WELL-FORMEDNESS, CONSISTENCY AND COMPLETENESS
OF GRAPHIC MODELS

HONG ZHU

Department of Computing
Oxford Brookes University
Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk

ABSTRACT

LIJUN SHAN

Department of Computer Science
National University of Defence Technology
Changsha 410073, China
Email: lijunshancn@yahoo.com

This paper clarifies the notions of well-formedness, consistency and completeness of graphic models. A model or a
diagram is well-formed if its structure satisfies the syntactic rules, especially its elements are type compatible if a type
system is defined. When models are considered as specifications of software systems, consistency means that there
exists a system that satisfies the specification. Completeness means that all the systems that satisfy the specification are
what users want. The paper proposes a framework for the formal definition of the abstract syntax and type systems of
modelling languages. A formal notation is advanced by extending and adapting BNF. A first order language for the
definition of consistency and completeness constraints are also presented and illustrated by examples.

KEYWORDS: Modelling languages, Well-formedness, Consistency constraints, Completeness constraints, Type

systems, Formal notations, First order language.

INTRODUCTION

Modelling languages are playing an increasing important
role in software development. Typical modelling
languages include UML for object oriented software
development (OMG 2004), Yourdon (1989) notation and
SSADM (Hares 1990) for structured analysis and design,
CAMLE modelling language (Zhu and Shan 2005) for
the emerging agent-oriented software development.
Well-defined visual notations for modelling software
systems’ structures and behaviours balance well between
readability and preciseness due to their semi-formal
nature. They have been used for a wide range of
development and maintenance activities, such as
requirements specification and analysis (Yourdon 1989),
formal specifications (Jin and Zhu 1997), system design
(Fowler 2004), software validation and verification (Zhu,
Jin and Diaper 1999, 2002), program code generation
(Quatrani 2003), test case generation (Dalal ef al. 1999,
Paradkar 2005), etc. Model driven development is
emerging as a promising methodology to improve both
the quality and productivity of software development.

As a means of separation of concerns, the multiple-view
approach has been advanced and widely adopted in the
design of modern modelling languages. By representing
different aspects of a system in different views and/or at
different levels of abstractions, it provides a powerful
vehicle for dealing with the complexity in the analysis,
specification and design of information systems.
However, as Finklestein et al. (1994) and Hunter and
Nuseibeh (1998) pointed out, maintaining consistency
between views and completeness of the model is a
crucial but difficult issue. It is highly desirable to
automatically check model’s consistency and

completeness (Xu, Jin and Zhu 1996, Kuzniarz 2002);
yet, graphic models must be well-formed to be processed
and transformed. Unfortunately, these tasks are by no
means trivial (Nentwich 2001). Most existing modelling
languages, including UML, have no explicitly defined
consistency and completeness constraints.

This paper proposes a framework for the formal
definition of the abstract syntax and type systems of
modelling languages so that well-formedness,
consistency and completeness constraints on graphical
models can be formally defined for automatic checking.

RELATED WORKS

The past few years has seen a rapid increase in the
research on defining consistency conditions and
implementing consistency check tools for modelling
languages, especially for UML (Pap et al. 2001, Andre et
al. 2000, Paige et al. 2002, Astesiano et al. 2003).
Among the related works on consistency check,
Nentwich et al.’s (2003) Xlinkit is a flexible tool for
checking the consistency of distributed heterogeneous
documents. It comprises a language for expressing
constraints between such documents, a document
management mechanism and an engine that checks the
documents against the constraints. In comparison with
Xlinkit, our approach is at a higher level of abstraction
and implementation independent. Formal methods, such
as model checking, have also been used for checking the
consistency between multiple views of software
specifications, e.g. in (Inverardi ef al. 2001, Schafer et al.
2001). It requires translating models into a formal
notation as the input to a model checker, while assumes

that syntactic errors have been removed before the
translation. Therefore, checking well-formedness,
consistency and completeness before the translation is
still necessary.

How to define the syntax and semantics of graphic
modelling languages is still an open problem. The
specification of UML uses meta-models, which in turn is
defined by meta-meta-model, etc. Its documentation
spills over 700 pages, yet there is no systematic treatment
of model’s consistency and completeness.

In our previous work, a set of consistency and
completeness constraints was defined for modelling
language RDL, which contains data flow diagrams, entity
relationship diagrams and state transition diagrams.
Automated consistency and completeness checking was
implemented as a part of the automated requirements
analysis support systems RASS (Xu et al. 1995, 1996).
In the design and implementation of caste-centric agent-
oriented modelling language and environment CAMLE,
a set of well-formedness, consistency and completeness
constraints was formally defined and automated checkers
were implemented (Shan and Zhu 2004). Our
experiments demonstrated the approach is effective to
improve the quality of software graphic models. Based
on our previous work, this paper proposes a general
framework for defining well-formedness, consistency
and completeness constraints for modelling languages.

TYPE SYSTEMS AND WELL-FORMEDNESS

This section presents a framework for the formal
definition of the abstract syntax and type systems of
graphic modelling languages so that well-formedness of
graphic models can be automatically checked.

The Structure of Typed Modelling Languages

In a multiple-views modelling language, a model often
consists of several types of diagrams. Each type of
diagrams represents a particular view to the system,
which is often also called a model or sub-model of the
system in the literature.

Definition 1 (Multiple-view modelling languages)

A diagrammatic modelling language ML defines a finite
set T#D of types of diagrams. For each type TeT of
diagrams, ML defines a set of graphical notations to
represent a view of the system. A model M in ML
consists of a set D= of diagrams. Each diagram DeD
has one and only one type T'e T, denoted by Type(D). The
subset of diagrams of type 7 in a model M is called the 7-
view of the model M (or simply the T-sub-model or even
the T-model), and denoted by M.T. Formally,

M.T={DeM | Type(D)=T}.

A modelling language ML is called a multiple-view
modelling language, if ||T||>1; otherwise, it is called a
single-view language. ||

This paper is concerned with multiple-view modelling
languages. However, the theory developed in the paper
equally applies to single-view languages.

For example, UML provides notations for a number of
different types of diagrams, including use case diagrams,
activity diagrams, sequence diagrams, communication
diagrams, component and package diagrams, state
machine diagrams, class diagrams, etc. The set of activity
diagrams of a system is called the activity model of the
system. Similarly, in structured analysis and design
methods (Yourdon 1989), there are entity relationship
diagrams, dataflow diagrams, control flow diagrams, and
state transition diagrams.

Modern modelling languages are also often typed in the
sense that nodes and relations between the nodes are
classified into various types and visually represented
using different graphic notations. This can significantly
improve the readability of the diagrams. Moreover, this
enables modelling tools to check if a model is well-
formed so that a certain set of obvious errors in
modelling can be detected and prevented. A diagram is
well-formed only if the diagram satisfies the type
compatibility constraints. For example, in UML use case
diagrams, two types of nodes can be drawn in different
visual notations: the use case nodes in the form of oval
circles and the actor nodes in the form of stick figures.
Arrowed dash lines can only be drawn between use case
nodes. A solid line without arrows can be drawn between
an actor and a use case. Otherwise, the use case diagram
is not well-formed. These lines in different styles
represent different types of relations between the nodes.

Definition 2 (Graphically typed modelling language)
A modelling language ML is graphically typed, if

(a) For each type TeT of diagrams in ML, the language
ML defines a finite set Ny#J of types of nodes, and

a finite set E7#0 of types of relations among the
nodes.

(b) For each type tec Er of relations, a relation e of type
te in a diagram D of type T can only be specified on
certain type(s) of nodes or relations in D.

A diagram D of type T is graphically well-formed, iff
each node # is associated to one and only one node type
tn and the nodes or relations that each relation e connects
satisfy the type requirements of e’s type te. []

Most relations in modelling languages are binary, hence
represented as lines in various graphic styles, such as
dashed lines, solid lines, double lines, thin lines, or thick
lines, etc. They can also be directed, bi-directed or
undirected with various styles of arrows. Hence, such
relations in a model are also often called edges, or arcs or
arrows. Relations are usually associated with nodes, but
sometimes associated with other relations in the diagram.
For example, in UML class diagrams, a relation can be
defined between a node and an association, which is also
a relation. Relations can also be specified on more than
two nodes. For example, a swim-lane in an activity

diagram of UML specifies that a set of activity nodes are
the actions taken by one actor. Thus, it is in fact a
relation represented in the form of a set though not stated
as such in UML manual. This is also an example that a
relation may be visually represented other than as an
edge or line. Relations between model elements in a
diagram may be implicitly specified through the
positions of the elements drawn in the diagram. Another
example is that, in UML sequence diagrams, a message
arrow is drawn above another to indicate that former is
sent before the latter.

Elements in a diagram are often annotated with text and
numeric values of various syntax formats. For examples,
nodes in various types of diagrams are almost always
associated with text string as its name. Relations may
also be named. For example, an arrow in data flow
diagram can be associated with a name of a data entity to
represent the data flow from one process to another.
Type systems in modelling languages can also be defined
on the data types annotated to various types of nodes and
relations. A diagram is not only needed to be graphically
well-formed, but also well-formed with respect to the
annotations in the sense that the values associated to each
node and each relation are type compatible with their
required date types and formats.

Definition 3 (Annotationally typed languages)

A modelling language ML is annotationally typed, if for
each type T of diagrams, the following conditions hold.

(a) For each diagram type 7T, the language ML defines a
fixed finite number of fields fr,, i=1,...ny, for the
annotations that can be associated to a diagram of
type 7, and for each field f7;a given data type FTr;
of the values that can be assigned to the field f7,.

(b) For each node or relation type ¢ in diagrams of type
T, ML defines a finite set of fields f;,, i=1, ..., n,, for
the annotations that can be associated to the nodes
or relations of type ¢, and for each field f;,, a given
data type d,;, i=1, ...n,, of the values that can be
assigned to the field f; .

A diagram D of type T in ML is annotationally well-
formed, iff the values assigned to the annotation fields of
the diagrams, the nodes and the relations in the diagrams
are all compatible to the data types defined by ML. [

Annotationally typed modelling languages further restrict
the freedom in the annotations associated to the elements
of the models to prevent errors and facilitate automated
reinforcement of the quality of models. Unfortunately,
not all modelling tools have taken the advantages of such
type systems.

Definition 4 (Typed modelling languages)

A modelling language ML is fyped, iff it is both
graphically and annotationally typed. A model M in the
typed ML is well-formed (or well-typed), if all diagrams

of M are both graphically and annotationally well-formed.

g

Another vehicle to deal with the complexity in modelling
is the hierarchical decompositions of systems so that
diagrams at different levels of abstraction represent a
complicated system with different granularities and
contain different amount of details. Consequently, a view
to a system may have a set of diagrams of the same type
to describe the system at different levels of details.

A typical example of language facilities that support
hierarchical levels of abstraction is in the dataflow and
control flow diagrams in structured analysis and design
methods. A data flow model of a system may contain a
number of data flow diagrams at different levels of
abstraction. At the top level, a system is modelled by a
dataflow diagram called context diagram that only
contains one process node and a number of data flows
that represent the information flow from external entities
into the system and the output produced by the system. A
process in a dataflow diagram can be refined into a lower
level dataflow diagram to specify how the process is
statically structured and how it dynamically works.

It is worthy noting that two diagrams of the same type
are not necessarily ordered by the refinement relation.
They may be at the same level of abstraction, but
represent different aspects of the system. For example,
two activity diagrams may represent the interactions
between a system and its environment in two different
scenarios.

Definition 5 (Hierarchical modelling languages)

A modelling language ML is a hierarchical modelling
language on its type T, if the following conditions hold.

(@) The T-submodel M.T of a model M in ML can have
more than one diagram.

(b) The user can define a binary relation <y on the

subset M.T of diagrams so that D;<y D, means that

diagram D, is a refinement of diagram D;. In the
sequel, we will also say that D, is at the higher level
than D,, or D, is at the lower level than D,.

(c) The user can define a binary relation ><7 on the

subset M.T of diagrams so that D;><rD, means that

diagram D, and D, are at the same level of
abstraction.

A model is well-formed with respect to the refinement
relation, iff the following conditions hold.

(i) The relation <y has asymmetry, transitivity and

irreflexity;

(i) The relation ><r is an equivalence relation, i.e., it

has reflexity, transitivity, and symmetry;

(iii) For all Dy and D, in My, D;><7D, implies that both

D<rD, and D,<rD; are not true;

where, a binary relation < on a domain D is transitive, if

Vx,y,zeD.(x<p& y<z =x<z).
Relation < is asymmetric, if

Vx, yeD.(x<y & y<x= x=y).
Relation < is irreflexive, if VxeD.(—(x<x)).
Relation < is reflexive, if VxeD.(x<x).
Relation < is symmetric, if Vx, ye D.(x<y =y<x).
0

The refinement relation is often specified by modellers
through annotations on diagrams.

Example 1. (Refinement relation between SSADM
dataflow diagrams)

SSADM’s numbering rules for specifying the refinement
relations between dataflow diagrams follow.

In the level 1 data flow diagram, the processes are
numbered as 1, 2, ..., K. If a process in the level n data
flow diagram is numbered as x, the data flow diagram
that refines process x must also be numbered as x, and
the processes in the diagram x, which is at level n+l,
must be numbered as x.1, x.2, We can prove that a
model that follows this scheme of numbering is well-
formed with respect to the refinement relation. [

Notation for Defining Syntax and Type Systems

To define the type system and abstract syntax of a
modelling language, we propose the following notation
given in Table 1, which is called GEBNF (Graphically
Extended BNF).

Example 2. (Use case diagrams)

For example, the following GEBFN formulas define the
structure and types for use case diagrams of UML.

<Use Case View>::= <Use Case Diagram>+
<Use Case Diagram>::=
<Actor>*, <Use Case>+, <Association>*,
<Generalisation>*, <Extend>*, <Include>*,
<Scope>
The above GEBNF formula defines that a use case
diagram consists of at least one use case node and some
actor nodes, actor-use case association and some include
extend and generalisation relations. The following
GEBNF formulas define the annotations and types of the
nodes and relations in use case diagrams.

<Actor> ::= [Actor Name/: <Name>, <Attribute>*
<Use Case> .= /Use Case Name/: <Name>
<Association> ::= <Actor> <Use Case>
<Generalization> ::= <Use Case> <Use Case>
<Extend> ::= <Use Case> <Use Case>
<Include> ::= <Use Case> <Use Case>

<Scope> ::= <Use case node>+.

According to the above definition, a use case diagram
that contains a line between two actor nodes is not well-
formed, because there is no such relation type. [

Table 1: GEBNF Notation

Notation|Meaning Example and explanation
<X> |X s a concept or|<Model> and <Diagram>
a type of entities |represent the concepts of models
in the model and diagrams, respectively.
X =Y [Xis defined as |<Model> ::= <Diagram>*:a
Y model is defined as a number of
diagrams.
X* |Repetition of X |<Diagram>*: the entity consists
(include null) |of a number N of diagrams, where
N20.
X+ |Repetition of X |<Diagram>+: the entity consists
(exclude null) |of a number N of diagrams, where
N>1.
X|Y |Choice of X and |<Actor node>|<Use case node>
Y means that the entity is either an
actor node or a use case node.
X,Y [XandY,the <Actor node>,<Use case node>:
union of X and |an entity that consists of an actor
Y node and a use case node.
[X] |Xis optional [<Actor>]: element of actor is
optional.
XY |Order pairs <Actor node> <Use case node>:
consists of X an element that consists of an
and Y order pair of an actor node and a
use case node.
/X/ |An annotation |/Use case name/: the annotation
field named as |field called use case name.
X
X :Y |The type of X is |/Use case name/: Text : the type
Y. of the annotation use case name is
text.
(X) |Parenthesis It is used to change the
preferences of the expression.
‘abc’ |Terminal ‘extends’: the literal value of the
element, the string ‘extends’.
literal value of a
string
Text [!F]|Predefined type |7Text: a text in any format;
Text with syntax| 7eys <object name> *:* <class
specified by F, | gme> : the text that consists of
where Fis a an object name and a class name
BNF separated by a colon.

CONSISTENCY AND COMPLETENESS

The type systems of modelling languages discussed
above and the well-formedness conditions based on the
type systems can prevent and detect a large number of
errors in modelling. However, they alone are insufficient
to detect more complicated errors such as those across
the boundary of a diagram, even the boundary of a type
of sub-model. Therefore, consistency and completeness
constraints are defined on models to facilitate the
detection and prevention of such errors in modelling.

Consistency Constraints

Generally speaking, a consistency constraint C is a
predicate defined on models such that C(M) = true means
that the model is consistent with respect to the constraint;

otherwise, the model is inconsistent and hence, not sound.

Informally, a consistency constraint restricts how models
should be constructed so that certain types of conflicts in
the information specified by the model can be prevented
and detected.

There are several taxonomies of consistency constraints
that can be defined on modelling languages, which are
discussed as follows.

Intra-diagram vs. Inter-diagram constraints

A consistency constraint C is called intra-diagram, if it is
defined on a specific type T of diagram of the model in
the form of

CM) < VDeM.T. C'(D),
where C” is a predicate defined on D.

A consistency constraint C is inter-diagram, if it is
defined on two or more diagrams. For example, a consis-
tency constraint C that is defined on two diagrams of
type T is an inter-diagram consistency constraint, where

CM) <= VD,D’eM.T.C(D, D),
and C’ is a predicate defined on D and D".

Inter-model vs. Intra-model constraints

A consistency constraint C is called inter-model, if it is
defined on diagrams of more than one type, say between
diagrams of types 7T} and 75, so that

CM)=VDeM.T,,D’eM.T,.C’(D,D’),
where C’ is a predicate defined on D and D".

For hierarchical modelling languages, consistency
constraints can also be classified into vertical and
horizontal constraints, and global and local constraints.

Vertical vs. Horizontal constraints

A consistency constraint C is a horizontal constraint if it
is defined between diagrams of a type T at the same
abstraction level. Formally,

C(M) <V D,,D,e M.TID <7 D,=C (D,, D,)],

where C’ is a predicate on two diagrams of type 7.

A vertical consistency constraint C is defined between
diagrams that have refinement relationships between
them, that is, in the form of

C(M) <V D,.D,e M.T[D,<; D,=C (D,, D,)],

where C” is a predicate on two diagrams of type T.

Local vs Global constraints

A consistency constraint C is called global on a
particular type of diagrams, if it is defined on the whole
set of diagrams of the type. Otherwise, it is called local
constraint. For example, a global consistency constraint

C can be defined in the following form.
CM) < VD.eM. TH[C'(Dy, M.T>)],

where C’ is a predicate defined on a diagram of type T,
and a set of diagrams of type 7».

Completeness Constraints

A completeness constraint restricts the construction of
the models so that certain types of errors due to the lack
of information can be prevented and detected.

Both consistency constraints and completeness
constraints can be specified in the form of predicates. It
is hard to distinguish one from the other in their syntactic
structures. However, the consequence of the violation of
a consistency constraint differs from that of a
completeness constraint.

A violation of a consistency constraint implies that there
is an error in the model due to confliction between
different parts of the model. The error must be modified
in order to obtain a sound model. Otherwise, the model
will not make sense. If the model serves as a
specification of a system to be implemented, there will
be no system that satisfies it. A consistency constraint,
therefore, is a correctness criterion. Therefore, a violation
of a consistency constraint means that the model is
incorrect. In an automated modelling tool that checks the
consistency of the models, an error must be reported
once a violation of a consistency constraint is detected.

In contrast, a violation of a completeness constraint
implies that a certain piece of information is missing.
Thus, more information should be added into the system.
Otherwise, the model leaves a space for ambiguity and
different interpretations. If a model serves as a
specification of a system to be implemented,
incompleteness does not mean that there is no system
that satisfies the specification. Instead, there may be a too
wide range of choices so that a system that satisfies the
specification may still have unexpected properties and
behaviours on certain aspects seriously. In such cases,
incompleteness may result in an implementation of a
wrong system. Therefore, there is no guarantee that a
system developed according to the model will always
lead to a right system. It is practically impossible to work
out which is the implementation that the users actually
want due to the lack of crucial pieces of information.

However, a model’s incompleteness can often be
intentional, for example, when the model is constructed
incrementally so that information is gradually added into
the system through a series of stages. Thus,
incompleteness should not be treated as incorrectness,
while the identification of what is missing in the model
may be very useful as a guide to the modeller in
searching for required information. In an automated
modelling tool that checks the completeness of the
models, a violation of a completeness constraint should,
therefore, be reported as warnings, rather than errors.

Formal Notation for Defining Constraints

The notation for defining type systems for graphical
modelling languages proposed above is not sufficient to
define the consistency and completeness constraints. The
following proposes a first order language for formal
definition of such constraints based on the type system.

Let @ be an n-ary operator defined on the type ¢, t,, ..., £,
that results in a value of type ¢. Let p be an n-ary relation
defined on the type #,, t, ..., t,.

e Expressions are formed by finite applications of the
following constructions.

- Variables of various types are expressions of
their own types.

- Constants are expressions of their own types.

- ¢(ey, ey, ..., ,) is an expression of type ¢, if ey,
e, ..., e, are expressions of types ¢, t, ..., t,
respectively.

- e.fis an expression, if e is an expression of type
t and f'is a field defined by the language ML for
the type ¢. The type of ef is ft, if the type for
field f'is defined to be of type ft by ML.

- e.tis an expression, whose value is the set of the
elements of type ¢ in e, where type ¢ is defined in
ML.

- Type(e) is an expression if e is an expression.
The value of Type(e) is the type of e.

e Statements are formed by finite application of the
following constructions.

- pley, ey, ..., €,) is a statement, if e}, ey, ..., e, are
expressions of types ?y, f,, ..., t,, respectively; in
particular, e;= e, and e; € e, are statements, if e;
and e, are expressions.

- Type(e) =t is a statement, if e is an expression
and ¢ is a type name.

- S0 0L =0, PSP, P AP, and pp v, are
statements, if p, p| andp, are statements.

- VXeE.S and 3XeE.S are statements, if X is a
free variable in statement S.

Consistency and completeness constraints can be
formally specified as statements of the first order
language defined above.

Example 3. (Example of consistency constraint)

A consistency constraint for use case diagram is that if a
use case node A extends use case node B, use case node
A drawn within the scope box implies that node B is also
within the scope box. This can be specified as follows.

VDeM<Use case diagram>[V XeD.<Use case node>
(XeD.<Scope>=VYeD.<Use case node>
([X,Y]eD.<Extend relation>=YeD.<Scope>))].

Example 4. (Example of completeness constraint)

In use case driven requirements engineering, a typical
usage of UML is to define the functions of an
information system by a use case diagram. For each use
case, an activity diagram defines the interactions between
the users and the system. The following formally
specifies this completeness constraint.

VDeM.<Use case diagram>[¥ XeD.<Use case node>
[3ADeM <Activity diagram>
(X./Use case name/= AD./Title/)]].

CONCLUSION

In this paper, we clarified the notions of well-formedness,
consistency and completeness in the context of graphic
modelling languages. The BNF notation for the
definition of syntax of textual programming languages
was adapted and extended for the definition of abstract
syntax and type systems of graphic modelling languages.
In comparison with other notations, such as meta-model,
it is simple, precise and widely applicable. We believe
that definitions in the GEBNF notation can be easily
translated into data structure for implementation of
modelling tools for automatic checking well-formedness,
and to translate into machine understandable notations
such as XML. Based on the abstract syntax and type
definitions in GEBNF, a first order language for the
specification of consistency and completeness constraints
was presented and illustrated by examples. Such
specifications can be easily translated into automatic
consistency and completeness checkers according to our
previous experiences in the design and implementation of
modelling tools.

We are applying the proposed framework and notations
to the definition of nontrivial modelling languages and
modelling environment. It is worth further investigating
how to formally specify the whole UML and define its
consistency and completeness constraints.

REFERENCES

Andre, P., Romanczuk, A., Royer, J-C. 2000. “Check the
Consistency of UML Class Diagrams Using Larch Prover”.
Proc. of 3 Rigorous Object-Oriented Methods Workshop,
Clark T., (ed.), BCS.

Astesiano, E. & Reggio, G. 2003. “An Attempt at Analysing
the Consistency Problems in the UML from a Classical
Algebraic Viewpoint”. Recent Trends in Algebraic
Development Techniques, Selected Papers of the 15" Int.
Workshop WADT'02, LNCS, Springer Verlag.

Dalal, S. R, et al. 1999. “Model-based testing in practice”,
Proc. of ICSE *99, 285-294.

Finklestein A, et al. 1994. “Inconsistency handling in multi-
perspective specifications”, IEEE TSE 20(8), 569-578.

Fowler, M. 2004. “UML Distilled: A Brief Guide to the
Standard Object Modeling Language”, Addison Wesley.

Hares, J.S. 1990. “SSADM for the Advanced Practitioner”.
John Wiley and Sons.

Hunter A, and Nuseibeh B. 1998. “Managing inconsistent
specifications: reasoning, analysis and action”, ACM
TOSEM 7(4), 335-367.

Inverardi, P., Muccini, H., Pelliccione, P. 2001. “Automated
check of architectural models consistency using SPIN”.
Proc. of ASE’01, San Diego, California, 346.

Jin, L. and Zhu, H. 1997. “Automatic generation of formal
specification from requirements definition”, Proc. of
ICFEM’97, Hiroshima, Japan, 243-251.

Kuzniarz, L. et al. (eds.) 2002. “Consistency Problems in UML-
based Software Development” Proc. of UML’02, Research
Report. Blekinge Institute of Technology.

Nentwich, C., Emmerich, W. & Finkelstein, A. 2001. “Static
Consistency Check for Distributed Specifications”. Proc. of
ASE’01, Coronado Island, CA, 115-124.

Nentwich, C., Emmerich, W., & Finkelstein, A. 2003.
“Flexible Consistency Check”. ACM TOSEM 12(1), 28-63.

OMG, 2004. “Unified Modeling Language: Superstructure”.
Version 2.0, formal/05-07-04.

Paige, R. F., Ostroff, J. S., and Brooke, P. J. 2002. “Check the
Consistency of Collaboration and Class Diagrams using
PVS”. Proc. of 4" Workshop on Rigorous Object-Oriented
Methods, London, British Computer Society.

Pap, Z. S. et al. 2001. “Completeness and Consistency Analysis
of UML Statechart Specifications”. Proc. of IEEE Design
and Diagnostics of Electronic Circuits and Systems
Workshop, 83-90.

Paradkar, A. 2005. “Case studies on fault detection
effectiveness of model based test generation techniques”,
Proc. of A-MOST '05, ACM SIGSOFT Software
Engineering Notes 30(4).

Quatrani, T. 2003. “Visual Modelling with Rational Rose 2002
and UML”, Addison Wesley.

Schafer, T., Knapp, A., & Merz, S. 2001. “Model Check UML
State Machines and Collaborations”. Workshop on Software
Model Check, Paris.

Shan, L. and Zhu, H. 2004. “Consistency Check in Modeling
Multi-Agent Systems”. Proc. of COMPSAC’04, IEEE CS,
Hong Kong, 114-121.

Xu, J. and Zhu, H. 1996. “Requirements analysis and
specification as a problem of software automation -- Some
researches on requirements analysis”. Proc. SEKE'96,
Nevada, USA, 457-464.

Xu, J., Jin, L., & Zhu, H. 1996. “Tool support of orderly
transition from informal to formal descriptions in
requirements engineering”. Proc. of IFIP'96, 199-206.

Xu, J., Zhu, H., et al. 1995. “From requirements definition to
formal functional specification -- A transformational
approach”. Science in China, Supp. 38 (Sept.).

Yourdon E. 1989. “Modern structured analysis”. Prentice-Hall,
Englewood Cliffs, NJ.

Zhu, H. and Shan, L. 2005. “Caste-Centric Modelling of Multi-
Agent Systems: The CAMLE Modelling Language and
Automated Tools”. in Model-driven Sofiware Development,
Beydeda, S. and Gruhn, V. (eds), Springer, 57-89.

Zhu, H., Jin, L., and Diaper, D. 1999. “Application of Task
Analysis to the Validation of Software Requirements”,
Proc. SEKE'99, Kaiserslautern, Germany, 239-245.

Zhu, H., Jin, L., Diaper, D. 2002. “Software requirements
validation via task analysis”, Journal of System and
Software 61(2), 145-169.

AUTHOR BIOGRAPHIES

HONG ZHU is a professor of
computer science at Oxford Brookes
University, UK. He obtained his
BSc, MSc and PhD degrees in
Computer Science from Nanjing
University, China, in 1982, 1984
and 1987, respectively. He worked
for Nanjing University as a lecturer,
associate professor and then full
professor from August 1987 to
November 1998. From October 1990 to December 1994,
he was a research fellow at Brunel University and then
the Open University, UK, while on leave from Nanjing
University. He joined Department of Computing of
Oxford Brookes University in November 1998 as senior
lecturer in computing and became a professor of
computer science in October 2004. He is a member of
British Computer Society, ACM, IEEE Computer
Society, China Computer Federation, and China
Artificial Intelligence Association. His research interests
are in the area of software engineering including
software development methodology, software testing,
agent technology, automated software development tools,
etc. He has published widely, which include two books,
five peer reviewed book chapters, twenty two refereed
journal papers in English, twelve refereed journal papers
in Chinese, and more than sixty papers in refereed
international conference/workshop proceedings. He has
won a number of prizes in China for his research
achievements, which include the Premier’s Award of
Distinguished Young Scientists in China awarded by the
National Natural Science Foundation of China, and
Professorship of Cheung Kong Scholars Programme by
the Ministry of Education of China. His email address is
hzhu@brookes.ac.uk. His webpage can be found at

http://cms.brookes.ac.uk/staff/HongZhu.

LIJUN SHAN is a PhD candidate
at the Department of Computer
Science of the National University
of Defence Technology, where she
obtained BSc and MSc degrees in
Computer Science in 2000 and
2003, respectively. Her research
interest is in software development
methodology, in particular, the
agent-oriented methodology,
service-oriented software engineering and model-driven
software development. She has developed an agent-
oriented modelling language CAMLE and implemented
its automated modelling environment. She has published
7 papers in referred international conference proceedings
and 2 peer reviewed book chapters, and has one paper
accepted by an international journal. Her email address is
lijunshancn@yahoo.com.

