
The Datamorphic Testing Methodology
-- Principles, Tools and Applications to ML

Prof. Hong Zhu
School of Engineering, Computing and Mathematics

Oxford Brookes University
Oxford OX33 1HX, UK

Email: hzhu@brookes.ac.uk

Tutorial at IEEE AITest 2023
Athens, Greece, 17th July 2023

Acknowledgement and References

17 July 2023 Tutorial on Datamorphic Testing 2

• Hong Zhu, et al., [2018], Datamorphic Testing: A Methodology for Testing AI Applications, Technical Report OBU-
ECM-AFM-2018-02, Oxford Brookes University, Oxford OX33 1HX, UK, Dec. 21, 2018. (Arxiv at
http://arxiv.org/abs/1912.04900)

• Hong Zhu, et al. [2019], Morphy: A Datamorphic Software Test Automation Tool, Technical Report OBU-ECM-AFM-
2019-01, Oxford Brookes University, Oxford, UK. 9 Dec. 2019. (Arxiv at http://arxiv.org/abs/1912.09881)

• Hong Zhu, et al. [2019], Datamorphic Testing: A Method for Testing Intelligent Applications, in Proc. of IEEE AITest
2019, San Francisco, California, USA, April, 4 - 9, 2019.

§ Hong Zhu and Ian Bayley [2020], Exploratory Datamorphic Testing of Classification Applications, The 1st IEEE/ACM
International Conference on Automation of Software Test (AST 2020), Seoul, South Korea, May 25-26, 2020, pp51-60.

§ Hong Zhu, Ian Bayley, Dongmei Liu and Xiaoyu Zheng [2020], Automation of Datamorphic Testing, The Second IEEE
International Conference on Artificial Intelligence Testing (AITest 2020), Oxford, UK, April 13 - 16, 2020, pp64-72.

§ Hong Zhu, Ian Bayley, and Mark Green [2022]. Metrics for Measuring Error Extents of Machine Learning Classifiers.
In Proc. of the 2022 IEEE International Conference On Artificial Intelligence Testing (AITest 2022), 15-18 Aug. 2022, pp.
48-55.

§ Hong Zhu, and Ian Bayley [2022], Discovering boundary values of feature-based machine learning classifiers
through exploratory datamorphic testing, Journal of Systems and Software, Vol. 187, Article 111231, May 2022.

§ Hong Zhu, et al. [2023], A Scenario-Based Functional Testing Approach to Improving DNN Performance (Invited
Paper), in Proc. of The 17th IEEE International Conference on Service-Oriented System Engineering (SOSE 2023), 17th-
20th July, 2023, Athens, Greece. (In press)

1. Background
2. Principles and Basic Concepts
3. Morphy: An Automated Datamorphic Testing Environment
4. Examples of Application to Machine Learning

Outline

17 July 2023 Tutorial on Datamorphic Testing 3

Background
§Machine learning (ML) is increasingly used in computer applications

§ Personalisation (e.g. targeted advertisement)
§ Security (e.g. authentication through face recognition, fingerprint, etc.)
§ Driverless vehicles
§ Big Data, IoT, Edge and Fog computing, Cloud computing (e.g. IT Operations)
§ Smart cities, smart homes, healthcare, etc.
§ Robotics (e.g. chatbots, rescue devices, etc.)

§ Inadequately tested AI applications impose a threat to the safety, security and
reliability of computer systems
§ Fatal accidents of driverless cars
§ Unfairness in recruitment and job applications
§ Etc.

§Testing ML applications are expensive and difficult
§ Large volume of test dataset is required
§ Difficult and expensive to label data for testing
§ Traditional testing techniques, methods and tools are not simply applicable

17 July 2023 Tutorial on Datamorphic Testing 4

The Challenges
§Fundamental differences between traditional programs and ML models

§ A machine learning model cannot be debugged.
§ We cannot change a ML model at microscale manually to fix “bugs”.
§ To improve a ML model, it has to be re-trained!

§ A machine learning model cannot be verified or validated for its correctness.
§ Impossible: In lack of complete verifiable and testable specification of requirements
§ Undesirable: Verification or validation of a ML model’s correctness is undesirable, if not

impossible.
§ Need to be statistically Assessed: The quality of a ML model must be assessed

statistically, because the PAC ML is regarded as the theoretical foundation for ML applications
§ Implications on software testing in practice

§ How to provide feedbacks to developers to improve the quality of the ML model
§ A list of incorrect instances alone (traditional bug reports) may not be useful.

§ How to assess the quality of ML models
§ Static testing, such as formal review and Fagan inspection, may not be applicable
§ Quality attributes specific for ML applications: robustness, fairness, etc.

§ How to manage testing process and resources
§ Large volume of data and frequent change of the ML model require test automation

17 July 2023 Tutorial on Datamorphic Testing 5

Part 1

Principles
and

Basic Concepts

Datamorphic testing takes a systems engineering approach to software
testing.
§ It regards software testing as an engineering process.
§ It emphasises on the system that embodies testing activities and assets.

The Philosophy of Datamorphic Testing

What is a system?
• consisting of components that interact with each other
• demonstrating functions, properties and behaviours that beyond what each

individual component alone can

17 July 2023 Tutorial on Datamorphic Testing 7

Software testing is an engineering process in which a test system is developed,
maintained, evolved and operated to achieve the purposes of testing and to
manage testing resources effectively and efficiently.

§What is a test system
• A test system is a system for supporting testing activities and manage testing

resources
§Why do we explicitly define a test system

• Specified formally or informally
• Operated to achieve testing purposes
• Tested and formally proved for correctness
• Maintained, reused, and evolved like all software assets
• Implemented as software assets
• Used to achieve test automation

§How should a test system be defined and structured
• A test system should not be just an aggregate of unrelated assets.
• A test system should be well structured to enable test automation, especially
oEffective and efficient performance of testing activities, manage test recourse
oEasy to evolve when the system under test evolves
oReusable for different testing purposes and different systems to be tested

Test System

17 July 2023 Tutorial on Datamorphic Testing 8

Ø Entities:
§ Objects and data used and/or generated in testing
§ Examples:
§ test cases, test suites, the program under test, test design documents, test reports,

etc.

Ø Morphisms:
§ Mappings from and/or to test entities
§ Generating and transforming test entities to achieve testing objectives
§ Invoked to perform test activities
§ Composed to form test processes
§ Implemented as test code or test scripts for test automation
§ Examples:
§ test case generators, test oracles, test adequacy metrics, test result analysers, bug

report generators, etc.

Artefacts of Software Testing

17 July 2023 Tutorial on Datamorphic Testing 9

Test Systems in Datamorphic Testing Methodology

17 July 2023 Tutorial on Datamorphic Testing 10

Definition:
A test system T = <E, M> consists of a set E of test entities and a
set M of test morphisms, where each test morphism in M is a
mapping defined on the test entities in E.

Examples of Test Morphisms
§ Seed makers:

§ Generates a set of test data from other types of test entities. Such test cases are called seed
test cases.

§ Examples:
§ Generate from the program under test
§ Selected from an existing profile of recorded real data
§ Convert csv files into image, etc.

§ Datamorphisms:
§ Transforms existing test data to new test data. Such test cases are called mutants of the

original test data
§ Also called test data mutation operators in [Shan & Zhu 2006, Zhu 2015]

§ Metamorphisms:
§ Predicates on test cases to check if the program is correct or not on the test case

§ Checking the relationship between the original and mutant test data, and their expected
outputs from the program

§ Metamorphic relations (compare):
§ A k-ary relation (k>1) on test cases
§ A special form of axioms in algebraic formal specifications

17 July 2023 Tutorial on Datamorphic Testing 11

Example: Identification of Flowers
§Datamorphism: Change background colour to black-and-white

Mutant test case: test case generated
by applying the datamorphism

Seed test case: original test case

17 July 2023 Tutorial on Datamorphic Testing 12

Example: More Datamorphisms

17 July 2023 Tutorial on Datamorphic Testing 13

Example: A Metamorphism

Compare the output on the
mutant with the output on the
original picture

By changing the background into black-and-white, the flower should be identified
as the same kind as in the original picture.

Metamorphic relation:
FlowerRec(x) = FlowerRec(ChangeBackground(x))

17 July 2023 Tutorial on Datamorphic Testing 14

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

 (a) Original Photo (b) With Glasses (c) Wearing Makeup (d) Changed Hair Style

 (e) b + d (f) c + d (g) b + c (h) b + c + d

Figure 3. Mutants for Face Recognition

In other words, a test set is first order mutant complete
if it contains every seed and every first order mutant. A test
strategy is to test the software with all the seeds and all the
first order mutant test cases generated from the seeds using
selected datamorphisms.

The following algorithm generates the minimal test set
that is first order mutant complete with respect to a given
set of seed test cases and a set of datamorphisms.

Algorithm 1: (Generate 1st Order Mutant Complete
Tests)
Input: S = the set of seed test cases;

D = the set of datamorphisms;

Output: C = a set of test cases;

Variables: tempT = temporal set of test cases;

Begin

C = EmptySet;

for (each datamorphism d in D){

tempT = EmptySet;

Assume that d is a k-ary datamorphism;

forall k-tuples (x1,... ,xk) of S {

add d(x1,... ,xk) to tempT;

};

C = C + tempT;

};

return C + S;

End

The following theorem asserts the correctness of the
algorithm. The proof can be found in [31].

Theorem 1: The test set generated from S using D by
Algorithm 1 is the minimal set of test cases that is first
order mutant complete with respect to S and D. ut

B. Higher Order Mutant Coverage

Datamorphisms can also be applied to test cases multiple
times to generate mutants of mutants, which are called high
order mutants and formally defined as follows. For the sake
of convenience, a test case x 2 S is called a 0’th order
mutant of S.

Definition 3: (Higher order mutants)
A test case y is a second order mutant of S by D, if there

is a k-ary datamorphism d 2 D and k test cases x1, · · · , xk

Example: Datamorphisms

Higher order mutants can be obtained by applying datamorphisms multiple times.
They represent combinations of operation conditions/scenarios.

17 July 2023 Tutorial on Datamorphic Testing 15

Test
Morphisms

Test
Generators

Seed Makers

Datamorphisms

Test case
filters

Test set filters

Test Oracles

Relations

Unary
relations

Pre/post-
conditions

Metamorphic
relations

Metemorphisms

Test Metrics

Test case
metrics

Test set
metrics

Test
Executers

Test Result
Analysers

Statistical
analyser

Visualisation

Bug location

A Category of Test Morphisms

17 July 2023 Tutorial on Datamorphic Testing 16

Part 2

Morphy:
An Automated Tool for
Datamorphic Testing

Main Functions
§Management of test systems
§Management of test entities
§Management of test specifications

§Test Automation at 3 levels:
§Activity level:
§Perform testing activities automatically through invocations of test morphisms

§Strategy level:
§Apply test strategies implemented by the tools with user’s selection of

parameters
§Process level:
§ Interactive uses of the tool can be recorded, and replayed
§Test scripts can be edited and executed

A test system is defined/implemented as
a Java class, where
• Test entities are stored in attributes
• Test morphisms are implemented as

methods

17 July 2023 Tutorial on Datamorphic Testing 18

Graphic User Interface
4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

17 July 2023 Tutorial on Datamorphic Testing 19

Test Morphism Panel

Users can select the test
morphisms to apply
interactively or as
parameters of strategies

Various types of test
morphisms are listed in this
panel

17 July 2023 Tutorial on Datamorphic Testing 20

Message Panel

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

The Message panel shows the
activities performed during the test
process

17 July 2023 Tutorial on Datamorphic Testing 21

Error Report Panel
The Error Report panel shows errors detected during the test process

17 July 2023 Tutorial on Datamorphic Testing 22

Management of Test System

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

• Load Spec: Load a test specification that is a Java class file.
• Load Test Set: Load a test set file previously save on the computer and add

them to the current set of test cases
• Save Test Set: Save the current test set to a file
• Clean: Re-initialise the system’s state
• Test Spec Name: Give the test specification name that is currently used

• When the system is started, it will restore the state of the last time it is used.
• When a new test specification is loaded, the system will initialise its state, so

remove all the test cases in the current test set.

17 July 2023 Tutorial on Datamorphic Testing 23

Automation at Activity Level

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

• Seed: Invoke selected seed maker morphism(s) to generate a set of seed test cases
• Mutate: Apply selected datamorphisms to the current test set to generate mutant test

cases and add to the current test set
• Edit Test: View and edit the current test set
• Filter: Apply selected test set filter(s) to modify the current test set
• Measure: Apply selected test set metrics to measure the test quality
• Execute: Run the selected executer to run the program under test on the current set of

test cases
• Check: Check the correctness of the test results against the selected metamorphisms
• Analyse: Invoke the selected analysers to generate test report

17 July 2023 Tutorial on Datamorphic Testing 24

View and Edit Test Set

17 July 2023 Tutorial on Datamorphic Testing 25

Automation at Strategy Level

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

• Three sets of test strategies have been implemented:
• Mutant combination strategies
• Exploratory strategies
• Test optimisation strategies using genetic algorithms

• The user selects a strategy from the drop down menu, select the parameters
as instructed, then press the execute button to run the selected test strategy.

• The execution process will be reported in the message panel.

17 July 2023 Tutorial on Datamorphic Testing 26

Automation at Process Level

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

Finally, the buttons in the Test Script panel enable the
user to

• record testing activities as a test script,

• view the test script,

• store a test script into a file,

• load a previously stored test script, and

• play a test script.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing,
such as in regression testing and to obtain data for statistical
analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column of the tables as input to perform the in-
teractive and automatic testing functions mentioned above.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.

Figure 3 shows Morphy’s Test Case window. It shows
the details of the test cases in the current test set. If test case

metrics are defined in the test specification, the metrics will
be applied to the test cases automatically and the results are
shown in the table. The test cases in the table can be sorted
by a click on the table head row. For example, the test cases
in Figure 3 are sorted according to the metrics Distance,
shown in column Distance. Test cases can be selected by
clicking on the check box on the first column. They can
also be selected by applying a test case filter given in the test
specification. When the tester clicks on the Delete button,
the selected test cases will be removed from the table. The
Save button will then be enabled. The deletion of the test
cases from the test set will actually take place when the Save
button is clicked.

4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⇢ T be a set of test cases. D be a set of
datamorphisms and d 2 D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k ! T .

Definition 1 (First Order Mutants) A test case y 2 T is
called a first order mutant test case, or simply a first or-
der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

4

Create a new test script
Load a previously saved test script
Start recording interactive test activities

Play the current test script
Save the test script to a file
View test script
Clean the test script

17 July 2023 Tutorial on Datamorphic Testing 27

Example of Test Script

17 July 2023 Tutorial on Datamorphic Testing 28

Morphy’s Architecture

2.3. Test Specification

A Morphy test specification is a Java class, which de-
clares a set of attributes as test entities and a set of methods
as test morphisms; see Appendix B for an example. Each
test morphism is annotated with a metadata to declare the
type of test morphism that the method belongs to. Table 1
lists the annotations and datatypes of various types of test
morphisms as implemented in Morphy.

Table 1. Annotations of Test Morphisms
Morphism Annotation Parameter Return
Seed Maker @SeedMaker Nil Void
Datamorphism @Datamorphism TestCase TestCase
Metamorphism @Metamorphism TestCase Boolean
Test Case Metrics @TestCaseMetrics TestCase Real
Test Case Filter @TestCaseFilter TestCase Boolean
Test Set Metrics @TestSetMetrics Nil Real
Test Set Filter @TestSetFilter Nil Nil
Test Executer @TestExecuter Input Output
Analyser @Analyser Nil Void

The uses of various types of test entities and morphisms
can be found in Section 5.

3. Test Tool Morphy

As shown in Figure 1, Morphy consists of three main fa-
cilities: test set management, test runner and test scripting.

Graphic User Interface

Test Scripts

Test Scripting Facility

Test Script
R

unner

Test Script
R

ecorder

Test Set

Test Set Management

Test Set Loader

Test Set Saver

Test Set Editor

Test Runner

Program
Under Test

Test Strategies

Test M
orphism

Executor

Java IDE

Test Spec (Bytecode)

Test Script
M

anager

Test M
orphism

Loader

Test Script Repository Test Set Repository
Test Spec
Repository

Figure 1. The Architecture of Morphy

The test set management facility enables test sets to be
saved into files, loaded from files and edited in a graphic
user interface. The test runner enables test specifications to
be loaded into the system and various test morphisms of the
test specification to be invoked. It also implements various
test strategies. The test scripting facility enables interactive
testing activities to be recorded as a test script, saved into
files, reloaded from files and replayed.

Test specifications can be developed with any Java IDE,
but a wizard has been developed as an Eclipse plugin to
generate new skeleton Java class as a template of test spec-
ification. The skeleton code can be found in Appendix C.

Morphy’s main graphic user interface, shown in Figure
2, provides a user friendly environment in which testing
artefacts can be managed, basic testing activities can be per-
formed and automated testing facilities can be invoked.

At the very top of Morphy’s main window are four pan-
els of buttons as follows.

The Management panel has buttons for the following
functions to manage the artefacts of software testing; these
include

• load a Morphy test specification,
• load a previously saved intermediate results of testing

from a file,
• save the current state of the testing into a file,
• clean up the system by removing all test cases, mes-

sages in the message areas, and the test scripts, etc.

The Activity panel has buttons for test activities that in-
voke various types of test morphisms. These include the
following.

• Seed: generate seed test cases using selected seed
maker methods;

• Mutate: generate mutant test cases using selected data-
morphisms;

• Filter: remove test cases from the current test set using
selected test set filters;

• Edit Test: show the test cases in the current test pool in
a test data window and to enable manual editing of the
test results;

• Measure: measure the current test set by invoking the
selected test set metrics;

• Execute: use the TestExecuter method to run testing on
test cases in the current test set;

• Check: check the correctness of the test results using
selected metamorphisms;

• Analyse: analyse the test results by invoking the se-
lected analysis method(s).

The Strategy panel enables the tester to select from a set
of predefined test strategies and to perform automated test-
ing. Three types of test strategies have been implemented
in Morphy:

• Mutant combination: combining datamorphisms to
generate mutant test cases;

• Domain exploration: searching for the borders be-
tween clusters/subdomains of the input space;

• Test set optimisation: optimising test sets by employ-
ing genetic algorithms.

3

17 July 2023 Tutorial on Datamorphic Testing 29

Morphy’s Format to Specify Test Systems
§Test Entities:

§ Java generic class TestCase for representing test cases
§ Java generic class TestPool for representing test suites/set

§Test Morphisms:
§ Java methods annotated with metadata

2.3. Test Specification

A Morphy test specification is a Java class, which de-
clares a set of attributes as test entities and a set of methods
as test morphisms; see Appendix B for an example. Each
test morphism is annotated with a metadata to declare the
type of test morphism that the method belongs to. Table 1
lists the annotations and datatypes of various types of test
morphisms as implemented in Morphy.

Table 1. Annotations of Test Morphisms
Morphism Annotation Parameter Return
Seed Maker @SeedMaker Nil Void
Datamorphism @Datamorphism TestCase TestCase
Metamorphism @Metamorphism TestCase Boolean
Test Case Metrics @TestCaseMetrics TestCase Real
Test Case Filter @TestCaseFilter TestCase Boolean
Test Set Metrics @TestSetMetrics Nil Real
Test Set Filter @TestSetFilter Nil Nil
Test Executer @TestExecuter Input Output
Analyser @Analyser Nil Void

The uses of various types of test entities and morphisms
can be found in Section 5.

3. Test Tool Morphy

As shown in Figure 1, Morphy consists of three main fa-
cilities: test set management, test runner and test scripting.

Graphic User Interface

Test Scripts

Test Scripting Facility

Test Script
R

unner

Test Script
R

ecorder

Test Set

Test Set Management

Test Set Loader

Test Set Saver

Test Set Editor

Test Runner

Program
Under Test

Test Strategies

Test M
orphism

Executor

Java IDE

Test Spec (Bytecode)

Test Script
M

anager

Test M
orphism

Loader

Test Script Repository Test Set Repository
Test Spec
Repository

Figure 1. The Architecture of Morphy

The test set management facility enables test sets to be
saved into files, loaded from files and edited in a graphic
user interface. The test runner enables test specifications to
be loaded into the system and various test morphisms of the
test specification to be invoked. It also implements various
test strategies. The test scripting facility enables interactive
testing activities to be recorded as a test script, saved into
files, reloaded from files and replayed.

Test specifications can be developed with any Java IDE,
but a wizard has been developed as an Eclipse plugin to
generate new skeleton Java class as a template of test spec-
ification. The skeleton code can be found in Appendix C.

Morphy’s main graphic user interface, shown in Figure
2, provides a user friendly environment in which testing
artefacts can be managed, basic testing activities can be per-
formed and automated testing facilities can be invoked.

At the very top of Morphy’s main window are four pan-
els of buttons as follows.

The Management panel has buttons for the following
functions to manage the artefacts of software testing; these
include

• load a Morphy test specification,
• load a previously saved intermediate results of testing

from a file,
• save the current state of the testing into a file,
• clean up the system by removing all test cases, mes-

sages in the message areas, and the test scripts, etc.

The Activity panel has buttons for test activities that in-
voke various types of test morphisms. These include the
following.

• Seed: generate seed test cases using selected seed
maker methods;

• Mutate: generate mutant test cases using selected data-
morphisms;

• Filter: remove test cases from the current test set using
selected test set filters;

• Edit Test: show the test cases in the current test pool in
a test data window and to enable manual editing of the
test results;

• Measure: measure the current test set by invoking the
selected test set metrics;

• Execute: use the TestExecuter method to run testing on
test cases in the current test set;

• Check: check the correctness of the test results using
selected metamorphisms;

• Analyse: analyse the test results by invoking the se-
lected analysis method(s).

The Strategy panel enables the tester to select from a set
of predefined test strategies and to perform automated test-
ing. Three types of test strategies have been implemented
in Morphy:

• Mutant combination: combining datamorphisms to
generate mutant test cases;

• Domain exploration: searching for the borders be-
tween clusters/subdomains of the input space;

• Test set optimisation: optimising test sets by employ-
ing genetic algorithms.

3

17 July 2023 Tutorial on Datamorphic Testing 30

§The Program under Test:
“reads three integer values from an input dialog. The three values represent the lengths of the
sides of a triangle. The program displays a message that states whether the triangle is scalene,
isosceles, or equilateral.”

[G. J. Myers. The Art of Software Testing.
John Wiley & Sons, Inc., 1st edt, 1979, 2nd edt, 2004.]

§The Problem of Testing:
Myer listed 14 questions for testers to assess how well he/she tests the program for such a
seemly simple program and reported that “highly qualified professional programmers score, on
the average, only 7.8 out of a possible 14”.

§The Research Questions:
oCan datamorphic testing achieve a good score?
oCan Morphy automate this testing process?

Example 1. Triangle Classification

17 July 2023 Tutorial on Datamorphic Testing 31

Triangle1 x = new Triangle1(tc.x, tc.y, tc.z);
return x.Classify();

}

The analysis of test results can be performed by invok-
ing an analyser morphism. In the case study, an analyser
method is written for statistical analysis of test cases and it
reports the data in a pop-up. The details are omitted for the
sake of space.

Note that test entities and morphisms can be declared
in a number of classes to make them more reusable. For
example, in this case study, we have put the test exe-
cuter method in a separate class that inherits the class
TriangleTestSpec, where the datamorphisms and meta-
morphisms are declared. Consequently, the test specifica-
tion class TriangleTestSpec can be reused to test a num-
ber of different implementations and thier versions even if
their interface is different. In the case study, we tested two
different algorithms for triangle classification, and for each
of them, we made two versions, one with errors and one
without. The relationships between various classes used in
the case study is depicted in Figure 6.

The test executions of the program under test can be easily defined by a test executer morphism. For
example, the following is such a test executer morphism, where Triangle1 is a class that implements
triangle classification.
package morphy.examples;
import morphy.annotations.*;
public class TriangleTest1 extends TriangleTestSpec {
 @TestExecuter
 public TriangleType TriangleClassifier1(Triangle tc) {
 Triangle1 x = new Triangle1(tc.x, tc.y, tc.z);
 return x.Classify();
 }
}

Note that, in this case study, we have put the test executer method in a separate class that inherits the test
specifications for triangle classifications. Therefore, the test specification class can be reused to test a number of
different implementations, or versions, of the program even if their interface is different. In the case study, we
implemented two different algorithms for triangle classification, and for each of them, we made two versions, one
with error and one is correct. The structure of the test specifications is depicted in Figure 1.

Figure 11. Relationship between the Classes in Case Study 1.

F. Analysis of Test Results.

The analysis of the results of testing on a test suite can be performed by invoking an analysis morphism. The
following is such an example that calculate the statistics of test results and report to the user in a popup.

 @Analyser
 public void statistics() {
 int numTC = testSuite.testSet.size();
 int numOriginalTC = 0;
 int numMutantTC = 0;
 int numCheckedTC =0;
 int numCorrect =0;
 int numError=0;
 for (TestCase x : testSuite.testSet) {
 if (x.feature == TestDataFeature.original) {
 numOriginalTC++;
 }else {
 numMutantTC++;
 };
 if (!x.correctness.equals(null)) {
 String correctness = x.correctness;
 if (correctness.equals("")) continue;
 numCheckedTC++;
 String[] correctnessRecords = correctness.split(";");
 for (String record: correctnessRecords) {
 String[] keyValuePair= record.split("=");
 if (keyValuePair[1].equals("pass")){
 numCorrect++;
 } else {
 numError++;

Triangle

TriangleType

Triangle1

Triangle2

Triangle3

Triangle4

TriangleTestSpec

TriangleTest1

TriangleTest2

TriangleTest3

TriangleTest4

input

output

test

test

test

test

Figure 6. Classes of Test Specification

Using such an organisation for test specifications not
only reuses the classes, but also make test scripts reusable
without change for testing various different implementa-
tions.

5.2 Trigonometric Functions

In this case study, we test three trigonometric functions
sin(x), cos(x) and tan(x) provided by Java Math library.
The correctness of the librarys implementation of these
functions will be checked against a set of trigonometric
identities and on a set of special values between 0 and 2⇡ as
well as random test cases.

5.2.1 Test Cases and Test Suite

The inputs to these trigonometric functions are real numbers
and so are the results. However, instead of using double or
Double as the output datatype of test cases, we declare a
class called Trigonometrics that contains three attributes
sin, cos and tan to store the values of these functions and
use it as the output datatype. This enables us to check the

functions on identities that involves multiple trigonometric
functions.

Two seed maker morphisms are included in the test spec-
ification. One generates 20 random inputs in the range from
0 to ⇡

2 , and the other generates a set of special values and
the expected output of the functions; see Table 3.

5.2.2 Datamorphisms and Metamorphisms

The datamorphisms for testing trigonometric functions are
very simple functions on real numbers; see Table 4. A set
of identities of trigonometric functions are implemented as
metamorphisms; see Table 5.

The implementations of metamorphisms are straightfor-
ward. The following is an example.

double error = 0.000000000001;
@Metamorphism(

applicableTestCase="mutant",
applicableDatamorphism="HalfPiMinus",
message="The rule: sin(pi/2-x) = cos(x)"

)
public boolean HalfPiMinusSinAssertion(

TestCase<Double, Trigonometrics> tc) {
TestCase<Double, Trigonometrics> originalTc

= testSuite.get(tc.getOrigins().get(0));
return (Math.abs(tc.output.sin
- originalTc.output.cos) <= error);

}

5.2.3 Test Executions and Analysis of Results

The execution of the program on test cases is defined by the
following test executer method, which invokes the program
under test and stores the output of the program to the test
case.

@TestExecuter
public Trigonometrics testMath(Double x) {
Trigonometrics result = new Trigonometrics();
result.sin = Math.sin(x);
result.cos = Math.cos(x);
result.tan = Math.tan(x);
return result;

}

Two analyser methods were used: one for statistical
analysis of the test results, reusing the analyser for testing
triangle classification program, and the other for visualising
the test outputs.

The testing process consists of two stages. The first stage
starts with the generation of special value test cases, execu-
tions of the functions on them and then using a metamor-
phism to check whether the output matches the expected
value. The analyse of the test results shows that the test
detected no error.

The second stage starts by generating 20 random test
cases in the range of 0 .. ⇡/2, then applies the datamor-
phism x + ⇡/2 and then x + ⇡. Then the other datamor-
phisms are applied to populate the test set. The program

9

Structure of the Test System

Input/output
datatypes

Defines the test container
Defines a set of test
morphisms:
• Seed makers
• Datamorphisms
• Metamorphisms
• Analysers

Test
executers

Different versions of the
program under test

@TestSetContainer(
inputTypeName = "Triangle",
outputTypeName = "TriangleType"

)
public TestPool<Triangle, TriangleType> testSuite

= new TestPool<Triangle, TriangleType>();

17 July 2023 Tutorial on Datamorphic Testing 32

package morphy.examples;
public class Triangle {

public int x =0;
public int y =0;
public int z =0;

public Triangle() {
x=0; y=0; z=0;

}

public Triangle(int a, int b, int c) {
x=a; y=b; z=c;

}

public String toString() {
String str = "<"+x+"|"+y+"|"+z+">";
return str;

}

public void valueOf(String str) { … }
}

The Input and Output Datatypes
package morphy.examples;
public enum TriangleType {

equilaterial,
isoscelene,
scalene,
noneTriangle

};

17 July 2023 Tutorial on Datamorphic Testing 33

Seed Makers
§Four methods were coded to generate seed test cases

• Literal constants without expected output
• Literal constants with expected output
• Manual input
• Read test cases from a file

§Example:

@MakeSeed
public void makeSeeds(){

testSuite.addInput(new Triangle(5,5,5));
testSuite.addInput(new Triangle(5,5,7));
testSuite.addInput(new Triangle(5,7,9));
testSuite.addInput(new Triangle(3,5,9));

}

17 July 2023 Tutorial on Datamorphic Testing 34

Datamorphisms@MakeSeed
public void manualInputTestCases(){
Triangle trg;
TestCase<Triangle, TriangleType> tc;
String numStr;
while (true) {
tc = new TestCase<Triangle,TriangleType>();
trg = new Triangle();
numStr = JOptionPane.showInputDialog(
"Please input x:");

if (numStr==null) { break;}
trg.x = Integer.valueOf(numStr);
numStr = JOptionPane.showInputDialog(
"Please input y:");

if (numStr==null) { break;}
trg.y = Integer.valueOf(numStr);
numStr = JOptionPane.showInputDialog(
"Please input z:");

if (numStr==null) { break;}
trg.z = Integer.valueOf(numStr);
tc.input = trg;
tc.setFeature(TestDataFeature.original);
testSuite.addTestCase(tc);

}
}

D. Read Test Cases from A File. Test cases can also read
from a file and then added to the test suite. For the sake of
space, here the code is omitted.

5.1.3 Datamorphisms

The main body of the test specification consists of a set of
datamorphisms and metamorphisms. The datamorphisms
implement Mayers test requirements. For example, Mayer
requires that a test set contains all permutations of the three
input values so a set of datamorphisms have been designed
to generate mutants that are the permutations of the seed test
cases. The following is one such datamorphism.

@Datamorphism
public TestCase<Triangle, TriangleType> swapXY(

TestCase<Triangle, TriangleType> seed){
TestCase<Triangle, TriangleType> mutant
= new TestCase<Triangle, TriangleType>();

Triangle m = new Triangle(1,1,1);
m.x=seed.input.y;
m.y=seed.input.x;
m.z=seed.input.z;
mutant.input = m;
return mutant;

}

Table 1 lists the datamorphisms contained in the test
specification. As shown in the above example, these data-
morphisms are very simple Java code; each is no more than
10 lines.

Applying these datamorphisms with the first order mu-
tant complete strategy generated 80 mutant test cases, which
together with the seed test cases achieved the full coverage
of Myer’s test requirements.

Table 2. List of Datamorphisms
Name Function
increaseX Increase the value of x by 1
increaseY Increase the value of y by 1
increaseZ Increase the value of z by 1
decreaseX Decrease the value of x by 1
decreaseY Decrease the value of y by 1
decreaseZ Decrease the value of z by 1
swapXY Swap the values of x and y
swapXZ Swap the values of x and z
swapYZ Swap the values of y and z
rotateL Rotate the values of x, y and z left
rotateR Rotate the values of x, y and z right
copyXToY Copy the value of x to y
copyXToZ Copy the value of x to y
copyYToZ Copy the value of y to z
negateX Negate the value of x
negateY Negate the value of y
negateZ Negate the value of z
zeroX Set the value of x to 0
zeroY Set of value of y to 0
zeroZ Set of value of z to 0

5.1.4 Metamorphisms

For each datamorphism, there is a corresponding metamor-
phism that makes an assertion about the expected output of
the program on mutant test cases. For example, for data-
morphism swapXY , which swaps the values of x and y of
a triangle, the following metamorphism asserts that such a
swap will not change the classification outcome.

@Metamorphism(
applicableTestCase="mutant",
applicableDatamorphism = "swapXY",
message="Failed the Swap X Y rule."
)

public boolean swapXYRule(
TestCase<Triangle, TriangleType> x) {

String originalId = x.getOrigins().get(0);
TestCase origTc=testSuite.get(originalId);
return (origTc.output == x.output);

}

It is worth noting that annotatations restrict the mutant
type to which a metamorphism can be applied. For exam-
ple, the above metamorphism only applies to mutant test
cases that are generated by applying the swapXY datamor-
phism.

The metamorphisms in this case study are also very sim-
ply; each has no more than 13 lines.

5.1.5 Test Execution and Result Analysis
The test executions of the program under test can easily be
defined by a test executer morphism.

@TestExecuter
public TriangleType Classifier(Triangle tc) {

8

17 July 2023 Tutorial on Datamorphic Testing 35

Example of Datamorphism

@Datamorphism
public TestCase<Triangle, TriangleType>

increaseX(TestCase<Triangle, TriangleType> seed){
TestCase<Triangle, TriangleType> mutant = new

TestCase<Triangle, TriangleType>();
Triangle m = new Triangle(1,1,1);
m.x=seed.input.x+1;
m.y=seed.input.y;
m.z=seed.input.z;
mutant.input = m;
return mutant;

}

17 July 2023 Tutorial on Datamorphic Testing 36

Metamorphisms

@Metamorphism(
applicableTestCase="mutant",
applicableDatamorphism = "increaseX",
message="Increase on Parameter X rule."

)
public boolean increaseXRule(TestCase<Triangle, TriangleType> x) {

String originalId = x.getOrigins().get(0);
TestCase originalTc = testSuite.get(originalId);
if (originalTc.output == TriangleType.equilaterial){

return (x.output == TriangleType.isoscelene);
};
return true;

}

• There is a metamorphism for test cases generated by the literal constant with
expected output to compare the execution results again the expected output

• For each datamorphism, there is a corresponding metamorphism to check
correctness of the test output on the mutant test cases

17 July 2023 Tutorial on Datamorphic Testing 37

Test Executer

package morphy.examples;
import morphy.annotations.*;

public class TriangleTest1 extends TriangleTestSpec {
@TestExecuter
public TriangleType TriangleClassifier1(Triangle tc) {

int x = tc.x;
Triangle1 tx = new Triangle1(x, tc.y, tc.z);
return tx.Classify();

}
}

package morphy.examples;
public class Triangle1 {

public int x, y, z;
public Triangle1(int a, int b, int c) {

x = a; y = b; z = c;
}
public TriangleType Classify() { … }

}

The code
under test

17 July 2023 Tutorial on Datamorphic Testing 38

Test Result Analyser

@Analyser
public void
statisticsOfCorrectness() { … }

An analyser was written to analyse the
test results on a test set statistically.

An output of
the analyser

17 July 2023 Tutorial on Datamorphic Testing 39

Example 2: Trigonometric Functions

§Programs under Test:
§ Three trigonometric functions Sin(x), Cos(x) and Tan(x) provided by Java math library

§Problem of Test:
§ Can such functions be tested for their accuracy and correctness?

§Solution in the damamorphic testing approach:
§ Test on specific input values that the output value is known
§ Test on random input test values to check if algebraic laws of these functional are held

§ Laws involve multiple invocation of the same function
§ Laws invoke multiple functions on the same input values
§ Laws invoke multiple functions on different input values

17 July 2023 Tutorial on Datamorphic Testing 40

Seed Makers

Table 3. The Special Values of Trigonometric Functions Used as Special Test Cases
x 0 ⇡

6
⇡
4

⇡
3

⇡
2

2⇡
3

3⇡
4

5⇡
6 ⇡ 7⇡

6
5⇡
4

4⇡
3

3⇡
2

5⇡
3

7⇡
4

11⇡
6 2⇡

sin(x) 0 1
2

p
2

2

p
3

2 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p
2

2 �
p
3

2 �1 �
p
3

2 �
p
2
2 � 1

2 0

cos(x) 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p

2
2 �

p
3

2 �1 �
p

3
2 �

p
2

2 � 1
2 0 1

2

p
2

2

p
3
2 1

tan(x) 0
p

3
3 1 1 1 �

p
3 �1 �

p
3

3 0
p

3
3 1

p
3 1 �

p
3 �1 �

p
3

3 0

Table 4. List of Datamorphisms
Name Function Name Function
halfPiPlus x ! ⇡/2 + x halfPiMinus x ! ⇡/2?x
piPlus x ! ⇡ + x piMinus x ! ⇡?x
twoPiPlus x ! 2⇡ + x twoPiMinus x ! 2⇡?x
sum (x, y) ! x+ y diff (x, y) ! x?y
negate x ! �x

Table 5. List of Metamorphisms
sin(⇡ � x) = sin(x) sin(⇡ + x) = �sin(x)
cos(⇡ � x) = �cos(x) cos(⇡ + x) = �cos(x)
tan(⇡ � x) = �tan(x) tan(⇡ + x) = tan(x)
sin(⇡/2 + x) = cos(x) sin(⇡/2� x) = cos(x)
cos(⇡/2 + x) = �sin(x) cos(⇡/2� x) = sin(x)
tan(⇡/2 + x) = �1/tan(x) tan(⇡/2� x) = 1/tan(x)
sin(2⇡ � x) = �sin(x) sin(2⇡ + x) = sin(x)
cos(2⇡ � x) = cos(x) cos(2⇡ + x) = cos(x)
tan(2⇡ � x) = �tan(x) tan(2⇡ + x) = tan(x)
sin(�x) = �sin(x) cos(�x) = cos(x)
tan(�x) = �tan(x)
sin(x+ y) = sin(x)cos(y) + cos(x)sin(y)
cos(x+ y) = cos(x)cos(y)� sin(x)sin(y)
sin(x� y) = sin(x)cos(y)� cos(x)sin(y)
cos(x� y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+ y) = (tan(x) + tan(y))/(1� tan(x)tan(y))
tan(x� y) = (tan(x)� tan(y))/(1 + tan(x)tan(y))

under test is then executed on the test cases, checked against
the metamorphisms, and test results are analysed by invok-
ing the analysers. As shown in Figure 7, the test on ran-
dom inputs detected a number of errors. The error rate is
0.957%.

Two analyser methods were defined: one for statistical analysis of the test results, and one for visualisation of the
test outputs. The statistical analysis of the test results is exactly the same as the method written for testing triangle
classification, which is reused.

The testing process consists of two stages. The first stage starts with the generation of special value test cases,
executions of the functions on them and then checking the test results by using the special value metamorphisms.
The analyse of the test results shows that the is no errors.

The second stage starts with the generation of 20 random test cases in the range of 0 to !/2, then apply the
datamorphism $ + !/2 and then $ + !. Then, the other datamorphisms are applied to populate the test set.
The program under test is then executed on the test cases, checked against the metamorphisms, and test results
are analysed by invoking the analysers. Figure 12 below shows the screen snapshots of invoking the analysers from
Morphy testing tool.

Figure 12. Analysis of the Results of Testing Trigonometric Functions

The testing tool Morphy produces an error message when the program under test fails a metamorphism on a test
case. For example, the following is an error message produced when testing trigonometric functions.

-- The rule: Tan(pi/2+x) = -1/Tan(x) on test case:
{
 id:09f76c14-8852-404e-9865-fac1e73c63a0,
 input:4.71238898038469,
 output:<-1.0|-1.8369701987210297E-16|5.443746451065123E15>,
 feature:mutant,
 type:HalfPiPlus,
 origins:[2b954ce1-ad96-488c-a323-0719065eea72],
 correctness:HalfPiPlusSinAssertion=pass;HalfPiPlusCosAssertion=pass;HalfPiPlusTanAssertion=fail;
}

An analysis of error messages shows that the errors all happened when the value of &'(($) function is used to
checking an identity. Two types of errors occurred: (a) the value of &'(($) is not defined on a test case, such as
on test case &'((!/2); (b) the accuracy of an expression is lower than the allowed error, which is 10-12.

7.3 Face recognition

Face recognition has been employed in the case study on datamorphic testing reported in [1] to demonstrate that
datamorphisms can produce meaningful test data for machine learning application. The case study reported in this
paper differs from that case study by aiming at demonstrating the ways that test automation and the reuses of test
code can be achieved with Morphy.

A. Reuses of Test Data

The test data for testing a face recognition application are images of sizes more than 100 KB. In the case study
reported in [1], 200 images of different persons were used and each generated 13 mutants using GAN-Attr [] to

Figure 7. Trigonometric Test Results

Morphy produces an error message when a test case fails
a metamorphism. The following is an example of error mes-
sage in testing the trigonometric functions.

-- Rule: tan(pi/2+x) = -1/tan(x) on test case:

{
id:09f76c14-8852-404e-9865-fac1e73c63a0,
input:4.71238898038469,
output:<-1.0|-1.8369701987210297E-16
|5.443746451065123E15>,

feature:mutant,
type:HalfPiPlus,
origins:[2b954ce1-ad96-488c-a323-0719065eea72],
correctness:HalfPiPlusSinAssertion=pass;
HalfPiPlusCosAssertion=pass;
HalfPiPlusTanAssertion=fail;

}

The error messages produced by Morphy show that the
errors all happened when the value of tan(x) function is used
to checking an identity. Two types of errors have occurred:
(a) the value of tan(x) is infinite, e.g. when x = ⇡/2;
(b) the accuracy of an expression is lower than the allowed
error, which is 10�12.

5.3. Face Recognition

Face recognition has been employed in the case study on
datamorphic testing reported in [29, 30] to demonstrate that
datamorphisms can produce meaningful test data for ma-
chine learning applications. In this paper, we demonstrate
how to achieve test automation and reuses of test code by
using Morphy.

5.3.1 Reuses of Test Data

The test data for testing a face recognition application are
images of sizes more than 100 KB. In [29, 30], 200 images
of different persons were used and each generated 13 mu-
tants using GAN-Attr [13] to alter the facial features. Each
image is used to test 4 different face recognition applica-
tions. A similar experiment was also conducted to test 5
different face recognition applications [19]. The generation
of mutant images from the original images is time consum-
ing. Thus, reusing test data is beneficial.

To enable the reuse of mutant images, the original im-
ages and the mutant images are stored in different folders
while they have the same file names. Thus, the image in-
put to a face recognition can be represented by a path to the
image file in the test case. The datamorphisms can be writ-
ten simply as manipulation of strings that takes the path to
the original image file and produce that of the mutant im-

10

Table 3. The Special Values of Trigonometric Functions Used as Special Test Cases
x 0 ⇡

6
⇡
4

⇡
3

⇡
2

2⇡
3

3⇡
4

5⇡
6 ⇡ 7⇡

6
5⇡
4

4⇡
3

3⇡
2

5⇡
3

7⇡
4

11⇡
6 2⇡

sin(x) 0 1
2

p
2

2

p
3

2 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p
2

2 �
p
3

2 �1 �
p
3

2 �
p
2
2 � 1

2 0

cos(x) 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p

2
2 �

p
3

2 �1 �
p

3
2 �

p
2

2 � 1
2 0 1

2

p
2

2

p
3
2 1

tan(x) 0
p

3
3 1 1 1 �

p
3 �1 �

p
3

3 0
p

3
3 1

p
3 1 �

p
3 �1 �

p
3

3 0

Table 4. List of Datamorphisms
Name Function Name Function
halfPiPlus x ! ⇡/2 + x halfPiMinus x ! ⇡/2?x
piPlus x ! ⇡ + x piMinus x ! ⇡?x
twoPiPlus x ! 2⇡ + x twoPiMinus x ! 2⇡?x
sum (x, y) ! x+ y diff (x, y) ! x?y
negate x ! �x

Table 5. List of Metamorphisms
sin(⇡ � x) = sin(x) sin(⇡ + x) = �sin(x)
cos(⇡ � x) = �cos(x) cos(⇡ + x) = �cos(x)
tan(⇡ � x) = �tan(x) tan(⇡ + x) = tan(x)
sin(⇡/2 + x) = cos(x) sin(⇡/2� x) = cos(x)
cos(⇡/2 + x) = �sin(x) cos(⇡/2� x) = sin(x)
tan(⇡/2 + x) = �1/tan(x) tan(⇡/2� x) = 1/tan(x)
sin(2⇡ � x) = �sin(x) sin(2⇡ + x) = sin(x)
cos(2⇡ � x) = cos(x) cos(2⇡ + x) = cos(x)
tan(2⇡ � x) = �tan(x) tan(2⇡ + x) = tan(x)
sin(�x) = �sin(x) cos(�x) = cos(x)
tan(�x) = �tan(x)
sin(x+ y) = sin(x)cos(y) + cos(x)sin(y)
cos(x+ y) = cos(x)cos(y)� sin(x)sin(y)
sin(x� y) = sin(x)cos(y)� cos(x)sin(y)
cos(x� y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+ y) = (tan(x) + tan(y))/(1� tan(x)tan(y))
tan(x� y) = (tan(x)� tan(y))/(1 + tan(x)tan(y))

under test is then executed on the test cases, checked against
the metamorphisms, and test results are analysed by invok-
ing the analysers. As shown in Figure 7, the test on ran-
dom inputs detected a number of errors. The error rate is
0.957%.

Two analyser methods were defined: one for statistical analysis of the test results, and one for visualisation of the
test outputs. The statistical analysis of the test results is exactly the same as the method written for testing triangle
classification, which is reused.

The testing process consists of two stages. The first stage starts with the generation of special value test cases,
executions of the functions on them and then checking the test results by using the special value metamorphisms.
The analyse of the test results shows that the is no errors.

The second stage starts with the generation of 20 random test cases in the range of 0 to !/2, then apply the
datamorphism $ + !/2 and then $ + !. Then, the other datamorphisms are applied to populate the test set.
The program under test is then executed on the test cases, checked against the metamorphisms, and test results
are analysed by invoking the analysers. Figure 12 below shows the screen snapshots of invoking the analysers from
Morphy testing tool.

Figure 12. Analysis of the Results of Testing Trigonometric Functions

The testing tool Morphy produces an error message when the program under test fails a metamorphism on a test
case. For example, the following is an error message produced when testing trigonometric functions.

-- The rule: Tan(pi/2+x) = -1/Tan(x) on test case:
{
 id:09f76c14-8852-404e-9865-fac1e73c63a0,
 input:4.71238898038469,
 output:<-1.0|-1.8369701987210297E-16|5.443746451065123E15>,
 feature:mutant,
 type:HalfPiPlus,
 origins:[2b954ce1-ad96-488c-a323-0719065eea72],
 correctness:HalfPiPlusSinAssertion=pass;HalfPiPlusCosAssertion=pass;HalfPiPlusTanAssertion=fail;
}

An analysis of error messages shows that the errors all happened when the value of &'(($) function is used to
checking an identity. Two types of errors occurred: (a) the value of &'(($) is not defined on a test case, such as
on test case &'((!/2); (b) the accuracy of an expression is lower than the allowed error, which is 10-12.

7.3 Face recognition

Face recognition has been employed in the case study on datamorphic testing reported in [1] to demonstrate that
datamorphisms can produce meaningful test data for machine learning application. The case study reported in this
paper differs from that case study by aiming at demonstrating the ways that test automation and the reuses of test
code can be achieved with Morphy.

A. Reuses of Test Data

The test data for testing a face recognition application are images of sizes more than 100 KB. In the case study
reported in [1], 200 images of different persons were used and each generated 13 mutants using GAN-Attr [] to

Figure 7. Trigonometric Test Results

Morphy produces an error message when a test case fails
a metamorphism. The following is an example of error mes-
sage in testing the trigonometric functions.

-- Rule: tan(pi/2+x) = -1/tan(x) on test case:

{
id:09f76c14-8852-404e-9865-fac1e73c63a0,
input:4.71238898038469,
output:<-1.0|-1.8369701987210297E-16
|5.443746451065123E15>,

feature:mutant,
type:HalfPiPlus,
origins:[2b954ce1-ad96-488c-a323-0719065eea72],
correctness:HalfPiPlusSinAssertion=pass;
HalfPiPlusCosAssertion=pass;
HalfPiPlusTanAssertion=fail;

}

The error messages produced by Morphy show that the
errors all happened when the value of tan(x) function is used
to checking an identity. Two types of errors have occurred:
(a) the value of tan(x) is infinite, e.g. when x = ⇡/2;
(b) the accuracy of an expression is lower than the allowed
error, which is 10�12.

5.3. Face Recognition

Face recognition has been employed in the case study on
datamorphic testing reported in [29, 30] to demonstrate that
datamorphisms can produce meaningful test data for ma-
chine learning applications. In this paper, we demonstrate
how to achieve test automation and reuses of test code by
using Morphy.

5.3.1 Reuses of Test Data

The test data for testing a face recognition application are
images of sizes more than 100 KB. In [29, 30], 200 images
of different persons were used and each generated 13 mu-
tants using GAN-Attr [13] to alter the facial features. Each
image is used to test 4 different face recognition applica-
tions. A similar experiment was also conducted to test 5
different face recognition applications [19]. The generation
of mutant images from the original images is time consum-
ing. Thus, reusing test data is beneficial.

To enable the reuse of mutant images, the original im-
ages and the mutant images are stored in different folders
while they have the same file names. Thus, the image in-
put to a face recognition can be represented by a path to the
image file in the test case. The datamorphisms can be writ-
ten simply as manipulation of strings that takes the path to
the original image file and produce that of the mutant im-

10

Table 3. The Special Values of Trigonometric Functions Used as Special Test Cases
x 0 ⇡

6
⇡
4

⇡
3

⇡
2

2⇡
3

3⇡
4

5⇡
6 ⇡ 7⇡

6
5⇡
4

4⇡
3

3⇡
2

5⇡
3

7⇡
4

11⇡
6 2⇡

sin(x) 0 1
2

p
2

2

p
3

2 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p
2

2 �
p
3

2 �1 �
p
3

2 �
p
2
2 � 1

2 0

cos(x) 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p

2
2 �

p
3

2 �1 �
p

3
2 �

p
2

2 � 1
2 0 1

2

p
2

2

p
3
2 1

tan(x) 0
p

3
3 1 1 1 �

p
3 �1 �

p
3

3 0
p

3
3 1

p
3 1 �

p
3 �1 �

p
3

3 0

Table 4. List of Datamorphisms
Name Function Name Function
halfPiPlus x ! ⇡/2 + x halfPiMinus x ! ⇡/2?x
piPlus x ! ⇡ + x piMinus x ! ⇡?x
twoPiPlus x ! 2⇡ + x twoPiMinus x ! 2⇡?x
sum (x, y) ! x+ y diff (x, y) ! x?y
negate x ! �x

Table 5. List of Metamorphisms
sin(⇡ � x) = sin(x) sin(⇡ + x) = �sin(x)
cos(⇡ � x) = �cos(x) cos(⇡ + x) = �cos(x)
tan(⇡ � x) = �tan(x) tan(⇡ + x) = tan(x)
sin(⇡/2 + x) = cos(x) sin(⇡/2� x) = cos(x)
cos(⇡/2 + x) = �sin(x) cos(⇡/2� x) = sin(x)
tan(⇡/2 + x) = �1/tan(x) tan(⇡/2� x) = 1/tan(x)
sin(2⇡ � x) = �sin(x) sin(2⇡ + x) = sin(x)
cos(2⇡ � x) = cos(x) cos(2⇡ + x) = cos(x)
tan(2⇡ � x) = �tan(x) tan(2⇡ + x) = tan(x)
sin(�x) = �sin(x) cos(�x) = cos(x)
tan(�x) = �tan(x)
sin(x+ y) = sin(x)cos(y) + cos(x)sin(y)
cos(x+ y) = cos(x)cos(y)� sin(x)sin(y)
sin(x� y) = sin(x)cos(y)� cos(x)sin(y)
cos(x� y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+ y) = (tan(x) + tan(y))/(1� tan(x)tan(y))
tan(x� y) = (tan(x)� tan(y))/(1 + tan(x)tan(y))

under test is then executed on the test cases, checked against
the metamorphisms, and test results are analysed by invok-
ing the analysers. As shown in Figure 7, the test on ran-
dom inputs detected a number of errors. The error rate is
0.957%.

Two analyser methods were defined: one for statistical analysis of the test results, and one for visualisation of the
test outputs. The statistical analysis of the test results is exactly the same as the method written for testing triangle
classification, which is reused.

The testing process consists of two stages. The first stage starts with the generation of special value test cases,
executions of the functions on them and then checking the test results by using the special value metamorphisms.
The analyse of the test results shows that the is no errors.

The second stage starts with the generation of 20 random test cases in the range of 0 to !/2, then apply the
datamorphism $ + !/2 and then $ + !. Then, the other datamorphisms are applied to populate the test set.
The program under test is then executed on the test cases, checked against the metamorphisms, and test results
are analysed by invoking the analysers. Figure 12 below shows the screen snapshots of invoking the analysers from
Morphy testing tool.

Figure 12. Analysis of the Results of Testing Trigonometric Functions

The testing tool Morphy produces an error message when the program under test fails a metamorphism on a test
case. For example, the following is an error message produced when testing trigonometric functions.

-- The rule: Tan(pi/2+x) = -1/Tan(x) on test case:
{
 id:09f76c14-8852-404e-9865-fac1e73c63a0,
 input:4.71238898038469,
 output:<-1.0|-1.8369701987210297E-16|5.443746451065123E15>,
 feature:mutant,
 type:HalfPiPlus,
 origins:[2b954ce1-ad96-488c-a323-0719065eea72],
 correctness:HalfPiPlusSinAssertion=pass;HalfPiPlusCosAssertion=pass;HalfPiPlusTanAssertion=fail;
}

An analysis of error messages shows that the errors all happened when the value of &'(($) function is used to
checking an identity. Two types of errors occurred: (a) the value of &'(($) is not defined on a test case, such as
on test case &'((!/2); (b) the accuracy of an expression is lower than the allowed error, which is 10-12.

7.3 Face recognition

Face recognition has been employed in the case study on datamorphic testing reported in [1] to demonstrate that
datamorphisms can produce meaningful test data for machine learning application. The case study reported in this
paper differs from that case study by aiming at demonstrating the ways that test automation and the reuses of test
code can be achieved with Morphy.

A. Reuses of Test Data

The test data for testing a face recognition application are images of sizes more than 100 KB. In the case study
reported in [1], 200 images of different persons were used and each generated 13 mutants using GAN-Attr [] to

Figure 7. Trigonometric Test Results

Morphy produces an error message when a test case fails
a metamorphism. The following is an example of error mes-
sage in testing the trigonometric functions.

-- Rule: tan(pi/2+x) = -1/tan(x) on test case:

{
id:09f76c14-8852-404e-9865-fac1e73c63a0,
input:4.71238898038469,
output:<-1.0|-1.8369701987210297E-16

|5.443746451065123E15>,
feature:mutant,
type:HalfPiPlus,
origins:[2b954ce1-ad96-488c-a323-0719065eea72],
correctness:HalfPiPlusSinAssertion=pass;

HalfPiPlusCosAssertion=pass;
HalfPiPlusTanAssertion=fail;

}

The error messages produced by Morphy show that the
errors all happened when the value of tan(x) function is used
to checking an identity. Two types of errors have occurred:
(a) the value of tan(x) is infinite, e.g. when x = ⇡/2;
(b) the accuracy of an expression is lower than the allowed
error, which is 10�12.

5.3. Face Recognition

Face recognition has been employed in the case study on
datamorphic testing reported in [29, 30] to demonstrate that
datamorphisms can produce meaningful test data for ma-
chine learning applications. In this paper, we demonstrate
how to achieve test automation and reuses of test code by
using Morphy.

5.3.1 Reuses of Test Data

The test data for testing a face recognition application are
images of sizes more than 100 KB. In [29, 30], 200 images
of different persons were used and each generated 13 mu-
tants using GAN-Attr [13] to alter the facial features. Each
image is used to test 4 different face recognition applica-
tions. A similar experiment was also conducted to test 5
different face recognition applications [19]. The generation
of mutant images from the original images is time consum-
ing. Thus, reusing test data is beneficial.

To enable the reuse of mutant images, the original im-
ages and the mutant images are stored in different folders
while they have the same file names. Thus, the image in-
put to a face recognition can be represented by a path to the
image file in the test case. The datamorphisms can be writ-
ten simply as manipulation of strings that takes the path to
the original image file and produce that of the mutant im-

10

Special Input Values and Expected Outputs

Two seed makers are written:
1. Generate a number of random real numbers (without expected outputs)
2. Generate a set of special input values and the corresponding expected output

17 July 2023 Tutorial on Datamorphic Testing 41

Datamorphisms

@Datamorphism
public TestCase<Double,Trigonometrics>

PiMinus(TestCase<Double,Trigonometrics> seed){
TestCase<Double,Trigonometrics> mutant = new
TestCase<Double,Trigonometrics>();
mutant.input = Math.PI - seed.input;
return mutant;

}

Example: Implementation of datamorphisms

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Morphy: A Test Automation Framework for Datamorphic Testing zz:29

public String toString() {
String str = "<"+sin+"|"+cos+"|"+tan+">";
return str;

}
public void valueOf(String str) {
String[] part = str.split("\\|");
String xStr = part[0].substring(1);
sin = Double.parseDouble(xStr);
String yStr = part[1];
cos = Double.parseDouble(yStr);
String zStr = part[2];
zStr = zStr.substring(0,zStr.length()-1);
tan = Double.parseDouble(zStr);

}
}

Listing 14. The Input and Output Datatypes of Trigonometric Functions

Two seed maker morphisms are included in the test specification. One generates 20 random inputs
in the range from 0 to �

2 , and the other generates a set of special values and the output expected; see
Table 4.

Table 4. The Special Values of Trigonometric Functions Used as Special Test Cases

x 0 �
6

�
4

�
3

�
2

2�
3

3�
4

5�
6 � 7�

6
5�
4

4�
3

3�
2

5�
3

7�
4

11�
6 2�

sin (x) 0 1
2

p
2
2

p
3
2 1

p
3
2

p
2
2

1
2 0 � 1

2 �
p
2
2 �

p
3
2 �1 �

p
3
2 �

p
2
2 � 1

2 0
cos (x) 1

p
3
2

p
2
2

1
2 0 � 1

2 �
p
2
2 �

p
3
2 �1 �

p
3
2 �

p
2
2 � 1

2 0 1
2

p
2
2

p
3
2 1

tan (x) 0
p
3
3 1 1 1 �

p
3 �1 �

p
3
3 0

p
3
3 1

p
3 1 �

p
3 �1 �

p
3
3 0

6.2.2 Datamorphisms and Metamorphisms. The datamorphisms for testing trigonometric
functions are very simple functions on real numbers; see Table 5. A set of identities of trigonometric
functions are implemented as metamorphisms; see Table 6.

Table 5. List of Datamorphisms

Name Function Name Function

halfPiPlus x ! �/2 + x halfPiMinus x ! �/2 � x
piPlus x ! � + x piMinus x ! � � x
twoPiPlus x ! 2� + x twoPiMinus x ! 2� � x
sum (x ,�) ! x + � diff (x ,�) ! x � �
negate x ! �x

The implementations of metamorphisms are straightforward. The following is an example.
double error = 0.000000000001;
@Metamorphism(

applicableTestCase="mutant",
applicableDatamorphism="HalfPiMinus",
message="The rule: sin(pi/2-x) = cos(x)"

)
public boolean HalfPiMinusSinAssertion(TestCase<Double, Trigonometrics> tc) {

TestCase<Double, Trigonometrics> originalTc = testSuite.get(tc.getOrigins().get(0));
return (Math.abs(tc.output.sin - originalTc.output.cos) <= error);

}

Listing 15. Example of Metamorphisms of Trigonometric Functions

ACM Trans. Softw. Eng. Methodol., Vol. xx, No. yy, Article zz. Publication date: 2020.

17 July 2023 Tutorial on Datamorphic Testing 42

Metamorphisms
Algebraic laws of Trigonometric Functions 1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

zz:30 H. Zhu, et al.

Table 6. List of Metamorphisms

sin(x + �) = sin(x)cos (�) + cos (x)sin(�) cos (x + �) = cos (x)cos (�) � sin(x)sin(�)
sin(x � �) = sin(x)cos (�) � cos (x)sin(�) cos (x � �) = cos (x)cos (�) + sin(x)sin(�)
tan(x + �) = tan (x)+tan (�)

1�tan (x)tan (�) tan(x � �) = tan (x)�tan (�)
1+tan (x)tan (�)

sin(� + x) = �sin(x) cos (� + x) = �cos (x) tan(� + x) = tan(x)
sin(� � x) = sin(x) cos (� � x) = �cos (x) tan(� � x) = �tan(x)
sin(�/2 + x) = cos (x) cos (�/2 + x) = �sin(x) tan(�/2 + x) = �1/tan(x)
sin(�/2 � x) = cos (x) cos (�/2 � x) = sin(x) tan(�/2 � x) = 1/tan(x)
sin(2� � x) = �sin(x) cos (2� � x) = cos (x) tan(2� � x) = �tan(x)
sin(2� + x) = sin(x) cos (2� + x) = cos (x) tan(2� + x) = tan(x)
sin(�x) = �sin(x) cos (�x) = cos (x) tan(�x) = �tan(x)

6.2.3 Test Executions and Analysis of Results. The execution of the program on test cases is
defined by the following test executer method, which invokes the program under test and stores the
output of the program in the test case.

@TestExecuter
public Trigonometrics testMath(Double x) {

Trigonometrics result = new Trigonometrics();
result.sin = Math.sin(x);
result.cos = Math.cos(x);
result.tan = Math.tan(x);
return result;

}

Listing 16. The Executer of Testing Trigonometric Functions

Two analyser methods were used: one for statistical analysis of the test results, which was originally
developed for testing the triangle classification programs, and the other for visualising the test outputs.

The testing process consists of two stages. The first stage executes the functions on the special
value test cases and uses a metamorphism to check whether the output matches the expected value.
The analysis of the test results shows that the testing detected no error.

The second stage generating 20 random test cases in the range 0 .. �/2, and then applies the
datamorphisms x + �/2 and then x + � . The other datamorphisms are applied to populate the test
set. The program under test is then executed on the test cases, checked against the metamorphisms,
and the test results are then analysed by invoking the analysers. As shown in Figure 11, the test on
random inputs detected a number of errors. The error rate is 0.957%.

Morphy produces an error message when a test case fails a metamorphism. The following is an
example of error message in testing the trigonometric functions.
-- Rule: tan(pi/2+x) = -1/tan(x) on test case:
{
id:09f76c14-8852-404e-9865-fac1e73c63a0,
input:4.71238898038469,
output:<-1.0 | -1.8369701987210297E-16 | 5.443746451065123E15>,
feature:mutant,
type:HalfPiPlus,
origins:[2b954ce1-ad96-488c-a323-0719065eea72],
correctness: HalfPiPlusSinAssertion=pass;

HalfPiPlusCosAssertion=pass;
HalfPiPlusTanAssertion=fail;

}

ACM Trans. Softw. Eng. Methodol., Vol. xx, No. yy, Article zz. Publication date: 2020.

17 July 2023 Tutorial on Datamorphic Testing 43

Examples: Implementations of Metamorphisms
@Metamorphism(

applicableTestCase="seed",
message="Special Sin(x) value")

public boolean specialSinValueAssertion(TestCase<Double,
Trigonometrics> tc) {

if (expected.get(tc.id).output == null) { return true; };
return (Math.abs(tc.output.sin - expected.get(tc.id).output.sin)

< error) ;
}

@Metamorphism(
applicableTestCase="mutant",
applicableDatamorphism="HalfPiPlus",
message="The rule: Sin(pi/2+x) = Cos(x)"

)
public boolean HalfPiPlusSinAssertion(TestCase<Double,
Trigonometrics> tc) {

TestCase<Double, Trigonometrics> originalTc =
testSuite.get(tc.getOrigins().get(0));

return (Math.abs(tc.output.sin - originalTc.output.cos)
<= error);

}

Compares program
output against expected
output on special
values

Checks if an
algebraic law is
held.

17 July 2023 Tutorial on Datamorphic Testing 44

Test Result Analysers
§Two test result analysers:

§ Statistical analysis of test result:
§ Reused (simplified) a part of the analyser developed for Triangle Classification case study

§ Visual display of the functions

Table 3. The Special Values of Trigonometric Functions Used as Special Test Cases
x 0 ⇡

6
⇡
4

⇡
3

⇡
2

2⇡
3

3⇡
4

5⇡
6 ⇡ 7⇡

6
5⇡
4

4⇡
3

3⇡
2

5⇡
3

7⇡
4

11⇡
6 2⇡

sin(x) 0 1
2

p
2

2

p
3

2 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p
2

2 �
p
3

2 �1 �
p
3

2 �
p
2
2 � 1

2 0

cos(x) 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p

2
2 �

p
3

2 �1 �
p

3
2 �

p
2

2 � 1
2 0 1

2

p
2

2

p
3
2 1

tan(x) 0
p

3
3 1 1 1 �

p
3 �1 �

p
3

3 0
p

3
3 1

p
3 1 �

p
3 �1 �

p
3

3 0

Table 4. List of Datamorphisms
Name Function Name Function
halfPiPlus x ! ⇡/2 + x halfPiMinus x ! ⇡/2?x
piPlus x ! ⇡ + x piMinus x ! ⇡?x
twoPiPlus x ! 2⇡ + x twoPiMinus x ! 2⇡?x
sum (x, y) ! x+ y diff (x, y) ! x?y
negate x ! �x

Table 5. List of Metamorphisms
sin(⇡ � x) = sin(x) sin(⇡ + x) = �sin(x)
cos(⇡ � x) = �cos(x) cos(⇡ + x) = �cos(x)
tan(⇡ � x) = �tan(x) tan(⇡ + x) = tan(x)
sin(⇡/2 + x) = cos(x) sin(⇡/2� x) = cos(x)
cos(⇡/2 + x) = �sin(x) cos(⇡/2� x) = sin(x)
tan(⇡/2 + x) = �1/tan(x) tan(⇡/2� x) = 1/tan(x)
sin(2⇡ � x) = �sin(x) sin(2⇡ + x) = sin(x)
cos(2⇡ � x) = cos(x) cos(2⇡ + x) = cos(x)
tan(2⇡ � x) = �tan(x) tan(2⇡ + x) = tan(x)
sin(�x) = �sin(x) cos(�x) = cos(x)
tan(�x) = �tan(x)
sin(x+ y) = sin(x)cos(y) + cos(x)sin(y)
cos(x+ y) = cos(x)cos(y)� sin(x)sin(y)
sin(x� y) = sin(x)cos(y)� cos(x)sin(y)
cos(x� y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+ y) = (tan(x) + tan(y))/(1� tan(x)tan(y))
tan(x� y) = (tan(x)� tan(y))/(1 + tan(x)tan(y))

under test is then executed on the test cases, checked against
the metamorphisms, and test results are analysed by invok-
ing the analysers. As shown in Figure 7, the test on ran-
dom inputs detected a number of errors. The error rate is
0.957%.

Two analyser methods were defined: one for statistical analysis of the test results, and one for visualisation of the
test outputs. The statistical analysis of the test results is exactly the same as the method written for testing triangle
classification, which is reused.

The testing process consists of two stages. The first stage starts with the generation of special value test cases,
executions of the functions on them and then checking the test results by using the special value metamorphisms.
The analyse of the test results shows that the is no errors.

The second stage starts with the generation of 20 random test cases in the range of 0 to !/2, then apply the
datamorphism $ + !/2 and then $ + !. Then, the other datamorphisms are applied to populate the test set.
The program under test is then executed on the test cases, checked against the metamorphisms, and test results
are analysed by invoking the analysers. Figure 12 below shows the screen snapshots of invoking the analysers from
Morphy testing tool.

Figure 12. Analysis of the Results of Testing Trigonometric Functions

The testing tool Morphy produces an error message when the program under test fails a metamorphism on a test
case. For example, the following is an error message produced when testing trigonometric functions.

-- The rule: Tan(pi/2+x) = -1/Tan(x) on test case:
{
 id:09f76c14-8852-404e-9865-fac1e73c63a0,
 input:4.71238898038469,
 output:<-1.0|-1.8369701987210297E-16|5.443746451065123E15>,
 feature:mutant,
 type:HalfPiPlus,
 origins:[2b954ce1-ad96-488c-a323-0719065eea72],
 correctness:HalfPiPlusSinAssertion=pass;HalfPiPlusCosAssertion=pass;HalfPiPlusTanAssertion=fail;
}

An analysis of error messages shows that the errors all happened when the value of &'(($) function is used to
checking an identity. Two types of errors occurred: (a) the value of &'(($) is not defined on a test case, such as
on test case &'((!/2); (b) the accuracy of an expression is lower than the allowed error, which is 10-12.

7.3 Face recognition

Face recognition has been employed in the case study on datamorphic testing reported in [1] to demonstrate that
datamorphisms can produce meaningful test data for machine learning application. The case study reported in this
paper differs from that case study by aiming at demonstrating the ways that test automation and the reuses of test
code can be achieved with Morphy.

A. Reuses of Test Data

The test data for testing a face recognition application are images of sizes more than 100 KB. In the case study
reported in [1], 200 images of different persons were used and each generated 13 mutants using GAN-Attr [] to

Figure 7. Trigonometric Test Results

Morphy produces an error message when a test case fails
a metamorphism. The following is an example of error mes-
sage in testing the trigonometric functions.

-- Rule: tan(pi/2+x) = -1/tan(x) on test case:

{
id:09f76c14-8852-404e-9865-fac1e73c63a0,
input:4.71238898038469,
output:<-1.0|-1.8369701987210297E-16
|5.443746451065123E15>,

feature:mutant,
type:HalfPiPlus,
origins:[2b954ce1-ad96-488c-a323-0719065eea72],
correctness:HalfPiPlusSinAssertion=pass;
HalfPiPlusCosAssertion=pass;
HalfPiPlusTanAssertion=fail;

}

The error messages produced by Morphy show that the
errors all happened when the value of tan(x) function is used
to checking an identity. Two types of errors have occurred:
(a) the value of tan(x) is infinite, e.g. when x = ⇡/2;
(b) the accuracy of an expression is lower than the allowed
error, which is 10�12.

5.3. Face Recognition

Face recognition has been employed in the case study on
datamorphic testing reported in [29, 30] to demonstrate that
datamorphisms can produce meaningful test data for ma-
chine learning applications. In this paper, we demonstrate
how to achieve test automation and reuses of test code by
using Morphy.

5.3.1 Reuses of Test Data

The test data for testing a face recognition application are
images of sizes more than 100 KB. In [29, 30], 200 images
of different persons were used and each generated 13 mu-
tants using GAN-Attr [13] to alter the facial features. Each
image is used to test 4 different face recognition applica-
tions. A similar experiment was also conducted to test 5
different face recognition applications [19]. The generation
of mutant images from the original images is time consum-
ing. Thus, reusing test data is beneficial.

To enable the reuse of mutant images, the original im-
ages and the mutant images are stored in different folders
while they have the same file names. Thus, the image in-
put to a face recognition can be represented by a path to the
image file in the test case. The datamorphisms can be writ-
ten simply as manipulation of strings that takes the path to
the original image file and produce that of the mutant im-

10

Table 3. The Special Values of Trigonometric Functions Used as Special Test Cases
x 0 ⇡

6
⇡
4

⇡
3

⇡
2

2⇡
3

3⇡
4

5⇡
6 ⇡ 7⇡

6
5⇡
4

4⇡
3

3⇡
2

5⇡
3

7⇡
4

11⇡
6 2⇡

sin(x) 0 1
2

p
2

2

p
3

2 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p
2

2 �
p
3

2 �1 �
p
3

2 �
p
2
2 � 1

2 0

cos(x) 1
p

3
2

p
2

2
1
2 0 � 1

2 �
p

2
2 �

p
3

2 �1 �
p

3
2 �

p
2

2 � 1
2 0 1

2

p
2

2

p
3
2 1

tan(x) 0
p

3
3 1 1 1 �

p
3 �1 �

p
3

3 0
p

3
3 1

p
3 1 �

p
3 �1 �

p
3

3 0

Table 4. List of Datamorphisms
Name Function Name Function
halfPiPlus x ! ⇡/2 + x halfPiMinus x ! ⇡/2?x
piPlus x ! ⇡ + x piMinus x ! ⇡?x
twoPiPlus x ! 2⇡ + x twoPiMinus x ! 2⇡?x
sum (x, y) ! x+ y diff (x, y) ! x?y
negate x ! �x

Table 5. List of Metamorphisms
sin(⇡ � x) = sin(x) sin(⇡ + x) = �sin(x)
cos(⇡ � x) = �cos(x) cos(⇡ + x) = �cos(x)
tan(⇡ � x) = �tan(x) tan(⇡ + x) = tan(x)
sin(⇡/2 + x) = cos(x) sin(⇡/2� x) = cos(x)
cos(⇡/2 + x) = �sin(x) cos(⇡/2� x) = sin(x)
tan(⇡/2 + x) = �1/tan(x) tan(⇡/2� x) = 1/tan(x)
sin(2⇡ � x) = �sin(x) sin(2⇡ + x) = sin(x)
cos(2⇡ � x) = cos(x) cos(2⇡ + x) = cos(x)
tan(2⇡ � x) = �tan(x) tan(2⇡ + x) = tan(x)
sin(�x) = �sin(x) cos(�x) = cos(x)
tan(�x) = �tan(x)
sin(x+ y) = sin(x)cos(y) + cos(x)sin(y)
cos(x+ y) = cos(x)cos(y)� sin(x)sin(y)
sin(x� y) = sin(x)cos(y)� cos(x)sin(y)
cos(x� y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+ y) = (tan(x) + tan(y))/(1� tan(x)tan(y))
tan(x� y) = (tan(x)� tan(y))/(1 + tan(x)tan(y))

under test is then executed on the test cases, checked against
the metamorphisms, and test results are analysed by invok-
ing the analysers. As shown in Figure 7, the test on ran-
dom inputs detected a number of errors. The error rate is
0.957%.

Two analyser methods were defined: one for statistical analysis of the test results, and one for visualisation of the
test outputs. The statistical analysis of the test results is exactly the same as the method written for testing triangle
classification, which is reused.

The testing process consists of two stages. The first stage starts with the generation of special value test cases,
executions of the functions on them and then checking the test results by using the special value metamorphisms.
The analyse of the test results shows that the is no errors.

The second stage starts with the generation of 20 random test cases in the range of 0 to !/2, then apply the
datamorphism $ + !/2 and then $ + !. Then, the other datamorphisms are applied to populate the test set.
The program under test is then executed on the test cases, checked against the metamorphisms, and test results
are analysed by invoking the analysers. Figure 12 below shows the screen snapshots of invoking the analysers from
Morphy testing tool.

Figure 12. Analysis of the Results of Testing Trigonometric Functions

The testing tool Morphy produces an error message when the program under test fails a metamorphism on a test
case. For example, the following is an error message produced when testing trigonometric functions.

-- The rule: Tan(pi/2+x) = -1/Tan(x) on test case:
{
 id:09f76c14-8852-404e-9865-fac1e73c63a0,
 input:4.71238898038469,
 output:<-1.0|-1.8369701987210297E-16|5.443746451065123E15>,
 feature:mutant,
 type:HalfPiPlus,
 origins:[2b954ce1-ad96-488c-a323-0719065eea72],
 correctness:HalfPiPlusSinAssertion=pass;HalfPiPlusCosAssertion=pass;HalfPiPlusTanAssertion=fail;
}

An analysis of error messages shows that the errors all happened when the value of &'(($) function is used to
checking an identity. Two types of errors occurred: (a) the value of &'(($) is not defined on a test case, such as
on test case &'((!/2); (b) the accuracy of an expression is lower than the allowed error, which is 10-12.

7.3 Face recognition

Face recognition has been employed in the case study on datamorphic testing reported in [1] to demonstrate that
datamorphisms can produce meaningful test data for machine learning application. The case study reported in this
paper differs from that case study by aiming at demonstrating the ways that test automation and the reuses of test
code can be achieved with Morphy.

A. Reuses of Test Data

The test data for testing a face recognition application are images of sizes more than 100 KB. In the case study
reported in [1], 200 images of different persons were used and each generated 13 mutants using GAN-Attr [] to

Figure 7. Trigonometric Test Results

Morphy produces an error message when a test case fails
a metamorphism. The following is an example of error mes-
sage in testing the trigonometric functions.

-- Rule: tan(pi/2+x) = -1/tan(x) on test case:

{
id:09f76c14-8852-404e-9865-fac1e73c63a0,
input:4.71238898038469,
output:<-1.0|-1.8369701987210297E-16
|5.443746451065123E15>,

feature:mutant,
type:HalfPiPlus,
origins:[2b954ce1-ad96-488c-a323-0719065eea72],
correctness:HalfPiPlusSinAssertion=pass;
HalfPiPlusCosAssertion=pass;
HalfPiPlusTanAssertion=fail;

}

The error messages produced by Morphy show that the
errors all happened when the value of tan(x) function is used
to checking an identity. Two types of errors have occurred:
(a) the value of tan(x) is infinite, e.g. when x = ⇡/2;
(b) the accuracy of an expression is lower than the allowed
error, which is 10�12.

5.3. Face Recognition

Face recognition has been employed in the case study on
datamorphic testing reported in [29, 30] to demonstrate that
datamorphisms can produce meaningful test data for ma-
chine learning applications. In this paper, we demonstrate
how to achieve test automation and reuses of test code by
using Morphy.

5.3.1 Reuses of Test Data

The test data for testing a face recognition application are
images of sizes more than 100 KB. In [29, 30], 200 images
of different persons were used and each generated 13 mu-
tants using GAN-Attr [13] to alter the facial features. Each
image is used to test 4 different face recognition applica-
tions. A similar experiment was also conducted to test 5
different face recognition applications [19]. The generation
of mutant images from the original images is time consum-
ing. Thus, reusing test data is beneficial.

To enable the reuse of mutant images, the original im-
ages and the mutant images are stored in different folders
while they have the same file names. Thus, the image in-
put to a face recognition can be represented by a path to the
image file in the test case. The datamorphisms can be writ-
ten simply as manipulation of strings that takes the path to
the original image file and produce that of the mutant im-

10

17 July 2023 Tutorial on Datamorphic Testing 45

Part 3

Test Strategies for
Machine Learning Applications

1. Scenario-Based Confirmatory Testing
2. Exploratory Testing of ML Classifiers
3. Scenario-based Exploratory Functional Testing

1) Development process of test systems
2) Strategies to combine scenarios and adequacy criteria
3) Algorithms to generate adequate test sets

Scenario-Based Confirmatory Testing

17 July 2023 Tutorial on Datamorphic Testing 47

Test System Development Process
Stage 1: Analysis

Analysis of the testing problem to design a test
system
§ Identify the seed test cases
§ Identify the datamorphisms
§ Identify the metamorphisms

Stage 2: Realisation
Realisation of the elements in the test system
§ Collecting seed test data
§ Implementation of datamorphisms
§ Implementation of metamorphisms

Stage 3: Execution
Execution of testing using the test system
§ Selection of test adequacy criteria
§ Generating test cases
§ Execution of test

Fig. 1. Examples of datamorphisms on images.

software. For example, as stated earlier, it is possible to edit
an image and generate a mutant of an image as shown in
Fig. 1. Then, by feeding both the original and the mutant
images to a facial recognition application, the correctness of
the application can be checked by comparing the outputs of
these two test cases. If the outputs are identical, the application
passes the test; otherwise, an error is detected.

C. Seed Test Cases

For a datamorphism to be useful, we must have a set of
known test cases, called the seed test cases, or simply seeds.

In the face recognition example, a seed could be an image
of a person’s face. Such a set of seeds is normally available
for testers of many AI applications, for example, as training
data for an ML application. The seeds could be a subset of
such training data selected at random or according to certain
criteria. However, seeds alone are inadequate. Our method uses
the seeds to generate more test cases to make an adequate test
of the application. Seeds are not necessarily labeled with the
expected outputs unless the datamorphisms require such labels.

A datamorphism may well be applicable to mutants, espe-
cially when the mutants are generated by a different datamor-
phism. For example, in Fig. 1, (h) is obtained by applying a
datamorphism on mutant (e).

In summary, our testing framework consists of three ele-
ments: a set of seed test cases, a set of datamorphisms and a
set of metamorphisms.

Definition 4: (Datamorphic Test Framework)
Let D be the input domain of a program P under test. A

datamorphic test framework F is an ordered triple 〈S,Ψ,M〉,
where S ⊆ D is a finite subset of D. The elements of S are

Fig. 2. Datamorphic testing process.

called the seed test cases, or simply seeds. Ψ is a finite set of
datamorphisms, and M is a finite set of metamorphisms. $%

The next section discusses how to construct a datamorphic
test framework and how such a test framework can be used
with different strategies.

III. TESTING PROCESS AND STRATEGIES

A. Process of Datamorphic Testing
As illustrated in Fig. 2, the datamorphic testing process

consists of three stages.
1) Stage 1: Analysis: The first stage is analysis of the test-

ing problem in order to design a datamorphic test framework.
In this stage, seed test cases, datamorphisms and metamor-
phisms are identified. These three elements are closely related
to each other, thus should be engineered systematically.

Analysis starts by identifying the operating conditions of
the application. For a face recognition application at an inter-
national airport’s border control, for example, the input to the
software is a photo from a camera fitted on an automatic pass-
port checking machine and the photo of the passport holder

���

17 July 2023 Tutorial on Datamorphic Testing 48

Stage 1: Analysis

Fig. 1. Examples of datamorphisms on images.

software. For example, as stated earlier, it is possible to edit
an image and generate a mutant of an image as shown in
Fig. 1. Then, by feeding both the original and the mutant
images to a facial recognition application, the correctness of
the application can be checked by comparing the outputs of
these two test cases. If the outputs are identical, the application
passes the test; otherwise, an error is detected.

C. Seed Test Cases

For a datamorphism to be useful, we must have a set of
known test cases, called the seed test cases, or simply seeds.

In the face recognition example, a seed could be an image
of a person’s face. Such a set of seeds is normally available
for testers of many AI applications, for example, as training
data for an ML application. The seeds could be a subset of
such training data selected at random or according to certain
criteria. However, seeds alone are inadequate. Our method uses
the seeds to generate more test cases to make an adequate test
of the application. Seeds are not necessarily labeled with the
expected outputs unless the datamorphisms require such labels.

A datamorphism may well be applicable to mutants, espe-
cially when the mutants are generated by a different datamor-
phism. For example, in Fig. 1, (h) is obtained by applying a
datamorphism on mutant (e).

In summary, our testing framework consists of three ele-
ments: a set of seed test cases, a set of datamorphisms and a
set of metamorphisms.

Definition 4: (Datamorphic Test Framework)
Let D be the input domain of a program P under test. A

datamorphic test framework F is an ordered triple 〈S,Ψ,M〉,
where S ⊆ D is a finite subset of D. The elements of S are

Fig. 2. Datamorphic testing process.

called the seed test cases, or simply seeds. Ψ is a finite set of
datamorphisms, and M is a finite set of metamorphisms. $%

The next section discusses how to construct a datamorphic
test framework and how such a test framework can be used
with different strategies.

III. TESTING PROCESS AND STRATEGIES

A. Process of Datamorphic Testing
As illustrated in Fig. 2, the datamorphic testing process

consists of three stages.
1) Stage 1: Analysis: The first stage is analysis of the test-

ing problem in order to design a datamorphic test framework.
In this stage, seed test cases, datamorphisms and metamor-
phisms are identified. These three elements are closely related
to each other, thus should be engineered systematically.

Analysis starts by identifying the operating conditions of
the application. For a face recognition application at an inter-
national airport’s border control, for example, the input to the
software is a photo from a camera fitted on an automatic pass-
port checking machine and the photo of the passport holder

���

17 July 2023 Tutorial on Datamorphic Testing 49

Example: Face Recognition (1)
§Usage 1: Automated passport control at airport
§Usage 2: Detect criminal suspects using images from surveillance cameras

Operation Conditions Usage 1 Usage 2
Front face images in database ✔ ✔
Side face images in database ✔
Face image of older age ✔ ✔
Face image sun tanned ✔ ✔
Face image in different hair style/colour ✔ ✔
Face image wearing makeup ✔ ✔
Face image with sunglasses ✔
Face image with beard ✔ ✔
Variable lighting and background ✔
Face image from a side angle ✔
Face image from an upper angle ✔
Image from artist drawings ✔

17 July 2023 Tutorial on Datamorphic Testing 50

Example: Face Recognition (2)
§Seed test cases:
§A set of photos of human faces in different races, ages, genders, etc.

§Datamorphisms:
§Add a pair of glasses;
§Add makeup;
§Change the background;
§Change the illumination;
§Change hair style;
§Change hair colour;
§Swap: replace a part of the image with another person’s image.

§Metamorphisms:

FaceOf(Swap(x,y))=FaceOf(x) and FaceOf(Swap(x,y))=FaceOf(y)
Depends on the
application

Fig. 3. Illustration of the image transformations.

a facial image as input and generates a new image that changes
a facial attribute. They are listed in Table I and illustrated in
Fig. 3.

TABLE I
ATTGAN’S FACE ATTRIBUTE EDITING OPERATORS

Operation Meaning
Bald Change the facial image into bald
Bangs Add bangs to the facial image
Black Hair Change the hair colour into black
Blond Hair Change the hair colour into blond
Brown Hair Change the hair colour into brown
Bushy Eyebrows Change the eyebrows to be bushy
Eyeglasses Add eyeglasses to the image
Male Change the image from female to male
Mouth Open Change the mouth to be slightly open
Mustache Add or remove mustache to the facial image
Beard Add or remove beard
Pale Skin Make the skin tone to be pale
Young Change the image to look younger

The metamorphisms used in the experiments are

FaceSimile(x,ϕ(x)) ≥ 80%

where ϕ(x) is any of the datamorphisms given in Table I,
FaceSimile is any of the four face recognition applications.
For each of them, FaceSimile(x, y) returns a number in the
interval [0,100] as the similarity score between two facial
images x and y.

C. Execution of The Experiment

The experiment consists of the following 3 steps.

1) Generation of mutant test cases: The mutant test cases
are generated by using the AttGAN software on 200 images
selected at random from the CelebA dataset.

The validity of the AttGAN algorithm for inverting facial
images on various attributes has been intensively studied
via cross-validation [7] on two large-scale labeled datasets,
which clearly demonstrated that the resulting facial images
achieved their purposes from the machine learning and image
processing points of view. Our purpose differs from their
experimental study. It is to validate the use of modified images
as test cases for face recognition applications. Therefore, each
facial image in the selection from the CelebA dataset is
used as the seed, and 13 mutants generated by applying the
transformations listed in Table I are used as mutant test cases.
A total of 2,600 mutant test cases were generated.

2) Testing on generated test cases: The face recognition
applications are tested on the mutant test cases against the
seed test cases.

These mutants were input to four face recognition ML
applications to obtain a measure of the similarity between the
seed and the mutant, which is a numerical score in the range
between 0 to 100. The raw data can be found in [8].

3) Testing on real images: To validate the result of the
testing on these mutant test cases, we selected at random
13 images for each individual from the PubFig dataset. We
use these real images to test the face recognition applications
and obtained their recognition accuracies. A total of 2600 real
images were used as the real test cases. See [8] for the test
result data.

D. Analysis of The Results

The data collected from the experiments are analysed to
answer the research questions RQ1 and RQ2.

1) Validity of Using Generated Images as Test Data: To
answer research question RQ1, we analyse how close the
generated test cases are with respect to the original image. For
each type of mutant, the average of similarity scores indicates
how well the generated test case is close to the original image
in the eyes of the ML application. The distribution of average
similarity scores and their standard deviations over different
image operators are shown in Fig. 4(a) and (b). Details of the
data can be found in [8].

The results show that the overall average similarity scores
are between 80.32 and 99.70 for different face recognition
applications. The smallest standard deviation is 1.51 while
the largest standard deviation is 7.07. Therefore, we can
conclude that facial images generated by applying such image
processing algorithms to change various attributes of the image
are very close to the real images, thus valid as test cases.

There are a small number of cases where recognition fails,
as shown in Fig. 4(c). This is either because the application
does not recognize any face in the image or because there is
a timeout in the transmission of image data to the servers on
the Cloud. Both of these cases are ignored when calculating
recognition accuracy.

• φ(x) is any of the datamorphisms
given in the Table

• FaceSimile is any of the face
recognition application under test

17 July 2023 Tutorial on Datamorphic Testing 51

Stage 2: Realisation

Fig. 1. Examples of datamorphisms on images.

software. For example, as stated earlier, it is possible to edit
an image and generate a mutant of an image as shown in
Fig. 1. Then, by feeding both the original and the mutant
images to a facial recognition application, the correctness of
the application can be checked by comparing the outputs of
these two test cases. If the outputs are identical, the application
passes the test; otherwise, an error is detected.

C. Seed Test Cases

For a datamorphism to be useful, we must have a set of
known test cases, called the seed test cases, or simply seeds.

In the face recognition example, a seed could be an image
of a person’s face. Such a set of seeds is normally available
for testers of many AI applications, for example, as training
data for an ML application. The seeds could be a subset of
such training data selected at random or according to certain
criteria. However, seeds alone are inadequate. Our method uses
the seeds to generate more test cases to make an adequate test
of the application. Seeds are not necessarily labeled with the
expected outputs unless the datamorphisms require such labels.

A datamorphism may well be applicable to mutants, espe-
cially when the mutants are generated by a different datamor-
phism. For example, in Fig. 1, (h) is obtained by applying a
datamorphism on mutant (e).

In summary, our testing framework consists of three ele-
ments: a set of seed test cases, a set of datamorphisms and a
set of metamorphisms.

Definition 4: (Datamorphic Test Framework)
Let D be the input domain of a program P under test. A

datamorphic test framework F is an ordered triple 〈S,Ψ,M〉,
where S ⊆ D is a finite subset of D. The elements of S are

Fig. 2. Datamorphic testing process.

called the seed test cases, or simply seeds. Ψ is a finite set of
datamorphisms, and M is a finite set of metamorphisms. $%

The next section discusses how to construct a datamorphic
test framework and how such a test framework can be used
with different strategies.

III. TESTING PROCESS AND STRATEGIES

A. Process of Datamorphic Testing
As illustrated in Fig. 2, the datamorphic testing process

consists of three stages.
1) Stage 1: Analysis: The first stage is analysis of the test-

ing problem in order to design a datamorphic test framework.
In this stage, seed test cases, datamorphisms and metamor-
phisms are identified. These three elements are closely related
to each other, thus should be engineered systematically.

Analysis starts by identifying the operating conditions of
the application. For a face recognition application at an inter-
national airport’s border control, for example, the input to the
software is a photo from a camera fitted on an automatic pass-
port checking machine and the photo of the passport holder

���

§ Seeds:
o Often available from other development activities, such as training data, benchmarks
o Can be collected from the real world, though costly
o Could be manual effort

§ Datamorphisms:
o Often can be implemented as small program code fairly easily
o Many application domains have open source, library, etc. available

§ Metamorphisms:
o Often easy to implement as small program code fairly easily

17 July 2023 Tutorial on Datamorphic Testing 52

Example: Datamorphims of Images

17 July 2023 Tutorial on Datamorphic Testing 53

Fig. 3. Illustration of the image transformations.

a facial image as input and generates a new image that changes
a facial attribute. They are listed in Table I and illustrated in
Fig. 3.

TABLE I
ATTGAN’S FACE ATTRIBUTE EDITING OPERATORS

Operation Meaning
Bald Change the facial image into bald
Bangs Add bangs to the facial image
Black Hair Change the hair colour into black
Blond Hair Change the hair colour into blond
Brown Hair Change the hair colour into brown
Bushy Eyebrows Change the eyebrows to be bushy
Eyeglasses Add eyeglasses to the image
Male Change the image from female to male
Mouth Open Change the mouth to be slightly open
Mustache Add or remove mustache to the facial image
Beard Add or remove beard
Pale Skin Make the skin tone to be pale
Young Change the image to look younger

The metamorphisms used in the experiments are

FaceSimile(x,ϕ(x)) ≥ 80%

where ϕ(x) is any of the datamorphisms given in Table I,
FaceSimile is any of the four face recognition applications.
For each of them, FaceSimile(x, y) returns a number in the
interval [0,100] as the similarity score between two facial
images x and y.

C. Execution of The Experiment

The experiment consists of the following 3 steps.

1) Generation of mutant test cases: The mutant test cases
are generated by using the AttGAN software on 200 images
selected at random from the CelebA dataset.

The validity of the AttGAN algorithm for inverting facial
images on various attributes has been intensively studied
via cross-validation [7] on two large-scale labeled datasets,
which clearly demonstrated that the resulting facial images
achieved their purposes from the machine learning and image
processing points of view. Our purpose differs from their
experimental study. It is to validate the use of modified images
as test cases for face recognition applications. Therefore, each
facial image in the selection from the CelebA dataset is
used as the seed, and 13 mutants generated by applying the
transformations listed in Table I are used as mutant test cases.
A total of 2,600 mutant test cases were generated.

2) Testing on generated test cases: The face recognition
applications are tested on the mutant test cases against the
seed test cases.

These mutants were input to four face recognition ML
applications to obtain a measure of the similarity between the
seed and the mutant, which is a numerical score in the range
between 0 to 100. The raw data can be found in [8].

3) Testing on real images: To validate the result of the
testing on these mutant test cases, we selected at random
13 images for each individual from the PubFig dataset. We
use these real images to test the face recognition applications
and obtained their recognition accuracies. A total of 2600 real
images were used as the real test cases. See [8] for the test
result data.

D. Analysis of The Results

The data collected from the experiments are analysed to
answer the research questions RQ1 and RQ2.

1) Validity of Using Generated Images as Test Data: To
answer research question RQ1, we analyse how close the
generated test cases are with respect to the original image. For
each type of mutant, the average of similarity scores indicates
how well the generated test case is close to the original image
in the eyes of the ML application. The distribution of average
similarity scores and their standard deviations over different
image operators are shown in Fig. 4(a) and (b). Details of the
data can be found in [8].

The results show that the overall average similarity scores
are between 80.32 and 99.70 for different face recognition
applications. The smallest standard deviation is 1.51 while
the largest standard deviation is 7.07. Therefore, we can
conclude that facial images generated by applying such image
processing algorithms to change various attributes of the image
are very close to the real images, thus valid as test cases.

There are a small number of cases where recognition fails,
as shown in Fig. 4(c). This is either because the application
does not recognize any face in the image or because there is
a timeout in the transmission of image data to the servers on
the Cloud. Both of these cases are ignored when calculating
recognition accuracy.

Fig. 3. Illustration of the image transformations.

a facial image as input and generates a new image that changes
a facial attribute. They are listed in Table I and illustrated in
Fig. 3.

TABLE I
ATTGAN’S FACE ATTRIBUTE EDITING OPERATORS

Operation Meaning
Bald Change the facial image into bald
Bangs Add bangs to the facial image
Black Hair Change the hair colour into black
Blond Hair Change the hair colour into blond
Brown Hair Change the hair colour into brown
Bushy Eyebrows Change the eyebrows to be bushy
Eyeglasses Add eyeglasses to the image
Male Change the image from female to male
Mouth Open Change the mouth to be slightly open
Mustache Add or remove mustache to the facial image
Beard Add or remove beard
Pale Skin Make the skin tone to be pale
Young Change the image to look younger

The metamorphisms used in the experiments are

FaceSimile(x,ϕ(x)) ≥ 80%

where ϕ(x) is any of the datamorphisms given in Table I,
FaceSimile is any of the four face recognition applications.
For each of them, FaceSimile(x, y) returns a number in the
interval [0,100] as the similarity score between two facial
images x and y.

C. Execution of The Experiment

The experiment consists of the following 3 steps.

1) Generation of mutant test cases: The mutant test cases
are generated by using the AttGAN software on 200 images
selected at random from the CelebA dataset.

The validity of the AttGAN algorithm for inverting facial
images on various attributes has been intensively studied
via cross-validation [7] on two large-scale labeled datasets,
which clearly demonstrated that the resulting facial images
achieved their purposes from the machine learning and image
processing points of view. Our purpose differs from their
experimental study. It is to validate the use of modified images
as test cases for face recognition applications. Therefore, each
facial image in the selection from the CelebA dataset is
used as the seed, and 13 mutants generated by applying the
transformations listed in Table I are used as mutant test cases.
A total of 2,600 mutant test cases were generated.

2) Testing on generated test cases: The face recognition
applications are tested on the mutant test cases against the
seed test cases.

These mutants were input to four face recognition ML
applications to obtain a measure of the similarity between the
seed and the mutant, which is a numerical score in the range
between 0 to 100. The raw data can be found in [8].

3) Testing on real images: To validate the result of the
testing on these mutant test cases, we selected at random
13 images for each individual from the PubFig dataset. We
use these real images to test the face recognition applications
and obtained their recognition accuracies. A total of 2600 real
images were used as the real test cases. See [8] for the test
result data.

D. Analysis of The Results

The data collected from the experiments are analysed to
answer the research questions RQ1 and RQ2.

1) Validity of Using Generated Images as Test Data: To
answer research question RQ1, we analyse how close the
generated test cases are with respect to the original image. For
each type of mutant, the average of similarity scores indicates
how well the generated test case is close to the original image
in the eyes of the ML application. The distribution of average
similarity scores and their standard deviations over different
image operators are shown in Fig. 4(a) and (b). Details of the
data can be found in [8].

The results show that the overall average similarity scores
are between 80.32 and 99.70 for different face recognition
applications. The smallest standard deviation is 1.51 while
the largest standard deviation is 7.07. Therefore, we can
conclude that facial images generated by applying such image
processing algorithms to change various attributes of the image
are very close to the real images, thus valid as test cases.

There are a small number of cases where recognition fails,
as shown in Fig. 4(c). This is either because the application
does not recognize any face in the image or because there is
a timeout in the transmission of image data to the servers on
the Cloud. Both of these cases are ignored when calculating
recognition accuracy.

Fig. 3. Illustration of the image transformations.

a facial image as input and generates a new image that changes
a facial attribute. They are listed in Table I and illustrated in
Fig. 3.

TABLE I
ATTGAN’S FACE ATTRIBUTE EDITING OPERATORS

Operation Meaning
Bald Change the facial image into bald
Bangs Add bangs to the facial image
Black Hair Change the hair colour into black
Blond Hair Change the hair colour into blond
Brown Hair Change the hair colour into brown
Bushy Eyebrows Change the eyebrows to be bushy
Eyeglasses Add eyeglasses to the image
Male Change the image from female to male
Mouth Open Change the mouth to be slightly open
Mustache Add or remove mustache to the facial image
Beard Add or remove beard
Pale Skin Make the skin tone to be pale
Young Change the image to look younger

The metamorphisms used in the experiments are

FaceSimile(x,ϕ(x)) ≥ 80%

where ϕ(x) is any of the datamorphisms given in Table I,
FaceSimile is any of the four face recognition applications.
For each of them, FaceSimile(x, y) returns a number in the
interval [0,100] as the similarity score between two facial
images x and y.

C. Execution of The Experiment

The experiment consists of the following 3 steps.

1) Generation of mutant test cases: The mutant test cases
are generated by using the AttGAN software on 200 images
selected at random from the CelebA dataset.

The validity of the AttGAN algorithm for inverting facial
images on various attributes has been intensively studied
via cross-validation [7] on two large-scale labeled datasets,
which clearly demonstrated that the resulting facial images
achieved their purposes from the machine learning and image
processing points of view. Our purpose differs from their
experimental study. It is to validate the use of modified images
as test cases for face recognition applications. Therefore, each
facial image in the selection from the CelebA dataset is
used as the seed, and 13 mutants generated by applying the
transformations listed in Table I are used as mutant test cases.
A total of 2,600 mutant test cases were generated.

2) Testing on generated test cases: The face recognition
applications are tested on the mutant test cases against the
seed test cases.

These mutants were input to four face recognition ML
applications to obtain a measure of the similarity between the
seed and the mutant, which is a numerical score in the range
between 0 to 100. The raw data can be found in [8].

3) Testing on real images: To validate the result of the
testing on these mutant test cases, we selected at random
13 images for each individual from the PubFig dataset. We
use these real images to test the face recognition applications
and obtained their recognition accuracies. A total of 2600 real
images were used as the real test cases. See [8] for the test
result data.

D. Analysis of The Results

The data collected from the experiments are analysed to
answer the research questions RQ1 and RQ2.

1) Validity of Using Generated Images as Test Data: To
answer research question RQ1, we analyse how close the
generated test cases are with respect to the original image. For
each type of mutant, the average of similarity scores indicates
how well the generated test case is close to the original image
in the eyes of the ML application. The distribution of average
similarity scores and their standard deviations over different
image operators are shown in Fig. 4(a) and (b). Details of the
data can be found in [8].

The results show that the overall average similarity scores
are between 80.32 and 99.70 for different face recognition
applications. The smallest standard deviation is 1.51 while
the largest standard deviation is 7.07. Therefore, we can
conclude that facial images generated by applying such image
processing algorithms to change various attributes of the image
are very close to the real images, thus valid as test cases.

There are a small number of cases where recognition fails,
as shown in Fig. 4(c). This is either because the application
does not recognize any face in the image or because there is
a timeout in the transmission of image data to the servers on
the Cloud. Both of these cases are ignored when calculating
recognition accuracy.

Fig. 3. Illustration of the image transformations.

a facial image as input and generates a new image that changes
a facial attribute. They are listed in Table I and illustrated in
Fig. 3.

TABLE I
ATTGAN’S FACE ATTRIBUTE EDITING OPERATORS

Operation Meaning
Bald Change the facial image into bald
Bangs Add bangs to the facial image
Black Hair Change the hair colour into black
Blond Hair Change the hair colour into blond
Brown Hair Change the hair colour into brown
Bushy Eyebrows Change the eyebrows to be bushy
Eyeglasses Add eyeglasses to the image
Male Change the image from female to male
Mouth Open Change the mouth to be slightly open
Mustache Add or remove mustache to the facial image
Beard Add or remove beard
Pale Skin Make the skin tone to be pale
Young Change the image to look younger

The metamorphisms used in the experiments are

FaceSimile(x,ϕ(x)) ≥ 80%

where ϕ(x) is any of the datamorphisms given in Table I,
FaceSimile is any of the four face recognition applications.
For each of them, FaceSimile(x, y) returns a number in the
interval [0,100] as the similarity score between two facial
images x and y.

C. Execution of The Experiment

The experiment consists of the following 3 steps.

1) Generation of mutant test cases: The mutant test cases
are generated by using the AttGAN software on 200 images
selected at random from the CelebA dataset.

The validity of the AttGAN algorithm for inverting facial
images on various attributes has been intensively studied
via cross-validation [7] on two large-scale labeled datasets,
which clearly demonstrated that the resulting facial images
achieved their purposes from the machine learning and image
processing points of view. Our purpose differs from their
experimental study. It is to validate the use of modified images
as test cases for face recognition applications. Therefore, each
facial image in the selection from the CelebA dataset is
used as the seed, and 13 mutants generated by applying the
transformations listed in Table I are used as mutant test cases.
A total of 2,600 mutant test cases were generated.

2) Testing on generated test cases: The face recognition
applications are tested on the mutant test cases against the
seed test cases.

These mutants were input to four face recognition ML
applications to obtain a measure of the similarity between the
seed and the mutant, which is a numerical score in the range
between 0 to 100. The raw data can be found in [8].

3) Testing on real images: To validate the result of the
testing on these mutant test cases, we selected at random
13 images for each individual from the PubFig dataset. We
use these real images to test the face recognition applications
and obtained their recognition accuracies. A total of 2600 real
images were used as the real test cases. See [8] for the test
result data.

D. Analysis of The Results

The data collected from the experiments are analysed to
answer the research questions RQ1 and RQ2.

1) Validity of Using Generated Images as Test Data: To
answer research question RQ1, we analyse how close the
generated test cases are with respect to the original image. For
each type of mutant, the average of similarity scores indicates
how well the generated test case is close to the original image
in the eyes of the ML application. The distribution of average
similarity scores and their standard deviations over different
image operators are shown in Fig. 4(a) and (b). Details of the
data can be found in [8].

The results show that the overall average similarity scores
are between 80.32 and 99.70 for different face recognition
applications. The smallest standard deviation is 1.51 while
the largest standard deviation is 7.07. Therefore, we can
conclude that facial images generated by applying such image
processing algorithms to change various attributes of the image
are very close to the real images, thus valid as test cases.

There are a small number of cases where recognition fails,
as shown in Fig. 4(c). This is either because the application
does not recognize any face in the image or because there is
a timeout in the transmission of image data to the servers on
the Cloud. Both of these cases are ignored when calculating
recognition accuracy.

Fig. 3. Illustration of the image transformations.

a facial image as input and generates a new image that changes
a facial attribute. They are listed in Table I and illustrated in
Fig. 3.

TABLE I
ATTGAN’S FACE ATTRIBUTE EDITING OPERATORS

Operation Meaning
Bald Change the facial image into bald
Bangs Add bangs to the facial image
Black Hair Change the hair colour into black
Blond Hair Change the hair colour into blond
Brown Hair Change the hair colour into brown
Bushy Eyebrows Change the eyebrows to be bushy
Eyeglasses Add eyeglasses to the image
Male Change the image from female to male
Mouth Open Change the mouth to be slightly open
Mustache Add or remove mustache to the facial image
Beard Add or remove beard
Pale Skin Make the skin tone to be pale
Young Change the image to look younger

The metamorphisms used in the experiments are

FaceSimile(x,ϕ(x)) ≥ 80%

where ϕ(x) is any of the datamorphisms given in Table I,
FaceSimile is any of the four face recognition applications.
For each of them, FaceSimile(x, y) returns a number in the
interval [0,100] as the similarity score between two facial
images x and y.

C. Execution of The Experiment

The experiment consists of the following 3 steps.

1) Generation of mutant test cases: The mutant test cases
are generated by using the AttGAN software on 200 images
selected at random from the CelebA dataset.

The validity of the AttGAN algorithm for inverting facial
images on various attributes has been intensively studied
via cross-validation [7] on two large-scale labeled datasets,
which clearly demonstrated that the resulting facial images
achieved their purposes from the machine learning and image
processing points of view. Our purpose differs from their
experimental study. It is to validate the use of modified images
as test cases for face recognition applications. Therefore, each
facial image in the selection from the CelebA dataset is
used as the seed, and 13 mutants generated by applying the
transformations listed in Table I are used as mutant test cases.
A total of 2,600 mutant test cases were generated.

2) Testing on generated test cases: The face recognition
applications are tested on the mutant test cases against the
seed test cases.

These mutants were input to four face recognition ML
applications to obtain a measure of the similarity between the
seed and the mutant, which is a numerical score in the range
between 0 to 100. The raw data can be found in [8].

3) Testing on real images: To validate the result of the
testing on these mutant test cases, we selected at random
13 images for each individual from the PubFig dataset. We
use these real images to test the face recognition applications
and obtained their recognition accuracies. A total of 2600 real
images were used as the real test cases. See [8] for the test
result data.

D. Analysis of The Results

The data collected from the experiments are analysed to
answer the research questions RQ1 and RQ2.

1) Validity of Using Generated Images as Test Data: To
answer research question RQ1, we analyse how close the
generated test cases are with respect to the original image. For
each type of mutant, the average of similarity scores indicates
how well the generated test case is close to the original image
in the eyes of the ML application. The distribution of average
similarity scores and their standard deviations over different
image operators are shown in Fig. 4(a) and (b). Details of the
data can be found in [8].

The results show that the overall average similarity scores
are between 80.32 and 99.70 for different face recognition
applications. The smallest standard deviation is 1.51 while
the largest standard deviation is 7.07. Therefore, we can
conclude that facial images generated by applying such image
processing algorithms to change various attributes of the image
are very close to the real images, thus valid as test cases.

There are a small number of cases where recognition fails,
as shown in Fig. 4(c). This is either because the application
does not recognize any face in the image or because there is
a timeout in the transmission of image data to the servers on
the Cloud. Both of these cases are ignored when calculating
recognition accuracy.

• Seed test case (a):
A photo in the Public dataset Labeled Faces in the Wild at URL:
http://vis-www.cs.umass.edu/lfw/

• Mutants: (b – j)
A subset of the photos obtained from the seed by manipulations of the seed photo.

Implementation of The Datamorphisms

Fig. 3. Illustration of the image transformations.

a facial image as input and generates a new image that changes
a facial attribute. They are listed in Table I and illustrated in
Fig. 3.

TABLE I
ATTGAN’S FACE ATTRIBUTE EDITING OPERATORS

Operation Meaning
Bald Change the facial image into bald
Bangs Add bangs to the facial image
Black Hair Change the hair colour into black
Blond Hair Change the hair colour into blond
Brown Hair Change the hair colour into brown
Bushy Eyebrows Change the eyebrows to be bushy
Eyeglasses Add eyeglasses to the image
Male Change the image from female to male
Mouth Open Change the mouth to be slightly open
Mustache Add or remove mustache to the facial image
Beard Add or remove beard
Pale Skin Make the skin tone to be pale
Young Change the image to look younger

The metamorphisms used in the experiments are

FaceSimile(x,ϕ(x)) ≥ 80%

where ϕ(x) is any of the datamorphisms given in Table I,
FaceSimile is any of the four face recognition applications.
For each of them, FaceSimile(x, y) returns a number in the
interval [0,100] as the similarity score between two facial
images x and y.

C. Execution of The Experiment

The experiment consists of the following 3 steps.

1) Generation of mutant test cases: The mutant test cases
are generated by using the AttGAN software on 200 images
selected at random from the CelebA dataset.

The validity of the AttGAN algorithm for inverting facial
images on various attributes has been intensively studied
via cross-validation [7] on two large-scale labeled datasets,
which clearly demonstrated that the resulting facial images
achieved their purposes from the machine learning and image
processing points of view. Our purpose differs from their
experimental study. It is to validate the use of modified images
as test cases for face recognition applications. Therefore, each
facial image in the selection from the CelebA dataset is
used as the seed, and 13 mutants generated by applying the
transformations listed in Table I are used as mutant test cases.
A total of 2,600 mutant test cases were generated.

2) Testing on generated test cases: The face recognition
applications are tested on the mutant test cases against the
seed test cases.

These mutants were input to four face recognition ML
applications to obtain a measure of the similarity between the
seed and the mutant, which is a numerical score in the range
between 0 to 100. The raw data can be found in [8].

3) Testing on real images: To validate the result of the
testing on these mutant test cases, we selected at random
13 images for each individual from the PubFig dataset. We
use these real images to test the face recognition applications
and obtained their recognition accuracies. A total of 2600 real
images were used as the real test cases. See [8] for the test
result data.

D. Analysis of The Results

The data collected from the experiments are analysed to
answer the research questions RQ1 and RQ2.

1) Validity of Using Generated Images as Test Data: To
answer research question RQ1, we analyse how close the
generated test cases are with respect to the original image. For
each type of mutant, the average of similarity scores indicates
how well the generated test case is close to the original image
in the eyes of the ML application. The distribution of average
similarity scores and their standard deviations over different
image operators are shown in Fig. 4(a) and (b). Details of the
data can be found in [8].

The results show that the overall average similarity scores
are between 80.32 and 99.70 for different face recognition
applications. The smallest standard deviation is 1.51 while
the largest standard deviation is 7.07. Therefore, we can
conclude that facial images generated by applying such image
processing algorithms to change various attributes of the image
are very close to the real images, thus valid as test cases.

There are a small number of cases where recognition fails,
as shown in Fig. 4(c). This is either because the application
does not recognize any face in the image or because there is
a timeout in the transmission of image data to the servers on
the Cloud. Both of these cases are ignored when calculating
recognition accuracy.

���

AttGAN’s Face Attribute Editing Operators

17 July 2023 Tutorial on Datamorphic Testing 54

Stage 3: Execution

Fig. 1. Examples of datamorphisms on images.

software. For example, as stated earlier, it is possible to edit
an image and generate a mutant of an image as shown in
Fig. 1. Then, by feeding both the original and the mutant
images to a facial recognition application, the correctness of
the application can be checked by comparing the outputs of
these two test cases. If the outputs are identical, the application
passes the test; otherwise, an error is detected.

C. Seed Test Cases

For a datamorphism to be useful, we must have a set of
known test cases, called the seed test cases, or simply seeds.

In the face recognition example, a seed could be an image
of a person’s face. Such a set of seeds is normally available
for testers of many AI applications, for example, as training
data for an ML application. The seeds could be a subset of
such training data selected at random or according to certain
criteria. However, seeds alone are inadequate. Our method uses
the seeds to generate more test cases to make an adequate test
of the application. Seeds are not necessarily labeled with the
expected outputs unless the datamorphisms require such labels.

A datamorphism may well be applicable to mutants, espe-
cially when the mutants are generated by a different datamor-
phism. For example, in Fig. 1, (h) is obtained by applying a
datamorphism on mutant (e).

In summary, our testing framework consists of three ele-
ments: a set of seed test cases, a set of datamorphisms and a
set of metamorphisms.

Definition 4: (Datamorphic Test Framework)
Let D be the input domain of a program P under test. A

datamorphic test framework F is an ordered triple 〈S,Ψ,M〉,
where S ⊆ D is a finite subset of D. The elements of S are

Fig. 2. Datamorphic testing process.

called the seed test cases, or simply seeds. Ψ is a finite set of
datamorphisms, and M is a finite set of metamorphisms. $%

The next section discusses how to construct a datamorphic
test framework and how such a test framework can be used
with different strategies.

III. TESTING PROCESS AND STRATEGIES

A. Process of Datamorphic Testing
As illustrated in Fig. 2, the datamorphic testing process

consists of three stages.
1) Stage 1: Analysis: The first stage is analysis of the test-

ing problem in order to design a datamorphic test framework.
In this stage, seed test cases, datamorphisms and metamor-
phisms are identified. These three elements are closely related
to each other, thus should be engineered systematically.

Analysis starts by identifying the operating conditions of
the application. For a face recognition application at an inter-
national airport’s border control, for example, the input to the
software is a photo from a camera fitted on an automatic pass-
port checking machine and the photo of the passport holder

���

17 July 2023 Tutorial on Datamorphic Testing 55

Mutant Combination Strategies
§Basic Ideas

§ Uses seed test cases to test the normal operation condition of the AI system under test,
§ Uses datamorphisms to transform a test case that represents other operation conditions

that can be derived from the normal operation conditions.
§ Combining datamorphisms means combinations of different operation conditions.

§Examples
§ For testing face recognition applications: datamorphisms are used to transform the

images of human faces by editing the facial attributes, such as adding makeup, wearing
glasses, changing skin tunes, change hair styles and colour, etc.

§ For testing driverless vehicles in [Tian et al. 2018], datamorphisms are developed to alter
the weather condition of a recorded driving process to be in fog, to transform the lighting
condition from daytime to night time with street lights, etc.

17 July 2023 Tutorial on Datamorphic Testing 56

specification can be executed by the test runner. The test
runner also implements various test strategies that combine
test morphisms to acheive advanced test automation. The
test scripting facility enables interactive testing activities to
be recorded as test scripts, saved into files, reloaded from
files and replayed.

Graphic User Interface

Test Scripts

Test Scripting Facility

Test Script
R

unner

Test Script
R

ecorder

Test Set

Test Set Management

Test Set Loader

Test Set Saver

Test Set Editor

Test Runner

Program
Under Test

Test Strategies

Test M
orphism

Executor

Java IDE

Test Spec (Bytecode)

Test Script
M

anager

Test M
orphism

Loader

Test Script Repository Test Set Repository
Test Spec
Repository

Figure 1. The Architecture of Morphy

Test specifications can be developed with any Java IDE,
but a wizard has been developed as an Eclipse plugin to
generate new skeleton Java class of test specification.

Morphy’s main graphic user interface shown in Figure
2 provides a user friendly environment in which testing
artefacts can be managed, basic testing activities can be
performed and automated testing facilities can be invoked.

At the very top of Morphy’s main window are four panels
of buttons for the management of test entities, performing
test activities by invoking various types of test morphisms,
applying test strategies, and recording-replaying test scripts,
respectively.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column as input to perform the interactive and
automatic testing functions.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower one reports errors detected by checking
the test results against metamorphisms.

Morphy enables test automation at three different levels.
At the lowest level, various test activities can be performed
by invoking test morphisms via a click of buttons on
Morphy’s GUI. At the medium level, Morphy implements
various test strategies to perform complicated testing activ-
ities through combinations and compositions of test mor-
phisms. At the highest level, test processes are automated by
recording, editing and replaying test scripts that consist of
a sequence of invocations of test morphisms and strategies.
It is particularly useful for repeated testing processes, such

as in regression testing and repeated experiments with the
software under test to obtain data for statistical analysis.

IV. MUTANT COMBINATION STRATEGIES

Test strategies play a crucial role in the automation of
datamorphic testing because they can combine and compose
test morphisms together effectively to achieve commonly oc-
curing software testing requirements. This section proposes
a set of test strategies that combines datamorphisms to enrich
a given test set with adequate coverage of different types of
mutant test cases.

A. First Order Mutant Coverage

A datamorphic approach to testing AI applications uses
seed test cases to test the normal operation condition of the
AI system under test, and uses datamorphisms to transform
a test case that represents other operation conditions that can
be derived from the normal operation conditions [29].

For example, to test face recognition applications, data-
morphisms are developed to transform the images of human
faces by editing the facial attributes, such as adding makeup,
wearing glasses, changing skin tunes, change hair styles and
colour, etc. In Figure 3, (a) is the original photo, (b), (c),
and (d) are images obtained by applying datamorphisms
of adding spectacles, applying makeup, and changing hair
styles, respectively. They are used to test face recognition
applications [29].

Similarly, in [25], for testing driverless vehicles, data-
morphisms are developed to alter the weather condition
of a recorded driving process to be in fog, to transform
the lighting condition from daytime to nightime with street
lights, etc. Such transformed test cases are called the mutant
test cases, and can formally be defined as follows.

Let T be the set of all possible test cases for the software
under test, S ⇢ T (S 6= ;) be a set of test cases, and D 6= ;
be a set of datamorphisms and d 2 D be a datamorphism
in D. We say that d is k-ary (k > 0), if d : T k ! T .

Definition 1: (First Order Mutants)
A test case y 2 T is called a first order mutant test case, or

simply a first order mutant, of S generated by D, if there is
a k-ary datamorphism d 2 D and test cases x1, · · · , xk 2 S
such that y = d(x1, · · · , xk). ut

In the context of testing AI applications where datamor-
phisms are transformations of test cases that alter the key
features of the test cases to represent different operation
conditions, it is important for cover each operation condition
adequately. Thus, here we propose a test adquacy criterion
called first order mutant completeness.

Definition 2: (First Order Mutant Completeness)
A set C of test cases is first order mutant complete with

respect to S and D, if S ✓ C, and for each d : T k ! T 2
D, and each xi 2 S, i = 1, · · · , k, there is a test case y 2 C
such that y = d(x1, x2, · · · , xk), where d is k-ary. ut

First Order Mutant Coverage
Ø The Notion of First Order Mutants

• First order mutants are mutant test cases generated from seed test cases.
• Each first order mutant represents one operation condition of the system.

17 July 2023 Tutorial on Datamorphic Testing 57

specification can be executed by the test runner. The test
runner also implements various test strategies that combine
test morphisms to acheive advanced test automation. The
test scripting facility enables interactive testing activities to
be recorded as test scripts, saved into files, reloaded from
files and replayed.

Graphic User Interface

Test Scripts

Test Scripting Facility

Test Script
R

unner

Test Script
R

ecorder

Test Set

Test Set Management

Test Set Loader

Test Set Saver

Test Set Editor

Test Runner

Program
Under Test

Test Strategies

Test M
orphism

Executor

Java IDE

Test Spec (Bytecode)

Test Script
M

anager

Test M
orphism

Loader

Test Script Repository Test Set Repository
Test Spec
Repository

Figure 1. The Architecture of Morphy

Test specifications can be developed with any Java IDE,
but a wizard has been developed as an Eclipse plugin to
generate new skeleton Java class of test specification.

Morphy’s main graphic user interface shown in Figure
2 provides a user friendly environment in which testing
artefacts can be managed, basic testing activities can be
performed and automated testing facilities can be invoked.

At the very top of Morphy’s main window are four panels
of buttons for the management of test entities, performing
test activities by invoking various types of test morphisms,
applying test strategies, and recording-replaying test scripts,
respectively.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column as input to perform the interactive and
automatic testing functions.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower one reports errors detected by checking
the test results against metamorphisms.

Morphy enables test automation at three different levels.
At the lowest level, various test activities can be performed
by invoking test morphisms via a click of buttons on
Morphy’s GUI. At the medium level, Morphy implements
various test strategies to perform complicated testing activ-
ities through combinations and compositions of test mor-
phisms. At the highest level, test processes are automated by
recording, editing and replaying test scripts that consist of
a sequence of invocations of test morphisms and strategies.
It is particularly useful for repeated testing processes, such

as in regression testing and repeated experiments with the
software under test to obtain data for statistical analysis.

IV. MUTANT COMBINATION STRATEGIES

Test strategies play a crucial role in the automation of
datamorphic testing because they can combine and compose
test morphisms together effectively to achieve commonly oc-
curing software testing requirements. This section proposes
a set of test strategies that combines datamorphisms to enrich
a given test set with adequate coverage of different types of
mutant test cases.

A. First Order Mutant Coverage

A datamorphic approach to testing AI applications uses
seed test cases to test the normal operation condition of the
AI system under test, and uses datamorphisms to transform
a test case that represents other operation conditions that can
be derived from the normal operation conditions [29].

For example, to test face recognition applications, data-
morphisms are developed to transform the images of human
faces by editing the facial attributes, such as adding makeup,
wearing glasses, changing skin tunes, change hair styles and
colour, etc. In Figure 3, (a) is the original photo, (b), (c),
and (d) are images obtained by applying datamorphisms
of adding spectacles, applying makeup, and changing hair
styles, respectively. They are used to test face recognition
applications [29].

Similarly, in [25], for testing driverless vehicles, data-
morphisms are developed to alter the weather condition
of a recorded driving process to be in fog, to transform
the lighting condition from daytime to nightime with street
lights, etc. Such transformed test cases are called the mutant
test cases, and can formally be defined as follows.

Let T be the set of all possible test cases for the software
under test, S ⇢ T (S 6= ;) be a set of test cases, and D 6= ;
be a set of datamorphisms and d 2 D be a datamorphism
in D. We say that d is k-ary (k > 0), if d : T k ! T .

Definition 1: (First Order Mutants)
A test case y 2 T is called a first order mutant test case, or

simply a first order mutant, of S generated by D, if there is
a k-ary datamorphism d 2 D and test cases x1, · · · , xk 2 S
such that y = d(x1, · · · , xk). ut

In the context of testing AI applications where datamor-
phisms are transformations of test cases that alter the key
features of the test cases to represent different operation
conditions, it is important for cover each operation condition
adequately. Thus, here we propose a test adquacy criterion
called first order mutant completeness.

Definition 2: (First Order Mutant Completeness)
A set C of test cases is first order mutant complete with

respect to S and D, if S ✓ C, and for each d : T k ! T 2
D, and each xi 2 S, i = 1, · · · , k, there is a test case y 2 C
such that y = d(x1, x2, · · · , xk), where d is k-ary. ut

Test Adequacy Criterion: First Order Mutant Completeness

• A test set is first order mutant complete means it contains all seed test cases
and all first order mutants of the seed test cases

• Testing on a test set that is first order mutant complete means the testing
covered all operation conditions, but not their combinations.

17 July 2023 Tutorial on Datamorphic Testing 58

Algorithm 1: Generate 1st Order Complete Test Set

Figure 3. Morphy’s Test Data Window

der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

Definition 2 (First Order Mutant Completeness) A set C of
test cases is first order mutant complete with respect to S
and D, if S ✓ C, and for each d : T k ! T 2 D, and each
xi 2 S, i = 1, · · · , k, there is a test case y 2 C such that
y = d(x1, x2, · · · , xk), where d is k-ary. ut

In other words, a test set is first order mutant complete
if it contains every seed and every first order mutant. A test
strategy is to test the software with all the seeds and all the
first order mutant test cases generated from the seeds using
selected datamorphisms.

The following algorithm generates the minimal test set
that is first order mutant complete with respect to a give set
of seed test cases and a set of datamorphisms.

Algorithm 1 (Generate 1st Order Mutant Complete Tests)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin
1: C = EmptySet;
2: for (each datamorphism d in D){
2.1: tempT = EmptySet;
2.2: Assume that d is a k-ary datamorphism;
2.3: forall k-tuples (x1,... ,xk) of S {

add d(x1,... ,xk) to tempT;
};

2.4: C = C + tempT;
};

3: return C + S;
End

ut

The following theorem proves the correctness of the al-
gorithm.

Theorem 1 The test set generated from S using D by Al-
gorithm 1 is the minimal set of test cases that is first order
mutant complete with respect to S and D.
Proof.

(a) Completeness: Assume that the output test set C from
Algorithm 1 is not complete. This means there is either a
seed test case y not in C or there is a first order mutant
y generated from seeds x1, · · · , xk 2 S by using a k-ary
datamorphism d 2 D is not in C. In the former case, it is in
conflict with Step 3. In the latter case, it is in conflict with
Step 2.3. Therefore, the assumption is incorrect.

(b) Minimalness: It is obvious to see that the output only
contains seeds and first order mutants. ut

For example, consider a software system that takes a
point in the two-dimensional space of real numbers and
classifies the points into three subdomains: the red, the blue
and the black areas. The test set initially contains 100 ran-
dom points. The datamorphism is to add the middle point of
two test cases. Applying Algorithm 1 produces a first order
mutant complete test set, which contains 10000 test cases.
Figure 4 (a) and (b) below shows the results of testing on the
original 100 random test cases and on the 1st order mutant
complete test set, respectively.

(a) Original Test Set

(b) 1st Order Mutant Complete Test Set

Figure 4. Test Results

Datamorphisms can also be applied to test cases multiple
times to generate mutants of mutants, which are called high
order mutants. For the sake of convenience, a test case x 2
S is called a 0’th order mutant of S.

Definition 3 (Higher order mutants)
A test case y is a second order mutant of S by D, if there

is a k-ary datamorphism d 2 D and k test cases x1, · · · , xk

such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d 2 D and k test cases

5

17 July 2023 Tutorial on Datamorphic Testing 59

Correctness of The Algorithm

Figure 3. Morphy’s Test Data Window

der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

Definition 2 (First Order Mutant Completeness) A set C of
test cases is first order mutant complete with respect to S
and D, if S ✓ C, and for each d : T k ! T 2 D, and each
xi 2 S, i = 1, · · · , k, there is a test case y 2 C such that
y = d(x1, x2, · · · , xk), where d is k-ary. ut

In other words, a test set is first order mutant complete
if it contains every seed and every first order mutant. A test
strategy is to test the software with all the seeds and all the
first order mutant test cases generated from the seeds using
selected datamorphisms.

The following algorithm generates the minimal test set
that is first order mutant complete with respect to a give set
of seed test cases and a set of datamorphisms.

Algorithm 1 (Generate 1st Order Mutant Complete Tests)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin
1: C = EmptySet;
2: for (each datamorphism d in D){
2.1: tempT = EmptySet;
2.2: Assume that d is a k-ary datamorphism;
2.3: forall k-tuples (x1,... ,xk) of S {

add d(x1,... ,xk) to tempT;
};

2.4: C = C + tempT;
};

3: return C + S;
End

ut

The following theorem proves the correctness of the al-
gorithm.

Theorem 1 The test set generated from S using D by Al-
gorithm 1 is the minimal set of test cases that is first order
mutant complete with respect to S and D.
Proof.

(a) Completeness: Assume that the output test set C from
Algorithm 1 is not complete. This means there is either a
seed test case y not in C or there is a first order mutant
y generated from seeds x1, · · · , xk 2 S by using a k-ary
datamorphism d 2 D is not in C. In the former case, it is in
conflict with Step 3. In the latter case, it is in conflict with
Step 2.3. Therefore, the assumption is incorrect.

(b) Minimalness: It is obvious to see that the output only
contains seeds and first order mutants. ut

For example, consider a software system that takes a
point in the two-dimensional space of real numbers and
classifies the points into three subdomains: the red, the blue
and the black areas. The test set initially contains 100 ran-
dom points. The datamorphism is to add the middle point of
two test cases. Applying Algorithm 1 produces a first order
mutant complete test set, which contains 10000 test cases.
Figure 4 (a) and (b) below shows the results of testing on the
original 100 random test cases and on the 1st order mutant
complete test set, respectively.

(a) Original Test Set

(b) 1st Order Mutant Complete Test Set

Figure 4. Test Results

Datamorphisms can also be applied to test cases multiple
times to generate mutants of mutants, which are called high
order mutants. For the sake of convenience, a test case x 2
S is called a 0’th order mutant of S.

Definition 3 (Higher order mutants)
A test case y is a second order mutant of S by D, if there

is a k-ary datamorphism d 2 D and k test cases x1, · · · , xk

such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d 2 D and k test cases

5

17 July 2023 Tutorial on Datamorphic Testing 60

Figure 3. Morphy’s Test Data Window

der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

Definition 2 (First Order Mutant Completeness) A set C of
test cases is first order mutant complete with respect to S
and D, if S ✓ C, and for each d : T k ! T 2 D, and each
xi 2 S, i = 1, · · · , k, there is a test case y 2 C such that
y = d(x1, x2, · · · , xk), where d is k-ary. ut

In other words, a test set is first order mutant complete
if it contains every seed and every first order mutant. A test
strategy is to test the software with all the seeds and all the
first order mutant test cases generated from the seeds using
selected datamorphisms.

The following algorithm generates the minimal test set
that is first order mutant complete with respect to a give set
of seed test cases and a set of datamorphisms.

Algorithm 1 (Generate 1st Order Mutant Complete Tests)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin
1: C = EmptySet;
2: for (each datamorphism d in D){
2.1: tempT = EmptySet;
2.2: Assume that d is a k-ary datamorphism;
2.3: forall k-tuples (x1,... ,xk) of S {

add d(x1,... ,xk) to tempT;
};

2.4: C = C + tempT;
};

3: return C + S;
End

ut

The following theorem proves the correctness of the al-
gorithm.

Theorem 1 The test set generated from S using D by Al-
gorithm 1 is the minimal set of test cases that is first order
mutant complete with respect to S and D.
Proof.

(a) Completeness: Assume that the output test set C from
Algorithm 1 is not complete. This means there is either a
seed test case y not in C or there is a first order mutant
y generated from seeds x1, · · · , xk 2 S by using a k-ary
datamorphism d 2 D is not in C. In the former case, it is in
conflict with Step 3. In the latter case, it is in conflict with
Step 2.3. Therefore, the assumption is incorrect.

(b) Minimalness: It is obvious to see that the output only
contains seeds and first order mutants. ut

For example, consider a software system that takes a
point in the two-dimensional space of real numbers and
classifies the points into three subdomains: the red, the blue
and the black areas. The test set initially contains 100 ran-
dom points. The datamorphism is to add the middle point of
two test cases. Applying Algorithm 1 produces a first order
mutant complete test set, which contains 10000 test cases.
Figure 4 (a) and (b) below shows the results of testing on the
original 100 random test cases and on the 1st order mutant
complete test set, respectively.

(a) Original Test Set

(b) 1st Order Mutant Complete Test Set

Figure 4. Test Results

Datamorphisms can also be applied to test cases multiple
times to generate mutants of mutants, which are called high
order mutants. For the sake of convenience, a test case x 2
S is called a 0’th order mutant of S.

Definition 3 (Higher order mutants)
A test case y is a second order mutant of S by D, if there

is a k-ary datamorphism d 2 D and k test cases x1, · · · , xk

such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d 2 D and k test cases

5

Example:
The seed test set:
• 100 random points

Datamorphism:
• Generates the

midpoint of two test
cases.

The test set generated:
• 10000 points as the 1st

order mutant test
cases

• 100 original test cases

The application under test:
• classify points in a two dimensional space into

tree types: red, blue and black.

17 July 2023 Tutorial on Datamorphic Testing 61

High Order Mutants

Figure 3. Morphy’s Test Data Window

der mutant, of S generated by D, if there is a k-ary data-
morphism d 2 D and test cases x1, · · · , xk 2 S such that
y = d(x1, · · · , xk). ut

Definition 2 (First Order Mutant Completeness) A set C of
test cases is first order mutant complete with respect to S
and D, if S ✓ C, and for each d : T k ! T 2 D, and each
xi 2 S, i = 1, · · · , k, there is a test case y 2 C such that
y = d(x1, x2, · · · , xk), where d is k-ary. ut

In other words, a test set is first order mutant complete
if it contains every seed and every first order mutant. A test
strategy is to test the software with all the seeds and all the
first order mutant test cases generated from the seeds using
selected datamorphisms.

The following algorithm generates the minimal test set
that is first order mutant complete with respect to a give set
of seed test cases and a set of datamorphisms.

Algorithm 1 (Generate 1st Order Mutant Complete Tests)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin
1: C = EmptySet;
2: for (each datamorphism d in D){
2.1: tempT = EmptySet;
2.2: Assume that d is a k-ary datamorphism;
2.3: forall k-tuples (x1,... ,xk) of S {

add d(x1,... ,xk) to tempT;
};

2.4: C = C + tempT;
};

3: return C + S;
End

ut

The following theorem proves the correctness of the al-
gorithm.

Theorem 1 The test set generated from S using D by Al-
gorithm 1 is the minimal set of test cases that is first order
mutant complete with respect to S and D.
Proof.

(a) Completeness: Assume that the output test set C from
Algorithm 1 is not complete. This means there is either a
seed test case y not in C or there is a first order mutant
y generated from seeds x1, · · · , xk 2 S by using a k-ary
datamorphism d 2 D is not in C. In the former case, it is in
conflict with Step 3. In the latter case, it is in conflict with
Step 2.3. Therefore, the assumption is incorrect.

(b) Minimalness: It is obvious to see that the output only
contains seeds and first order mutants. ut

For example, consider a software system that takes a
point in the two-dimensional space of real numbers and
classifies the points into three subdomains: the red, the blue
and the black areas. The test set initially contains 100 ran-
dom points. The datamorphism is to add the middle point of
two test cases. Applying Algorithm 1 produces a first order
mutant complete test set, which contains 10000 test cases.
Figure 4 (a) and (b) below shows the results of testing on the
original 100 random test cases and on the 1st order mutant
complete test set, respectively.

(a) Original Test Set

(b) 1st Order Mutant Complete Test Set

Figure 4. Test Results

Datamorphisms can also be applied to test cases multiple
times to generate mutants of mutants, which are called high
order mutants. For the sake of convenience, a test case x 2
S is called a 0’th order mutant of S.

Definition 3 (Higher order mutants)
A test case y is a second order mutant of S by D, if there

is a k-ary datamorphism d 2 D and k test cases x1, · · · , xk

such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d 2 D and k test cases

5

x1, · · · , xk such that y = d(x1, · · · , xk) and xi are m’th
order mutants of S by D, where m < n, and at least one of
x1, · · · , xk is a (n� 1)’th order mutant of S by D. ut

Similar to first order mutant completeness, a test set is
2nd order mutant complete if it contains all seed test cases,
all 1st order mutants and all 2nd order mutant. In general,
we have the following definition.

Definition 4 (K’th order mutant completeness) A set C of
test cases is k’th order mutant complete with respect to S
and D, if it contains all i’th order mutant test cases of S by
D for all i = 0, · · · , k. ut

Corollary 1 of Theorem 1. By repeating Algorithm 1 for
K times that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete.
Proof. By induction on K. Details are omitted. ut

Assume that the set D of datamorphisms contains N
methods. If a test set is N ’th order mutant complete with
respect to S and D, it contains all permutations of the data-
morphisms applied to all test cases. We say that the test
set is permutation complete. If the datamorphisms are as-
sociative, commutative, distributive and idempotent, a per-
mutation complete test set contains all possible test cases
that can be derived from a give set of test cases using the
set of datamorphisms. The test set is therefore exhaustive
with regard to the set of seeds and the datamorphisms. It
usually contains a huge number of test cases, so the costs
of testing could be very high. A compromise is to cover the
combinations of datamorphisms.

A mutant of S by D can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 5 below shows some examples of mutants,
in which (a) and (b) are first order mutants, and (c) to (f) are
second order mutants.

Figure 7. Examples of tree representation of mutants

Given a mutant's tree representation, we now replace the test cases associated to the leaf nodes with variables in
such a way that each different leaf node is associated with a different variable that range over the seed test cases.
We can then obtain a function that generates a high order mutant when substitutes the variables with seed test
cases. Each tree structure of this kind is therefore a way to combine seed test cases to make a higher order mutant
test case. We say that a combination is !-ary, if it contains ! variables (which is equivalent to the number of leaf
nodes). In the sequel, we write "($%, . . . , $() to represent such a combination of datamorphism. When applying
such a !-ary datamorphism combination " to seed test cases *%, . . . , *(, we write + = 	"(*%, . . . , *() to denote
the result mutant test case. Let {/%, … , /1} be the set of datamorphisms in the tree, we also say that " is a
combination of {/%, … , /1}. Given a set 3 of datamorphisms, there may be many different combinations of 3.

Definition 6 (Complete set of combinations) A set 4 of datamorphism combinations is complete for 3, if for each
subset 35 ⊆ 	3, there is a combination " ∈ 4 that contains exactly the datamorphisms in 3'. □

Definition 7 (Combinatorial complete test sets) A set 94 of test cases is combinatorial complete with respect to :
and 3, if

a) there is a set 4 of datamorphism combinations that is complete with respect to 3; and
b) for each combination " ∈ 4, if " is !-ary then for each ! test cases $%, . . . , $(∈ 	:, there is a test case

+ in 94 such that +	 = 	"($%, . . . , $(). □

The following is an algorithm that generate a combinatorial complete test set.

Algorithm 2. (Generate combinatorial complete test set)

 Input: : = the set of seed test cases;
 3 = the set of datamorphisms;
 Output: 4 = a set of test cases that is combinatorial complete;
 Variables: ;<=>9 = temporal set of test cases;
 Begin
1: ;<=>9 = ∅	;
2: for (each datamorphism / ∈ 	3) {
2.1: ;<=>9 = ∅ ;
2.2: Assume that / is a !-ary datamorphism, where ! > 0;
2.3: for (all !-ary tuples ($%, . . . , $() of elements in :){
 add /($%, . . . , $() to ;<=>9;
 };
2.4: : = : ∪ 	;<=>9;
 };
3: return 4 ∪ 	:;
 End

Theorem 2. The test set generated by Algorithm 2 is combinatorial complete with respect to : and 3.

/%

C% CD C%

/E

/D

CD

C%

/E

CD /%

C%

/E

/D

CD

/%

C%

/E

(b) (a)

(d) (e) (f)

CD C%

/E

/%

(c)

Figure 5. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the
test cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a dif-
ferent variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substitutes the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to

make higher order mutant test cases from seed test cases.
We say that a combination c is k-ary, if it contains k vari-
ables, which is equivalent to the number of leaf nodes. We
write c(x1, · · · , xk) to represent such a combination of data-
morphism. When applying c to seed test cases a1, · · · , ak,
we write y = c(a1, · · · , ak) to denote the result mutant test
case. Let {d1, · · · , dv} be the set of datamorphisms in the
tree, we also say that c is a combination of {d1, · · · , dv}.
Given a set D of datamorphisms, there may be many differ-
ent combinations of D.

Definition 5 (Complete set of datamorphic combinations)
A set C of datamorphism combinations is combinatorial
complete for D, if for all subsets D0 ✓ D, there is a com-
bination c 2 C that contains exactly the datamorphisms in
D0. ut

Definition 6 (Combinatorial complete test sets) A set V of
test cases is combinatorial complete with respect to S and
D, if

• there is a set C of datamorphism combinations that is
combinatorial complete with respect to D; and

• for every combination c 2 C, if c is k-ary, then for all
k-tuple of test cases (x1, · · · , xk) 2 Sk, there is a test
case y in V such that y = c(x1, · · · , xk). ut

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2 (Generate Combinatorial Complete Test Set)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin
1: for (each datamorphism d in D) {
1.1: tempT = empty_set;
1.2: Assume d is a k-ary, where k>0;
1.3: for (all k-tuples (x1,...,xk) of S){

add d(x1,...,xk) to tempT;
};

1.4: S = S + tempT;
};

2: return C + S;
End

Theorem 2 The test set generated by Algorithm 2 is com-
binatorial complete with respect to S and D.
Proof. Let C be a subset of D. We write ||X|| to denote the
size of a set X . Let ||D|| = m. We proof by induction on
n = ||C||  m that the test set generated by the algorithm
is complete with respect to C.

When n = 0: the combination c contains no datamor-
phism. By step 2, the result test set contains S. Thus, the
statement is true in this case.

Assume that when n = N � 1 < m = ||D|| the state-
ment is true.

6

17 July 2023 Tutorial on Datamorphic Testing 62

4.1 Main window

Figure 1 below shows Morphy's main user interface.

Figure 1. Morphy's Main Window

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel
are functions to manage the artefacts of software testing, which include

a) load a Morphy test specification,
b) load a previously saved test set from a file, which contains intermediate results of testing,
c) save the current test set into a file, which contains the current state of the testing,
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.

It also gives the class name of the current loaded test specification.

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms.
These testing activities include the following; see Section 5 for details.

a) Seed: to generate seed test cases using selected seed maker methods;
b) Mutate: to generate mutant test cases using selected datamorphisms;
c) Filter: to remove test cases from the current test set using selected test set filters;
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;
e) Measure: to measure the current test set by invoking the selected test set metrics;

Figure 2. Morphy’s Main GUI

 (a) Original Photo (b) With Glasses (c) Wearing Makeup (d) Changed Hair Style

 (e) b + d (f) c + d (g) b + c (h) b + c + d

Figure 3. Mutants for Face Recognition

In other words, a test set is first order mutant complete
if it contains every seed and every first order mutant. A test
strategy is to test the software with all the seeds and all the
first order mutant test cases generated from the seeds using
selected datamorphisms.

The following algorithm generates the minimal test set
that is first order mutant complete with respect to a given
set of seed test cases and a set of datamorphisms.

Algorithm 1: (Generate 1st Order Mutant Complete
Tests)
Input: S = the set of seed test cases;

D = the set of datamorphisms;

Output: C = a set of test cases;

Variables: tempT = temporal set of test cases;

Begin

C = EmptySet;

for (each datamorphism d in D){

tempT = EmptySet;

Assume that d is a k-ary datamorphism;

forall k-tuples (x1,... ,xk) of S {

add d(x1,... ,xk) to tempT;

};

C = C + tempT;

};

return C + S;

End

The following theorem asserts the correctness of the
algorithm. The proof can be found in [31].

Theorem 1: The test set generated from S using D by
Algorithm 1 is the minimal set of test cases that is first
order mutant complete with respect to S and D. ut

B. Higher Order Mutant Coverage

Datamorphisms can also be applied to test cases multiple
times to generate mutants of mutants, which are called high
order mutants and formally defined as follows. For the sake
of convenience, a test case x 2 S is called a 0’th order
mutant of S.

Definition 3: (Higher order mutants)
A test case y is a second order mutant of S by D, if there

is a k-ary datamorphism d 2 D and k test cases x1, · · · , xk

Examples of 1st Order and Higher Order Mutants
Higher order mutants are obtained by applying datamorphisms multiple times. They
represent combinations of operation conditions.

17 July 2023 Tutorial on Datamorphic Testing 63

such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d 2 D and k test cases
x1, · · · , xk such that y = d(x1, · · · , xk) and xi are m’th
order mutants of S by D, where m < n, and at least one
of x1, · · · , xk is a (n� 1)’th order mutant of S by D. ut

For many AI applications, higher order mutants are im-
portant test cases. For example, to test a face recognition
application, it is desirable to include test cases that are
obtained by adding to the image of a human face a pair
of glasses, applying makeups and dying the hair colour. In
Figure 3, image (e)-(g) are test cases of 2nd order mutants,
while image (h) is a 3rd order mutant of the original image.
In testing a driveless car, it is desirable to have test cases
representing an operating condition where the road condition
is wet and weather is foggy, and lighting is night time. Such
operating conditions may occur at the same time. Therefore,
it is necessary to test the system on such a combination of
operating conditions.

Similar to first order mutant completeness, a test set is
second order mutant complete if it contains all seed test
cases, all first order mutants and all second order mutants.
In general, we have the following test adequate criterion.

Definition 4: (K’th order mutant completeness) A set C
of test cases is k’th order mutant complete with respect to
S and D, if it contains all i’th order mutant test cases of S
by D for all i = 0, · · · , k. ut

The following can be proved based on Theorem 1 by
induction on the order K.

Corollary of Theorem 1: By repeating Algorithm 1 for K
times such that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete. ut

C. Datamorphic Combination Coverage
Assume that the set D of datamorphisms contains N

methods. If a test set is N ’th order mutant complete with
respect to S and D, it contains all permutations of the
datamorphisms applied to all test cases. We say that the
test set is permutation complete. If the datamorphisms
are associative, commutative, distributive and idempotent, a
permutation complete test set contains all possible test cases
that can be derived from a given set of test cases using the
set of datamorphisms. The test set is therefore exhaustive
with regard to the set of seeds and the datamorphisms. It
usually contains a huge number of test cases, so the cost
of testing can be very high. A compromise is to cover the
combinations of datamorphisms.

A mutant of S by D can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 4 below shows some examples of mutants,

in which (a) and (b) are first order mutants, and (c) to (f)
are second order mutants.

Figure 7. Examples of tree representation of mutants

Given a mutant's tree representation, we now replace the test cases associated to the leaf nodes with variables in
such a way that each different leaf node is associated with a different variable that range over the seed test cases.
We can then obtain a function that generates a high order mutant when substitutes the variables with seed test
cases. Each tree structure of this kind is therefore a way to combine seed test cases to make a higher order mutant
test case. We say that a combination is !-ary, if it contains ! variables (which is equivalent to the number of leaf
nodes). In the sequel, we write "($%, . . . , $() to represent such a combination of datamorphism. When applying
such a !-ary datamorphism combination " to seed test cases *%, . . . , *(, we write + = 	"(*%, . . . , *() to denote
the result mutant test case. Let {/%, … , /1} be the set of datamorphisms in the tree, we also say that " is a
combination of {/%, … , /1}. Given a set 3 of datamorphisms, there may be many different combinations of 3.

Definition 6 (Complete set of combinations) A set 4 of datamorphism combinations is complete for 3, if for each
subset 35 ⊆ 	3, there is a combination " ∈ 4 that contains exactly the datamorphisms in 3'. □

Definition 7 (Combinatorial complete test sets) A set 94 of test cases is combinatorial complete with respect to :
and 3, if

a) there is a set 4 of datamorphism combinations that is complete with respect to 3; and
b) for each combination " ∈ 4, if " is !-ary then for each ! test cases $%, . . . , $(∈ 	:, there is a test case

+ in 94 such that +	 = 	"($%, . . . , $(). □

The following is an algorithm that generate a combinatorial complete test set.

Algorithm 2. (Generate combinatorial complete test set)

 Input: : = the set of seed test cases;
 3 = the set of datamorphisms;
 Output: 4 = a set of test cases that is combinatorial complete;
 Variables: ;<=>9 = temporal set of test cases;
 Begin
1: ;<=>9 = ∅	;
2: for (each datamorphism / ∈ 	3) {
2.1: ;<=>9 = ∅ ;
2.2: Assume that / is a !-ary datamorphism, where ! > 0;
2.3: for (all !-ary tuples ($%, . . . , $() of elements in :){
 add /($%, . . . , $() to ;<=>9;
 };
2.4: : = : ∪ 	;<=>9;
 };
3: return 4 ∪ 	:;
 End

Theorem 2. The test set generated by Algorithm 2 is combinatorial complete with respect to : and 3.

/%

C% CD C%

/E

/D

CD

C%

/E

CD /%

C%

/E

/D

CD

/%

C%

/E

(b) (a)

(d) (e) (f)

CD C%

/E

/%

(c)

Figure 4. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the test
cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a
different variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substituting the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to
make higher order mutant test cases from seed test cases. We
say that a combination c is k-ary, if it contains k variables,
which is equivalent to the number of leaf nodes. We write
c(x1, · · · , xk) to represent such a combination of datamor-
phism. When applying c to seed test cases a1, · · · , ak, we
write y = c(a1, · · · , ak) to denote the result mutant test case.
Let {d1, · · · , dv} be the set of datamorphisms in the tree,
we also say that c is a combination of {d1, · · · , dv}. Given
a set D of datamorphisms, there may be many different
combinations of D.

Definition 5: (Combintatorial Coverage)
A set C of datamorphism combinations is combinatorial

complete for D, if for all non-empty subsets D0 ✓ D,
there is a combination c 2 C such that D0 is the set of
datamorphisms in c.

A set C of test cases is combinatorial complete with
respect to S and D, if

• there is a set C of datamorphism combinations that is
combinatorial complete with respect to D; and

• for every combination c 2 C , if c is k-ary, then for all
k-tuples of test cases (x1, · · · , xk) 2 Sk, there is a test
case y in C such that y = c(x1, · · · , xk). ut

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2: (Generate Combinatorial Complete Test
Set)
Input: S = the set of seed test cases;

D = the set of datamorphisms;

Output: C = a set of test cases;

Variables: tempT = temporal set of test cases;

Begin

for (each datamorphism d in D) {

tempT = empty_set;

Assume d is a k-ary, where k>0;

for (all k-tuples (x1,...,xk) of S){

add d(x1,...,xk) to tempT;

};

S = S + tempT;

};

Test Adequacy Criterion: K’th Order Mutant Completeness

such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d 2 D and k test cases
x1, · · · , xk such that y = d(x1, · · · , xk) and xi are m’th
order mutants of S by D, where m < n, and at least one
of x1, · · · , xk is a (n� 1)’th order mutant of S by D. ut

For many AI applications, higher order mutants are im-
portant test cases. For example, to test a face recognition
application, it is desirable to include test cases that are
obtained by adding to the image of a human face a pair
of glasses, applying makeups and dying the hair colour. In
Figure 3, image (e)-(g) are test cases of 2nd order mutants,
while image (h) is a 3rd order mutant of the original image.
In testing a driveless car, it is desirable to have test cases
representing an operating condition where the road condition
is wet and weather is foggy, and lighting is night time. Such
operating conditions may occur at the same time. Therefore,
it is necessary to test the system on such a combination of
operating conditions.

Similar to first order mutant completeness, a test set is
second order mutant complete if it contains all seed test
cases, all first order mutants and all second order mutants.
In general, we have the following test adequate criterion.

Definition 4: (K’th order mutant completeness) A set C
of test cases is k’th order mutant complete with respect to
S and D, if it contains all i’th order mutant test cases of S
by D for all i = 0, · · · , k. ut

The following can be proved based on Theorem 1 by
induction on the order K.

Corollary of Theorem 1: By repeating Algorithm 1 for K
times such that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete. ut

C. Datamorphic Combination Coverage
Assume that the set D of datamorphisms contains N

methods. If a test set is N ’th order mutant complete with
respect to S and D, it contains all permutations of the
datamorphisms applied to all test cases. We say that the
test set is permutation complete. If the datamorphisms
are associative, commutative, distributive and idempotent, a
permutation complete test set contains all possible test cases
that can be derived from a given set of test cases using the
set of datamorphisms. The test set is therefore exhaustive
with regard to the set of seeds and the datamorphisms. It
usually contains a huge number of test cases, so the cost
of testing can be very high. A compromise is to cover the
combinations of datamorphisms.

A mutant of S by D can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 4 below shows some examples of mutants,

in which (a) and (b) are first order mutants, and (c) to (f)
are second order mutants.

Figure 7. Examples of tree representation of mutants

Given a mutant's tree representation, we now replace the test cases associated to the leaf nodes with variables in
such a way that each different leaf node is associated with a different variable that range over the seed test cases.
We can then obtain a function that generates a high order mutant when substitutes the variables with seed test
cases. Each tree structure of this kind is therefore a way to combine seed test cases to make a higher order mutant
test case. We say that a combination is !-ary, if it contains ! variables (which is equivalent to the number of leaf
nodes). In the sequel, we write "($%, . . . , $() to represent such a combination of datamorphism. When applying
such a !-ary datamorphism combination " to seed test cases *%, . . . , *(, we write + = 	"(*%, . . . , *() to denote
the result mutant test case. Let {/%, … , /1} be the set of datamorphisms in the tree, we also say that " is a
combination of {/%, … , /1}. Given a set 3 of datamorphisms, there may be many different combinations of 3.

Definition 6 (Complete set of combinations) A set 4 of datamorphism combinations is complete for 3, if for each
subset 35 ⊆ 	3, there is a combination " ∈ 4 that contains exactly the datamorphisms in 3'. □

Definition 7 (Combinatorial complete test sets) A set 94 of test cases is combinatorial complete with respect to :
and 3, if

a) there is a set 4 of datamorphism combinations that is complete with respect to 3; and
b) for each combination " ∈ 4, if " is !-ary then for each ! test cases $%, . . . , $(∈ 	:, there is a test case

+ in 94 such that +	 = 	"($%, . . . , $(). □

The following is an algorithm that generate a combinatorial complete test set.

Algorithm 2. (Generate combinatorial complete test set)

 Input: : = the set of seed test cases;
 3 = the set of datamorphisms;
 Output: 4 = a set of test cases that is combinatorial complete;
 Variables: ;<=>9 = temporal set of test cases;
 Begin
1: ;<=>9 = ∅	;
2: for (each datamorphism / ∈ 	3) {
2.1: ;<=>9 = ∅ ;
2.2: Assume that / is a !-ary datamorphism, where ! > 0;
2.3: for (all !-ary tuples ($%, . . . , $() of elements in :){
 add /($%, . . . , $() to ;<=>9;
 };
2.4: : = : ∪ 	;<=>9;
 };
3: return 4 ∪ 	:;
 End

Theorem 2. The test set generated by Algorithm 2 is combinatorial complete with respect to : and 3.

/%

C% CD C%

/E

/D

CD

C%

/E

CD /%

C%

/E

/D

CD

/%

C%

/E

(b) (a)

(d) (e) (f)

CD C%

/E

/%

(c)

Figure 4. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the test
cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a
different variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substituting the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to
make higher order mutant test cases from seed test cases. We
say that a combination c is k-ary, if it contains k variables,
which is equivalent to the number of leaf nodes. We write
c(x1, · · · , xk) to represent such a combination of datamor-
phism. When applying c to seed test cases a1, · · · , ak, we
write y = c(a1, · · · , ak) to denote the result mutant test case.
Let {d1, · · · , dv} be the set of datamorphisms in the tree,
we also say that c is a combination of {d1, · · · , dv}. Given
a set D of datamorphisms, there may be many different
combinations of D.

Definition 5: (Combintatorial Coverage)
A set C of datamorphism combinations is combinatorial

complete for D, if for all non-empty subsets D0 ✓ D,
there is a combination c 2 C such that D0 is the set of
datamorphisms in c.

A set C of test cases is combinatorial complete with
respect to S and D, if

• there is a set C of datamorphism combinations that is
combinatorial complete with respect to D; and

• for every combination c 2 C , if c is k-ary, then for all
k-tuples of test cases (x1, · · · , xk) 2 Sk, there is a test
case y in C such that y = c(x1, · · · , xk). ut

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2: (Generate Combinatorial Complete Test
Set)
Input: S = the set of seed test cases;

D = the set of datamorphisms;

Output: C = a set of test cases;

Variables: tempT = temporal set of test cases;

Begin

for (each datamorphism d in D) {

tempT = empty_set;

Assume d is a k-ary, where k>0;

for (all k-tuples (x1,...,xk) of S){

add d(x1,...,xk) to tempT;

};

S = S + tempT;

};

Ø Algorithm: Generate K’th Order Mutant Complete Test Sets:
• Call Algorithm 1 repeatedly for K times with the previous output as the

input of the next call
Ø Correctness of the Algorithm:

17 July 2023 Tutorial on Datamorphic Testing 64

Permutation Completeness and Exhaustive Test
Assume that the set D of datamorphisms contains N methods.

§Permutation complete test set:
If a test set is N’th order mutant complete with respect to S and D, it will contains
all permutations of the datamorphisms applied to all test cases.

§Exhaustive test set:
If the datamorphisms are associative, commutative, distributive and idempotent,
a permutation complete test set contains all possible test cases that can be
derived from a given set of test cases using the set of datamorphisms. The test
set is therefore exhaustive with regard to the set of seeds and the
datamorphisms.

17 July 2023 Tutorial on Datamorphic Testing 65

such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d 2 D and k test cases
x1, · · · , xk such that y = d(x1, · · · , xk) and xi are m’th
order mutants of S by D, where m < n, and at least one
of x1, · · · , xk is a (n� 1)’th order mutant of S by D. ut

For many AI applications, higher order mutants are im-
portant test cases. For example, to test a face recognition
application, it is desirable to include test cases that are
obtained by adding to the image of a human face a pair
of glasses, applying makeups and dying the hair colour. In
Figure 3, image (e)-(g) are test cases of 2nd order mutants,
while image (h) is a 3rd order mutant of the original image.
In testing a driveless car, it is desirable to have test cases
representing an operating condition where the road condition
is wet and weather is foggy, and lighting is night time. Such
operating conditions may occur at the same time. Therefore,
it is necessary to test the system on such a combination of
operating conditions.

Similar to first order mutant completeness, a test set is
second order mutant complete if it contains all seed test
cases, all first order mutants and all second order mutants.
In general, we have the following test adequate criterion.

Definition 4: (K’th order mutant completeness) A set C
of test cases is k’th order mutant complete with respect to
S and D, if it contains all i’th order mutant test cases of S
by D for all i = 0, · · · , k. ut

The following can be proved based on Theorem 1 by
induction on the order K.

Corollary of Theorem 1: By repeating Algorithm 1 for K
times such that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete. ut

C. Datamorphic Combination Coverage
Assume that the set D of datamorphisms contains N

methods. If a test set is N ’th order mutant complete with
respect to S and D, it contains all permutations of the
datamorphisms applied to all test cases. We say that the
test set is permutation complete. If the datamorphisms
are associative, commutative, distributive and idempotent, a
permutation complete test set contains all possible test cases
that can be derived from a given set of test cases using the
set of datamorphisms. The test set is therefore exhaustive
with regard to the set of seeds and the datamorphisms. It
usually contains a huge number of test cases, so the cost
of testing can be very high. A compromise is to cover the
combinations of datamorphisms.

A mutant of S by D can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 4 below shows some examples of mutants,

in which (a) and (b) are first order mutants, and (c) to (f)
are second order mutants.

Figure 7. Examples of tree representation of mutants

Given a mutant's tree representation, we now replace the test cases associated to the leaf nodes with variables in
such a way that each different leaf node is associated with a different variable that range over the seed test cases.
We can then obtain a function that generates a high order mutant when substitutes the variables with seed test
cases. Each tree structure of this kind is therefore a way to combine seed test cases to make a higher order mutant
test case. We say that a combination is !-ary, if it contains ! variables (which is equivalent to the number of leaf
nodes). In the sequel, we write "($%, . . . , $() to represent such a combination of datamorphism. When applying
such a !-ary datamorphism combination " to seed test cases *%, . . . , *(, we write + = 	"(*%, . . . , *() to denote
the result mutant test case. Let {/%, … , /1} be the set of datamorphisms in the tree, we also say that " is a
combination of {/%, … , /1}. Given a set 3 of datamorphisms, there may be many different combinations of 3.

Definition 6 (Complete set of combinations) A set 4 of datamorphism combinations is complete for 3, if for each
subset 35 ⊆ 	3, there is a combination " ∈ 4 that contains exactly the datamorphisms in 3'. □

Definition 7 (Combinatorial complete test sets) A set 94 of test cases is combinatorial complete with respect to :
and 3, if

a) there is a set 4 of datamorphism combinations that is complete with respect to 3; and
b) for each combination " ∈ 4, if " is !-ary then for each ! test cases $%, . . . , $(∈ 	:, there is a test case

+ in 94 such that +	 = 	"($%, . . . , $(). □

The following is an algorithm that generate a combinatorial complete test set.

Algorithm 2. (Generate combinatorial complete test set)

 Input: : = the set of seed test cases;
 3 = the set of datamorphisms;
 Output: 4 = a set of test cases that is combinatorial complete;
 Variables: ;<=>9 = temporal set of test cases;
 Begin
1: ;<=>9 = ∅	;
2: for (each datamorphism / ∈ 	3) {
2.1: ;<=>9 = ∅ ;
2.2: Assume that / is a !-ary datamorphism, where ! > 0;
2.3: for (all !-ary tuples ($%, . . . , $() of elements in :){
 add /($%, . . . , $() to ;<=>9;
 };
2.4: : = : ∪ 	;<=>9;
 };
3: return 4 ∪ 	:;
 End

Theorem 2. The test set generated by Algorithm 2 is combinatorial complete with respect to : and 3.

/%

C% CD C%

/E

/D

CD

C%

/E

CD /%

C%

/E

/D

CD

/%

C%

/E

(b) (a)

(d) (e) (f)

CD C%

/E

/%

(c)

Figure 4. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the test
cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a
different variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substituting the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to
make higher order mutant test cases from seed test cases. We
say that a combination c is k-ary, if it contains k variables,
which is equivalent to the number of leaf nodes. We write
c(x1, · · · , xk) to represent such a combination of datamor-
phism. When applying c to seed test cases a1, · · · , ak, we
write y = c(a1, · · · , ak) to denote the result mutant test case.
Let {d1, · · · , dv} be the set of datamorphisms in the tree,
we also say that c is a combination of {d1, · · · , dv}. Given
a set D of datamorphisms, there may be many different
combinations of D.

Definition 5: (Combintatorial Coverage)
A set C of datamorphism combinations is combinatorial

complete for D, if for all non-empty subsets D0 ✓ D,
there is a combination c 2 C such that D0 is the set of
datamorphisms in c.

A set C of test cases is combinatorial complete with
respect to S and D, if

• there is a set C of datamorphism combinations that is
combinatorial complete with respect to D; and

• for every combination c 2 C , if c is k-ary, then for all
k-tuples of test cases (x1, · · · , xk) 2 Sk, there is a test
case y in C such that y = c(x1, · · · , xk). ut

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2: (Generate Combinatorial Complete Test
Set)
Input: S = the set of seed test cases;

D = the set of datamorphisms;

Output: C = a set of test cases;

Variables: tempT = temporal set of test cases;

Begin

for (each datamorphism d in D) {

tempT = empty_set;

Assume d is a k-ary, where k>0;

for (all k-tuples (x1,...,xk) of S){

add d(x1,...,xk) to tempT;

};

S = S + tempT;

};

Combinations of Datamorphisms
Datamorphisms

Seed test cases

Ø 3 datamorphisms: d1, d2, d3
Ø 2 see test cases: s1, s2

Ø (a) and (b) are 1st order
Ø (c) - (f) are 2nd order
Ø There are more possible combinations

17 July 2023 Tutorial on Datamorphic Testing 66

such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d 2 D and k test cases
x1, · · · , xk such that y = d(x1, · · · , xk) and xi are m’th
order mutants of S by D, where m < n, and at least one
of x1, · · · , xk is a (n� 1)’th order mutant of S by D. ut

For many AI applications, higher order mutants are im-
portant test cases. For example, to test a face recognition
application, it is desirable to include test cases that are
obtained by adding to the image of a human face a pair
of glasses, applying makeups and dying the hair colour. In
Figure 3, image (e)-(g) are test cases of 2nd order mutants,
while image (h) is a 3rd order mutant of the original image.
In testing a driveless car, it is desirable to have test cases
representing an operating condition where the road condition
is wet and weather is foggy, and lighting is night time. Such
operating conditions may occur at the same time. Therefore,
it is necessary to test the system on such a combination of
operating conditions.

Similar to first order mutant completeness, a test set is
second order mutant complete if it contains all seed test
cases, all first order mutants and all second order mutants.
In general, we have the following test adequate criterion.

Definition 4: (K’th order mutant completeness) A set C
of test cases is k’th order mutant complete with respect to
S and D, if it contains all i’th order mutant test cases of S
by D for all i = 0, · · · , k. ut

The following can be proved based on Theorem 1 by
induction on the order K.

Corollary of Theorem 1: By repeating Algorithm 1 for K
times such that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete. ut

C. Datamorphic Combination Coverage
Assume that the set D of datamorphisms contains N

methods. If a test set is N ’th order mutant complete with
respect to S and D, it contains all permutations of the
datamorphisms applied to all test cases. We say that the
test set is permutation complete. If the datamorphisms
are associative, commutative, distributive and idempotent, a
permutation complete test set contains all possible test cases
that can be derived from a given set of test cases using the
set of datamorphisms. The test set is therefore exhaustive
with regard to the set of seeds and the datamorphisms. It
usually contains a huge number of test cases, so the cost
of testing can be very high. A compromise is to cover the
combinations of datamorphisms.

A mutant of S by D can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 4 below shows some examples of mutants,

in which (a) and (b) are first order mutants, and (c) to (f)
are second order mutants.

Figure 7. Examples of tree representation of mutants

Given a mutant's tree representation, we now replace the test cases associated to the leaf nodes with variables in
such a way that each different leaf node is associated with a different variable that range over the seed test cases.
We can then obtain a function that generates a high order mutant when substitutes the variables with seed test
cases. Each tree structure of this kind is therefore a way to combine seed test cases to make a higher order mutant
test case. We say that a combination is !-ary, if it contains ! variables (which is equivalent to the number of leaf
nodes). In the sequel, we write "($%, . . . , $() to represent such a combination of datamorphism. When applying
such a !-ary datamorphism combination " to seed test cases *%, . . . , *(, we write + = 	"(*%, . . . , *() to denote
the result mutant test case. Let {/%, … , /1} be the set of datamorphisms in the tree, we also say that " is a
combination of {/%, … , /1}. Given a set 3 of datamorphisms, there may be many different combinations of 3.

Definition 6 (Complete set of combinations) A set 4 of datamorphism combinations is complete for 3, if for each
subset 35 ⊆ 	3, there is a combination " ∈ 4 that contains exactly the datamorphisms in 3'. □

Definition 7 (Combinatorial complete test sets) A set 94 of test cases is combinatorial complete with respect to :
and 3, if

a) there is a set 4 of datamorphism combinations that is complete with respect to 3; and
b) for each combination " ∈ 4, if " is !-ary then for each ! test cases $%, . . . , $(∈ 	:, there is a test case

+ in 94 such that +	 = 	"($%, . . . , $(). □

The following is an algorithm that generate a combinatorial complete test set.

Algorithm 2. (Generate combinatorial complete test set)

 Input: : = the set of seed test cases;
 3 = the set of datamorphisms;
 Output: 4 = a set of test cases that is combinatorial complete;
 Variables: ;<=>9 = temporal set of test cases;
 Begin
1: ;<=>9 = ∅	;
2: for (each datamorphism / ∈ 	3) {
2.1: ;<=>9 = ∅ ;
2.2: Assume that / is a !-ary datamorphism, where ! > 0;
2.3: for (all !-ary tuples ($%, . . . , $() of elements in :){
 add /($%, . . . , $() to ;<=>9;
 };
2.4: : = : ∪ 	;<=>9;
 };
3: return 4 ∪ 	:;
 End

Theorem 2. The test set generated by Algorithm 2 is combinatorial complete with respect to : and 3.

/%

C% CD C%

/E

/D

CD

C%

/E

CD /%

C%

/E

/D

CD

/%

C%

/E

(b) (a)

(d) (e) (f)

CD C%

/E

/%

(c)

Figure 4. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the test
cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a
different variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substituting the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to
make higher order mutant test cases from seed test cases. We
say that a combination c is k-ary, if it contains k variables,
which is equivalent to the number of leaf nodes. We write
c(x1, · · · , xk) to represent such a combination of datamor-
phism. When applying c to seed test cases a1, · · · , ak, we
write y = c(a1, · · · , ak) to denote the result mutant test case.
Let {d1, · · · , dv} be the set of datamorphisms in the tree,
we also say that c is a combination of {d1, · · · , dv}. Given
a set D of datamorphisms, there may be many different
combinations of D.

Definition 5: (Combintatorial Coverage)
A set C of datamorphism combinations is combinatorial

complete for D, if for all non-empty subsets D0 ✓ D,
there is a combination c 2 C such that D0 is the set of
datamorphisms in c.

A set C of test cases is combinatorial complete with
respect to S and D, if

• there is a set C of datamorphism combinations that is
combinatorial complete with respect to D; and

• for every combination c 2 C , if c is k-ary, then for all
k-tuples of test cases (x1, · · · , xk) 2 Sk, there is a test
case y in C such that y = c(x1, · · · , xk). ut

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2: (Generate Combinatorial Complete Test
Set)
Input: S = the set of seed test cases;

D = the set of datamorphisms;

Output: C = a set of test cases;

Variables: tempT = temporal set of test cases;

Begin

for (each datamorphism d in D) {

tempT = empty_set;

Assume d is a k-ary, where k>0;

for (all k-tuples (x1,...,xk) of S){

add d(x1,...,xk) to tempT;

};

S = S + tempT;

};

Test Adequacy Criterion: Combinatorial Coverage

17 July 2023 Tutorial on Datamorphic Testing 67

x1, · · · , xk such that y = d(x1, · · · , xk) and xi are m’th
order mutants of S by D, where m < n, and at least one of
x1, · · · , xk is a (n� 1)’th order mutant of S by D. ut

Similar to first order mutant completeness, a test set is
2nd order mutant complete if it contains all seed test cases,
all 1st order mutants and all 2nd order mutant. In general,
we have the following definition.

Definition 4 (K’th order mutant completeness) A set C of
test cases is k’th order mutant complete with respect to S
and D, if it contains all i’th order mutant test cases of S by
D for all i = 0, · · · , k. ut

Corollary 1 of Theorem 1. By repeating Algorithm 1 for
K times that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete.
Proof. By induction on K. Details are omitted. ut

Assume that the set D of datamorphisms contains N
methods. If a test set is N ’th order mutant complete with
respect to S and D, it contains all permutations of the data-
morphisms applied to all test cases. We say that the test
set is permutation complete. If the datamorphisms are as-
sociative, commutative, distributive and idempotent, a per-
mutation complete test set contains all possible test cases
that can be derived from a give set of test cases using the
set of datamorphisms. The test set is therefore exhaustive
with regard to the set of seeds and the datamorphisms. It
usually contains a huge number of test cases, so the costs
of testing could be very high. A compromise is to cover the
combinations of datamorphisms.

A mutant of S by D can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 5 below shows some examples of mutants,
in which (a) and (b) are first order mutants, and (c) to (f) are
second order mutants.

Figure 7. Examples of tree representation of mutants

Given a mutant's tree representation, we now replace the test cases associated to the leaf nodes with variables in
such a way that each different leaf node is associated with a different variable that range over the seed test cases.
We can then obtain a function that generates a high order mutant when substitutes the variables with seed test
cases. Each tree structure of this kind is therefore a way to combine seed test cases to make a higher order mutant
test case. We say that a combination is !-ary, if it contains ! variables (which is equivalent to the number of leaf
nodes). In the sequel, we write "($%, . . . , $() to represent such a combination of datamorphism. When applying
such a !-ary datamorphism combination " to seed test cases *%, . . . , *(, we write + = 	"(*%, . . . , *() to denote
the result mutant test case. Let {/%, … , /1} be the set of datamorphisms in the tree, we also say that " is a
combination of {/%, … , /1}. Given a set 3 of datamorphisms, there may be many different combinations of 3.

Definition 6 (Complete set of combinations) A set 4 of datamorphism combinations is complete for 3, if for each
subset 35 ⊆ 	3, there is a combination " ∈ 4 that contains exactly the datamorphisms in 3'. □

Definition 7 (Combinatorial complete test sets) A set 94 of test cases is combinatorial complete with respect to :
and 3, if

a) there is a set 4 of datamorphism combinations that is complete with respect to 3; and
b) for each combination " ∈ 4, if " is !-ary then for each ! test cases $%, . . . , $(∈ 	:, there is a test case

+ in 94 such that +	 = 	"($%, . . . , $(). □

The following is an algorithm that generate a combinatorial complete test set.

Algorithm 2. (Generate combinatorial complete test set)

 Input: : = the set of seed test cases;
 3 = the set of datamorphisms;
 Output: 4 = a set of test cases that is combinatorial complete;
 Variables: ;<=>9 = temporal set of test cases;
 Begin
1: ;<=>9 = ∅	;
2: for (each datamorphism / ∈ 	3) {
2.1: ;<=>9 = ∅ ;
2.2: Assume that / is a !-ary datamorphism, where ! > 0;
2.3: for (all !-ary tuples ($%, . . . , $() of elements in :){
 add /($%, . . . , $() to ;<=>9;
 };
2.4: : = : ∪ 	;<=>9;
 };
3: return 4 ∪ 	:;
 End

Theorem 2. The test set generated by Algorithm 2 is combinatorial complete with respect to : and 3.

/%

C% CD C%

/E

/D

CD

C%

/E

CD /%

C%

/E

/D

CD

/%

C%

/E

(b) (a)

(d) (e) (f)

CD C%

/E

/%

(c)

Figure 5. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the
test cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a dif-
ferent variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substitutes the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to

make higher order mutant test cases from seed test cases.
We say that a combination c is k-ary, if it contains k vari-
ables, which is equivalent to the number of leaf nodes. We
write c(x1, · · · , xk) to represent such a combination of data-
morphism. When applying c to seed test cases a1, · · · , ak,
we write y = c(a1, · · · , ak) to denote the result mutant test
case. Let {d1, · · · , dv} be the set of datamorphisms in the
tree, we also say that c is a combination of {d1, · · · , dv}.
Given a set D of datamorphisms, there may be many differ-
ent combinations of D.

Definition 5 (Complete set of datamorphic combinations)
A set C of datamorphism combinations is combinatorial
complete for D, if for all subsets D0 ✓ D, there is a com-
bination c 2 C that contains exactly the datamorphisms in
D0. ut

Definition 6 (Combinatorial complete test sets) A set V of
test cases is combinatorial complete with respect to S and
D, if

• there is a set C of datamorphism combinations that is
combinatorial complete with respect to D; and

• for every combination c 2 C, if c is k-ary, then for all
k-tuple of test cases (x1, · · · , xk) 2 Sk, there is a test
case y in V such that y = c(x1, · · · , xk). ut

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2 (Generate Combinatorial Complete Test Set)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin
1: for (each datamorphism d in D) {
1.1: tempT = empty_set;
1.2: Assume d is a k-ary, where k>0;
1.3: for (all k-tuples (x1,...,xk) of S){

add d(x1,...,xk) to tempT;
};

1.4: S = S + tempT;
};

2: return C + S;
End

Theorem 2 The test set generated by Algorithm 2 is com-
binatorial complete with respect to S and D.
Proof. Let C be a subset of D. We write ||X|| to denote the
size of a set X . Let ||D|| = m. We proof by induction on
n = ||C||  m that the test set generated by the algorithm
is complete with respect to C.

When n = 0: the combination c contains no datamor-
phism. By step 2, the result test set contains S. Thus, the
statement is true in this case.

Assume that when n = N � 1 < m = ||D|| the state-
ment is true.

6

Algorithm 2: Generate Combinatorial Complete Test Set

17 July 2023 Tutorial on Datamorphic Testing 68

x1, · · · , xk such that y = d(x1, · · · , xk) and xi are m’th
order mutants of S by D, where m < n, and at least one of
x1, · · · , xk is a (n� 1)’th order mutant of S by D. ut

Similar to first order mutant completeness, a test set is
2nd order mutant complete if it contains all seed test cases,
all 1st order mutants and all 2nd order mutant. In general,
we have the following definition.

Definition 4 (K’th order mutant completeness) A set C of
test cases is k’th order mutant complete with respect to S
and D, if it contains all i’th order mutant test cases of S by
D for all i = 0, · · · , k. ut

Corollary 1 of Theorem 1. By repeating Algorithm 1 for
K times that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete.
Proof. By induction on K. Details are omitted. ut

Assume that the set D of datamorphisms contains N
methods. If a test set is N ’th order mutant complete with
respect to S and D, it contains all permutations of the data-
morphisms applied to all test cases. We say that the test
set is permutation complete. If the datamorphisms are as-
sociative, commutative, distributive and idempotent, a per-
mutation complete test set contains all possible test cases
that can be derived from a give set of test cases using the
set of datamorphisms. The test set is therefore exhaustive
with regard to the set of seeds and the datamorphisms. It
usually contains a huge number of test cases, so the costs
of testing could be very high. A compromise is to cover the
combinations of datamorphisms.

A mutant of S by D can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 5 below shows some examples of mutants,
in which (a) and (b) are first order mutants, and (c) to (f) are
second order mutants.

Figure 7. Examples of tree representation of mutants

Given a mutant's tree representation, we now replace the test cases associated to the leaf nodes with variables in
such a way that each different leaf node is associated with a different variable that range over the seed test cases.
We can then obtain a function that generates a high order mutant when substitutes the variables with seed test
cases. Each tree structure of this kind is therefore a way to combine seed test cases to make a higher order mutant
test case. We say that a combination is !-ary, if it contains ! variables (which is equivalent to the number of leaf
nodes). In the sequel, we write "($%, . . . , $() to represent such a combination of datamorphism. When applying
such a !-ary datamorphism combination " to seed test cases *%, . . . , *(, we write + = 	"(*%, . . . , *() to denote
the result mutant test case. Let {/%, … , /1} be the set of datamorphisms in the tree, we also say that " is a
combination of {/%, … , /1}. Given a set 3 of datamorphisms, there may be many different combinations of 3.

Definition 6 (Complete set of combinations) A set 4 of datamorphism combinations is complete for 3, if for each
subset 35 ⊆ 	3, there is a combination " ∈ 4 that contains exactly the datamorphisms in 3'. □

Definition 7 (Combinatorial complete test sets) A set 94 of test cases is combinatorial complete with respect to :
and 3, if

a) there is a set 4 of datamorphism combinations that is complete with respect to 3; and
b) for each combination " ∈ 4, if " is !-ary then for each ! test cases $%, . . . , $(∈ 	:, there is a test case

+ in 94 such that +	 = 	"($%, . . . , $(). □

The following is an algorithm that generate a combinatorial complete test set.

Algorithm 2. (Generate combinatorial complete test set)

 Input: : = the set of seed test cases;
 3 = the set of datamorphisms;
 Output: 4 = a set of test cases that is combinatorial complete;
 Variables: ;<=>9 = temporal set of test cases;
 Begin
1: ;<=>9 = ∅	;
2: for (each datamorphism / ∈ 	3) {
2.1: ;<=>9 = ∅ ;
2.2: Assume that / is a !-ary datamorphism, where ! > 0;
2.3: for (all !-ary tuples ($%, . . . , $() of elements in :){
 add /($%, . . . , $() to ;<=>9;
 };
2.4: : = : ∪ 	;<=>9;
 };
3: return 4 ∪ 	:;
 End

Theorem 2. The test set generated by Algorithm 2 is combinatorial complete with respect to : and 3.

/%

C% CD C%

/E

/D

CD

C%

/E

CD /%

C%

/E

/D

CD

/%

C%

/E

(b) (a)

(d) (e) (f)

CD C%

/E

/%

(c)

Figure 5. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the
test cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a dif-
ferent variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substitutes the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to

make higher order mutant test cases from seed test cases.
We say that a combination c is k-ary, if it contains k vari-
ables, which is equivalent to the number of leaf nodes. We
write c(x1, · · · , xk) to represent such a combination of data-
morphism. When applying c to seed test cases a1, · · · , ak,
we write y = c(a1, · · · , ak) to denote the result mutant test
case. Let {d1, · · · , dv} be the set of datamorphisms in the
tree, we also say that c is a combination of {d1, · · · , dv}.
Given a set D of datamorphisms, there may be many differ-
ent combinations of D.

Definition 5 (Complete set of datamorphic combinations)
A set C of datamorphism combinations is combinatorial
complete for D, if for all subsets D0 ✓ D, there is a com-
bination c 2 C that contains exactly the datamorphisms in
D0. ut

Definition 6 (Combinatorial complete test sets) A set V of
test cases is combinatorial complete with respect to S and
D, if

• there is a set C of datamorphism combinations that is
combinatorial complete with respect to D; and

• for every combination c 2 C, if c is k-ary, then for all
k-tuple of test cases (x1, · · · , xk) 2 Sk, there is a test
case y in V such that y = c(x1, · · · , xk). ut

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2 (Generate Combinatorial Complete Test Set)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin
1: for (each datamorphism d in D) {
1.1: tempT = empty_set;
1.2: Assume d is a k-ary, where k>0;
1.3: for (all k-tuples (x1,...,xk) of S){

add d(x1,...,xk) to tempT;
};

1.4: S = S + tempT;
};

2: return C + S;
End

Theorem 2 The test set generated by Algorithm 2 is com-
binatorial complete with respect to S and D.
Proof. Let C be a subset of D. We write ||X|| to denote the
size of a set X . Let ||D|| = m. We proof by induction on
n = ||C||  m that the test set generated by the algorithm
is complete with respect to C.

When n = 0: the combination c contains no datamor-
phism. By step 2, the result test set contains S. Thus, the
statement is true in this case.

Assume that when n = N � 1 < m = ||D|| the state-
ment is true.

6

Correctness of the Algorithm

Note:
1. A combinatorial complete test set covers all combinations of the

operation conditions represented by the datamorphisms.
2. The test set generated by the algorithm may be not minimal.
3. A proof of the theorem can be found in the following paper:

Hong Zhu, Ian Bayley, Dongmei Liu and Xiaoyu Zheng, Automation of Datamorphic
Testing, Proceedings of The Second IEEE International Conference on Artificial
Intelligence Testing (AITest 2020), Aug. 3 - 6, 2020.

17 July 2023 Tutorial on Datamorphic Testing 69

1. ML Classification Models
2. Exploratory testing (ET) methodology
3. Datamorphic approach to automate ET

a. Test system and completeness
b. Test strategies

4. Application to testing feature-based ML classifiers
5. The uses of the information discovered by ET

Exploratory Testing ML Classification Models

17 July 2023 Tutorial on Datamorphic Testing 70

Typical Classification Applications

17 July 2023 Tutorial on Datamorphic Testing 71

Hong Zhu

7217 July 2023 Tutorial on Datamorphic Testing

Rose

7317 July 2023 Tutorial on Datamorphic Testing

Cancer

Cancer

Cancer

AI Techniques to Develop Classifiers
§ Clustering: (unsupervised learning)

To find a way of partitioning data points into groups according to a

similarity or a distance function

§ Classification: (supervised learning)
To find a function from a set of labelled data to classify the data into

groups such that data of the same label are in the same class

17 July 2023 Tutorial on Datamorphic Testing 74

Classifiers
A classifier (or a classification program) is a mapping P: D ➞ G from the data
space D into a non-empty set of groups 𝐺 = {𝑙!, … , 𝑙"} (also called classes)
such that 𝐷 = ⋃l ∈ G𝐷!, where 𝐷# = {𝑥 ∈ 𝐷|P(x)=l}, and ∀𝑥, 𝑦 ∈ 𝐺. +

,
𝑥 ≠ 𝑦 ⟹

𝐷" ∩𝐷# = ∅ .

We assume that there is a distance function . , . : D2➞ R + , such that
∀x ∈ D.(∥x, x∥ = 0)

∀x,y ∈ D.(∥x, y∥ ≥ 0)

∀x,y ∈ D.(∥x, y∥ = ∥y, x∥)

∀x,y,z∈D.(∥x, y∥+∥y, z∥≥∥x, z∥)

17 July 2023 Tutorial on Datamorphic Testing 75

Testing Classification Systems
§ Traditional Approach: Category Partitioning Testing (also

known as domain analysis)
§Focusing on the borders between different classes,
§Defined by the specification, or
§As implemented by the code, or
§A combination of the above

§Technique:
§For each class: selecting test cases on the borders and near-by to the borders
§The number of test cases on or nearby to a border depends on the dimension of

the data space
§Theory (e.g. in the perturbation testing theory):
§Test cases on the border and near-by to the borders can ensure no linear

transformations of the border (e.g. border shift errors and rotate errors) under
certain conditions on the border and data space.

17 July 2023 Tutorial on Datamorphic Testing 76

Category Partitioning Test (Domain Analysis)

7717 July 2023 Tutorial on Datamorphic Testing

Class A

Class B

Border between
Class A and B

Border Shift
Error Border Rotate Error

7817 July 2023 Tutorial on Datamorphic Testing

Can we borrow the Ideas of category partitioning test to ML?

Problems to Apply Partitioning Test to AI Applications
Ø The borders between classes are often unknown

• No definition of the required border in the specification
• Not easy to get the border as implemented by the ML model

Ø The data space and the borders are highly complicated
• High dimensional
• Non-numerical data

Ø The theory of domain analysis does not apply
• The common errors in the application of AI technology may be not

linear transformations (not border shift or rotate errors)

17 July 2023 Tutorial on Datamorphic Testing 79

Examples of Errors in Machine Learning Models

8017 July 2023 Tutorial on Datamorphic Testing

The classifier:
0,2𝜋 × −1, 1 → {𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑏𝑙𝑎𝑐𝑘}

• Take 5000 random samples of
the original classifier

• Apply various ML techniques to
train ML models

• The result models are shown on
the right:

Pareto Front of Box2 Models (Generated via 5K Random Walks)

 Original Coded Classifier Deep Neural Network (DNN)

 Decision Tree (DT) Hard Voting of LR, KNN and DT (HV)

 K-Nearest Neighbour (KNN) Logistic Regression (LR)

 Naïve Bayes (NB) Stacking KNN over LR, DT and HV (Stack)

 Soft Voting of LR, KNN and DT (SV) Supporting Vector Machine (SVM)

Exploratory Testing
“In exploratory testing, the tester interacts with the
application and uses the information that the
application provides to change the course of testing in
order to explore the application’s functionality.”

[Whittaker, 2009]

“Simultaneously designing and executing tests to learn
about the system, using your insights from the last
experiment to inform the next.”

[Hendrickson, 2013]

17 July 2023 Tutorial on Datamorphic Testing 81

Exploratory vs Confirmatory Testing
Confirmatory Testing

• Goal of Test:
o Confirming or disproving the correctness with

respect to a given specification
o Testing for verification and validation w.r.t.

known requirements and specification
• Software under test:

o As an entity with clear definition and
specification

o Knowledge of the SUT is essential to perform
testing

• Test cases:
o Pre-scripted
o Independent from each other
o Quality criteria: to coverage all possibilities

Exploratory Testing
• Goal of Test:

o Discovering the functions and properties of
the software

o Testing as experiments on the software
o To search for useful information

• Software under test:
o As an entity unknown
o No knowledge of the SUT is assumed

• Test cases:
o Generated or selected on the fly: using the

result of the previous tests to guide the choice of
the next

o Quality criteria: to maximise its effectiveness in
the process of searching for useful information

17 July 2023 Tutorial on Datamorphic Testing 82

§ A primitive form in the practice of manual testing existed for a long time
§ Most suitable for situations where specification is not available or not well

defined
§ Relatively recently identified by researchers to provide guidance to improve the

effectiveness of manual testing of interactive software
oKane [1988] coined the term “exploratory test”
oWhittaker [2009] recognised a defined (informally) strategies for GUI based testing
oMany researchers conducted empirical studies of the factors that effect ET

Exploratory Testing: A Brief Review

• Kaner, C., 1988. Testing Computer Software. John Wiley and Sons.
• Whittaker, J. A. 2009. Exploratory Software Testing: Tips, Tricks, Tours, and

Techniques to Guide Test Design. Pearson Education.

17 July 2023 Tutorial on Datamorphic Testing 83

Exploratory Testing of Classifiers
v Goal:

ü To discover the borders between classes as defined by the ML
model under test
o Borders are critical to understand the behaviour of a ML model
o Values on borders are critical test cases for a ML model

v Problems:
Ø How to represent borders?
Ø Can borders be discovered?
Ø If yes, how to discover borders?
Ø Is the discovery of borders cost efficient? Can it be automated?
Ø How to use borders?

8417 July 2023 Tutorial on Datamorphic Testing

Pareto Front: Representation of Borders

17 July 2023 Tutorial on Datamorphic Testing 85

Definition 1. (Pareto Front of Classification)
Let

• P : D → G = 𝑙!, … , 𝑙" (𝑛 > 0) be a classifier,
• ∥·,·∥ : D × D → R+ be a distance metric on D, and
• δ > 0 be any given real number.

A set 𝑎# , 𝑏# 𝑎# , 𝑏# ∈ 𝐷, 𝑖 = 1, … , 𝑘} 𝑘 > 0 of data pairs is a
Pareto front of the classes according to P with respect to ∥·, ·∥ and
δ, if for all i = 1,···,k, 𝑃 𝑎# ≠ 𝑃 𝑏# and 𝑎# , 𝑏# ≤ 𝛿.

Example: Pareto front

8617 July 2023 Tutorial on Datamorphic Testing

Classifier:

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 3 (Random Walk Strategy)
Input:
testSet : Test Set;
walkin�Distance: Integer;
steps: Integer;
d1 (x), · · · ,dk (x): Unary datamorphism; k > 1
mid (x ,�): Binary datamorphism;

Output:
a,b: Test Case;

Begin
1: Select a test case x in testSet at random;
2: Execute program P on test case x ;
3: Walking at random to search for test case in a di�erent class:
Bool f ound = false;
for i 1 towalkin�Distance do

Get a random integer r in the range [1,k]
� = dr (x);
Execute program P on test case �;
if (x .output , �.output) then

f ound = true; break;
else x=y;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement:
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then � = z;
else x = z;
end if

end for
a = x ; b = �;
return ha,bi;

End

Similar to the proof of Theorem 1, by the de�niton of dsm and
assumption (6), we can prove that the following is a loop invariant
of the loop by induction on the number i of iterations of the loop
body.

dist (x ,�)  dsm
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. After executing the assign-
ment statements a = x and b = �, the following is true by Hoare
logic.

dist (a,b)  dsm/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 3. For example, by applying the random walk strategy
on a test set containing 300 random test cases, 1000 random walks
generated 805 pairs of Pareto front test cases shown in Figure 5, where
the walking distance was 20 steps.

In this example, the number n of steps is also 20. By the de�ni-
tion of upward (x), downward (x), le f tward (x) and ri�htward (x)
traversal methods, we have that ds = 0.2, if the distance function

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

Figure 5: The Pareto Fronts Generated by RandomWalk

dist (x ,�) is Eucl (x ,�). As in Example 1 and 2, by the de�nition of
mid (x ,�), we have that c = 2. By Theorem 3, the distance � between
each pair of Pareto front satis�es the following inequality.

�  ds
c20
= 0.2 ⇥ 1

220
. ⇤

4 EXPERIMENTS
Controlled experiments with the exploratory test strategies have
been conducted using the automated datamorphic testing tool Mor-
phy to study their test e�ectiveness. This section report the results
of the experiments.

4.1 Design of the Experiments
4.1.1 Objectives of the Experiments. As discussed in the previous
sections, exploration strategies are designed to test classi�cation
applications. They aim to �nd the borders between subdomains
of the classi�cations. The goal of the experiments is to study the
factors that have e�ect on the e�ectiveness of these test strategies
in terms to their capability of �nding the Pareto fronts between
subdomains. The measurement of test e�ectiveness is the number
of test executions per border points found by the test strategy.

It is worth noting that the experiments are not for comparison
of the strategies, which each has its own suitable applications.

4.1.2 Subject applications. The experiments are carried out with
ten classi�cation applications shown in Figure 6. These applications
are on the same input domain, i.e. two-dimensional real numbers
in the range of [0, 2�] ⇥ [�1, 1].

4.2 Experiment process and the results
For each subject application, three exploration strategies are used
with various parameters. Each test is repeated for 10 times using the
testing tool Morphy and the average of the data is used to analyse
the results.

4.2.1 Experiments with the directed walk strategy. The experiments
used various numbers of random test cases from 200 to 1200 as
shown in Table 1; here, the column #Seed TCs is the number of seed
test cases in the experiment. These seed test cases are generated at
random from the uniform distribution. From each seed test case, one
walk in one direction is made for up to 20 steps. The experiments
used the upward datamorphism. The column Avg #Runs in Table 1
gives the average number of test executions of the subject program
under test. The column Avg #mutant TC gives the average number
of mutant test cases generated; these are test cases on the borders
of the clusters.

A Pareto
front :

Essential Elements of Exploratory Testing
üDesigning:

It is concerned with identifying interesting things to
vary and interesting ways in which to vary them so
that the experiment can be better performed.

üExecuting:
A test case is executed immediately when it is
designed.

üLearning:
The testers “discover how the software operates”.

üSteering:
Using the insights gained from the previous test
execution(s) to inform the next.

8717 July 2023 Tutorial on Datamorphic Testing

Datamorphic Approach to Exploratory Test
Essential Elements of ET Datamorphic Approach to ET (**)

Design: Identifying interesting things to vary and
interesting ways in which to vary them

Developing test morphisms to implement the ways in
which to vary the test entities

Executing: Executing a test as soon as you think
of a test

Invoking the test executor on test cases

Learning: Discovering how the software operates Writing test code to analyse test results and present
them in a format easy to digest by human beings

Steering: Using knowledge gain from testing to
suggest the next test with focus on most
important information to discover

Formalising steering strategies in the form of
algorithms that utilise test entities and morphisms as
parameters

(*) Elisabeth Hendrickson, 2013. Explore IT! Reduce Risk and Increase Confidence
with Exploratory Testing. The Pragmatic Bookshelf, Lighting Source UK Ltd.

(**) Hong Zhu and Ian Bayley, 2022. Discovering boundary values of feature-based
machine learning classifiers through exploratory datamorphic testing. Journal of
Systems and Software, Vol. 187.

17 July 2023 Tutorial on Datamorphic Testing 88

Exploratory Test System Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(1) The set M of morphisms contains a test executer ExeP (x)
that executes the program P under test on a test case x and
receives the output of P ; that is ExeP (x) = P (x). In the sequel,
we will write P (x) for ExeP (x) for the sake of simplicity.

(2) There is a setW ✓ M of unary datamorphisms de�ned
on D. Informally, for each w 2 W and x 2 D, w (x),w2 (x),
· · · , wn (x) generates a sequence of di�erent data points
in D, where w1 (x) = w (x), wn+1 (x) = w (wn (x)). These
datamorphisms are called traversal methods.

(3) There is also a binary datamorphismm 2M such that for all
x ,� 2 D, dist (x , z) < dist (x ,�) and dist (�, z) < dist (x ,�),
where z = m(x ,�) 2 D. Informally, the datamorphism m
calculates a point between x and �. It is called the midpoint
method.

Note that, for all x ,� 2 D and z =m(x ,�), we have:

(P (x) , P (�))) (P (x) , P (z)) _ (P (�) , P (z)). (1)

Informally, if the program P under test classi�es x and � into dif-
ferent classes, the midpoint between x and � must be either not in
the same class as x or not in the same class as �.

2.4 The Running Example
In Section 3, we will use the following simple classi�cation program
as a running example to illustrate the exploration strategies. It
classi�es the points in a two-dimensional continuous space [0, 2�]⇥
[�1, 1] into three classes: red, black and blue as illustrated in Figure
1. In this example, data points x and� is a Pareto Front pair between
black and red classes, if x is red and � is black and they are very
close to each other. Such pairs can show accurately the borders
between the classes, and thus help testers to determine whether
the classi�cation is correct or not.

Figure 1: Data Space of the Running Example

Figure 2 gives the traversal and midpoint methods in the Morphy
test speci�cation. The midpoint method mid (x ,�) calculates the
geometric midpoint between x and �.

It is easy to see that the running example forms an exploratory
test system with the following distance function.

Eucl (hx1,x2i ,
⌦
�1,�2

↵
) =

q
(x1 � �1)2 + (x2 � �2)2 (2)

3 EXPLORATION STRATEGIES
This section presents the algorithms for three di�erent exploratory
strategies for testing clustering and classi�cation applications. We
also prove their correctness and illustrate their behaviour by using
the running example given in the previous section.

Figure 2: Datamorphisms of the Running Example

3.1 Random Target Strategy
Let’s start with a simple exploration strategy based on random
selection of known test cases in order to �nd the Pareto front of
the classi�cation groups between these two test cases. We call this
strategy random target strategy.

The strategy starts by selecting a pair of two test cases x and �
at random. If the outputs of the program P under test on these test
cases are di�erent, i.e. P (x) , P (�), then a point z1 between x and
� are generated by using the binary datamorphism of the midpoint
methodmid (x ,�), i.e. z1 = mid (x ,�). The program P is executed
on this mutant test case z1 to classify it. The classi�cation of z1
must be di�erent from one of the original pair of test cases; say
P (z1) , P (x). Thus, we can repeat the above steps with x and z1
as the pair of test cases, and a further mutant z2 can be generated.
This process is repeated a number of times to ensure the distance
between the �nal pair of points is small enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT (n) =
ha,bi to denote the results of executing Algorithm 1 with n as the
parameter steps and ha,bi as the output.

Assume that the exploratory test system has the following prop-
erties.

(1) There is a constant c > 1 such that

8x ,� 2 D.

Max {dist (x , z),dist (z,�)}

dist (x ,�)

!
 1/c, (3)

where z =mid (x ,�).
(2) There is a constant dm > 0 such that

8x ,� 2 D.(dist (x ,�)  dm). (4)

Then, we have the following theorem about the correctness of
the random target strategy algorithm.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Test entities are objects and data that are used and/or generated
in testing. These include test cases, test suites/sets, the programs
under test, and test reports, etc.

Test morphisms are mappings between entities. They generate
and transform test entities to achieve testing objectives. They can
be implemented as test code and invoked to perform test activities
and composed to form test processes. The following are the test
morphisms recognised by the datamorphic test tool Morphy.

• Test set creators create sets of test cases. They are called seed
test case makers in [16, 21]. A typical example is random test
case generators like fuzzers [10].
• Datamorphisms are mappings from existing test cases to new
test cases. They are called data mutation operators in [9].
• Metamorphisms are mappings from test cases to Boolean val-
ues that assert their correctness. They are test oracles. Formal
speci�cations and metamorphic relations in metamorphic
testing [3, 7] can also be used as metamorphisms.
• Test casemetrics aremappings from test cases to real numbers.
They measure test cases giving, for example, the similarity
of a test case to the others in the test set.
• Test case �lters are mappings from test cases to truth values.
They can be used, for example, to decide whether a test case
should be included in a test set.
• Test set metrics are mappings from test sets to real numbers.
They measure the test set quality, such as its code coverage
[19].
• Test set �lters are mappings from test sets to test sets. For
example, they may remove some test cases from a test set
for regression testing.
• Test executers execute the program under test on test cases
and receive the outputs from the program. They are map-
pings from a piece of program to a mapping from input data
to output. That is, they are functors in category theory.
• Test analysers analyse test sets and generate test reports.
Thus, they are mappings from test sets to test reports.

A test system T = hE ,M i in datamorphic testing consists of a
set E of test entities and a set M of test morphisms. In Morphy
[17], a test system is speci�ed as a Java class that declares a set of
attributes as test entities and a set of methods as test morphisms.

Given a test speci�cation, Morphy provides testing facilities to
automate testing at three di�erent levels. At the lowest level, vari-
ous test activities can be performed by invoking test morphisms via
a click of buttons on Morphy’s GUI. At the medium level, Morphy
implements various test strategies to perform complex testing activ-
ities through combinations and compositions of test morphisms. At
the highest level, test processes are automated by recording, editing
and replaying test scripts that consist of a sequence of invocations
of test morphisms and strategies.

Test strategies are complex combinations of test morphisms
designed to achieve test automation. Three sets of test strategies
have been implemented in Morphy:

• Mutant combination: combining datamorphisms to generate
mutant test cases; see [17].
• Domain exploration: searching for the borders between clus-
ters/subdomains of the input space;

• Test set optimisation: optimising test sets by employing ge-
netic algorithms.

This paper focuses on domain exploration strategies, which will
be de�ned in Section 3. Those strategies that employ genetic algo-
rithms to optimise test sets will be reported in another paper.

2.2 Classi�cation Applications
Clustering as a data mining and machine learning problem is the
partitioning of a given set of data points into groups containing
similar data points. However, clustering does not only partition
the data in the given data set, but also makes it possible to put
new data into the right groups. The key concept of clustering is
similarity between data points, which is de�ned formally in the
form of a similarity or distance function on the data space. Two
pieces of data that are similar to each other should be put into the
same group, while the data that are dissimilar should be placed
in di�erent groups. Whereas clustering is unsupervised learning,
classi�cation is supervised learning. Given a number of examples
of data points and their classi�cations, it learns how to assign data
to groups [1, 5, 8].

In both clustering and classi�cation, the result is a program P
that maps from the data space D into a number of groupsG . We say
that P is a classi�cation application. We will write P (x) to denote
the output of P on an input x 2 D, and call P (x) the classi�cation of
x by P . We also assume that there is a function dist : D ⇥ D ! R+
measuring the distances between any two points x and � in the
data space D such that:
• 8x 2 D (dist (x ,x) = 0);
• 8x ,� 2 D (dist (x ,�) � 0);
• 8x ,� 2 D (dist (x ,�) = dist (�,x));
• 8x ,�, z 2 D (dist (x ,�) + dist (�, z) � dist (x , z)).

The distance function measures the similarity between data
points in that the smaller the distance between two points the
more similar they are.

For a classi�cation program, it is crucial to classify data into
correct classes. However, the borders between classes are often
unknown if the classi�cation program is obtained through machine
learning and data mining. The goal of the exploration strategies
proposed in this paper is to �nd a set of data pairs that represents
the borders between classes. Thus, we introduce the notion of Pareto
front of the classi�cation as de�ned by the program P under test.

D��������� 1. (Pareto Front of Classi�cation)
Let P : D ! G be a classi�cation program, dist : D ⇥ D ! R be a

distance metric de�ned on the input space D, and � > 0 be a given
real number. A set {< ai ,bi > |ai ,bi 2 D, i = 1, · · · ,n} of data pairs
is a Pareto front of the classes of D according to P with respect to dist
and � , if for all i = 1, · · · ,n, P (ai) , P (bi) and dist (ai ,bi)  � . ⇤

A Pareto front can show accurately the borders between the
classes, thus help testers to determine whether the classi�cation is
correct or not.

2.3 Exploratory Test Systems
To apply an exploratory test strategy to a classi�cation program
P : D ! G with a distance function dist , we assume that the test
system T = hE ,M i has the following properties.

17 July 2023 Tutorial on Datamorphic Testing 89

Exploratory Test Systems
An exploratory test system is a test system 𝑇 = ⟨𝐸,𝑀⟩ that M has contains the following
test morphisms.

§ A test executer 𝐸𝑥𝑒𝑃(𝑥): through the test morphism the program P under test are
invoked on a test case x and receives the output of P. That is, 𝐸𝑥𝑒𝑃(𝑥) = 𝑃(𝑥).

§ A set of traversal methods: a set 𝑊 ⊆ 𝑀 of unary datamorphisms defined on D.
For each w∈ 𝑊 𝑎𝑛𝑑 𝑥 ∈ 𝐷, by repeatedly invoke the datamorphism
w, 𝑖. 𝑒. 𝑤(𝑥), 𝑤$(𝑥),· · ·, 𝑤%(𝑥), we can generate a sequence of data points in D,
where 𝑤& 𝑥 = 𝑤 𝑥 ,𝑤%'&(𝑥) = 𝑤(𝑤%(𝑥)).

§ A midpoint method: a binary datamorphism 𝑚 ∈ 𝑀 such that
∀𝑥, 𝑦 ∈ 𝐷. (∥ 𝑥, 𝑦 ∥> 𝛿(⇒ ∥ 𝑥, 𝑧 ∥<∥ 𝑥, 𝑦 ∥ ∧ ∥ 𝑦, 𝑧 ∥<∥ 𝑥, 𝑦 ∥)

where z = 𝑚 𝑥, 𝑦 , 𝛿(= 𝑀𝑖𝑛") #∈+ ∥ 𝑥, 𝑦 ∥ .

9017 July 2023 Tutorial on Datamorphic Testing

Example: An Exploratory Test System
§The classifier under test:

§ Input data space 𝐷: [0,2𝜋]× [−1, 1]
§ Function: classify into red, blue and black

§The distance metrics:

§The datamorphisms:
§ upward(x);
§ downward(x);
§ leftward(x);
§ rightward(x);
§ mid(x, y);

§

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(1) The set M of morphisms contains a test executer ExeP (x)
that executes the program P under test on a test case x and
receives the output of P ; that is ExeP (x) = P (x). In the sequel,
we will write P (x) for ExeP (x) for the sake of simplicity.

(2) There is a setW ✓ M of unary datamorphisms de�ned
on D. Informally, for each w 2 W and x 2 D, w (x),w2 (x),
· · · , wn (x) generates a sequence of di�erent data points
in D, where w1 (x) = w (x), wn+1 (x) = w (wn (x)). These
datamorphisms are called traversal methods.

(3) There is also a binary datamorphismm 2M such that for all
x ,� 2 D, dist (x , z) < dist (x ,�) and dist (�, z) < dist (x ,�),
where z = m(x ,�) 2 D. Informally, the datamorphism m
calculates a point between x and �. It is called the midpoint
method.

Note that, for all x ,� 2 D and z =m(x ,�), we have:

(P (x) , P (�))) (P (x) , P (z)) _ (P (�) , P (z)). (1)

Informally, if the program P under test classi�es x and � into dif-
ferent classes, the midpoint between x and � must be either not in
the same class as x or not in the same class as �.

2.4 The Running Example
In Section 3, we will use the following simple classi�cation program
as a running example to illustrate the exploration strategies. It
classi�es the points in a two-dimensional continuous space [0, 2�]⇥
[�1, 1] into three classes: red, black and blue as illustrated in Figure
1. In this example, data points x and� is a Pareto Front pair between
black and red classes, if x is red and � is black and they are very
close to each other. Such pairs can show accurately the borders
between the classes, and thus help testers to determine whether
the classi�cation is correct or not.

Figure 1: Data Space of the Running Example

Figure 2 gives the traversal and midpoint methods in the Morphy
test speci�cation. The midpoint method mid (x ,�) calculates the
geometric midpoint between x and �.

It is easy to see that the running example forms an exploratory
test system with the following distance function.

Eucl (hx1,x2i ,
⌦
�1,�2

↵
) =

q
(x1 � �1)2 + (x2 � �2)2 (2)

3 EXPLORATION STRATEGIES
This section presents the algorithms for three di�erent exploratory
strategies for testing clustering and classi�cation applications. We
also prove their correctness and illustrate their behaviour by using
the running example given in the previous section.

Figure 2: Datamorphisms of the Running Example

3.1 Random Target Strategy
Let’s start with a simple exploration strategy based on random
selection of known test cases in order to �nd the Pareto front of
the classi�cation groups between these two test cases. We call this
strategy random target strategy.

The strategy starts by selecting a pair of two test cases x and �
at random. If the outputs of the program P under test on these test
cases are di�erent, i.e. P (x) , P (�), then a point z1 between x and
� are generated by using the binary datamorphism of the midpoint
methodmid (x ,�), i.e. z1 = mid (x ,�). The program P is executed
on this mutant test case z1 to classify it. The classi�cation of z1
must be di�erent from one of the original pair of test cases; say
P (z1) , P (x). Thus, we can repeat the above steps with x and z1
as the pair of test cases, and a further mutant z2 can be generated.
This process is repeated a number of times to ensure the distance
between the �nal pair of points is small enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT (n) =
ha,bi to denote the results of executing Algorithm 1 with n as the
parameter steps and ha,bi as the output.

Assume that the exploratory test system has the following prop-
erties.

(1) There is a constant c > 1 such that

8x ,� 2 D.

Max {dist (x , z),dist (z,�)}

dist (x ,�)

!
 1/c, (3)

where z =mid (x ,�).
(2) There is a constant dm > 0 such that

8x ,� 2 D.(dist (x ,�)  dm). (4)

Then, we have the following theorem about the correctness of
the random target strategy algorithm.

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(1) The set M of morphisms contains a test executer ExeP (x)
that executes the program P under test on a test case x and
receives the output of P ; that is ExeP (x) = P (x). In the sequel,
we will write P (x) for ExeP (x) for the sake of simplicity.

(2) There is a setW ✓ M of unary datamorphisms de�ned
on D. Informally, for each w 2 W and x 2 D, w (x),w2 (x),
· · · , wn (x) generates a sequence of di�erent data points
in D, where w1 (x) = w (x), wn+1 (x) = w (wn (x)). These
datamorphisms are called traversal methods.

(3) There is also a binary datamorphismm 2M such that for all
x ,� 2 D, dist (x , z) < dist (x ,�) and dist (�, z) < dist (x ,�),
where z = m(x ,�) 2 D. Informally, the datamorphism m
calculates a point between x and �. It is called the midpoint
method.

Note that, for all x ,� 2 D and z =m(x ,�), we have:

(P (x) , P (�))) (P (x) , P (z)) _ (P (�) , P (z)). (1)

Informally, if the program P under test classi�es x and � into dif-
ferent classes, the midpoint between x and � must be either not in
the same class as x or not in the same class as �.

2.4 The Running Example
In Section 3, we will use the following simple classi�cation program
as a running example to illustrate the exploration strategies. It
classi�es the points in a two-dimensional continuous space [0, 2�]⇥
[�1, 1] into three classes: red, black and blue as illustrated in Figure
1. In this example, data points x and� is a Pareto Front pair between
black and red classes, if x is red and � is black and they are very
close to each other. Such pairs can show accurately the borders
between the classes, and thus help testers to determine whether
the classi�cation is correct or not.

Figure 1: Data Space of the Running Example

Figure 2 gives the traversal and midpoint methods in the Morphy
test speci�cation. The midpoint method mid (x ,�) calculates the
geometric midpoint between x and �.

It is easy to see that the running example forms an exploratory
test system with the following distance function.

Eucl (hx1,x2i ,
⌦
�1,�2

↵
) =

q
(x1 � �1)2 + (x2 � �2)2 (2)

3 EXPLORATION STRATEGIES
This section presents the algorithms for three di�erent exploratory
strategies for testing clustering and classi�cation applications. We
also prove their correctness and illustrate their behaviour by using
the running example given in the previous section.

Figure 2: Datamorphisms of the Running Example

3.1 Random Target Strategy
Let’s start with a simple exploration strategy based on random
selection of known test cases in order to �nd the Pareto front of
the classi�cation groups between these two test cases. We call this
strategy random target strategy.

The strategy starts by selecting a pair of two test cases x and �
at random. If the outputs of the program P under test on these test
cases are di�erent, i.e. P (x) , P (�), then a point z1 between x and
� are generated by using the binary datamorphism of the midpoint
methodmid (x ,�), i.e. z1 = mid (x ,�). The program P is executed
on this mutant test case z1 to classify it. The classi�cation of z1
must be di�erent from one of the original pair of test cases; say
P (z1) , P (x). Thus, we can repeat the above steps with x and z1
as the pair of test cases, and a further mutant z2 can be generated.
This process is repeated a number of times to ensure the distance
between the �nal pair of points is small enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT (n) =
ha,bi to denote the results of executing Algorithm 1 with n as the
parameter steps and ha,bi as the output.

Assume that the exploratory test system has the following prop-
erties.

(1) There is a constant c > 1 such that

8x ,� 2 D.

Max {dist (x , z),dist (z,�)}

dist (x ,�)

!
 1/c, (3)

where z =mid (x ,�).
(2) There is a constant dm > 0 such that

8x ,� 2 D.(dist (x ,�)  dm). (4)

Then, we have the following theorem about the correctness of
the random target strategy algorithm.

17 July 2023 Tutorial on Datamorphic Testing 91

Implementation of
datamorphisms in
Java

Completeness of Exploratory Test System

Definition 5. (Completeness)
An exploratory test system 𝑇 = ⟨𝐸,𝑀⟩ on data space D is
complete, if forall 𝑎, 𝑏 ∈ 𝐷, there is a composition 𝜑(𝑥) of
datamorphisms in 𝑀 such that 𝑏 = 𝜑(𝑎).
An exploratory test system T is approximately complete, if for all
𝑎, 𝑏 ∈ 𝐷 and every 𝛿 > 𝛿$, there is a composition 𝜑(𝑥) of
datamorphisms in M such that ∥ 𝑏, 𝜑(𝑎) ∥≤ 𝛿.

9217 July 2023 Tutorial on Datamorphic Testing

The completeness of an exploratory test system ensures that there will be
no blind spot in the data space that cannot be explored.

Question:
Is there complete exploratory test system for ML
classifiers?

Answer:
Yes, for feature-based classifiers, we can always
construct a complete exploratory test system.

Exploratory Test Systems
for Feature-Based Classifiers

17 July 2023 Tutorial on Datamorphic Testing 93

Feature-Based Classifiers
Definition 2. (Feature Based Classifier)
Let 𝑃 ∶ 𝐷 → 𝐺 be a classification program. We say that P is a feature-
based classifier if there is a natural number 𝐾 ≥ 1 such that 𝐷 = 𝐷! × · · ·
× 𝐷" , where for every 𝑖 = 1,· · · , 𝐾, 𝐷# is the set of values of a feature 𝑓#.

9417 July 2023 Tutorial on Datamorphic Testing

Types of features:
§A feature 𝑓# is categorical, if 𝐷# is a finite non-empty set.
§A feature 𝑓# is discrete numerical, if 𝐷# is the set of integer values or

natural numbers.
§A feature 𝑓# is continuous numerical, if 𝐷# is the set of real numbers, or a

non-empty interval of real numbers.

Datamorphisms for Continuous Numerical Features
§Two unary datamorphisms for each feature 𝑓# as the traversal
methods

𝑢𝑝,(⟨𝑥&,···, 𝑥-⟩) = ⟨𝑥&,···, 𝑥, + 𝑐, ,··· 𝑥-⟩

𝑑𝑜𝑤𝑛,(⟨𝑥&,···, 𝑥-⟩) = ⟨𝑥&,···, 𝑥, − 𝑐, ,··· 𝑥-⟩

§A binary datamorphism 𝑚𝑖𝑑%(𝑥, 𝑦) as the midpoint method.
𝑚𝑖𝑑. 𝑥&,···, 𝑥- , 𝑦&,···, 𝑦/ =

𝑥& +𝑦&
2 ,···,

𝑥- + 𝑦-
2

§The Euclidean distance on multi-dimensional real numbers.

𝑥&,···, 𝑥- , 𝑦&,···, 𝑦/ =]
,0&

/

𝑥, − 𝑦, $

9517 July 2023 Tutorial on Datamorphic Testing

There are many other
ways to define distance
metrics on real numbers.

where 𝑐, > 0 is a
given real value.

Datamorphisms for Discrete Numerical Features
§Two unary datamorphisms for each discrete numerical feature 𝑓/ as the traversal

methods

𝑢𝑝/(⟨𝑥! ,···, 𝑥0 ⟩) = ⟨𝑥!,···, 𝑥1/ , … , 𝑥0 ⟩, where 𝑥/1 = 𝑥/ + 1.
𝑑𝑜𝑤𝑛𝑖(⟨𝑥!,···, 𝑥0⟩) = ⟨𝑥!,···, 𝑥1/ , … , 𝑥0 ⟩

where 𝑥′/ = 𝑥/ − 1, if 𝐷/ is the set of integers; otherwise

𝑥/1 = @𝑥/ − 1, 𝑖𝑓 𝑥/ > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

§The midpoint datamorphism 𝑚𝑖𝑑2 (𝑥, 𝑦) is defined as follows.

𝑚𝑖𝑑2(⟨𝑥!,···, 𝑥0⟩, ⟨𝑦!,···, 𝑦0⟩) = ⌊
|𝑥!−𝑦3|

2
⌋,···, ⌊

|𝑥0−𝑦0|
2

⌋

§The distance metric ∥ 𝑥!,···, 𝑥0 , 𝑦!,···, 𝑦0 ∥2 = ∑/4!0 |𝑦/ − 𝑥/|
9617 July 2023 Tutorial on Datamorphic Testing

Datamorphisms for Categorical Features
§Two unary datamorphisms as the traversal methods for each
categorical feature 𝑓#

§A binary datamorphism 𝑚𝑖𝑑&(𝑥, 𝑦) as the midpoint method

§The distance between x and y, written ∥ 𝑥, 𝑦 ∥&, is defined as the
number of elements in x and y that are different.

9717 July 2023 Tutorial on Datamorphic Testing

�e following theorem states that WE is approximately complete.

�eorem 2. �e set WE of datamorphisms is approximately complete for a continuous numerical
feature based classi�er P de�ned on the data space D = D1 ⇥ · · · ⇥ DK , K > 0.
Proof. We prove that for any given points a = ha1, · · · , aKi , b = hb1, · · · , bKi 2 D and � > 0, we
can construct a composition � of datamorphisms such that kb, �(a)kE < �. �e composition �(x) is
de�ned as follows.

�(x) = m
n� � ud

n1
1 � · · · � ud

nK

K
(x)), (7)

where

m(x) = midE(b, x), ud
ni

i
(x) =

(
up

ni

i
(x) if ai � bi

down
ni

i
(x) if ai < bi

,

ni = b
|ai � bi|

ci

c, n� = dln(
c

�
)e, c =

vut
KX

n=1

c
2
i
.

Note that udi(x) is either upi(x) or downi(x) depending on whether the i
0th element of a is

greater than the i
0th element of b.

Let a
0 = ud

n1
1 � · · · � ud

nK

K
(x) =

D
a
0
1, · · · , a0K

E
. We have that a

0 is obtained by applying udi(x)
for ni times on a, for i = 1, · · · ,K. �e i

0th element of a
0 will be a

0
i
= ai ± ni · ci by the de�nition

of datamorphisms upi(x) and downi(x). By the de�nition of ni, we have that |bi � a
0
i
| < ci, for all

i = 1, · · · ,K. �erefore,

kb, a0k =

vut
KX

n=1

(bi � a
0
i
)2 

vut
KX

n=1

c
2
i
= c.

Applying m(x) on a
0 for n times, we get a

00 = m
n(a0). By Lemma 1(4), we have that kb, a00k =

kb, a0k/2n  c/2n. �erefore, when n � ln(c

�), we have that kb, a00k  �. �e theorem follows
immediately that n� = dln(c

�)e � ln(c

�). 2

Example 3. �e exploratory test system given in Example 2 is approximately complete, because
for all points a, b in the data space and � > 0, we have a composition �(x) of datamorphisms
such that kb, �(a)k  �; see Figure 3 for an illustration of how to construct the composition of
datamorphisms. 2

3.4. Discrete Non-Numerical Classi�ers.
If the classi�er P is a discrete non-numerical feature based classi�er then for each i =

1, · · · ,K, Di is a non-empty �nite set. Let Di = {vi,1, vi,2, · · · , vi,ni
}, where ni > 0. We de�ne

two unary datamorphisms upi(x) and downi(x) as the traversal methods as follows.

upi(hx1, · · · , xKi) =
⌦
x1, · · · , x0i , · · · , xK

↵
, where x

0
i
=

(
vi, j+1 if xi = vi, j and j < ni

vi,ni
if xi = vi,ni

(8)

downi(hxi, · · · , xKi) =
⌦
xi, · · · , x0i , · · · , xK

↵
,where x

0
i
=

(
vi, j�1 if x

0
i
= vi, j and j > 1

vi,1 if x
0
i
= vi,1

(9)

12

Cx
x

a

b

y

a’= upy2(downx7(a)),
a”= midn(b, a’),

! = ln(&') , & = &!" + &#"

Cy

a’
a”

!

Figure 3: Construction of the Walk Path in the Running Example

Let x, y 2 D, x = hx1, · · · , xKi and y = hy1, · · · , yKi. �e distance between x and y, writ-
ten kx, ykD, is de�ned as the number of elements in x and y that are di�erent. Let �(x, y) =
hd1, · · · , dki, 0  k  K, be the sequence of elements in x that are di�erent from the correspond-
ing elements in y. �erefore, we have that kx, ykD = k.

�e following Lemma states that the function k·, ·kD : D ⇥ D ! N satis�es the conditions
of distance metrics. �e proof is straightforward, and thus is omi�ed for the sake of space.

Lemma 2. �e function k·, ·kD : D ⇥ D ! N de�ned above satis�es the conditions of distance
metrics. �at is, for all x, y, z 2 D, we have that kx, xkD = 0, kx, ykD � 0, kx, ykD = ky, xkD, and
kx, ykD + ky, zkD � kx, zkD. 2

We now de�ne a binary datamorphism midD(x, y) as the midpoint method as follows.

midD(x, y) = hz1, · · · , zKi , (10)

where

zi =

8>>><
>>>:

xi if xi = yi

xi if xi , yi and xi is an odd-indexed element in �(x, y)
yi if xi , yi and xi is an even-indexed element in �(x, y)

(11)

�e following theorem gives some useful special properties of the distance metrics k kD and
midpoint datamorphism midD on discrete data space. �ese properties are easy to prove by
using the de�nitions of the distance function and discrete non-numerical data space. Details
are omi�ed for the sake of space.

Lemma 3. For all x, y 2 D, we have that

1. x , y) kx, ykD � 1;
2. kx, ykD  K;
3. midD(x, x) = x;
4. kx, ykD = 1) (mid(x, y) = x) _ (midD(x, y) = y);
5. kx, ykD > 1) kx, zkD < kx, ykD ^ kz, ykD < kx, ykD, where z = mid(x, y). 2

Let WD = {upi(x) | i = 1, · · · ,K} [{downi(x) | i = 1, · · · ,K} [{midD(x, y)}.
13

�e following theorem states that WE is approximately complete.

�eorem 2. �e set WE of datamorphisms is approximately complete for a continuous numerical
feature based classi�er P de�ned on the data space D = D1 ⇥ · · · ⇥ DK , K > 0.
Proof. We prove that for any given points a = ha1, · · · , aKi , b = hb1, · · · , bKi 2 D and � > 0, we
can construct a composition � of datamorphisms such that kb, �(a)kE < �. �e composition �(x) is
de�ned as follows.

�(x) = m
n� � ud

n1
1 � · · · � ud

nK

K
(x)), (7)

where

m(x) = midE(b, x), ud
ni

i
(x) =

(
up

ni

i
(x) if ai � bi

down
ni

i
(x) if ai < bi

,

ni = b
|ai � bi|

ci

c, n� = dln(
c

�
)e, c =

vut
KX

n=1

c
2
i
.

Note that udi(x) is either upi(x) or downi(x) depending on whether the i
0th element of a is

greater than the i
0th element of b.

Let a
0 = ud

n1
1 � · · · � ud

nK

K
(x) =

D
a
0
1, · · · , a0K

E
. We have that a

0 is obtained by applying udi(x)
for ni times on a, for i = 1, · · · ,K. �e i

0th element of a
0 will be a

0
i
= ai ± ni · ci by the de�nition

of datamorphisms upi(x) and downi(x). By the de�nition of ni, we have that |bi � a
0
i
| < ci, for all

i = 1, · · · ,K. �erefore,

kb, a0k =

vut
KX

n=1

(bi � a
0
i
)2 

vut
KX

n=1

c
2
i
= c.

Applying m(x) on a
0 for n times, we get a

00 = m
n(a0). By Lemma 1(4), we have that kb, a00k =

kb, a0k/2n  c/2n. �erefore, when n � ln(c

�), we have that kb, a00k  �. �e theorem follows
immediately that n� = dln(c

�)e � ln(c

�). 2

Example 3. �e exploratory test system given in Example 2 is approximately complete, because
for all points a, b in the data space and � > 0, we have a composition �(x) of datamorphisms
such that kb, �(a)k  �; see Figure 3 for an illustration of how to construct the composition of
datamorphisms. 2

3.4. Discrete Non-Numerical Classi�ers.
If the classi�er P is a discrete non-numerical feature based classi�er then for each i =

1, · · · ,K, Di is a non-empty �nite set. Let Di = {vi,1, vi,2, · · · , vi,ni
}, where ni > 0. We de�ne

two unary datamorphisms upi(x) and downi(x) as the traversal methods as follows.

upi(hx1, · · · , xKi) =
⌦
x1, · · · , x0i , · · · , xK

↵
, where x

0
i
=

(
vi, j+1 if xi = vi, j and j < ni

vi,ni
if xi = vi,ni

(8)

downi(hxi, · · · , xKi) =
⌦
xi, · · · , x0i , · · · , xK

↵
,where x

0
i
=

(
vi, j�1 if x

0
i
= vi, j and j > 1

vi,1 if x
0
i
= vi,1

(9)

12

Cx
x

a

b

y

a’= upy2(downx7(a)),
a”= midn(b, a’),

! = ln(&') , & = &!" + &#"

Cy

a’
a”

!

Figure 3: Construction of the Walk Path in the Running Example

Let x, y 2 D, x = hx1, · · · , xKi and y = hy1, · · · , yKi. �e distance between x and y, writ-
ten kx, ykD, is de�ned as the number of elements in x and y that are di�erent. Let �(x, y) =
hd1, · · · , dki, 0  k  K, be the sequence of elements in x that are di�erent from the correspond-
ing elements in y. �erefore, we have that kx, ykD = k.

�e following Lemma states that the function k·, ·kD : D ⇥ D ! N satis�es the conditions
of distance metrics. �e proof is straightforward, and thus is omi�ed for the sake of space.

Lemma 2. �e function k·, ·kD : D ⇥ D ! N de�ned above satis�es the conditions of distance
metrics. �at is, for all x, y, z 2 D, we have that kx, xkD = 0, kx, ykD � 0, kx, ykD = ky, xkD, and
kx, ykD + ky, zkD � kx, zkD. 2

We now de�ne a binary datamorphism midD(x, y) as the midpoint method as follows.

midD(x, y) = hz1, · · · , zKi , (10)

where

zi =

8>>><
>>>:

xi if xi = yi

xi if xi , yi and xi is an odd-indexed element in �(x, y)
yi if xi , yi and xi is an even-indexed element in �(x, y)

(11)

�e following theorem gives some useful special properties of the distance metrics k kD and
midpoint datamorphism midD on discrete data space. �ese properties are easy to prove by
using the de�nitions of the distance function and discrete non-numerical data space. Details
are omi�ed for the sake of space.

Lemma 3. For all x, y 2 D, we have that

1. x , y) kx, ykD � 1;
2. kx, ykD  K;
3. midD(x, x) = x;
4. kx, ykD = 1) (mid(x, y) = x) _ (midD(x, y) = y);
5. kx, ykD > 1) kx, zkD < kx, ykD ^ kz, ykD < kx, ykD, where z = mid(x, y). 2

Let WD = {upi(x) | i = 1, · · · ,K} [{downi(x) | i = 1, · · · ,K} [{midD(x, y)}.
13

Exploratory Test System for Feature-based Classifiers
Let 𝑥 = ⟨𝑑&,···, 𝑑1, 𝑛&,···, 𝑛2, 𝑟&,···, 𝑟3⟩ ∈ 𝐷.

𝑥+ = ⟨𝑑&,···, 𝑑1⟩, 𝑥4 = ⟨𝑛&,···, 𝑛2⟩, and 𝑥. = ⟨𝑟&,···, 𝑟3⟩.

Define ⊕such that 𝑥 = 𝑥+ ⊕ 𝑥4 ⊕ 𝑥..

§Two unary datamorphisms 𝑢𝑝, and 𝑑𝑜𝑤𝑛, for each feature 𝑓,
§ Definition of the datamorphisms depends on the type of feature; see previous slides

§A binary datamorphism 𝑚𝑖𝑑5(𝑥, 𝑥′) as the midpoint method
𝑚𝑖𝑑5(𝑥, 𝑥′) = 𝑚𝑖𝑑+(𝑥+, 𝑥+6) ⊕ 𝑚𝑖𝑑4(𝑥4, 𝑥46) ⊕ 𝑚𝑖𝑑.(𝑥. , 𝑥.6)

§The distance function ∥·,·∥5 ∶ 𝐷 × 𝐷 → 𝑅' as follows.
∥ 𝑥, 𝑥6 ∥5 =∥ 𝑥+, 𝑥+6 ∥+ +∥ 𝑥4, 𝑥46 ∥4 +∥ 𝑥. , 𝑥.6 ∥. .

9817 July 2023 Tutorial on Datamorphic Testing

Theorem. The above set of datamorphisms and the distance metrics ∥·,·∥4 together satisfy
the requirements of exploratory test systems on datamorphisms, and it is approximately
complete.

Discrete non-numeric
features

Discrete numeric
features

Continuous numeric
features

1. Definitions of the strategies as algorithms
a) Random target
b) Directed walk
c) Random walk

2. Proofs of the correctness of the algorithms
3. Evaluation of performance of the algorithms

Exploratory Test Strategies

17 July 2023 Tutorial on Datamorphic Testing 99

Strategy 1: Random Target

2

Select at
random

1

Select at
random

3
Midpoint of
(1) and (2)

4 Midpoint of
(2) and (3)

5
Midpoint of
(3) and (4)

6

Midpoint of
(4) and (5)

Stage 1: Select two points (1) and (2)
at random. Success and progress to
Stage 2, if the points are in different
classes; otherwise fail and terminate.

17 July 2023 Tutorial on Datamorphic Testing 100

Stage 2: Repeatedly taking the midpoint of the last
two points in different classes for a number of times
to ensure the distance between the last two points is
smaller than the target distance of the pareto

1 2

Select a number of pairs of points in the space D at random, if a pair of points are in
different class, using the midpoint method repeatedly to find a pair border points
between them.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 1 (Random Target Strategy)
Input:
testSet : Test Pool;
steps: Integer;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select two di�erent test cases x and � in testSet at random;
2: Execute program P on test cases x and �;
3: Check if a pair of Pareto front exits between x to �:
if (x .output = �.output) then return hnull ,nulli
end if
4: Re�nement:
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.output) then � = z
else x = z;
end if

end for;
a = x ; b = �;
return ha,bi;

End

T������ 1. If RT (n) = ha,bi , hnull ,nulli, then ha,bi is a pair
of Pareto front according to P with respect to dist and � , if dm/cn < � .

Proof.
If RT (n) = ha,bi , hnull ,nulli, then, the condition of the If-

statement in step (3) is false. Thus, the loop is executed. It is easy
to see that the For-loop in Step 4 in the algorithm terminates.

We now proof that the following is a loop invariant by induction
on the number i of iterations of the loop body.

dist (x ,�)  dm
ci
^ P (x) , P (�).

When entering the loop, by assumption (4), the distance between
the data points stored in variable x and � satis�es the following
inequality.

dist (x ,�)  dm

Since the condition of the If-statement is false, we have that

P (x) = x .output , �.output = P (�).

Therefore, the loop invariant is true for i = 0.
Assume that the loop invariant is true for i = n � 0.
After the execution of the loop body one more time (i.e. i = n+1),

by applying the Hoare logic of the If-statements in the loop body,
the distance d 0x between the data points stored in variables x and �
will become either dist (x , z) or dist (z,�), where z =mid (x ,�). By
assumption (3), in both cases we have that

d 0x  Max {dist (x , z),dist (z,�)}  dist (x ,�)/c  dm/c
n+1.

By the condition of the If-statement in the loop body and the prop-
erty (1), applying Hoare logic we have that, after the execution
of the loop body, the data points stored in variables x and � have
the property that P (x) , P (�). Therefore, the condition is a loop
invariant according to Hoare logic.

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  dm/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤
The algorithm of random target strategy can be run multiple

times to generate a number of pairs for the Pareto front.

E������ 1. For example, applying the random target strategy to
the running example, we can obtain a test set shown in Figure 3 when
1000 pairs of test cases are selected at random from a test set of 300
random test cases. A total of 641 pairs of Pareto front test cases were
generated. The success rate in generating a pair for the Pareto front
is 64.1%. The set of Pareto front pairs shows clearly the boundary
between the subdomains classi�ed by the software.

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Figure 3: Pareto Front Generated by Random Target

In this example, the number of steps n is 20. Since the data space
D = [0, 2�] ⇥ [�1, 1], if the distance function dist (x ,�) is Eucl (x ,�),
we have that dm = 2

p
� 2 + 1. By the de�nition ofmid (x ,�), we have

that
Max ({dist (x , z),dist (�, z)})

dist (x ,�)
= 1/2.

So, c = 2. By Theorem 1, for the distance � between each pair in the
Pareto front, we have that

�  dm
c20
=

p
� 2 + 1
219

.

Note, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable in Figure 3. ⇤

3.2 Directed Walk Strategy
A variation of the random target strategy is to start with one test
case (rather than a pair) and apply a unary datamorphism repeatedly
until a test case of di�erent classi�cation is found. Then, the Pareto
front between these two test cases is searched for in the same
way as for the random target strategy. In this strategy, the unary
datamorphism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes a ‘walk’
in one direction until a test case in a di�erent class is found or gives
up the exploration if we have gone too far (i.e. too many iterations).

Note that, a walk in one direction may not be able to �nd a
data point in a di�erent class. In that case, the algorithm returns
hnull ,nulli. Letm,n > 0 be any given natural numbers. We write
DW (m,n) = ha,bi to denote the results of executing Algorithm
2 with m as the walking distance and n as the number of steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property.

17 July 2023 Tutorial on Datamorphic Testing 101

Correctness of The Random Target Algorithm

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(1) The set M of morphisms contains a test executer ExeP (x)
that executes the program P under test on a test case x and
receives the output of P ; that is ExeP (x) = P (x). In the sequel,
we will write P (x) for ExeP (x) for the sake of simplicity.

(2) There is a setW ✓ M of unary datamorphisms de�ned
on D. Informally, for each w 2 W and x 2 D, w (x),w2 (x),
· · · , wn (x) generates a sequence of di�erent data points
in D, where w1 (x) = w (x), wn+1 (x) = w (wn (x)). These
datamorphisms are called traversal methods.

(3) There is also a binary datamorphismm 2M such that for all
x ,� 2 D, dist (x , z) < dist (x ,�) and dist (�, z) < dist (x ,�),
where z = m(x ,�) 2 D. Informally, the datamorphism m
calculates a point between x and �. It is called the midpoint
method.

Note that, for all x ,� 2 D and z =m(x ,�), we have:

(P (x) , P (�))) (P (x) , P (z)) _ (P (�) , P (z)). (1)

Informally, if the program P under test classi�es x and � into dif-
ferent classes, the midpoint between x and � must be either not in
the same class as x or not in the same class as �.

2.4 The Running Example
In Section 3, we will use the following simple classi�cation program
as a running example to illustrate the exploration strategies. It
classi�es the points in a two-dimensional continuous space [0, 2�]⇥
[�1, 1] into three classes: red, black and blue as illustrated in Figure
1. In this example, data points x and� is a Pareto Front pair between
black and red classes, if x is red and � is black and they are very
close to each other. Such pairs can show accurately the borders
between the classes, and thus help testers to determine whether
the classi�cation is correct or not.

Figure 1: Data Space of the Running Example

Figure 2 gives the traversal and midpoint methods in the Morphy
test speci�cation. The midpoint method mid (x ,�) calculates the
geometric midpoint between x and �.

It is easy to see that the running example forms an exploratory
test system with the following distance function.

Eucl (hx1,x2i ,
⌦
�1,�2

↵
) =

q
(x1 � �1)2 + (x2 � �2)2 (2)

3 EXPLORATION STRATEGIES
This section presents the algorithms for three di�erent exploratory
strategies for testing clustering and classi�cation applications. We
also prove their correctness and illustrate their behaviour by using
the running example given in the previous section.

Figure 2: Datamorphisms of the Running Example

3.1 Random Target Strategy
Let’s start with a simple exploration strategy based on random
selection of known test cases in order to �nd the Pareto front of
the classi�cation groups between these two test cases. We call this
strategy random target strategy.

The strategy starts by selecting a pair of two test cases x and �
at random. If the outputs of the program P under test on these test
cases are di�erent, i.e. P (x) , P (�), then a point z1 between x and
� are generated by using the binary datamorphism of the midpoint
methodmid (x ,�), i.e. z1 = mid (x ,�). The program P is executed
on this mutant test case z1 to classify it. The classi�cation of z1
must be di�erent from one of the original pair of test cases; say
P (z1) , P (x). Thus, we can repeat the above steps with x and z1
as the pair of test cases, and a further mutant z2 can be generated.
This process is repeated a number of times to ensure the distance
between the �nal pair of points is small enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT (n) =
ha,bi to denote the results of executing Algorithm 1 with n as the
parameter steps and ha,bi as the output.

Assume that the exploratory test system has the following prop-
erties.

(1) There is a constant c > 1 such that

8x ,� 2 D.

Max {dist (x , z),dist (z,�)}

dist (x ,�)

!
 1/c, (3)

where z =mid (x ,�).
(2) There is a constant dm > 0 such that

8x ,� 2 D.(dist (x ,�)  dm). (4)

Then, we have the following theorem about the correctness of
the random target strategy algorithm.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 1 (Random Target Strategy)
Input:
testSet : Test Pool;
steps: Integer;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select two di�erent test cases x and � in testSet at random;
2: Execute program P on test cases x and �;
3: Check if a pair of Pareto front exits between x to �:
if (x .output = �.output) then return hnull ,nulli
end if
4: Re�nement:
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.output) then � = z
else x = z;
end if

end for;
a = x ; b = �;
return ha,bi;

End

T������ 1. If RT (n) = ha,bi , hnull ,nulli, then ha,bi is a pair
of Pareto front according to P with respect to dist and � , if dm/cn < � .

Proof.
If RT (n) = ha,bi , hnull ,nulli, then, the condition of the If-

statement in step (3) is false. Thus, the loop is executed. It is easy
to see that the For-loop in Step 4 in the algorithm terminates.

We now proof that the following is a loop invariant by induction
on the number i of iterations of the loop body.

dist (x ,�)  dm
ci
^ P (x) , P (�).

When entering the loop, by assumption (4), the distance between
the data points stored in variable x and � satis�es the following
inequality.

dist (x ,�)  dm

Since the condition of the If-statement is false, we have that

P (x) = x .output , �.output = P (�).

Therefore, the loop invariant is true for i = 0.
Assume that the loop invariant is true for i = n � 0.
After the execution of the loop body one more time (i.e. i = n+1),

by applying the Hoare logic of the If-statements in the loop body,
the distance d 0x between the data points stored in variables x and �
will become either dist (x , z) or dist (z,�), where z =mid (x ,�). By
assumption (3), in both cases we have that

d 0x  Max {dist (x , z),dist (z,�)}  dist (x ,�)/c  dm/c
n+1.

By the condition of the If-statement in the loop body and the prop-
erty (1), applying Hoare logic we have that, after the execution
of the loop body, the data points stored in variables x and � have
the property that P (x) , P (�). Therefore, the condition is a loop
invariant according to Hoare logic.

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  dm/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤
The algorithm of random target strategy can be run multiple

times to generate a number of pairs for the Pareto front.

E������ 1. For example, applying the random target strategy to
the running example, we can obtain a test set shown in Figure 3 when
1000 pairs of test cases are selected at random from a test set of 300
random test cases. A total of 641 pairs of Pareto front test cases were
generated. The success rate in generating a pair for the Pareto front
is 64.1%. The set of Pareto front pairs shows clearly the boundary
between the subdomains classi�ed by the software.

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Figure 3: Pareto Front Generated by Random Target

In this example, the number of steps n is 20. Since the data space
D = [0, 2�] ⇥ [�1, 1], if the distance function dist (x ,�) is Eucl (x ,�),
we have that dm = 2

p
� 2 + 1. By the de�nition ofmid (x ,�), we have

that
Max ({dist (x , z),dist (�, z)})

dist (x ,�)
= 1/2.

So, c = 2. By Theorem 1, for the distance � between each pair in the
Pareto front, we have that

�  dm
c20
=

p
� 2 + 1
219

.

Note, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable in Figure 3. ⇤

3.2 Directed Walk Strategy
A variation of the random target strategy is to start with one test
case (rather than a pair) and apply a unary datamorphism repeatedly
until a test case of di�erent classi�cation is found. Then, the Pareto
front between these two test cases is searched for in the same
way as for the random target strategy. In this strategy, the unary
datamorphism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes a ‘walk’
in one direction until a test case in a di�erent class is found or gives
up the exploration if we have gone too far (i.e. too many iterations).

Note that, a walk in one direction may not be able to �nd a
data point in a di�erent class. In that case, the algorithm returns
hnull ,nulli. Letm,n > 0 be any given natural numbers. We write
DW (m,n) = ha,bi to denote the results of executing Algorithm
2 with m as the walking distance and n as the number of steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property.

17 July 2023 Tutorial on Datamorphic Testing 102

Example: Execution of The Random Target Strategy
§1000 random pairs selected from 300 random test cases
§Number of steps: 20
§Number of pairs in the generated pareto front: 641
§Success rate: 64.1%
§The distance between each pair in the Pareto front:

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 1 (Random Target Strategy)
Input:
testSet : Test Pool;
steps: Integer;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select two di�erent test cases x and � in testSet at random;
2: Execute program P on test cases x and �;
3: Check if a pair of Pareto front exits between x to �:
if (x .output = �.output) then return hnull ,nulli
end if
4: Re�nement:
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.output) then � = z
else x = z;
end if

end for;
a = x ; b = �;
return ha,bi;

End

T������ 1. If RT (n) = ha,bi , hnull ,nulli, then ha,bi is a pair
of Pareto front according to P with respect to dist and � , if dm/cn < � .

Proof.
If RT (n) = ha,bi , hnull ,nulli, then, the condition of the If-

statement in step (3) is false. Thus, the loop is executed. It is easy
to see that the For-loop in Step 4 in the algorithm terminates.

We now proof that the following is a loop invariant by induction
on the number i of iterations of the loop body.

dist (x ,�)  dm
ci
^ P (x) , P (�).

When entering the loop, by assumption (4), the distance between
the data points stored in variable x and � satis�es the following
inequality.

dist (x ,�)  dm

Since the condition of the If-statement is false, we have that

P (x) = x .output , �.output = P (�).

Therefore, the loop invariant is true for i = 0.
Assume that the loop invariant is true for i = n � 0.
After the execution of the loop body one more time (i.e. i = n+1),

by applying the Hoare logic of the If-statements in the loop body,
the distance d 0x between the data points stored in variables x and �
will become either dist (x , z) or dist (z,�), where z =mid (x ,�). By
assumption (3), in both cases we have that

d 0x  Max {dist (x , z),dist (z,�)}  dist (x ,�)/c  dm/c
n+1.

By the condition of the If-statement in the loop body and the prop-
erty (1), applying Hoare logic we have that, after the execution
of the loop body, the data points stored in variables x and � have
the property that P (x) , P (�). Therefore, the condition is a loop
invariant according to Hoare logic.

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  dm/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤
The algorithm of random target strategy can be run multiple

times to generate a number of pairs for the Pareto front.

E������ 1. For example, applying the random target strategy to
the running example, we can obtain a test set shown in Figure 3 when
1000 pairs of test cases are selected at random from a test set of 300
random test cases. A total of 641 pairs of Pareto front test cases were
generated. The success rate in generating a pair for the Pareto front
is 64.1%. The set of Pareto front pairs shows clearly the boundary
between the subdomains classi�ed by the software.

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Figure 3: Pareto Front Generated by Random Target

In this example, the number of steps n is 20. Since the data space
D = [0, 2�] ⇥ [�1, 1], if the distance function dist (x ,�) is Eucl (x ,�),
we have that dm = 2

p
� 2 + 1. By the de�nition ofmid (x ,�), we have

that
Max ({dist (x , z),dist (�, z)})

dist (x ,�)
= 1/2.

So, c = 2. By Theorem 1, for the distance � between each pair in the
Pareto front, we have that

�  dm
c20
=

p
� 2 + 1
219

.

Note, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable in Figure 3. ⇤

3.2 Directed Walk Strategy
A variation of the random target strategy is to start with one test
case (rather than a pair) and apply a unary datamorphism repeatedly
until a test case of di�erent classi�cation is found. Then, the Pareto
front between these two test cases is searched for in the same
way as for the random target strategy. In this strategy, the unary
datamorphism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes a ‘walk’
in one direction until a test case in a di�erent class is found or gives
up the exploration if we have gone too far (i.e. too many iterations).

Note that, a walk in one direction may not be able to �nd a
data point in a di�erent class. In that case, the algorithm returns
hnull ,nulli. Letm,n > 0 be any given natural numbers. We write
DW (m,n) = ha,bi to denote the results of executing Algorithm
2 with m as the walking distance and n as the number of steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 1 (Random Target Strategy)
Input:
testSet : Test Pool;
steps: Integer;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select two di�erent test cases x and � in testSet at random;
2: Execute program P on test cases x and �;
3: Check if a pair of Pareto front exits between x to �:
if (x .output = �.output) then return hnull ,nulli
end if
4: Re�nement:
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.output) then � = z
else x = z;
end if

end for;
a = x ; b = �;
return ha,bi;

End

T������ 1. If RT (n) = ha,bi , hnull ,nulli, then ha,bi is a pair
of Pareto front according to P with respect to dist and � , if dm/cn < � .

Proof.
If RT (n) = ha,bi , hnull ,nulli, then, the condition of the If-

statement in step (3) is false. Thus, the loop is executed. It is easy
to see that the For-loop in Step 4 in the algorithm terminates.

We now proof that the following is a loop invariant by induction
on the number i of iterations of the loop body.

dist (x ,�)  dm
ci
^ P (x) , P (�).

When entering the loop, by assumption (4), the distance between
the data points stored in variable x and � satis�es the following
inequality.

dist (x ,�)  dm

Since the condition of the If-statement is false, we have that

P (x) = x .output , �.output = P (�).

Therefore, the loop invariant is true for i = 0.
Assume that the loop invariant is true for i = n � 0.
After the execution of the loop body one more time (i.e. i = n+1),

by applying the Hoare logic of the If-statements in the loop body,
the distance d 0x between the data points stored in variables x and �
will become either dist (x , z) or dist (z,�), where z =mid (x ,�). By
assumption (3), in both cases we have that

d 0x  Max {dist (x , z),dist (z,�)}  dist (x ,�)/c  dm/c
n+1.

By the condition of the If-statement in the loop body and the prop-
erty (1), applying Hoare logic we have that, after the execution
of the loop body, the data points stored in variables x and � have
the property that P (x) , P (�). Therefore, the condition is a loop
invariant according to Hoare logic.

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  dm/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤
The algorithm of random target strategy can be run multiple

times to generate a number of pairs for the Pareto front.

E������ 1. For example, applying the random target strategy to
the running example, we can obtain a test set shown in Figure 3 when
1000 pairs of test cases are selected at random from a test set of 300
random test cases. A total of 641 pairs of Pareto front test cases were
generated. The success rate in generating a pair for the Pareto front
is 64.1%. The set of Pareto front pairs shows clearly the boundary
between the subdomains classi�ed by the software.

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Figure 3: Pareto Front Generated by Random Target

In this example, the number of steps n is 20. Since the data space
D = [0, 2�] ⇥ [�1, 1], if the distance function dist (x ,�) is Eucl (x ,�),
we have that dm = 2

p
� 2 + 1. By the de�nition ofmid (x ,�), we have

that
Max ({dist (x , z),dist (�, z)})

dist (x ,�)
= 1/2.

So, c = 2. By Theorem 1, for the distance � between each pair in the
Pareto front, we have that

�  dm
c20
=

p
� 2 + 1
219

.

Note, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable in Figure 3. ⇤

3.2 Directed Walk Strategy
A variation of the random target strategy is to start with one test
case (rather than a pair) and apply a unary datamorphism repeatedly
until a test case of di�erent classi�cation is found. Then, the Pareto
front between these two test cases is searched for in the same
way as for the random target strategy. In this strategy, the unary
datamorphism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes a ‘walk’
in one direction until a test case in a di�erent class is found or gives
up the exploration if we have gone too far (i.e. too many iterations).

Note that, a walk in one direction may not be able to �nd a
data point in a di�erent class. In that case, the algorithm returns
hnull ,nulli. Letm,n > 0 be any given natural numbers. We write
DW (m,n) = ha,bi to denote the results of executing Algorithm
2 with m as the walking distance and n as the number of steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property.

17 July 2023 Tutorial on Datamorphic Testing 103

Strategy 2: Directed Walk

2

Walk
1 step

1

Start point
selected
at random

5

Walk
1 step

Stage 1: Start from one point in the data space. Repeatedly
using a given walking method to walk in one direction until find a
point (point (5) in the figure) of different class. Fail and terminate, if
repeated more than a set number of walking steps but still find no
point in a different class.

17 July 2023 Tutorial on Datamorphic Testing 104

Stage 2: Repeatedly taking the midpoint of the last two points in different classes for a
number of times to ensure the distance between the last two points is smaller than the
required distance of the Pareto.

7

Midpoint of
(5) and (6)

1

5

6

Midpoint of
(4) and (5)

Select a number of points in D at random as the start points. From each point, use a
walking method to traverse in one direction until find a point in different class, then
find the border points between them using the midpoint methods repeatedly.

3

Walk
1 step

4

Walk
1 step

17 July 2023 Tutorial on Datamorphic Testing 105

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

AST ’20, May 23–29, 2020, Seoul, South Korean Hong Zhu and Ian Bayley

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Directed Walk
A variation of the random target strategy is to start with
one test case (rather than a pair) and apply a unary data-
morphism repeatedly until a test case of di�erent classi-
�cation is found. Then, the Pareto front between these
two test cases are searched for in the same way as in the
random target strategy. In this strategy, the unary datamor-
phism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes
a ‘walk’ in one direction until a test case in a di�erent
class is found or gives up the exploration if too far has
been gone (i.e. too many iterations).

Algorithm 2 (Directed Walk)
Input:
T estSet : test set;
walkDistance : integer;
steps : Integer;
d (x): Unary datamorphism;
mid (x, �): Binary datamorphism;

Output:
a, b : Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: //Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case � ;
if (x .output , � .output) then

f ound = true; break;
else x = � ;
end if

end for
4: //Check if a Pareto front can be found
if (¬f ound) then return hnull, null i;
end if
5: //Re�nement
for i 1 to steps do

z =mid (x, �);
if (x .output , z .ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = � ;
return ha, bi;

End

Note that, a walk in one direction may not be able to �nd
a data point in a di�erent class. In that case, the algorithm
returns hnull ,nulli. Letm,n > 0 be any given nature num-
bers. We write DW (m,n) = ha,bi to denote the results of
executing Algorithm 2 withm as the walking distance and
n as the steps and ha,bi as the output. Assume that the
exploratory test system satis�es assumption (3) and has
the following property.
There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method
d (x). Then, we have the following correctness theorem of
the directed walk algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then,
ha,bi is a pair of Pareto front according to P with respect to
dist and � , if ds/cn < � , where n is the steps. ⇤

E������ 2. For example, starting from 1000 random test
cases using the directed walk strategy with the upward (x)

datamorphism as the unary traversal method, a set of 161
pairs of Pareto front were generated; shown in Figure 4.
The set of Pareto front pairs also shows clearly parts of the
boundaries between classes. The success rate of �nding a
pair of Pareto front on one test case is 16.1%.

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto fronts generated by the DirectedWalk strat-
egy

In this example, the number n of steps is also 20. By the
de�nition of upward (x) traversal method, we have that
ds = 0.2, if the distance function dist (x ,�) is Eucl (x ,�). As
in Example 1, by the de�nition ofmid (x ,�), we have that
c = 2. By Theorem 2, for the distance � between each pair
of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

⇤

3.3 RandomWalk
If multiple traversal methods are available, a random walk
can be performed by selecting the direction of the next
step at random. This is similar to the random walk testing
in hyperlink/web GUI test. The algorithm is given below.

Algorithm 3 (Random Walk)
Input:
testSet : Test Set;
walkin�Distance : Integer;
steps : Integer;
d1 (x), , dk (x): Unary datamorphism; k > 1
mid (x, �): Binary datamorphism;

Output:
a, b : Test Case;

Begin
1: Select a test case x in testSet at random;
2: Execute program P on test case x ;
3: //Walking at random to search for test case in a di�erent class
Bool f ound = false;
for i 1 towalkin�Distance do

Get a random integer r in the range [1, k]
� = dr (x);
Execute program P on test case � ;
if (x .output , � .output) then

f ound = true; break;
else x=y;
end if

end for
if (¬f ound) then return hnull, null i;
end if
4: //Re�nement
for i 1 to steps do

z =mid (x, �);
if (x .output , z .ouptut) then � = z ;
else x = z;
end if

end for
a = x ; b = � ;
return ha, bi;

End

4

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

AST ’20, May 23–29, 2020, Seoul, South Korean Hong Zhu and Ian Bayley

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Directed Walk
A variation of the random target strategy is to start with
one test case (rather than a pair) and apply a unary data-
morphism repeatedly until a test case of di�erent classi-
�cation is found. Then, the Pareto front between these
two test cases are searched for in the same way as in the
random target strategy. In this strategy, the unary datamor-
phism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes
a ‘walk’ in one direction until a test case in a di�erent
class is found or gives up the exploration if too far has
been gone (i.e. too many iterations).

Algorithm 2 (Directed Walk)
Input:
T estSet : test set;
walkDistance : integer;
steps : Integer;
d (x): Unary datamorphism;
mid (x, �): Binary datamorphism;

Output:
a, b : Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: //Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case � ;
if (x .output , � .output) then

f ound = true; break;
else x = � ;
end if

end for
4: //Check if a Pareto front can be found
if (¬f ound) then return hnull, null i;
end if
5: //Re�nement
for i 1 to steps do

z =mid (x, �);
if (x .output , z .ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = � ;
return ha, bi;

End

Note that, a walk in one direction may not be able to �nd
a data point in a di�erent class. In that case, the algorithm
returns hnull ,nulli. Letm,n > 0 be any given nature num-
bers. We write DW (m,n) = ha,bi to denote the results of
executing Algorithm 2 withm as the walking distance and
n as the steps and ha,bi as the output. Assume that the
exploratory test system satis�es assumption (3) and has
the following property.
There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method
d (x). Then, we have the following correctness theorem of
the directed walk algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then,
ha,bi is a pair of Pareto front according to P with respect to
dist and � , if ds/cn < � , where n is the steps. ⇤

E������ 2. For example, starting from 1000 random test
cases using the directed walk strategy with the upward (x)

datamorphism as the unary traversal method, a set of 161
pairs of Pareto front were generated; shown in Figure 4.
The set of Pareto front pairs also shows clearly parts of the
boundaries between classes. The success rate of �nding a
pair of Pareto front on one test case is 16.1%.

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto fronts generated by the DirectedWalk strat-
egy

In this example, the number n of steps is also 20. By the
de�nition of upward (x) traversal method, we have that
ds = 0.2, if the distance function dist (x ,�) is Eucl (x ,�). As
in Example 1, by the de�nition ofmid (x ,�), we have that
c = 2. By Theorem 2, for the distance � between each pair
of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

⇤

3.3 RandomWalk
If multiple traversal methods are available, a random walk
can be performed by selecting the direction of the next
step at random. This is similar to the random walk testing
in hyperlink/web GUI test. The algorithm is given below.

Algorithm 3 (Random Walk)
Input:
testSet : Test Set;
walkin�Distance : Integer;
steps : Integer;
d1 (x), , dk (x): Unary datamorphism; k > 1
mid (x, �): Binary datamorphism;

Output:
a, b : Test Case;

Begin
1: Select a test case x in testSet at random;
2: Execute program P on test case x ;
3: //Walking at random to search for test case in a di�erent class
Bool f ound = false;
for i 1 towalkin�Distance do

Get a random integer r in the range [1, k]
� = dr (x);
Execute program P on test case � ;
if (x .output , � .output) then

f ound = true; break;
else x=y;
end if

end for
if (¬f ound) then return hnull, null i;
end if
4: //Re�nement
for i 1 to steps do

z =mid (x, �);
if (x .output , z .ouptut) then � = z ;
else x = z;
end if

end for
a = x ; b = � ;
return ha, bi;

End

4

Correctness of The Directed Walk Strategy

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(1) The set M of morphisms contains a test executer ExeP (x)
that executes the program P under test on a test case x and
receives the output of P ; that is ExeP (x) = P (x). In the sequel,
we will write P (x) for ExeP (x) for the sake of simplicity.

(2) There is a setW ✓ M of unary datamorphisms de�ned
on D. Informally, for each w 2 W and x 2 D, w (x),w2 (x),
· · · , wn (x) generates a sequence of di�erent data points
in D, where w1 (x) = w (x), wn+1 (x) = w (wn (x)). These
datamorphisms are called traversal methods.

(3) There is also a binary datamorphismm 2M such that for all
x ,� 2 D, dist (x , z) < dist (x ,�) and dist (�, z) < dist (x ,�),
where z = m(x ,�) 2 D. Informally, the datamorphism m
calculates a point between x and �. It is called the midpoint
method.

Note that, for all x ,� 2 D and z =m(x ,�), we have:

(P (x) , P (�))) (P (x) , P (z)) _ (P (�) , P (z)). (1)

Informally, if the program P under test classi�es x and � into dif-
ferent classes, the midpoint between x and � must be either not in
the same class as x or not in the same class as �.

2.4 The Running Example
In Section 3, we will use the following simple classi�cation program
as a running example to illustrate the exploration strategies. It
classi�es the points in a two-dimensional continuous space [0, 2�]⇥
[�1, 1] into three classes: red, black and blue as illustrated in Figure
1. In this example, data points x and� is a Pareto Front pair between
black and red classes, if x is red and � is black and they are very
close to each other. Such pairs can show accurately the borders
between the classes, and thus help testers to determine whether
the classi�cation is correct or not.

Figure 1: Data Space of the Running Example

Figure 2 gives the traversal and midpoint methods in the Morphy
test speci�cation. The midpoint method mid (x ,�) calculates the
geometric midpoint between x and �.

It is easy to see that the running example forms an exploratory
test system with the following distance function.

Eucl (hx1,x2i ,
⌦
�1,�2

↵
) =

q
(x1 � �1)2 + (x2 � �2)2 (2)

3 EXPLORATION STRATEGIES
This section presents the algorithms for three di�erent exploratory
strategies for testing clustering and classi�cation applications. We
also prove their correctness and illustrate their behaviour by using
the running example given in the previous section.

Figure 2: Datamorphisms of the Running Example

3.1 Random Target Strategy
Let’s start with a simple exploration strategy based on random
selection of known test cases in order to �nd the Pareto front of
the classi�cation groups between these two test cases. We call this
strategy random target strategy.

The strategy starts by selecting a pair of two test cases x and �
at random. If the outputs of the program P under test on these test
cases are di�erent, i.e. P (x) , P (�), then a point z1 between x and
� are generated by using the binary datamorphism of the midpoint
methodmid (x ,�), i.e. z1 = mid (x ,�). The program P is executed
on this mutant test case z1 to classify it. The classi�cation of z1
must be di�erent from one of the original pair of test cases; say
P (z1) , P (x). Thus, we can repeat the above steps with x and z1
as the pair of test cases, and a further mutant z2 can be generated.
This process is repeated a number of times to ensure the distance
between the �nal pair of points is small enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT (n) =
ha,bi to denote the results of executing Algorithm 1 with n as the
parameter steps and ha,bi as the output.

Assume that the exploratory test system has the following prop-
erties.

(1) There is a constant c > 1 such that

8x ,� 2 D.

Max {dist (x , z),dist (z,�)}

dist (x ,�)

!
 1/c, (3)

where z =mid (x ,�).
(2) There is a constant dm > 0 such that

8x ,� 2 D.(dist (x ,�)  dm). (4)

Then, we have the following theorem about the correctness of
the random target strategy algorithm.

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

Algorithm 2 (Directed Walk)
Input:
TestSet : test set;
walkDistance: integer;
steps: Integer;
d (x): Unary datamorphism;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case �;
if (x .output , �.output) then

f ound = true; break;
else x = �;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = �;
return ha,bi;

End

There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method d (x). Then,
we have the following correctness theorem for the directed walk
algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is a
pair in the Pareto front according to P with respect to dist and � , if
ds/cn < � , where n is the number of steps.

Proof. If DW (m,n) = ha,bi , hnull ,nulli, then the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

Similar to the proof of Theorem 1, by the de�niton of ds and
assumption (5), the following is a loop invariant of the loop by
induction on the number i of iterations of the loop body.

dist (x ,�)  ds
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  ds/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 2. For example, starting from 1000 random test cases
using the directed walk strategy with the upward (x) datamorphism
as the unary traversal method, a set of 161 pairs of Pareto front were
generated; shown in Figure 4. The set of Pareto front pairs also shows
clearly parts of the boundaries between classes. The success rate of
�nding a pair of Pareto front on one test case is 16.1%.

In this example, the number n of steps is also 20. By the de�nition
of upward (x) traversal method, we have that ds = 0.2, if the distance
function dist (x ,�) is Eucl (x ,�). As in Example 1, by the de�nition
ofmid (x ,�), we have that c = 2. By Theorem 2, for the distance �
between each pair of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

Again, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable, so they appear
as one dot in Figure 4. ⇤

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto Fronts Generated by Directed Walk

3.3 RandomWalk Strategy
If multiple traversal methods are available, a random walk can be
performed by selecting the direction of the next step at random.
This is similar to the random walk testing in hyperlink/web GUI
test. The algorithm is given below.

We write RW (m,n) = ha,bi to denote the results of executing
Algorithm 3 with m as the walking distance and n as the steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property. There is a
constant ds > 0 such that

8x 2 D.8di 2W .(dist (x ,di (x))  dsm). (6)

where dsm is called the maximal step size of the traversal methods
di (x) 2W . Then, we have the following correctness theorem for
the algorithm of random walk strategy.

T������ 3. If RW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is
a pair of Pareto front according to P with respect to dist and � , if
dsm/cn < � , where n is the steps.

Proof. If RW (m,n) = ha,bi , hnull ,nulli, then, the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

(2)

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

Algorithm 2 (Directed Walk)
Input:
TestSet : test set;
walkDistance: integer;
steps: Integer;
d (x): Unary datamorphism;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case �;
if (x .output , �.output) then

f ound = true; break;
else x = �;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = �;
return ha,bi;

End

There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method d (x). Then,
we have the following correctness theorem for the directed walk
algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is a
pair in the Pareto front according to P with respect to dist and � , if
ds/cn < � , where n is the number of steps.

Proof. If DW (m,n) = ha,bi , hnull ,nulli, then the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

Similar to the proof of Theorem 1, by the de�niton of ds and
assumption (5), the following is a loop invariant of the loop by
induction on the number i of iterations of the loop body.

dist (x ,�)  ds
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  ds/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 2. For example, starting from 1000 random test cases
using the directed walk strategy with the upward (x) datamorphism
as the unary traversal method, a set of 161 pairs of Pareto front were
generated; shown in Figure 4. The set of Pareto front pairs also shows
clearly parts of the boundaries between classes. The success rate of
�nding a pair of Pareto front on one test case is 16.1%.

In this example, the number n of steps is also 20. By the de�nition
of upward (x) traversal method, we have that ds = 0.2, if the distance
function dist (x ,�) is Eucl (x ,�). As in Example 1, by the de�nition
ofmid (x ,�), we have that c = 2. By Theorem 2, for the distance �
between each pair of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

Again, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable, so they appear
as one dot in Figure 4. ⇤

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto Fronts Generated by Directed Walk

3.3 RandomWalk Strategy
If multiple traversal methods are available, a random walk can be
performed by selecting the direction of the next step at random.
This is similar to the random walk testing in hyperlink/web GUI
test. The algorithm is given below.

We write RW (m,n) = ha,bi to denote the results of executing
Algorithm 3 with m as the walking distance and n as the steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property. There is a
constant ds > 0 such that

8x 2 D.8di 2W .(dist (x ,di (x))  dsm). (6)

where dsm is called the maximal step size of the traversal methods
di (x) 2W . Then, we have the following correctness theorem for
the algorithm of random walk strategy.

T������ 3. If RW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is
a pair of Pareto front according to P with respect to dist and � , if
dsm/cn < � , where n is the steps.

Proof. If RW (m,n) = ha,bi , hnull ,nulli, then, the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

17 July 2023 Tutorial on Datamorphic Testing 106

Assume that the exploratory test system has the following properties

Example: Execution of The Directed Walk Strategy
§1000 start points selected at random; Walk direction: upward
§Walking distance: 20 steps; Number of refinement steps: 20
§Number of pairs in the generated pareto front: 161
§Success rate: 16.1%
§Distance between points in each pair:

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

Algorithm 2 (Directed Walk)
Input:
TestSet : test set;
walkDistance: integer;
steps: Integer;
d (x): Unary datamorphism;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case �;
if (x .output , �.output) then

f ound = true; break;
else x = �;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = �;
return ha,bi;

End

There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method d (x). Then,
we have the following correctness theorem for the directed walk
algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is a
pair in the Pareto front according to P with respect to dist and � , if
ds/cn < � , where n is the number of steps.

Proof. If DW (m,n) = ha,bi , hnull ,nulli, then the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

Similar to the proof of Theorem 1, by the de�niton of ds and
assumption (5), the following is a loop invariant of the loop by
induction on the number i of iterations of the loop body.

dist (x ,�)  ds
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  ds/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 2. For example, starting from 1000 random test cases
using the directed walk strategy with the upward (x) datamorphism
as the unary traversal method, a set of 161 pairs of Pareto front were
generated; shown in Figure 4. The set of Pareto front pairs also shows
clearly parts of the boundaries between classes. The success rate of
�nding a pair of Pareto front on one test case is 16.1%.

In this example, the number n of steps is also 20. By the de�nition
of upward (x) traversal method, we have that ds = 0.2, if the distance
function dist (x ,�) is Eucl (x ,�). As in Example 1, by the de�nition
ofmid (x ,�), we have that c = 2. By Theorem 2, for the distance �
between each pair of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

Again, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable, so they appear
as one dot in Figure 4. ⇤

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto Fronts Generated by Directed Walk

3.3 RandomWalk Strategy
If multiple traversal methods are available, a random walk can be
performed by selecting the direction of the next step at random.
This is similar to the random walk testing in hyperlink/web GUI
test. The algorithm is given below.

We write RW (m,n) = ha,bi to denote the results of executing
Algorithm 3 with m as the walking distance and n as the steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property. There is a
constant ds > 0 such that

8x 2 D.8di 2W .(dist (x ,di (x))  dsm). (6)

where dsm is called the maximal step size of the traversal methods
di (x) 2W . Then, we have the following correctness theorem for
the algorithm of random walk strategy.

T������ 3. If RW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is
a pair of Pareto front according to P with respect to dist and � , if
dsm/cn < � , where n is the steps.

Proof. If RW (m,n) = ha,bi , hnull ,nulli, then, the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

Algorithm 2 (Directed Walk)
Input:
TestSet : test set;
walkDistance: integer;
steps: Integer;
d (x): Unary datamorphism;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case �;
if (x .output , �.output) then

f ound = true; break;
else x = �;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = �;
return ha,bi;

End

There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method d (x). Then,
we have the following correctness theorem for the directed walk
algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is a
pair in the Pareto front according to P with respect to dist and � , if
ds/cn < � , where n is the number of steps.

Proof. If DW (m,n) = ha,bi , hnull ,nulli, then the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

Similar to the proof of Theorem 1, by the de�niton of ds and
assumption (5), the following is a loop invariant of the loop by
induction on the number i of iterations of the loop body.

dist (x ,�)  ds
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  ds/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 2. For example, starting from 1000 random test cases
using the directed walk strategy with the upward (x) datamorphism
as the unary traversal method, a set of 161 pairs of Pareto front were
generated; shown in Figure 4. The set of Pareto front pairs also shows
clearly parts of the boundaries between classes. The success rate of
�nding a pair of Pareto front on one test case is 16.1%.

In this example, the number n of steps is also 20. By the de�nition
of upward (x) traversal method, we have that ds = 0.2, if the distance
function dist (x ,�) is Eucl (x ,�). As in Example 1, by the de�nition
ofmid (x ,�), we have that c = 2. By Theorem 2, for the distance �
between each pair of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

Again, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable, so they appear
as one dot in Figure 4. ⇤

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto Fronts Generated by Directed Walk

3.3 RandomWalk Strategy
If multiple traversal methods are available, a random walk can be
performed by selecting the direction of the next step at random.
This is similar to the random walk testing in hyperlink/web GUI
test. The algorithm is given below.

We write RW (m,n) = ha,bi to denote the results of executing
Algorithm 3 with m as the walking distance and n as the steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property. There is a
constant ds > 0 such that

8x 2 D.8di 2W .(dist (x ,di (x))  dsm). (6)

where dsm is called the maximal step size of the traversal methods
di (x) 2W . Then, we have the following correctness theorem for
the algorithm of random walk strategy.

T������ 3. If RW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is
a pair of Pareto front according to P with respect to dist and � , if
dsm/cn < � , where n is the steps.

Proof. If RW (m,n) = ha,bi , hnull ,nulli, then, the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

17 July 2023 Tutorial on Datamorphic Testing 107

Strategy 3: Random Walk

2Walk
1 step

1

Select at
random

3
Walk
1 step4

Walk
1 step

5Walk
1 step

6

Midpoint of
(4) and (5) Stage 2: Repeatedly taking the

midpoint of the last two points in
different classes for a number of
times to ensure that the distance
between the last two points is smaller
than the target distance of the pareto

17 July 2023 Tutorial on Datamorphic Testing 108

Stage 1: Start from one point
(1) , repeatedly using a
walking method selected at
random until find a point of
different class (point in
the figure). Fail, if repeated
more than a set number of
walking steps but still find no
point in a different class

7 Midpoint of
(5) and (6)

1

5

Select a number of points in D at random as the start points. From each point, use
a number of walking method to walk randomly (each step choice a walking method
at random), until a point of different class is find, and then find a pair of border
points using the midpoint method repeatedly.

17 July 2023 Tutorial on Datamorphic Testing 109

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

AST ’20, May 23–29, 2020, Seoul, South Korean Hong Zhu and Ian Bayley

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Directed Walk
A variation of the random target strategy is to start with
one test case (rather than a pair) and apply a unary data-
morphism repeatedly until a test case of di�erent classi-
�cation is found. Then, the Pareto front between these
two test cases are searched for in the same way as in the
random target strategy. In this strategy, the unary datamor-
phism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes
a ‘walk’ in one direction until a test case in a di�erent
class is found or gives up the exploration if too far has
been gone (i.e. too many iterations).

Algorithm 2 (Directed Walk)
Input:
T estSet : test set;
walkDistance : integer;
steps : Integer;
d (x): Unary datamorphism;
mid (x, �): Binary datamorphism;

Output:
a, b : Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: //Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case � ;
if (x .output , � .output) then

f ound = true; break;
else x = � ;
end if

end for
4: //Check if a Pareto front can be found
if (¬f ound) then return hnull, null i;
end if
5: //Re�nement
for i 1 to steps do

z =mid (x, �);
if (x .output , z .ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = � ;
return ha, bi;

End

Note that, a walk in one direction may not be able to �nd
a data point in a di�erent class. In that case, the algorithm
returns hnull ,nulli. Letm,n > 0 be any given nature num-
bers. We write DW (m,n) = ha,bi to denote the results of
executing Algorithm 2 withm as the walking distance and
n as the steps and ha,bi as the output. Assume that the
exploratory test system satis�es assumption (3) and has
the following property.
There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method
d (x). Then, we have the following correctness theorem of
the directed walk algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then,
ha,bi is a pair of Pareto front according to P with respect to
dist and � , if ds/cn < � , where n is the steps. ⇤

E������ 2. For example, starting from 1000 random test
cases using the directed walk strategy with the upward (x)

datamorphism as the unary traversal method, a set of 161
pairs of Pareto front were generated; shown in Figure 4.
The set of Pareto front pairs also shows clearly parts of the
boundaries between classes. The success rate of �nding a
pair of Pareto front on one test case is 16.1%.

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto fronts generated by the DirectedWalk strat-
egy

In this example, the number n of steps is also 20. By the
de�nition of upward (x) traversal method, we have that
ds = 0.2, if the distance function dist (x ,�) is Eucl (x ,�). As
in Example 1, by the de�nition ofmid (x ,�), we have that
c = 2. By Theorem 2, for the distance � between each pair
of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

⇤

3.3 Random Walk
If multiple traversal methods are available, a random walk
can be performed by selecting the direction of the next
step at random. This is similar to the random walk testing
in hyperlink/web GUI test. The algorithm is given below.

Algorithm 3 (Random Walk)
Input:
testSet : Test Set;
walkin�Distance : Integer;
steps : Integer;
d1 (x), , dk (x): Unary datamorphism; k > 1
mid (x, �): Binary datamorphism;

Output:
a, b : Test Case;

Begin
1: Select a test case x in testSet at random;
2: Execute program P on test case x ;
3: //Walking at random to search for test case in a di�erent class
Bool f ound = false;
for i 1 towalkin�Distance do

Get a random integer r in the range [1, k]
� = dr (x);
Execute program P on test case � ;
if (x .output , � .output) then

f ound = true; break;
else x=y;
end if

end for
if (¬f ound) then return hnull, null i;
end if
4: //Re�nement
for i 1 to steps do

z =mid (x, �);
if (x .output , z .ouptut) then � = z ;
else x = z;
end if

end for
a = x ; b = � ;
return ha, bi;

End

4

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

AST ’20, May 23–29, 2020, Seoul, South Korean Hong Zhu and Ian Bayley

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Directed Walk
A variation of the random target strategy is to start with
one test case (rather than a pair) and apply a unary data-
morphism repeatedly until a test case of di�erent classi-
�cation is found. Then, the Pareto front between these
two test cases are searched for in the same way as in the
random target strategy. In this strategy, the unary datamor-
phism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes
a ‘walk’ in one direction until a test case in a di�erent
class is found or gives up the exploration if too far has
been gone (i.e. too many iterations).

Algorithm 2 (Directed Walk)
Input:
T estSet : test set;
walkDistance : integer;
steps : Integer;
d (x): Unary datamorphism;
mid (x, �): Binary datamorphism;

Output:
a, b : Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: //Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case � ;
if (x .output , � .output) then

f ound = true; break;
else x = � ;
end if

end for
4: //Check if a Pareto front can be found
if (¬f ound) then return hnull, null i;
end if
5: //Re�nement
for i 1 to steps do

z =mid (x, �);
if (x .output , z .ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = � ;
return ha, bi;

End

Note that, a walk in one direction may not be able to �nd
a data point in a di�erent class. In that case, the algorithm
returns hnull ,nulli. Letm,n > 0 be any given nature num-
bers. We write DW (m,n) = ha,bi to denote the results of
executing Algorithm 2 withm as the walking distance and
n as the steps and ha,bi as the output. Assume that the
exploratory test system satis�es assumption (3) and has
the following property.
There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method
d (x). Then, we have the following correctness theorem of
the directed walk algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then,
ha,bi is a pair of Pareto front according to P with respect to
dist and � , if ds/cn < � , where n is the steps. ⇤

E������ 2. For example, starting from 1000 random test
cases using the directed walk strategy with the upward (x)

datamorphism as the unary traversal method, a set of 161
pairs of Pareto front were generated; shown in Figure 4.
The set of Pareto front pairs also shows clearly parts of the
boundaries between classes. The success rate of �nding a
pair of Pareto front on one test case is 16.1%.

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto fronts generated by the DirectedWalk strat-
egy

In this example, the number n of steps is also 20. By the
de�nition of upward (x) traversal method, we have that
ds = 0.2, if the distance function dist (x ,�) is Eucl (x ,�). As
in Example 1, by the de�nition ofmid (x ,�), we have that
c = 2. By Theorem 2, for the distance � between each pair
of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

⇤

3.3 RandomWalk
If multiple traversal methods are available, a random walk
can be performed by selecting the direction of the next
step at random. This is similar to the random walk testing
in hyperlink/web GUI test. The algorithm is given below.

Algorithm 3 (Random Walk)
Input:
testSet : Test Set;
walkin�Distance : Integer;
steps : Integer;
d1 (x), , dk (x): Unary datamorphism; k > 1
mid (x, �): Binary datamorphism;

Output:
a, b : Test Case;

Begin
1: Select a test case x in testSet at random;
2: Execute program P on test case x ;
3: //Walking at random to search for test case in a di�erent class
Bool f ound = false;
for i 1 towalkin�Distance do

Get a random integer r in the range [1, k]
� = dr (x);
Execute program P on test case � ;
if (x .output , � .output) then

f ound = true; break;
else x=y;
end if

end for
if (¬f ound) then return hnull, null i;
end if
4: //Re�nement
for i 1 to steps do

z =mid (x, �);
if (x .output , z .ouptut) then � = z ;
else x = z;
end if

end for
a = x ; b = � ;
return ha, bi;

End

4

Correctness of The Random Walk Algorithm

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(1) The set M of morphisms contains a test executer ExeP (x)
that executes the program P under test on a test case x and
receives the output of P ; that is ExeP (x) = P (x). In the sequel,
we will write P (x) for ExeP (x) for the sake of simplicity.

(2) There is a setW ✓ M of unary datamorphisms de�ned
on D. Informally, for each w 2 W and x 2 D, w (x),w2 (x),
· · · , wn (x) generates a sequence of di�erent data points
in D, where w1 (x) = w (x), wn+1 (x) = w (wn (x)). These
datamorphisms are called traversal methods.

(3) There is also a binary datamorphismm 2M such that for all
x ,� 2 D, dist (x , z) < dist (x ,�) and dist (�, z) < dist (x ,�),
where z = m(x ,�) 2 D. Informally, the datamorphism m
calculates a point between x and �. It is called the midpoint
method.

Note that, for all x ,� 2 D and z =m(x ,�), we have:

(P (x) , P (�))) (P (x) , P (z)) _ (P (�) , P (z)). (1)

Informally, if the program P under test classi�es x and � into dif-
ferent classes, the midpoint between x and � must be either not in
the same class as x or not in the same class as �.

2.4 The Running Example
In Section 3, we will use the following simple classi�cation program
as a running example to illustrate the exploration strategies. It
classi�es the points in a two-dimensional continuous space [0, 2�]⇥
[�1, 1] into three classes: red, black and blue as illustrated in Figure
1. In this example, data points x and� is a Pareto Front pair between
black and red classes, if x is red and � is black and they are very
close to each other. Such pairs can show accurately the borders
between the classes, and thus help testers to determine whether
the classi�cation is correct or not.

Figure 1: Data Space of the Running Example

Figure 2 gives the traversal and midpoint methods in the Morphy
test speci�cation. The midpoint method mid (x ,�) calculates the
geometric midpoint between x and �.

It is easy to see that the running example forms an exploratory
test system with the following distance function.

Eucl (hx1,x2i ,
⌦
�1,�2

↵
) =

q
(x1 � �1)2 + (x2 � �2)2 (2)

3 EXPLORATION STRATEGIES
This section presents the algorithms for three di�erent exploratory
strategies for testing clustering and classi�cation applications. We
also prove their correctness and illustrate their behaviour by using
the running example given in the previous section.

Figure 2: Datamorphisms of the Running Example

3.1 Random Target Strategy
Let’s start with a simple exploration strategy based on random
selection of known test cases in order to �nd the Pareto front of
the classi�cation groups between these two test cases. We call this
strategy random target strategy.

The strategy starts by selecting a pair of two test cases x and �
at random. If the outputs of the program P under test on these test
cases are di�erent, i.e. P (x) , P (�), then a point z1 between x and
� are generated by using the binary datamorphism of the midpoint
methodmid (x ,�), i.e. z1 = mid (x ,�). The program P is executed
on this mutant test case z1 to classify it. The classi�cation of z1
must be di�erent from one of the original pair of test cases; say
P (z1) , P (x). Thus, we can repeat the above steps with x and z1
as the pair of test cases, and a further mutant z2 can be generated.
This process is repeated a number of times to ensure the distance
between the �nal pair of points is small enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT (n) =
ha,bi to denote the results of executing Algorithm 1 with n as the
parameter steps and ha,bi as the output.

Assume that the exploratory test system has the following prop-
erties.

(1) There is a constant c > 1 such that

8x ,� 2 D.

Max {dist (x , z),dist (z,�)}

dist (x ,�)

!
 1/c, (3)

where z =mid (x ,�).
(2) There is a constant dm > 0 such that

8x ,� 2 D.(dist (x ,�)  dm). (4)

Then, we have the following theorem about the correctness of
the random target strategy algorithm.

(2) There is a constant ds > 0 such that

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

Algorithm 2 (Directed Walk)
Input:
TestSet : test set;
walkDistance: integer;
steps: Integer;
d (x): Unary datamorphism;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case �;
if (x .output , �.output) then

f ound = true; break;
else x = �;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = �;
return ha,bi;

End

There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method d (x). Then,
we have the following correctness theorem for the directed walk
algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is a
pair in the Pareto front according to P with respect to dist and � , if
ds/cn < � , where n is the number of steps.

Proof. If DW (m,n) = ha,bi , hnull ,nulli, then the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

Similar to the proof of Theorem 1, by the de�niton of ds and
assumption (5), the following is a loop invariant of the loop by
induction on the number i of iterations of the loop body.

dist (x ,�)  ds
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  ds/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 2. For example, starting from 1000 random test cases
using the directed walk strategy with the upward (x) datamorphism
as the unary traversal method, a set of 161 pairs of Pareto front were
generated; shown in Figure 4. The set of Pareto front pairs also shows
clearly parts of the boundaries between classes. The success rate of
�nding a pair of Pareto front on one test case is 16.1%.

In this example, the number n of steps is also 20. By the de�nition
of upward (x) traversal method, we have that ds = 0.2, if the distance
function dist (x ,�) is Eucl (x ,�). As in Example 1, by the de�nition
ofmid (x ,�), we have that c = 2. By Theorem 2, for the distance �
between each pair of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

Again, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable, so they appear
as one dot in Figure 4. ⇤

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto Fronts Generated by Directed Walk

3.3 RandomWalk Strategy
If multiple traversal methods are available, a random walk can be
performed by selecting the direction of the next step at random.
This is similar to the random walk testing in hyperlink/web GUI
test. The algorithm is given below.

We write RW (m,n) = ha,bi to denote the results of executing
Algorithm 3 with m as the walking distance and n as the steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property. There is a
constant ds > 0 such that

8x 2 D.8di 2W .(dist (x ,di (x))  dsm). (6)

where dsm is called the maximal step size of the traversal methods
di (x) 2W . Then, we have the following correctness theorem for
the algorithm of random walk strategy.

T������ 3. If RW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is
a pair of Pareto front according to P with respect to dist and � , if
dsm/cn < � , where n is the steps.

Proof. If RW (m,n) = ha,bi , hnull ,nulli, then, the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

Algorithm 2 (Directed Walk)
Input:
TestSet : test set;
walkDistance: integer;
steps: Integer;
d (x): Unary datamorphism;
mid (x ,�): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x ;
3: Walk in one direction as follows:
Bool found = false;
for i 1 towalkin�Distance do

� = d (x);
Execute software on test case �;
if (x .output , �.output) then

f ound = true; break;
else x = �;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then y = z;
else x = z;
end if;

end for
a = x ; b = �;
return ha,bi;

End

There is a constant ds > 0 such that

8x 2 D. (dist (x ,d (x))  ds) . (5)

where ds is called the step size of the traversal method d (x). Then,
we have the following correctness theorem for the directed walk
algorithm.

T������ 2. If DW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is a
pair in the Pareto front according to P with respect to dist and � , if
ds/cn < � , where n is the number of steps.

Proof. If DW (m,n) = ha,bi , hnull ,nulli, then the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

Similar to the proof of Theorem 1, by the de�niton of ds and
assumption (5), the following is a loop invariant of the loop by
induction on the number i of iterations of the loop body.

dist (x ,�)  ds
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = �, we have that

dist (a,b)  ds/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 2. For example, starting from 1000 random test cases
using the directed walk strategy with the upward (x) datamorphism
as the unary traversal method, a set of 161 pairs of Pareto front were
generated; shown in Figure 4. The set of Pareto front pairs also shows
clearly parts of the boundaries between classes. The success rate of
�nding a pair of Pareto front on one test case is 16.1%.

In this example, the number n of steps is also 20. By the de�nition
of upward (x) traversal method, we have that ds = 0.2, if the distance
function dist (x ,�) is Eucl (x ,�). As in Example 1, by the de�nition
ofmid (x ,�), we have that c = 2. By Theorem 2, for the distance �
between each pair of Pareto front, we have that

�  ds
c20
= 0.2 ⇥ 1

220
.

Again, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable, so they appear
as one dot in Figure 4. ⇤

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto Fronts Generated by Directed Walk

3.3 RandomWalk Strategy
If multiple traversal methods are available, a random walk can be
performed by selecting the direction of the next step at random.
This is similar to the random walk testing in hyperlink/web GUI
test. The algorithm is given below.

We write RW (m,n) = ha,bi to denote the results of executing
Algorithm 3 with m as the walking distance and n as the steps
and ha,bi as the output. Assume that the exploratory test system
satis�es assumption (3) and has the following property. There is a
constant ds > 0 such that

8x 2 D.8di 2W .(dist (x ,di (x))  dsm). (6)

where dsm is called the maximal step size of the traversal methods
di (x) 2W . Then, we have the following correctness theorem for
the algorithm of random walk strategy.

T������ 3. If RW (m,n) = ha,bi , hnull ,nulli, then, ha,bi is
a pair of Pareto front according to P with respect to dist and � , if
dsm/cn < � , where n is the steps.

Proof. If RW (m,n) = ha,bi , hnull ,nulli, then, the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Re�nement in
the algorithm terminates.

17 July 2023 Tutorial on Datamorphic Testing 110

Assume that the exploratory test system has the following properties

Example: Execution of The Random Walk Strategy
§1000 random walks with 300 starting points selected at random
§Walking distance: 20 steps; Number of refinement steps: 20
§Walk directions: upward, downward, leftward, rightward
§Number of pairs in the generated pareto front: 805
§Success rate: 80.5%
§Distance between points in each pair:

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 3 (Random Walk Strategy)
Input:
testSet : Test Set;
walkin�Distance: Integer;
steps: Integer;
d1 (x), · · · ,dk (x): Unary datamorphism; k > 1
mid (x ,�): Binary datamorphism;

Output:
a,b: Test Case;

Begin
1: Select a test case x in testSet at random;
2: Execute program P on test case x ;
3: Walking at random to search for test case in a di�erent class:
Bool f ound = false;
for i 1 towalkin�Distance do

Get a random integer r in the range [1,k]
� = dr (x);
Execute program P on test case �;
if (x .output , �.output) then

f ound = true; break;
else x=y;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement:
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then � = z;
else x = z;
end if

end for
a = x ; b = �;
return ha,bi;

End

Similar to the proof of Theorem 1, by the de�niton of dsm and
assumption (6), we can prove that the following is a loop invariant
of the loop by induction on the number i of iterations of the loop
body.

dist (x ,�)  dsm
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. After executing the assign-
ment statements a = x and b = �, the following is true by Hoare
logic.

dist (a,b)  dsm/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 3. For example, by applying the random walk strategy
on a test set containing 300 random test cases, 1000 random walks
generated 805 pairs of Pareto front test cases shown in Figure 5, where
the walking distance was 20 steps.

In this example, the number n of steps is also 20. By the de�ni-
tion of upward (x), downward (x), le f tward (x) and ri�htward (x)
traversal methods, we have that ds = 0.2, if the distance function

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

Figure 5: The Pareto Fronts Generated by Random Walk

dist (x ,�) is Eucl (x ,�). As in Example 1 and 2, by the de�nition of
mid (x ,�), we have that c = 2. By Theorem 3, the distance � between
each pair of Pareto front satis�es the following inequality.

�  ds
c20
= 0.2 ⇥ 1

220
. ⇤

4 EXPERIMENTS
Controlled experiments with the exploratory test strategies have
been conducted using the automated datamorphic testing tool Mor-
phy to study their test e�ectiveness. This section report the results
of the experiments.

4.1 Design of the Experiments
4.1.1 Objectives of the Experiments. As discussed in the previous
sections, exploration strategies are designed to test classi�cation
applications. They aim to �nd the borders between subdomains
of the classi�cations. The goal of the experiments is to study the
factors that have e�ect on the e�ectiveness of these test strategies
in terms to their capability of �nding the Pareto fronts between
subdomains. The measurement of test e�ectiveness is the number
of test executions per border points found by the test strategy.

It is worth noting that the experiments are not for comparison
of the strategies, which each has its own suitable applications.

4.1.2 Subject applications. The experiments are carried out with
ten classi�cation applications shown in Figure 6. These applications
are on the same input domain, i.e. two-dimensional real numbers
in the range of [0, 2�] ⇥ [�1, 1].

4.2 Experiment process and the results
For each subject application, three exploration strategies are used
with various parameters. Each test is repeated for 10 times using the
testing tool Morphy and the average of the data is used to analyse
the results.

4.2.1 Experiments with the directed walk strategy. The experiments
used various numbers of random test cases from 200 to 1200 as
shown in Table 1; here, the column #Seed TCs is the number of seed
test cases in the experiment. These seed test cases are generated at
random from the uniform distribution. From each seed test case, one
walk in one direction is made for up to 20 steps. The experiments
used the upward datamorphism. The column Avg #Runs in Table 1
gives the average number of test executions of the subject program
under test. The column Avg #mutant TC gives the average number
of mutant test cases generated; these are test cases on the borders
of the clusters.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 3 (Random Walk Strategy)
Input:
testSet : Test Set;
walkin�Distance: Integer;
steps: Integer;
d1 (x), · · · ,dk (x): Unary datamorphism; k > 1
mid (x ,�): Binary datamorphism;

Output:
a,b: Test Case;

Begin
1: Select a test case x in testSet at random;
2: Execute program P on test case x ;
3: Walking at random to search for test case in a di�erent class:
Bool f ound = false;
for i 1 towalkin�Distance do

Get a random integer r in the range [1,k]
� = dr (x);
Execute program P on test case �;
if (x .output , �.output) then

f ound = true; break;
else x=y;
end if

end for
4: Check if a Pareto front can be found:
if (¬f ound) then return hnull ,nulli;
end if
5: Re�nement:
for i 1 to steps do

z =mid (x ,�);
if (x .output , z.ouptut) then � = z;
else x = z;
end if

end for
a = x ; b = �;
return ha,bi;

End

Similar to the proof of Theorem 1, by the de�niton of dsm and
assumption (6), we can prove that the following is a loop invariant
of the loop by induction on the number i of iterations of the loop
body.

dist (x ,�)  dsm
ci
^ P (x) , P (�).

When the loop exits, i = steps = n. After executing the assign-
ment statements a = x and b = �, the following is true by Hoare
logic.

dist (a,b)  dsm/c
n ^ P (a) , P (b).

Therefore, the theorem is true by De�nition 1. ⇤

E������ 3. For example, by applying the random walk strategy
on a test set containing 300 random test cases, 1000 random walks
generated 805 pairs of Pareto front test cases shown in Figure 5, where
the walking distance was 20 steps.

In this example, the number n of steps is also 20. By the de�ni-
tion of upward (x), downward (x), le f tward (x) and ri�htward (x)
traversal methods, we have that ds = 0.2, if the distance function

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

Figure 5: The Pareto Fronts Generated by Random Walk

dist (x ,�) is Eucl (x ,�). As in Example 1 and 2, by the de�nition of
mid (x ,�), we have that c = 2. By Theorem 3, the distance � between
each pair of Pareto front satis�es the following inequality.

�  ds
c20
= 0.2 ⇥ 1

220
. ⇤

4 EXPERIMENTS
Controlled experiments with the exploratory test strategies have
been conducted using the automated datamorphic testing tool Mor-
phy to study their test e�ectiveness. This section report the results
of the experiments.

4.1 Design of the Experiments
4.1.1 Objectives of the Experiments. As discussed in the previous
sections, exploration strategies are designed to test classi�cation
applications. They aim to �nd the borders between subdomains
of the classi�cations. The goal of the experiments is to study the
factors that have e�ect on the e�ectiveness of these test strategies
in terms to their capability of �nding the Pareto fronts between
subdomains. The measurement of test e�ectiveness is the number
of test executions per border points found by the test strategy.

It is worth noting that the experiments are not for comparison
of the strategies, which each has its own suitable applications.

4.1.2 Subject applications. The experiments are carried out with
ten classi�cation applications shown in Figure 6. These applications
are on the same input domain, i.e. two-dimensional real numbers
in the range of [0, 2�] ⇥ [�1, 1].

4.2 Experiment process and the results
For each subject application, three exploration strategies are used
with various parameters. Each test is repeated for 10 times using the
testing tool Morphy and the average of the data is used to analyse
the results.

4.2.1 Experiments with the directed walk strategy. The experiments
used various numbers of random test cases from 200 to 1200 as
shown in Table 1; here, the column #Seed TCs is the number of seed
test cases in the experiment. These seed test cases are generated at
random from the uniform distribution. From each seed test case, one
walk in one direction is made for up to 20 steps. The experiments
used the upward datamorphism. The column Avg #Runs in Table 1
gives the average number of test executions of the subject program
under test. The column Avg #mutant TC gives the average number
of mutant test cases generated; these are test cases on the borders
of the clusters.

17 July 2023 Tutorial on Datamorphic Testing 111

Evaluation of the Strategies
RQ1: Capability

Are the exploratory strategies
capable of discovering the
borders between subdomains?

RQ2: Cost
Are the exploratory strategies
costly for discovering the
borders between subdomains?

11217 July 2023 Tutorial on Datamorphic Testing

Capability is the probability of a test strategy
returning a Pareto front pair when executed.

Cost is the amount of computational
resources needed to find a pair in a Pareto
front.

We measure the cost using the
average number of test executions of
the classifier for discovering each pair
in the Pareto front.

𝑇𝑖𝑚𝑒(𝑊) = 𝐸(×𝐶(×𝑊×𝑠(

𝐸(= 78
9

Capacity of
testing model m

Size of Pareto
front of model m

Number of walks
(executions of the strategy)

Time needed to
invoke the model
m once

Cost = Average number of
invocations of model m for each
pair in PF

Time needed to
take W walks

Subjects of The Empirical Evaluations (1)
Controlled Experiment with
10 manually coded
classifiers
§Input domain:

Two-dimensional real
numbers in the range of
[0, 2π]×[−1, 1].

§Output classes:
{Red, Blue, Black}

11317 July 2023 Tutorial on Datamorphic Testing

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(a) Box 1 (b) Box 2

(c) Circle 1 (d) Circle 2

(e) Line 1 (f) Line 2

(g) Triangle 1 (h) Triangle 2

(i) Sin 1 (j) Sin 2

Figure 6: Illustration of the sample applications

Table 1: Experiments Date of The Directed Walk Strategy

Subject #Seeds
(=#Walks)

Avg
#Runs

Avg
#Mutants

Avg
#Runs/Mutant Subject #Seeds

(=#Walks)
Avg

#Runs
Avg

#Mutants
Avg

#Runs/Mutant
200 4205.70 11.40 368.92 200 4223.40 46.80 90.24
400 8413.80 27.60 304.85 400 8442.20 84.40 100.03
600 12620.80 41.60 303.38 600 12668.80 137.60 92.07
800 16827.60 55.20 304.85 800 16891.40 182.80 92.40

1000 21033.40 66.80 314.87 1000 21108.00 216.00 97.72
1200 25236.70 73.40 343.82 1200 25339.80 279.60 90.63

200 4207.50 15.00 280.50 200 4218.20 36.40 115.88
400 8416.40 32.80 256.60 400 8442.20 84.40 100.03
600 12624.50 49.00 257.64 600 12657.70 115.40 109.69
800 16835.60 71.20 236.46 800 16883.90 167.80 100.62

1000 21046.90 93.80 224.38 1000 21102.50 205.00 102.94
1200 25255.30 110.60 228.35 1200 25319.70 239.40 105.76

200 4221.20 42.40 99.56 200 4237.80 75.60 56.06
400 8437.00 74.00 114.01 400 8476.80 153.60 55.19
600 12657.60 115.20 109.88 600 12712.00 224.00 56.75
800 16877.50 155.00 108.89 800 16956.20 312.40 54.28

1000 21099.60 199.20 105.92 1000 21188.80 377.60 56.11
1200 25312.00 224.00 113.00 1200 25426.20 452.40 56.20

200 4216.90 33.80 124.76 200 4233.90 67.80 62.45
400 8435.00 70.00 120.50 400 8465.10 130.20 65.02
600 12651.70 103.40 122.36 600 12698.80 197.60 64.27
800 16869.40 138.80 121.54 800 16927.10 254.20 66.59

1000 21088.20 176.40 119.55 1000 21160.00 320.00 66.13
1200 25300.90 201.80 125.38 1200 25398.20 396.40 64.07

200 4205.20 10.40 404.35 200 4221.60 43.20 97.72
400 8411.70 23.40 359.47 400 8444.20 88.40 95.52
600 12618.50 37.00 341.04 600 12672.50 145.00 87.40
800 16822.80 45.60 368.92 800 16888.70 177.40 95.20

1000 21028.90 57.80 363.82 1000 21112.70 225.40 93.67
1200 25232.80 65.60 384.65 1200 25341.40 282.80 89.61

Triangle 1

Line 2

Sin 2

Triangle 2

Box 1 Box2

Circle 1 Circle 2

Line 1

Sin 1

The experimental data shows that the number of mutant test
cases (i.e. the pairs of test cases in the Pareto front) generated by
using the directed walk strategy increases linearly with the number
of walks; see Figure 7. Similarly, the number of test executions is
also linear with respect to the number of walks. In Figure 7, the X
axis is the number of random seed test cases, which equals number
of walks, and the Y axis of (a) and (b) are the average numbers of
mutant test cases and test executions, respectively. The average
numbers of test executions on various subject programs are so close
to each other that they are not visually separable in Figure 7(a).

The test e�ectiveness is measured in term of the number of test
executions per mutant test case generated. It is fairly invariant for
each subject while the number of random seed test cases varies

 (a) Average number of test executions (b) Average number of mutant test cases generated

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

200 400 600 800 1000 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 Line 2

Sin 1 Sin 2

Traimgle 1 Triangle 2

0

50

100

150

200

250

300

350

400

450

500

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Traingle 1 Triangle 2

 (a) Average number of test executions (b) Average number of mutant test cases generated

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

200 400 600 800 1000 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 Line 2

Sin 1 Sin 2

Traimgle 1 Triangle 2

0

50

100

150

200

250

300

350

400

450

500

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Traingle 1 Triangle 2

(a) Average Number of Executions (b) Average Number of Mutants

Figure 8. Test results with various number of random seed test cases

The test effectiveness measured in term of the number of test executions per mutant test case generated is fairly
invariant for each subject while the number of random seed test cases varies from 200 to 1200; see Figure 9,
where the X axis is the number of random seed test cases, the Y axis is the average effectiveness measured in
terms of the number of test executions per mutant test case generated.

Figure 9. Average number of test executions per mutant generated

The experiment data also show that the test effectiveness vary significantly for different subject programs, ranging
from around 200 test executions per mutant to nearly 1900 test executions per mutant. Figure 10 gives the overall
average effectiveness of testing various subject programs.

0

50

100

150

200

250

300

350

400

450

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1

Box 2

Circle 1

Circle 2

Line 1

LIne 2

Sin 1

Sin 2

Traingle 1

Triangle 2

Figure 10. Overall effectiveness of directed walk for various subjects

(b) Experiments with the random walk strategy

There are two parameters in a testing using the random walk strategy: (1) the number of seed test cases, and (2)
the number of walks starting from the seed test cases. Two sets of experiments were designed and conducted. The
first is with a fixed number of seed test cases but variable numbers of random walks. The second is with a fixed
number of random walks but variable numbers of random seeds. In the first case, the fixed number of seed test
cases is 200, while the number of walks vary from 200 to 1200. The results are given in Table 3.

Table 3. Results of experiments with the random walk strategy (200 seeds with variable number of walks)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

Box 1 Box 2 Circle 1 Circle 2 Line 1 Line 2 Sin 1 Sin 2 Triangle 1 Triangle 2

(c) Average Test Executions Per Mutant (d) Overall Test E�ectiveness

Figure 7: Results of The Directed Walk Strategy

from 200 to 1200; see Figure 7(c), where the Y axis is the average
test e�ectiveness. The experiment data also show that the test
e�ectiveness varies signi�cantly for di�erent subject programs; see
Figure 7(d), which gives the overall average e�ectiveness of testing
various subject programs.

4.2.2 Experiments with the random walk strategy. There are two
parameters in the random walk strategy: (1) the number of seed
test cases, and (2) the number of walks starting from the seed test
cases. Two sets of experiments were designed and conducted. The
�rst is with a �xed number of seed test cases (200 test cases) but
variable numbers of random walks (range from 200 to 1200). The
second is with a �xed number of random walks (800 walks) but
variable numbers of random seeds (range from 200 to 1200).

Table 2 gives the result data of the �rst set of experiments.

Table 2: Experiments Data of The Random Walk Strategy

Subject #Walks Avg
#Runs

 Avg
#Mutants

Avg
#Runs/Mutant Subject #Walks Avg #Runs Avg

#Mutants
Avg

#Runs/Mutant
200 4429.40 118.80 37.28 200 4704.40 247.60 19.00
400 8950.60 323.00 27.71 400 9457.20 561.00 16.86
600 13526.00 601.20 22.50 600 14067.60 864.60 16.27
800 18126.60 858.00 21.13 800 18691.30 1186.20 15.76

1000 22706.50 1126.60 20.15 1000 23397.70 1523.40 15.36
1200 27386.00 1439.80 19.02 1200 27900.20 1850.60 15.08

200 4484.60 155.60 28.82 200 4735.40 236.00 20.07
400 8976.00 376.00 23.87 400 9330.30 528.40 17.66
600 13491.80 681.00 19.81 600 13939.40 841.40 16.57
800 18069.60 975.60 18.52 800 18551.60 1171.80 15.83

1000 22567.20 1305.40 17.29 1000 23094.90 1517.80 15.22
1200 27152.80 1622.20 16.74 1200 27685.00 1846.40 14.99

200 4677.00 213.20 21.94 200 4638.30 252.20 18.39
400 9281.90 487.60 19.04 400 9074.50 564.40 16.08
600 13860.30 769.00 18.02 600 13590.90 891.60 15.24
800 18464.00 1090.40 16.93 800 18017.30 1218.20 14.79

1000 22929.80 1388.20 16.52 1000 22466.60 1567.40 14.33
1200 27491.00 1711.80 16.06 1200 26891.00 1917.80 14.02

200 4731.10 235.20 20.12 200 4703.10 295.20 15.93
400 9342.90 516.20 18.10 400 9241.60 606.60 15.24
600 13891.00 824.40 16.85 600 13765.30 950.60 14.48
800 18436.60 1114.60 16.54 800 18346.50 1303.00 14.08

1000 23084.50 1454.00 15.88 1000 22946.20 1674.00 13.71
1200 27613.20 1772.20 15.58 1200 27440.00 2006.80 13.67

200 4380.70 121.80 35.97 200 4694.60 242.60 19.35
400 8728.70 328.60 26.56 400 9318.20 554.80 16.80
600 13146.50 577.20 22.78 600 13955.60 854.20 16.34
800 17561.20 859.40 20.43 800 18530.40 1182.60 15.67

1000 21984.90 1150.80 19.10 1000 23015.10 1505.80 15.28
1200 26387.20 1432.40 18.42 1200 27635.90 1844.40 14.98

Box 1

Circle 1

Line 1

Sin 1

Triangle 1

Box2

Circle 2

Line 2

Sin 2

Triangle 2

The results of the experiments show that the average number
of test executions and the average number of mutant test cases
generated is linear in the number of random walks; see Figure 8.

The test e�ectiveness increases with the number of walks; see
Figure 8. Although the overall average test e�ectiveness varies

Subjects of The Empirical Evaluations (2)
Case study with ML models built from real datasets
§Red Wine Quality

Quality of red varieties of the Portuguese “Vinho Verde” wine (Cortez et al., 2009).
§Mushroom Edibility

Edibility of hypothetical samples of 23 species of gilled mushrooms in the Agaricus and
Lepiota family drawn from The Audubon Society Field Guide (North American
Mushrooms Society, 1981)

§Bank Churners
Data of creditcard customers used to predict churners, who are bank customers who
leave the credit card service.

11417 July 2023 Tutorial on Datamorphic Testing

Table 2: Summary of Datasets

Dataset Records Classes DF NF CF Features
Red Wine�ality 1599 8 0 0 11 11
Mushroom Edibility 8124 2 22 0 0 22
Bank Churners 10127 2 5 11 3 19

• Construction of machine learning models

Since the goal of the case study is to demonstrate that our test strategies are applicable
to real machine learning applications, we have used the datasets to train models that use a
wide variety of machine learning techniques. �is enables us to demonstrate that our testing
techniques are e�ective on both low-quality and high-quality models as well as on di�erent
types of models.

�e training consists of executing a Python program, adapted from code posted on the
Kaggle website and selected at random again. For each dataset, we build 16 di�erent models,
as shown in Table 3. �e Python programs for training and invoking the models as well as all
datasets used in the case study can be found on the project’s GitHub repository; see Footnote
1 for the URL.

Table 3: Machine Learning Models Constructed for Each Dataset

Name Type Details
LR Logistic Regression Trained on whole data set
LR2 Logistic Regression Used train-test 90-10 split
KNN K-Nearest Neighbors Trained on whole data set
KNN2 K-Nearest Neighbors Used train-test 90-10 split
DT Decision Tree Trained on whole data set
DT2 Decision Tree Used train-test 90-10 split
NB Naive Bayes Trained on whole data set
NB2 Naive Bayes Used train-test 90-10 split
SVM Surpor�ing vector machine Trained on whole data set
SVM2 Surpor�ing vector machine Used train-test 90-10 split
SV Ensemble via So� voting Trained on whole data set; LR+KNN+DT
SV2 Ensemable via So� Voting Used train-test 90-10 split; LR+KNN+DT
HV Ensemble via Hard Voting Trained on whole data set; LR+KNN+DT
HV2 Ensemble via Hard Voting Used train-test 90-10 split; LR+KNN+DT
Stack1 Ensemble via Stacking Used train-test 90-10 split; KNN as Meta; LR2+KNN2+DT2+HV2
Stack3 Ensemble via Stacking Used train-test 90-10 split; LR as Meta; KNN2+DT+SV2+HV2

A total of 48 models were constructed. �eir accuracy varies from 49.9% to 100%; see Ap-
pendix B.1 for details. It is worth noting that no e�ort was spent to construct a model of high
quality because the purpose of the experiment is to determine if the strategies are capable and
cost e�cient for models of all di�erent kinds of quality.

• Development of test systems

�e test system for the Red Wine �ality dataset was a straightforward implementation
of the appropriate algorithm in Section 3 and the code for the experiments was a clone of the

31

Datasets are drawn
at random from
Kaggle website.

Machine Learning Models Constructed for Each Dataset

Table 2: Summary of Datasets

Dataset Records Classes DF NF CF Features
Red Wine�ality 1599 8 0 0 11 11
Mushroom Edibility 8124 2 22 0 0 22
Bank Churners 10127 2 5 11 3 19

• Construction of machine learning models

Since the goal of the case study is to demonstrate that our test strategies are applicable
to real machine learning applications, we have used the datasets to train models that use a
wide variety of machine learning techniques. �is enables us to demonstrate that our testing
techniques are e�ective on both low-quality and high-quality models as well as on di�erent
types of models.

�e training consists of executing a Python program, adapted from code posted on the
Kaggle website and selected at random again. For each dataset, we build 16 di�erent models,
as shown in Table 3. �e Python programs for training and invoking the models as well as all
datasets used in the case study can be found on the project’s GitHub repository; see Footnote
1 for the URL.

Table 3: Machine Learning Models Constructed for Each Dataset

Name Type Details
LR Logistic Regression Trained on whole data set
LR2 Logistic Regression Used train-test 90-10 split
KNN K-Nearest Neighbors Trained on whole data set
KNN2 K-Nearest Neighbors Used train-test 90-10 split
DT Decision Tree Trained on whole data set
DT2 Decision Tree Used train-test 90-10 split
NB Naive Bayes Trained on whole data set
NB2 Naive Bayes Used train-test 90-10 split
SVM Surpor�ing vector machine Trained on whole data set
SVM2 Surpor�ing vector machine Used train-test 90-10 split
SV Ensemble via So� voting Trained on whole data set; LR+KNN+DT
SV2 Ensemable via So� Voting Used train-test 90-10 split; LR+KNN+DT
HV Ensemble via Hard Voting Trained on whole data set; LR+KNN+DT
HV2 Ensemble via Hard Voting Used train-test 90-10 split; LR+KNN+DT
Stack1 Ensemble via Stacking Used train-test 90-10 split; KNN as Meta; LR2+KNN2+DT2+HV2
Stack3 Ensemble via Stacking Used train-test 90-10 split; LR as Meta; KNN2+DT+SV2+HV2

A total of 48 models were constructed. �eir accuracy varies from 49.9% to 100%; see Ap-
pendix B.1 for details. It is worth noting that no e�ort was spent to construct a model of high
quality because the purpose of the experiment is to determine if the strategies are capable and
cost e�cient for models of all di�erent kinds of quality.

• Development of test systems

�e test system for the Red Wine �ality dataset was a straightforward implementation
of the appropriate algorithm in Section 3 and the code for the experiments was a clone of the

31

11517 July 2023 Tutorial on Datamorphic Testing

A total of 48 machine learning models are built and used in the case study.

Experiment Process
§ For each subject application, three

exploration strategies are executed with
various parameters

§ For each setting of parameters, the
exploration strategy algorithm is executed
repeatedly for 10 times

§ For each execution of the strategy on each
model, the number of invocations of the
model under test and the size of Pareto
front generated are recorded

§ The average of the data collected in 10
executions is used to analyse the results

17 July 2023 Tutorial on Datamorphic Testing 116

Used the testing tool Morphy
• The exploratory test system are

written in Java
• Morphy test scripts are written

to automatically conducted the
experiments

• Tests are executed using
Morphy

Morphty tool, test code, test
scripts and data are on GitHub:

https://github.com/hongzhu6129
/ExploratoryTestAI.git

https://github.com/hongzhu6129/ExploratoryTestAI.git
https://github.com/hongzhu6129/ExploratoryTestAI.git

Main Results: Coded Classifiers

11717 July 2023 Tutorial on Datamorphic Testing

• Factors in�uencing cost and capability

�e test cost of the strategies on various subject programs are summarised in Table 1 and
depicted in Figure 12, where larger numbers indicate higher test cost.

Table 1: Summary of Test Cost and Capability

Subject Directed Walk RandomWalk Random Target
Cost Cap Cost Cap Cost Cap

Box 1 323.45 50.53 52.46 20.72 11.49 12.69
Box 2 93.85 50.53 22.83 51.59 10.38 50.53
Circle 1 247.32 20.67 42.59 26.03 10.93 21.49
Circle 2 105.82 47.32 25.50 46.01 10.41 48.31
Line 1 105.82 49.15 29.02 40.13 10.41 48.25
Line 2 55.76 58.03 23.94 48.56 10.33 58.40
Sin 1 122.35 50.10 20.65 45.51 10.38 49.76
Sin 2 64.75 62.34 26.03 60.54 10.31 61.76
Triangle 1 370.38 7.62 66.79 16.06 12.46 8.33
Triangle 2 93.19 46.96 23.98 49.08 10.41 47.01
Avg 158.27 44.32 33.38 40.46 10.75 40.65

Subject Random Walk Random Target Directed Walk
Directed Walk/
Random Walk

Directed Walk/
Random Target

Random Walk /
Random Target

Box 1 52.46 11.49 323.45 6.17 28.15 4.57
Box 2 22.83 10.38 93.85 4.11 9.04 2.20
Circle 1 42.59 10.93 247.32 5.81 22.63 3.90
Circle 2 25.50 10.41 105.82 4.15 10.17 2.45
Line 1 29.02 10.41 105.82 3.65 10.17 2.79
Line 2 23.94 10.33 55.76 2.33 5.40 2.32
Sin 1 26.03 10.38 122.35 4.70 11.78 2.51
Sin 2 20.65 10.31 64.75 3.14 6.28 2.00
Triangle 1 66.79 12.46 370.38 5.55 29.72 5.36
Triangle 2 23.98 10.41 93.19 3.89 8.95 2.30
Avg 33.38 10.75 158.27 4.74 14.72 3.11

0
50

100
150
200
250
300
350
400

Box 1
Box 2

Circl
e 1

Circl
e 2

Lin
e 1

Lin
e 2 Sin

 1
Sin

 2

Tr i
angle

 1

Tr i
angle

 2

Cost

Random Walk Random Target Directed Walk

Box 1 Box 2 Circle 1 Circle 2 Line 1 Line 2 Sin 1 Sin 2 Traingle 1 Traingle 2 Average
Random Walk 20.72 51.95 26.03 46.01 40.13 48.56 45.51 60.54 16.06 49.08 40.46
Random Target 12.69 50.53 21.49 48.31 48.25 58.40 49.76 61.76 8.33 47.01 40.65
Directed Walk 50.53 50.53 20.67 47.32 49.15 58.03 50.10 62.34 7.62 46.96 44.32

0

10

20

30

40

50

60

70

Box 1
Box 2

Circ
le 1

Circ
le 2 Lin

e 1
Lin

e 2 Sin
 1

Sin
 2

Tra
ingle

 1

Tra
ingle

 2

Capability

Random Walk Random Target Directed Walk

Figure 12: Test Cost and Capability on Subject Programs

�e data show that for each strategy, the test cost and capability vary signi�cantly according
to the subject programs. However, for each strategy, test cost and capability of Box 1 are lower
than Box 2, Circle 1 is lower than Circle 2, and so on. �is phenomenon is not a coincidence.

From the theorems given in Section 4, we can see that the capability for the directed walk
strategy is determined by the probability that there is a border between two subdomains in the
right direction from a test case and within the walking distance. For the random target strategy,
it is determined by the probability that two random test cases fall in two di�erent subdomains,
and for the random walk strategy, it is determined by the probability that there is a border near
to a randomly selected test case. For test cost, the more Pareto front pairs found, the more runs
of the classi�er will be to re�ne the pairs of test cases in order to reduce the distance between
each pair.

Two implications follow from these properties. First of all, given a classi�cation application,
one should select the most cost e�cient strategy to explore the Pareto fronts between subdo-
mains based on the understanding of the application. �e data obtained from our experiments
are not su�cient to compare the strategies on their cost. �is is because the probability of �nd-
ing a pair in the Pareto front heavily depends on the size and location of the subdomains of
the classi�cation application. Our subjects in the experiments may not be representative of the

28

Main Results: Coded Classifiers

11817 July 2023 Tutorial on Datamorphic Testing

• Factors in�uencing cost and capability

�e test cost of the strategies on various subject programs are summarised in Table 1 and
depicted in Figure 12, where larger numbers indicate higher test cost.

Table 1: Summary of Test Cost and Capability

Subject Directed Walk RandomWalk Random Target
Cost Cap Cost Cap Cost Cap

Box 1 323.45 50.53 52.46 20.72 11.49 12.69
Box 2 93.85 50.53 22.83 51.59 10.38 50.53
Circle 1 247.32 20.67 42.59 26.03 10.93 21.49
Circle 2 105.82 47.32 25.50 46.01 10.41 48.31
Line 1 105.82 49.15 29.02 40.13 10.41 48.25
Line 2 55.76 58.03 23.94 48.56 10.33 58.40
Sin 1 122.35 50.10 20.65 45.51 10.38 49.76
Sin 2 64.75 62.34 26.03 60.54 10.31 61.76
Triangle 1 370.38 7.62 66.79 16.06 12.46 8.33
Triangle 2 93.19 46.96 23.98 49.08 10.41 47.01
Avg 158.27 44.32 33.38 40.46 10.75 40.65

Subject Random Walk Random Target Directed Walk
Directed Walk/
Random Walk

Directed Walk/
Random Target

Random Walk /
Random Target

Box 1 52.46 11.49 323.45 6.17 28.15 4.57
Box 2 22.83 10.38 93.85 4.11 9.04 2.20
Circle 1 42.59 10.93 247.32 5.81 22.63 3.90
Circle 2 25.50 10.41 105.82 4.15 10.17 2.45
Line 1 29.02 10.41 105.82 3.65 10.17 2.79
Line 2 23.94 10.33 55.76 2.33 5.40 2.32
Sin 1 26.03 10.38 122.35 4.70 11.78 2.51
Sin 2 20.65 10.31 64.75 3.14 6.28 2.00
Triangle 1 66.79 12.46 370.38 5.55 29.72 5.36
Triangle 2 23.98 10.41 93.19 3.89 8.95 2.30
Avg 33.38 10.75 158.27 4.74 14.72 3.11

0
50

100
150
200
250
300
350
400

Box 1
Box 2

Circ
le 1

Circ
le 2 Lin

e 1
Lin

e 2 Sin
 1

Sin
 2

Tr i
an

gle
 1

Tr i
an

gle
 2

Cost

Random Walk Random Target Directed Walk

Box 1 Box 2 Circle 1 Circle 2 Line 1 Line 2 Sin 1 Sin 2 Traingle 1 Traingle 2 Average
Random Walk 20.72 51.95 26.03 46.01 40.13 48.56 45.51 60.54 16.06 49.08 40.46
Random Target 12.69 50.53 21.49 48.31 48.25 58.40 49.76 61.76 8.33 47.01 40.65
Directed Walk 50.53 50.53 20.67 47.32 49.15 58.03 50.10 62.34 7.62 46.96 44.32

0

10

20

30

40

50

60

70

Box 1
Box 2

Circ
le 1

Circ
le 2 Lin

e 1
Lin

e 2 Sin
 1

Sin
 2

Tra
ingle

 1

Tra
ingle

 2

Capability

Random Walk Random Target Directed Walk

Figure 12: Test Cost and Capability on Subject Programs

�e data show that for each strategy, the test cost and capability vary signi�cantly according
to the subject programs. However, for each strategy, test cost and capability of Box 1 are lower
than Box 2, Circle 1 is lower than Circle 2, and so on. �is phenomenon is not a coincidence.

From the theorems given in Section 4, we can see that the capability for the directed walk
strategy is determined by the probability that there is a border between two subdomains in the
right direction from a test case and within the walking distance. For the random target strategy,
it is determined by the probability that two random test cases fall in two di�erent subdomains,
and for the random walk strategy, it is determined by the probability that there is a border near
to a randomly selected test case. For test cost, the more Pareto front pairs found, the more runs
of the classi�er will be to re�ne the pairs of test cases in order to reduce the distance between
each pair.

Two implications follow from these properties. First of all, given a classi�cation application,
one should select the most cost e�cient strategy to explore the Pareto fronts between subdo-
mains based on the understanding of the application. �e data obtained from our experiments
are not su�cient to compare the strategies on their cost. �is is because the probability of �nd-
ing a pair in the Pareto front heavily depends on the size and location of the subdomains of
the classi�cation application. Our subjects in the experiments may not be representative of the

28

Main Results: Real Machine Learning Models

Strategy Subject DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 SV SV2 SVM2 SVM2
Red Wine 11.47 12.17 15.70 15.75 33.14 27.90 12.81 12.54 11.92 11.76 15.62 17.27 13.69 13.92 26.57 25.96
Mushroom 4.34 4.31 4.33 4.37 5.00 4.73 12.61 12.35 #DIV/0! #DIV/0! 4.31 3.92 4.29 4.29 8.47 9.93
Bank 12.60 12.55 13.72 14.02 13.37 13.48 18.81 18.61 13.51 13.50 13.17 12.40 13.48 13.65 #DIV/0! #DIV/0!
Red Wine 17.91 14.72 18.78 18.58 20.31 18.81 19.70 19.53 14.31 14.32 19.04 17.63 19.62 17.68 40.87 39.56
Mushroom 24.96 24.48 21.65 21.98 73.34 78.60 34.97 34.55 488.50 482.60 21.86 27.15 21.42 22.20 46.57 47.31
Bank 12.50 29.74 10.13 8.17 16.47 22.42 8.18 8.10 30.34 29.18 12.60 13.01 11.17 11.07 #DIV/0! #DIV/0!
Red Wine 30.46 23.37 21.12 20.44 21.77 21.80 16.11 16.30 14.18 14.12 19.93 17.70 25.17 23.77 63.03 61.89
Mushroom 32.17 32.57 22.40 22.49 18.90 19.39 32.57 32.63 148.18 136.31 22.44 31.86 22.06 22.51 22.39 23.63
Bank 15.47 21.15 14.22 17.62 33.20 35.56 14.56 14.58 19.90 20.16 16.53 18.40 14.22 14.07 #DIV/0! #DIV/0!

Random
Target

Random
Walk

Directed
Walk

0
5

10
15
20
25
30
35

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Effectiveness of Random Target

Red Wine Mushroom Bank

0

100

200

300

400

500

600

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Effectiveness of Random Walk

Red Wine Mushroom Bank

0
20
40
60
80

100
120
140
160

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Effectiveness of Directed Walk

Red Wine Mushroom Bank

Chart Title(a) Random Target (b) Random Walk (c) Directed Walk

Figure 18: Cost of Testing Di�erent ML Models

Table 4: Summary of the Capability and Cost of the Strategies

Max Min Avg StDev Max Min Avg StDev
Red Wine Quality 63.03 14.12 25.70 0.15 62.89 8.79 35.74 0.24
Mushroom Edibility 32.63 18.90 25.57 0.38 5.79 0.80 4.10 0.06
Bank Churners 35.56 14.07 19.26 0.21 43.43 0.00 25.75 0.21
Red Wine Quality 33.14 11.47 17.39 0.46 62.51 18.18 43.62 0.72
Mushroom Edibility 12.61 3.92 6.23 0.26 43.05 0.00 25.18 0.59
Bank Churners 18.81 12.40 14.06 0.18 41.66 0.00 25.60 0.64
Red Wine Quality 40.87 14.31 20.71 0.39 91.87 24.12 61.61 0.87
Mushroom Edibility 488.50 21.42 92.01 6.35 38.87 2.15 25.87 0.63
Bank Churners 30.34 8.10 15.94 0.28 99.43 0.00 62.83 0.47

26.32 34.48
* When no Pareto Front is found, the effectiveness is infinite. In such cases, the number given in the table are the maximal effectiveness exclude the infinite.

Max* Min Avg StDev Max Min Avg StDev
Directed Walk 43.74 15.70 23.51 0.25 37.37 3.20 21.86 0.17
Random Target 21.52 9.27 12.56 0.30 49.08 6.06 31.47 0.65
Random Walk 186.57 14.61 42.88 2.34 76.72 8.76 50.10 0.66

Effectiveness Capability

Cost Capability

Directed Walk

Random Target

Random Walk

SubjectStrategy

0
10
20
30
40
50
60
70
80
90

100

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Directed Walk Random Target Random Walk

Overall Average of Effectiveness

0

10

20

30

40

50

60

70

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Directed Walk Random Target Random Walk

Overall Average of Capability

models is as follows.
�e theorems proved in Section 4 imply that the capability of the directed walk on a given

direction depends on the existence of a border in the direction from the randomly selected
starting test case. If a border point is found, it only di�ers from the starting test case in one
feature. �is is a limitation of the capability of the strategy. �is is the case for testing the
mushroom edibility, where it is rare that changing just one feature of a mushroom variety will
change its edibility; usually at least two features must change.

It was also observed that the random target strategy has zero capability when used for
testing the NB and NB2 models of mushroom edibility, as does all three strategies when testing
the SVM and SVM2 models of bank churners. �e reason for the poor performances is as
follows.

�e random target strategy discovers a border point when the two starting points are in
di�erent classes. If a subdomain is small, the probability of selecting a point inside it is cor-
respondingly small. In the extreme case, when all test cases are in the same class, no border
will be discovered. �e NB and NB2 models of mushroom edibility classify all mushrooms in
the training dataset as poisonous. Similarly, the SVM and SVM2 models of bank churners clas-
sify all credit card customers to be non-churners so no Pareto front can be discovered by any
strategy.

It is worth noting that the NB and NB2 models have the worst accuracy among all models
of mushroom edibility, and SVM/SVM2 models are the worst on accuracy among the models of
bank churners. �ey are under�t models, which means they are insu�cient for classifying the
input data space. �erefore, exploratory testing cannot detect the borders between subdomains.

On average, the random walk strategy achieved the best performance on capability. It can
discover a border point even if all start points are in the same class; it is only required that a
border exists within walking distance from the starting point. Moreover, the Pareto front found
may be di�erent from the starting point on many features. Although its cost is not the lowest

35

11917 July 2023 Tutorial on Datamorphic Testing

Main Results: Real Machine Learning Models

Strategy Subject DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 SV SV2 SVM2 SVM2
Red Wine 59.28 59.36 42.71 43.00 21.37 25.07 49.56 51.14 61.55 62.51 43.70 41.34 50.41 50.05 18.18 18.74
Mushroom 37.20 37.64 36.63 36.18 27.69 30.27 8.59 8.73 0.00 0.00 36.78 43.05 37.18 36.95 14.27 11.72
Bank 34.97 37.70 25.77 24.68 25.69 24.64 15.77 16.12 38.35 38.81 32.41 41.66 26.61 26.45 0.00 0.00
Red Wine 71.86 85.86 63.76 63.74 53.14 56.30 63.86 64.50 91.60 91.87 56.10 58.29 54.64 61.14 24.12 24.98
Mushroom 34.65 35.19 38.43 37.96 13.26 12.48 25.78 26.04 2.15 2.17 38.15 32.37 38.87 37.67 19.49 19.27
Bank 78.72 33.37 95.65 99.43 64.46 47.51 99.03 99.03 33.08 34.36 73.10 72.74 87.14 87.62 0.00 0.00
Red Wine 20.70 28.83 34.55 35.94 33.32 32.64 52.57 51.11 62.34 62.89 37.52 45.13 27.44 29.12 8.79 8.96
Mushroom 3.55 3.51 5.03 5.02 5.79 5.66 3.57 3.56 0.80 0.87 5.03 3.56 5.11 5.01 4.89 4.64
Bank 38.69 20.79 42.80 30.03 12.14 11.22 36.68 35.95 22.61 22.37 26.35 25.87 43.02 43.43 0.00 0.00

Random
Target

Random
Walk

Directed
Walk

0

10

20

30
40

50

60

70

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Capability of The Random Target Strategy

Red Wine Mushroom Bank

0

20

40

60

80

100

120

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Capability of The Random Walk Strategy

Red Wine Mushroom Bank

0

10

20

30

40

50

60

70

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Capability of the Directed Walk Strategy

Red Wine Mushroom Bank

Figure 16: Capabilities of Testing Di�erent ML Models

Walks DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 SV SV2 SVM2 SVM2
100 24.11 25.18 22.75 23.28 68.75 83.53 36.47 34.81 416.58 520.18 22.02 29.22 20.06 24.53 48.88 46.93
200 25.58 24.36 21.56 21.90 72.27 85.60 33.97 35.85 433.66 508.67 20.81 27.25 20.91 22.04 44.33 51.62
300 25.26 24.23 21.02 22.17 72.08 76.49 33.61 34.68 488.27 504.52 21.85 27.00 22.64 21.55 45.00 47.76
400 24.85 24.97 21.34 21.61 72.33 74.55 36.14 34.52 457.39 527.23 22.33 27.06 22.11 22.95 47.69 47.77
500 25.02 25.12 21.57 22.18 77.99 76.44 33.55 34.82 510.65 444.42 22.12 27.52 20.41 21.17 46.47 47.76
600 24.97 24.40 21.97 22.20 71.67 81.50 36.40 34.20 533.98 448.64 21.90 27.45 21.34 21.99 47.84 45.45
700 24.40 23.65 21.85 21.46 75.17 73.91 34.37 34.11 556.53 499.01 21.90 27.33 21.02 21.86 46.47 46.97
800 24.96 23.79 21.80 21.44 74.21 78.48 35.49 34.07 540.79 454.39 22.07 26.13 21.34 21.60 46.27 47.22
900 25.59 25.09 21.71 21.76 75.57 77.17 34.77 34.53 519.88 482.39 21.80 26.01 22.10 22.30 45.93 46.02

1000 24.83 24.03 20.95 21.76 73.41 78.29 34.98 33.88 427.27 436.55 21.78 26.49 22.22 21.99 46.84 45.55
Average 24.96 24.48 21.65 21.98 73.34 78.60 34.97 34.55 488.50 482.60 21.86 27.15 21.42 22.20 46.57 47.31
StDev 0.46 0.57 0.51 0.54 2.54 3.82 1.11 0.56 51.43 33.93 0.40 0.90 0.84 0.95 1.34 1.75

0

100

200

300

400

500

600

DT DT
2 HV HV

2
KN
N

KN
N2 LR LR

2 NB NB
2

Sta
ck

Sta
ck3 SV SV

2
SV
M2

SV
M2

Average Effectiveness

0

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900 1000

Variation of Effectiveness with the Number of Walks
DT
DT2
HV
HV2
KNN
KNN2
LR
LR2
NB
NB2
Stack
Stack3
SV
SV2
SVM2
SVM2

Walks DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 SV SV2 SVM2 SVM2
100 12.59 12.52 13.60 14.52 13.55 13.56 20.22 18.76 13.67 13.53 13.30 12.62 13.63 13.44 #DIV/0! #DIV/0!
200 12.63 12.65 14.01 14.43 13.23 13.56 19.22 18.27 13.53 13.74 13.25 12.39 13.55 13.83 #DIV/0! #DIV/0!
300 12.64 12.75 13.80 14.08 13.57 13.59 19.39 18.99 13.69 13.47 13.10 12.36 13.57 13.77 #DIV/0! #DIV/0!
400 12.65 12.55 13.71 14.22 13.47 13.49 18.47 18.72 13.41 13.47 13.23 12.44 13.65 13.93 #DIV/0! #DIV/0!
500 12.64 12.63 13.78 13.87 13.39 13.58 18.50 18.51 13.60 13.54 13.25 12.51 13.55 13.68 #DIV/0! #DIV/0!
600 12.59 12.52 13.86 13.83 13.46 13.31 18.40 18.73 13.57 13.50 13.17 12.38 13.44 13.62 #DIV/0! #DIV/0!
700 12.68 12.44 13.71 13.84 13.29 13.60 18.62 18.81 13.48 13.47 13.20 12.37 13.46 13.72 #DIV/0! #DIV/0!
800 12.61 12.49 13.79 13.84 13.31 13.43 18.85 18.52 13.41 13.38 13.08 12.31 13.37 13.50 #DIV/0! #DIV/0!
900 12.54 12.46 13.54 13.81 13.20 13.32 17.97 18.40 13.40 13.32 13.04 12.35 13.34 13.64 #DIV/0! #DIV/0!

1000 12.46 12.48 13.41 13.71 13.25 13.33 18.44 18.42 13.37 13.55 13.06 12.29 13.28 13.38 #DIV/0! #DIV/0!
Average 12.60 12.55 13.72 14.02 13.37 13.48 18.81 18.61 13.51 13.50 13.17 12.40 13.48 13.65 #DIV/0! #DIV/0!
StDev 0.06 0.10 0.17 0.28 0.13 0.12 0.65 0.22 0.12 0.11 0.09 0.10 0.13 0.17 #DIV/0! #DIV/0!

0
2
4
6
8
10
12
14
16
18
20

DT DT
2 HV HV

2
KN
N

KN
N2 LR LR

2 NB NB
2

Sta
ck

Sta
ck3 SV SV

2
SV
M2

SV
M2

Average Effectiveness

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000

Variation of Effectiveness with the Number of Walks
DT
DT2
HV
HV2
KNN
KNN2
LR
LR2
NB
NB2
Stack
Stack3
SV
SV2
SVM2
SVM2

Walks DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 SV SV2 SVM2 SVM2
100 30.10 23.34 20.97 20.62 21.69 21.73 16.08 16.27 14.23 14.09 20.30 17.56 25.29 23.65 62.13 61.79
200 30.58 23.44 21.26 20.59 21.82 22.18 16.08 16.35 14.17 14.17 20.04 17.70 25.29 23.33 62.57 61.99
300 30.46 23.25 21.14 20.49 21.42 21.35 16.14 16.33 14.19 14.16 19.85 17.80 25.19 23.65 63.10 61.80
400 30.68 23.57 21.17 20.39 22.19 22.29 16.17 16.28 14.13 14.12 19.98 17.68 25.12 23.84 63.14 61.65
500 30.58 23.36 21.19 20.41 21.94 21.77 16.16 16.30 14.17 14.10 19.89 17.72 25.30 23.87 63.14 61.68
600 30.34 23.34 21.04 20.33 21.61 21.93 16.09 16.33 14.19 14.10 19.82 17.64 24.94 23.74 62.89 61.29
700 30.49 23.44 21.06 20.46 21.73 21.68 16.13 16.31 14.16 14.11 19.96 17.77 25.31 23.86 63.66 62.55
800 30.59 23.31 21.14 20.32 21.72 21.66 16.11 16.24 14.21 14.12 19.79 17.71 25.09 24.00 63.24 61.88
900 30.47 23.32 21.21 20.33 21.73 21.76 16.08 16.30 14.17 14.12 19.87 17.63 25.06 23.85 63.07 62.18

1000 30.33 23.35 21.00 20.44 21.84 21.70 16.09 16.29 14.17 14.13 19.77 17.76 25.16 23.91 63.33 62.09
Average 30.46 23.37 21.12 20.44 21.77 21.80 16.11 16.30 14.18 14.12 19.93 17.70 25.17 23.77 63.03 61.89
StDev 0.17 0.09 0.10 0.10 0.20 0.27 0.03 0.03 0.03 0.03 0.16 0.07 0.13 0.19 0.42 0.34

0

10

20

30

40

50

60

70

DT DT
2 HV HV

2
KN
N

KN
N2 LR LR

2 NB NB
2

Sta
ck

Sta
ck
3 SV SV

2
SV
M
2

SV
M
2

Average Effectiveness

0

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 1000

Variation of Effectiveness with the Number of Walks
DT
DT2
HV
HV2
KNN
KNN2
LR
LR2
NB
NB2
Stack
Stack3
SV
SV2
SVM2
SVM2

(a) Random Walk on Mushroom (b) Random Target on Bank (c) Directed Walk on Red Wine

Figure 17: Variations of Cost with Numbers of Walks

�ird, the case study also clearly demonstrated that applying exploratory strategies is cost
e�cient for discovering borders between classes; also see Table 4. �e overall average cost
of three strategies over all subjects is 26.32, which means that on average one would detect a
border point by executing the machine learning model on about 27 test cases. In other words,
within a fraction of second, a large number of border points can be found by applying these
exploratory test strategies. �e best cost e�ciency was achieved in the testing of mushroom
edibility models using the random target strategy, where the average cost over 16 models is
6.23. In contrast, the worst cost of 92.01 is observed also when testing mushroom edibility but
using the random walk strategy.

Fourth, comparing with the data of the controlled experiments, we observed that the costs
and capabilities of the strategies in the case study are compatible to those of controlled ex-
periments, although the dimensions of the input data spaces of the real-world examples are
signi�cantly larger than those coded classi�ers. �is indicates that the approach is scalable to
high dimensional data spaces.

Moreover, the data of the case study provides some useful hint for the choice of strategies
when testing a machine learning application. �e data show that on average, the random walk
strategy is the most capable in detecting borders. However, the walk may require many steps to
�nd a border point. �us, it could be slightly less cost e�cient than the random target strategy
in many cases. For the directed walk strategy, searching for borders in all directions is very
much like a brute force search. �us, it could be of higher cost in general.

Finally, in the case study, we observed a few cases where exploratory strategies performed
poorly. �ese cases provide some insight for how to choose from the proposed strategies.

Among the worst capabilities observed in the case studies is that of the directed walk strat-
egy which performed poorly on testing mushroom edibility with an average capability of 4.10%
over 16 models. �e reason why directed walk performed poorly on testing mushroom edibility

minimal and average cost have been calculated by excluding the in�nite.
34

12017 July 2023 Tutorial on Datamorphic Testing

Capability

Cost

Strategy Subject DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 SV SV2 SVM2 SVM2
Red Wine 11.47 12.17 15.70 15.75 33.14 27.90 12.81 12.54 11.92 11.76 15.62 17.27 13.69 13.92 26.57 25.96
Mushroom 4.34 4.31 4.33 4.37 5.00 4.73 12.61 12.35 #DIV/0! #DIV/0! 4.31 3.92 4.29 4.29 8.47 9.93
Bank 12.60 12.55 13.72 14.02 13.37 13.48 18.81 18.61 13.51 13.50 13.17 12.40 13.48 13.65 #DIV/0! #DIV/0!
Red Wine 17.91 14.72 18.78 18.58 20.31 18.81 19.70 19.53 14.31 14.32 19.04 17.63 19.62 17.68 40.87 39.56
Mushroom 24.96 24.48 21.65 21.98 73.34 78.60 34.97 34.55 488.50 482.60 21.86 27.15 21.42 22.20 46.57 47.31
Bank 12.50 29.74 10.13 8.17 16.47 22.42 8.18 8.10 30.34 29.18 12.60 13.01 11.17 11.07 #DIV/0! #DIV/0!
Red Wine 30.46 23.37 21.12 20.44 21.77 21.80 16.11 16.30 14.18 14.12 19.93 17.70 25.17 23.77 63.03 61.89
Mushroom 32.17 32.57 22.40 22.49 18.90 19.39 32.57 32.63 148.18 136.31 22.44 31.86 22.06 22.51 22.39 23.63
Bank 15.47 21.15 14.22 17.62 33.20 35.56 14.56 14.58 19.90 20.16 16.53 18.40 14.22 14.07 #DIV/0! #DIV/0!

Random
Target

Random
Walk

Directed
Walk

0
5

10
15
20
25
30
35

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Effectiveness of Random Target

Red Wine Mushroom Bank

0

100

200

300

400

500

600

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Effectiveness of Random Walk

Red Wine Mushroom Bank

0
20
40
60
80

100
120
140
160

DT
DT2 HV

HV2
KNN

KNN2 LR LR
2 NB

NB2
Sta

ck
Sta

ck3 SV SV
2

SV
M2

SV
M2

Effectiveness of Directed Walk

Red Wine Mushroom Bank

Chart Title(a) Random Target (b) Random Walk (c) Directed Walk

Figure 18: Cost of Testing Di�erent ML Models

Table 4: Summary of the Capability and Cost of the Strategies

Max Min Avg StDev Max Min Avg StDev
Red Wine Quality 63.03 14.12 25.70 0.15 62.89 8.79 35.74 0.24
Mushroom Edibility 32.63 18.90 25.57 0.38 5.79 0.80 4.10 0.06
Bank Churners 35.56 14.07 19.26 0.21 43.43 0.00 25.75 0.21
Red Wine Quality 33.14 11.47 17.39 0.46 62.51 18.18 43.62 0.72
Mushroom Edibility 12.61 3.92 6.23 0.26 43.05 0.00 25.18 0.59
Bank Churners 18.81 12.40 14.06 0.18 41.66 0.00 25.60 0.64
Red Wine Quality 40.87 14.31 20.71 0.39 91.87 24.12 61.61 0.87
Mushroom Edibility 488.50 21.42 92.01 6.35 38.87 2.15 25.87 0.63
Bank Churners 30.34 8.10 15.94 0.28 99.43 0.00 62.83 0.47

26.32 34.48
* When no Pareto Front is found, the effectiveness is infinite. In such cases, the number given in the table are the maximal effectiveness exclude the infinite.

Max* Min Avg StDev Max Min Avg StDev
Directed Walk 43.74 15.70 23.51 0.25 37.37 3.20 21.86 0.17
Random Target 21.52 9.27 12.56 0.30 49.08 6.06 31.47 0.65
Random Walk 186.57 14.61 42.88 2.34 76.72 8.76 50.10 0.66

Effectiveness Capability

Cost Capability

Directed Walk

Random Target

Random Walk

SubjectStrategy

0
10
20
30
40
50
60
70
80
90

100

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Directed Walk Random Target Random Walk

Overall Average of Effectiveness

0

10

20

30

40

50

60

70

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Red Wine
Quality

Mushroom
Edibility

Bank
Churners

Directed Walk Random Target Random Walk

Overall Average of Capability

models is as follows.
�e theorems proved in Section 4 imply that the capability of the directed walk on a given

direction depends on the existence of a border in the direction from the randomly selected
starting test case. If a border point is found, it only di�ers from the starting test case in one
feature. �is is a limitation of the capability of the strategy. �is is the case for testing the
mushroom edibility, where it is rare that changing just one feature of a mushroom variety will
change its edibility; usually at least two features must change.

It was also observed that the random target strategy has zero capability when used for
testing the NB and NB2 models of mushroom edibility, as does all three strategies when testing
the SVM and SVM2 models of bank churners. �e reason for the poor performances is as
follows.

�e random target strategy discovers a border point when the two starting points are in
di�erent classes. If a subdomain is small, the probability of selecting a point inside it is cor-
respondingly small. In the extreme case, when all test cases are in the same class, no border
will be discovered. �e NB and NB2 models of mushroom edibility classify all mushrooms in
the training dataset as poisonous. Similarly, the SVM and SVM2 models of bank churners clas-
sify all credit card customers to be non-churners so no Pareto front can be discovered by any
strategy.

It is worth noting that the NB and NB2 models have the worst accuracy among all models
of mushroom edibility, and SVM/SVM2 models are the worst on accuracy among the models of
bank churners. �ey are under�t models, which means they are insu�cient for classifying the
input data space. �erefore, exploratory testing cannot detect the borders between subdomains.

On average, the random walk strategy achieved the best performance on capability. It can
discover a border point even if all start points are in the same class; it is only required that a
border exists within walking distance from the starting point. Moreover, the Pareto front found
may be di�erent from the starting point on many features. Although its cost is not the lowest

35

Main Findings 1: Answers to Research Questions
§RQ1: The strategies are capable of discovering borders between subdomains.

§ The overall average of the capabilities of all three strategies: 34.48%.
§ Directed walk: 21.86%
§ Random target: 31.47%
§ Random walk: 50.10%

§RQ2: Applying exploratory strategies is cost efficient for discovering borders
between classes.
§ The overall average cost: 26.32 (of three strategies over all subjects)
§ The best cost: 6.23. (achieved in the testing of mushroom edibility models using the random

target strategy)
§ The worst cost: 92.01 (observed also when testing mushroom edibility but using the random

walk strategy).

12117 July 2023 Tutorial on Datamorphic Testing

Main Findings 2: Factors that Determine Capability
§Directed walk strategy:

The probability that there is a border between two subdomains in the
right direction from a test case and within the walking distance

§Random target strategy:
The probability that two random test cases fall in two different
subdomains

§Random walk strategy:
The probability that there is a border nearby to a randomly selected test
case

17 July 2023 Tutorial on Datamorphic Testing 122

Main Findings 3: Properties of The Strategies
The data of the case study of real machine learning models are consistent
with the data of the controlled experiments on both capability and cost of
the strategies.

§The capability and cost are invariant in the number of walks.
o Both cost and capability are constants that only vary with the model under test.

§The dimensions of the input data spaces of the real-world examples are
significantly larger than those coded classifiers.
o The strategies are scalable to high dimensional data spaces.

12317 July 2023 Tutorial on Datamorphic Testing

Uses of Pareto Front: 1. Measuring Error Extent

Hong Zhu, and Ian Bayley, Discovering boundary values of feature-based
machine learning classifiers through exploratory datamorphic testing,
Journal of Systems and Software, Vol. 187, Article 111231, May 2022.

12417 July 2023 Tutorial on Datamorphic Testing

True negative tests

False positive tests

True positive tests

True negative tests

False positive tests

True positive tests

Pareto
front

True negative tests

False positive tests

True positive tests

Pareto
front

Conceptually
correct border

Implemented
border

Pareto Front of Box2 Models (Generated via 5K Random Walks)

 Original Coded Classifier Deep Neural Network (DNN)

 Decision Tree (DT) Hard Voting of LR, KNN and DT (HV)

 K-Nearest Neighbour (KNN) Logistic Regression (LR)

 Naïve Bayes (NB) Stacking KNN over LR, DT and HV (Stack)

 Soft Voting of LR, KNN and DT (SV) Supporting Vector Machine (SVM)

Uses of Pareto Front: 2. Explanation

12517 July 2023 Tutorial on Datamorphic Testing

Uses of Pareto Front: 3. Visualisation

12617 July 2023 Tutorial on Datamorphic Testing

Pareto Front of Box2 Models (Generated via 5K Random Walks)

 Original Coded Classifier Deep Neural Network (DNN)

 Decision Tree (DT) Hard Voting of LR, KNN and DT (HV)

 K-Nearest Neighbour (KNN) Logistic Regression (LR)

 Naïve Bayes (NB) Stacking KNN over LR, DT and HV (Stack)

 Soft Voting of LR, KNN and DT (SV) Supporting Vector Machine (SVM)

12717 July 2023 Tutorial on Datamorphic Testing

Pareto Front of Box2 Models (Generated via 5K Random Walks)

 Original Coded Classifier Deep Neural Network (DNN)

 Decision Tree (DT) Hard Voting of LR, KNN and DT (HV)

 K-Nearest Neighbour (KNN) Logistic Regression (LR)

 Naïve Bayes (NB) Stacking KNN over LR, DT and HV (Stack)

 Soft Voting of LR, KNN and DT (SV) Supporting Vector Machine (SVM)

Uses 4: Testing ML Model’s Robustness

17 July 2023 Tutorial on Datamorphic Testing 128

25 | P a g e

Figure 12 Experiment 1 Class 6 Result

Actual Class: 6 | Times Boundary Points Were Found: 100 | Number of Unique Points: 20
Execution Time: 12

Figure 13 Experiment 1 Class 7 Result

Actual Class: 7 | Times Boundary Points Were Found: 82 | Number of Unique Points: 20
Execution Time: 22

25 | P a g e

Figure 12 Experiment 1 Class 6 Result

Actual Class: 6 | Times Boundary Points Were Found: 100 | Number of Unique Points: 20
Execution Time: 12

Figure 13 Experiment 1 Class 7 Result

Actual Class: 7 | Times Boundary Points Were Found: 82 | Number of Unique Points: 20
Execution Time: 22

25 | P a g e

Figure 12 Experiment 1 Class 6 Result

Actual Class: 6 | Times Boundary Points Were Found: 100 | Number of Unique Points: 20
Execution Time: 12

Figure 13 Experiment 1 Class 7 Result

Actual Class: 7 | Times Boundary Points Were Found: 82 | Number of Unique Points: 20
Execution Time: 22

25 | P a g e

Figure 12 Experiment 1 Class 6 Result

Actual Class: 6 | Times Boundary Points Were Found: 100 | Number of Unique Points: 20
Execution Time: 12

Figure 13 Experiment 1 Class 7 Result

Actual Class: 7 | Times Boundary Points Were Found: 82 | Number of Unique Points: 20
Execution Time: 22

25 | P a g e

Figure 12 Experiment 1 Class 6 Result

Actual Class: 6 | Times Boundary Points Were Found: 100 | Number of Unique Points: 20
Execution Time: 12

Figure 13 Experiment 1 Class 7 Result

Actual Class: 7 | Times Boundary Points Were Found: 82 | Number of Unique Points: 20
Execution Time: 22

Original
input

Classified
as “7”

Classified
as “3”

Decision region =
the set of critical
pixels

Adversarial Example

Pareto Front &
Adversarial Example

The difference bwt the
pair is on only one pixel

The critical pixel that on which the ML
model decides the classification

The notion of Pareto front of
classification generalises the notion of
adversarial examples.

Pareto front links from adversarial
examples to critical decision region
• Distance metric: number of pixels

that are different;
• Tolerable error: 1

CISOSE 2023 Invited Track
Session 5, 17th July 2023 (Monday) 14:00pm

(Auditorium)

Hong Zhu, et al., A Scenario-Based Functional Testing
Approach to Improving DNN Performance, Proc. of SOSE

2023 (In press)

Scenario-based Exploratory Functional Testing

17 July 2023 Tutorial on Datamorphic Testing 129

Thank You

