machine Learning Approach for
Statistical Software Testing, Proc. International Joint Conference on Artificial Intelligence, 2007.

[12] Bowring J. F., Rehg J. M. and Harrold M. J., Active Learning for Automatic Classification of
Software Behavior, Proc. ACM International Symposium on Software Testing and Analysis, 2004.

[13] Budd, T. A. and Angluin, D., Two notions of correctness and their relation to testing, Acta
Informatica, 18, pp31-45, 1982.

[14] Case, J. and Smith, C., Comparison of identification criteria for machine inductive inference,
Theoretical Computer Science, 25(2), 193-220, 1983.

[15] Chen, T.Y., et al., Metamorphic Testing: A New Approach for Generating Next Test Cases, Technical
Report HKsUST-CS98-01, Dept. of Computer Science, Hong Kong Univ. of Science and Technology,
1998.

[16] Chen, T. Y., Kuo, F-C., Liu, H., Poon, P-L., Towey, D., Tse, T. H., Zhou, Z. Q., Metamorphic
testing: a review of challenges and opportunities. ACM Computing Surveys, 51 (1). 4/1-4/27, 2018.

[17] Cherniavsky, J. C. and Smith, C. H., A recursion theoretic approach to program testing, IEEE
Transactions on Software Engineering, 13 (7), pp777-784, 1987.

[18] Cherniavsky, J. C. and Statman, R., Testing: an abstract approach, Proc. of the Second Workshop on
Software Testing, Verification and Analysis, Banff, Canada, pp38-44, July 1988.

[19] Davis, M. and Weyuker, E., Metric space-based test-data adequacy criteria, The Computer Journal, 13
(l), pp17-24, February 1988.

[20] Dickinson, W., Leon, D., Podgurski, A., "Finding failures by cluster analysis of execution profiles",
Proceedings of the 23rd International Conference on Software Engineering (ICSE 2001), pp. 339-348,
May 2001.

[21] Eibe Frank, Mark A. Hall, and Ian H. Witten, Data Mining: Practical Machine Learning Tools and

Zhu, H., Software Testing as A Problem of Machine Learning 12 Dec. 2018

 33

Techniques, Morgan Kaufmann, Fourth Edition, 2016.
[22] Fraser, G. and Walkinshaw, N., Assessing and generating test sets in terms of behavioural adequacy.

Software Testing, Verification And Reliability 25 pp749–780, 2015.
[23] Fraser, G., and Walkinshaw, N., Behaviourally adequate software testing. In Proceedings of 2012

IEEE Fifth International Conference on Software Testing, Verification and Validation (ICST 2012),
Antoniol, G., Bertolino, A., Labiche, Y. (eds), Montreal, QC, Canada, pp300–309, April 17–21, 2012.

[24] Freedman, R. S., Testability of software components, IEEE Transactions on Software Engineering, 17
(6), pp555-564, 1991.

[25] Freund, Y. and Schapire R., A decision-theoretic generalization of on-line learning and an
application to boosting. In Computational Learning Theory. Springer: Jerusalem, Israel, 1995;
23–37.

[26] Frounchi, K., Briand, L. C., Grady, L., Labiche, Y. and Subramanyan, R., Automating image
segmentation verification and validation by learning test oracles, Inf. Softw. Technol., vol. 53, no. 12,
pp. 1337-1348, Dec. 2011.

[27] Gold, E. M., Language identification in the limit, Information and Control 10, pp447-474, 1967.
[28] Goodenough, J. B. and Gerhart, S. L., Toward a theory of test data selection, IEEE Transactions on

Software Engineering, 1 (2), pp156-173, June 1975.
[29] Gourlay, J., A mathematical framework for the investigation of testing, IEEE Transactions on

Software Engineering, 9 (6), pp686-709, 1983.
[30] Hahnloser, R , Sarpeshkar, R., Mahowald, M A , Douglas, R. J. and Seung, H.S., Digital selection and

analogue amplification coexist in a cortex-inspired silicon circuit. Nature. 405. pp. 947–951, 2000
[31] Hamlet, R., Theoretical comparison of testing methods. In Proceedings of The 3rd SIGSOFT

Symposium on Software Testing, Analysis, and Verification, pp28–37, Dec. 1989.
[32] Hamlet, R., Probable correctness theory, Information Processing Letters, 25(1), 17-25, 1987.
[33] Hierons, R. M., et al., Using formal specifications to support testing. ACM Comput. Surv. 41, 2,

Article 9 (February 2009), 76 pages. DOI: https://doi.org/10.1145/1459352.1459354
[34] Hutchinson, A., Algorithmic Learning, Graduate Texts in Computer Science, Oxford University Press,

1994.
[35] Kanewala, U. and Bieman, J. M., Using machine learning techniques to detect metamorphic relations

for programs without test oracles, Proceedings of IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE 2013), pp. 1-10, 2013.

[36] Kubat,M., An Introduction to Machine Learning, 2nd Edition, Springer, 2017.
[37] Last, M. and Maimon, O., A compact and accurate model for classification, IEEE Trans. Knowl. Data

Eng., vol. 16, no. 2, pp. 203–215, Feb. 2004.
[38] Lionel C. Briand, Novel Applications of Machine Learning in Software Testing, The Eighth

International Conference on Quality Software, 2008, pp3-10.
[39] Liu, L. and Miao, H., Axiomatic Assessment of Logic Coverage Software Testing Criteria, Journal of

Software 15(9), pp1301-1310, September 2004. (In Chinese)
[40] Lo, D., Cheng, H., Han, J., Khoo, S.-C., Sun, C., Classification of software behaviors for failure

detection: A discriminative pattern mining approach, Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 557-566, 2009.

[41] Menon, A. K., Tamuz, O., Gulwani, S., Lampson, B. and Kalai, A. T., A Machine Learning
Framework for Programming by Example, in Proceedings of the 30th International Conference on
Machine Learning, Atlanta, Georgia, USA, 2013. JMLR: W&CP volume 28, ppI-187-I-195.

[42] Parrish, A. and Zweben, S. H., Analysis and refinement of software test data adequacy properties.
IEEE Trans. Softw. Eng. SE-17(6), pp565–581, Jun. 1991.

[43] Parrish, A. and Zweben, S. H., Clarifying some fundamental concepts in software testing. IEEE Trans.
Softw. Eng. 19(7), pp742–746, Jul. 1993.

[44] Podgurski A., Leon D., Francis P., Masri W. and Minch M., Automated Support for Classifying
Software Failure Reports, in Proc. of the 25th International Conference on Software Engineering
(ICSE 2003), 2003.

[45] Podgurski, A. and Yang, C. Partition testing, stratified sampling, and cluster analysis. Proceedings of
the First ACM Symposium on Foundations of Software Engineering (Los Angeles, CA, December
1993), ACM Press, 169-181.

[46] Podgurski, A., Masri, W., McCleese, Y., Wolff, F.G., and Yang, C. Estimation of software reliability
by stratified sampling. ACM Transactions on Software Engineering and Methodology 8, 9 (July,

Technical Report OBU-ECM-AFM-2018-01

 34

1999), 263-283.
[47] Quinlan J. R., C4. 5: Programs for Machine Learning. Morgan Kaufmann: San Mateo, CA, 1993.
[48] Saraph, P., Last, M. and Kandel, A., "Test set generation and reduction with artificial neural networks

in Artificial Intelligence Methods in Software Testing, Singapore: World Scientific, pp. 101-132,
2004.

[49] Segura, S., Fraser, G., Sanchez, A. B. and Ruiz-Cortés, A., A Survey on Metamorphic Testing,
in IEEE Transactions on Software Engineering, vol. 42, no. 9, pp. 805-824, 1 Sept. 2016.
doi: 10.1109/TSE.2016.2532875

[50] Shahamiri, S., Wan-Kadir, W., Ibrahim, S. and Hashim, S., Artificial neural networks as multi-
networks automated test oracle", Automated Software Engineering, vol. 19, no. 3, pp. 303-334, 2012.

[51] Shalev-Shwartz, S. and Ben-David, S., Understanding Machine Learning: From Theory to Algorithms,
Cambridge University Press, 2014.

[52] Smith, C. H. and Angluin, D., Inductive inference: theory and methods, ACM Computing Surveys,
15(3), 235-269, 1983.

[53] Summers, P. D., A methodology for LISP program construction from examples. Journal of ACM
24(1), pp161-75, Jan. 1977.

[54] Valiant, L. C., A theory of the learnable, Communications of the ACM, 27(11), pp1134-1142, 1984.
[55] Vanmali, M. , Last, M. and Kandel, A., Using a neural network in the software testing

process, International Journal of Intelligent Systems, vol. 17, no. 1, pp. 45-62, 2002.
[56] von Mayrhauser, A., Anderson, Ch. and Mraz, R., Using A Neural Network to Predict Test Case

Effectiveness, in Proceedings of IEEE Aerospace Applications Conference, Snowmass, CO, Feb.
1995.

[57] Weyuker, E. J. The evaluation of program-based software test data adequacy criteria, Communications
of the ACM, 31(6), pp668-675, 1988.

[58] Weyuker, E. J., Assessing test data adequacy through program inference. ACM Transactions on
Programming Languages and Systems, 5(4), pp641-655, 1983.

[59] Weyuker, E. J., Axiomatizing software test data adequacy, IEEE Transactions on Software
Engineering, 12(12), pp1128-1138, 1986.

[60] Wolpert D.H., The lack of a priori distinctions between learning algorithms. Neural Computation
1996; 8(7), pp1341–1390.

[61] Xavier Glorot, Antoine Bordes and Yoshua Bengio(2011). Deep sparse rectifier neural
networks (PDF). AISTATS.

[62] Yoo, S., Harman, M., Tonella, P. and Susi, A., Clustering test cases to achieve effective & scalable
prioritisation incorporating expert knowledge, Proceedings of International Symposium on Software
Testing and Analysis (ISSTA 2009), pp. 201-211, July 2009.

[63] Zhu, H. and Hall, P. A. V. Test data adequacy measurements, Softw. Eng. J. 8(1), pp21–30, Jan. 1993.
[64] Zhu, H. and Jin, L., A knowledge-based approach to program synthesis from examples, Journal of

Computer Science and Technology, January 1991.
[65] Zhu, H. and Jin, L., A knowledge-based system to synthesize FP programs from examples, Proc. of

EPIA'89, Lecture Notes in Computer Science, Vol. 390, 1989.
[66] Zhu, H., A formal interpretation of software testing as inductive inference. Journal of Software

Testing, Verification and Reliability 6, pp3-31, 1996
[67] Zhu, H., Axiomatic assessment of control flow based software test adequacy criteria. Softw. Eng. J.,

pp194–204, Sept. 1995.
[68] Zhu, H., Hall, P. and May, J., Inductive inference and software testing. Journal of Software Testing,

Verification, and Reliability 2, pp69-81, 1992.
[69] Zhu, H., Hall, P. and May, J., Software unit test coverage and adequacy, ACM Computing Survey,

29(4), pp366~427, Dec. 1997.
[70] Zhu, H., JFuzz: A Tool for Automated Java Unit Testing based on Data Mutation and Metamorphic

Testing Methods, Proc. of the 2nd International Conference on Trustworthy Systems and Their
Applications (TSA 2015), 8-9 July 2015, Hualien, Taiwan, pp8-15.

[71] Zhu, H., Towards a relationship between software reliability estimation and complexity analysis,
Chinese Journal of Software, 9(9), 713-717, Sept. 1998. (In Chinese)

[72] Zweben, S. H. and Gourlay, J. S., On the adequacy of Weyuker’s test data adequacy axioms. IEEE
Trans. Softw. Eng. SE-15(4), pp496–501, Apr. 1989.

