
WELL-FORMEDNESS, CONSISTENCY AND COMPLETENESS 
OF GRAPHIC MODELS  

HONG ZHU 

Department of Computing  
Oxford Brookes University 

Oxford OX33 1HX, UK  
Email: hzhu@brookes.ac.uk 

LIJUN SHAN 

Department of Computer Science  
National University of Defence Technology 

Changsha 410073, China  
Email: lijunshancn@yahoo.com 

ABSTRACT 

This paper clarifies the notions of well-formedness, consistency and completeness of graphic models. A model or a 
diagram is well-formed if its structure satisfies the syntactic rules, especially its elements are type compatible if a type 
system is defined. When models are considered as specifications of software systems, consistency means that there 
exists a system that satisfies the specification. Completeness means that all the systems that satisfy the specification are 
what users want. The paper proposes a framework for the formal definition of the abstract syntax and type systems of 
modelling languages. A formal notation is advanced by extending and adapting BNF. A first order language for the 
definition of consistency and completeness constraints are also presented and illustrated by examples.  

KEYWORDS: Modelling languages, Well-formedness, Consistency constraints, Completeness constraints, Type 
systems, Formal notations, First order language.  

INTRODUCTION 

Modelling languages are playing an increasing important 
role in software development. Typical modelling 
languages include UML for object oriented software 
development (OMG 2004), Yourdon (1989) notation and 
SSADM (Hares 1990) for structured analysis and design, 
CAMLE modelling language (Zhu and Shan 2005) for 
the emerging agent-oriented software development. 
Well-defined visual notations for modelling software 
systems’ structures and behaviours balance well between 
readability and preciseness due to their semi-formal 
nature. They have been used for a wide range of 
development and maintenance activities, such as 
requirements specification and analysis (Yourdon 1989), 
formal specifications (Jin and Zhu 1997), system design 
(Fowler 2004), software validation and verification (Zhu, 
Jin and Diaper 1999, 2002), program code generation 
(Quatrani 2003), test case generation (Dalal et al. 1999, 
Paradkar 2005), etc. Model driven development is 
emerging as a promising methodology to improve both 
the quality and productivity of software development.  

As a means of separation of concerns, the multiple-view 
approach has been advanced and widely adopted in the 
design of modern modelling languages. By representing 
different aspects of a system in different views and/or at 
different levels of abstractions, it provides a powerful 
vehicle for dealing with the complexity in the analysis, 
specification and design of information systems. 
However, as Finklestein et al. (1994) and Hunter and 
Nuseibeh (1998) pointed out, maintaining consistency 
between views and completeness of the model is a 
crucial but difficult issue. It is highly desirable to 
automatically check model’s consistency and 

completeness (Xu, Jin and Zhu 1996, Kuzniarz 2002); 
yet, graphic models must be well-formed to be processed 
and transformed. Unfortunately, these tasks are by no 
means trivial (Nentwich 2001). Most existing modelling 
languages, including UML, have no explicitly defined 
consistency and completeness constraints.  

This paper proposes a framework for the formal 
definition of the abstract syntax and type systems of 
modelling languages so that well-formedness, 
consistency and completeness constraints on graphical 
models can be formally defined for automatic checking.  

RELATED WORKS 

The past few years has seen a rapid increase in the 
research on defining consistency conditions and 
implementing consistency check tools for modelling 
languages, especially for UML (Pap et al. 2001, Andre et 
al. 2000, Paige et al. 2002, Astesiano et al. 2003). 
Among the related works on consistency check, 
Nentwich et al.’s (2003) Xlinkit is a flexible tool for 
checking the consistency of distributed heterogeneous 
documents. It comprises a language for expressing 
constraints between such documents, a document 
management mechanism and an engine that checks the 
documents against the constraints. In comparison with 
Xlinkit, our approach is at a higher level of abstraction 
and implementation independent. Formal methods, such 
as model checking, have also been used for checking the 
consistency between multiple views of software 
specifications, e.g. in (Inverardi et al. 2001, Schafer et al. 
2001). It requires translating models into a formal 
notation as the input to a model checker, while assumes 



that syntactic errors have been removed before the 
translation. Therefore, checking well-formedness, 
consistency and completeness before the translation is 
still necessary.  

How to define the syntax and semantics of graphic 
modelling languages is still an open problem. The 
specification of UML uses meta-models, which in turn is 
defined by meta-meta-model, etc. Its documentation 
spills over 700 pages, yet there is no systematic treatment 
of model’s consistency and completeness.  

In our previous work, a set of consistency and 
completeness constraints was defined for modelling 
language RDL, which contains data flow diagrams, entity 
relationship diagrams and state transition diagrams. 
Automated consistency and completeness checking was 
implemented as a part of the automated requirements 
analysis support systems RASS (Xu et al. 1995, 1996). 
In the design and implementation of caste-centric agent-
oriented modelling language and environment CAMLE, 
a set of well-formedness, consistency and completeness 
constraints was formally defined and automated checkers 
were implemented (Shan and Zhu 2004). Our 
experiments demonstrated the approach is effective to 
improve the quality of software graphic models. Based 
on our previous work, this paper proposes a general 
framework for defining well-formedness, consistency 
and completeness constraints for modelling languages.  

TYPE SYSTEMS AND WELL-FORMEDNESS 

This section presents a framework for the formal 
definition of the abstract syntax and type systems of 
graphic modelling languages so that well-formedness of 
graphic models can be automatically checked.  

The Structure of Typed Modelling Languages  
In a multiple-views modelling language, a model often 
consists of several types of diagrams. Each type of 
diagrams represents a particular view to the system, 
which is often also called a model or sub-model of the 
system in the literature.  

Definition 1 (Multiple-view modelling languages) 

A diagrammatic modelling language ML defines a finite 
set T≠∅ of types of diagrams. For each type T∈T of 
diagrams, ML defines a set of graphical notations to 
represent a view of the system. A model M in ML 
consists of a set D≠∅ of diagrams. Each diagram D∈D 
has one and only one type T∈T, denoted by Type(D). The 
subset of diagrams of type T in a model M is called the T-
view of the model M (or simply the T-sub-model or even 
the T-model), and denoted by M.T. Formally,  

M.T ={D∈M | Type(D)=T}. 

A modelling language ML is called a multiple-view 
modelling language, if ||T||>1; otherwise, it is called a 
single-view language. � 

This paper is concerned with multiple-view modelling 
languages. However, the theory developed in the paper 
equally applies to single-view languages.  

For example, UML provides notations for a number of 
different types of diagrams, including use case diagrams, 
activity diagrams, sequence diagrams, communication 
diagrams, component and package diagrams, state 
machine diagrams, class diagrams, etc. The set of activity 
diagrams of a system is called the activity model of the 
system. Similarly, in structured analysis and design 
methods (Yourdon 1989), there are entity relationship 
diagrams, dataflow diagrams, control flow diagrams, and 
state transition diagrams.  

Modern modelling languages are also often typed in the 
sense that nodes and relations between the nodes are 
classified into various types and visually represented 
using different graphic notations. This can significantly 
improve the readability of the diagrams. Moreover, this 
enables modelling tools to check if a model is well-
formed so that a certain set of obvious errors in 
modelling can be detected and prevented. A diagram is 
well-formed only if the diagram satisfies the type 
compatibility constraints. For example, in UML use case 
diagrams, two types of nodes can be drawn in different 
visual notations: the use case nodes in the form of oval 
circles and the actor nodes in the form of stick figures. 
Arrowed dash lines can only be drawn between use case 
nodes. A solid line without arrows can be drawn between 
an actor and a use case. Otherwise, the use case diagram 
is not well-formed. These lines in different styles 
represent different types of relations between the nodes.  

Definition 2 (Graphically typed modelling language) 

A modelling language ML is graphically typed, if  

(a)  For each type T∈T of diagrams in ML, the language 
ML defines a finite set NT ≠∅ of types of nodes, and 
a finite set ET≠∅ of types of relations among the 
nodes.  

(b)  For each type te∈ET of relations, a relation e of type 
te in a diagram D of type T can only be specified on 
certain type(s) of nodes or relations in D.  

A diagram D of type T is graphically well-formed, iff 
each node n is associated to one and only one node type 
tn and the nodes or relations that each relation e connects 
satisfy the type requirements of e’s type te.  � 

Most relations in modelling languages are binary, hence 
represented as lines in various graphic styles, such as 
dashed lines, solid lines, double lines, thin lines, or thick 
lines, etc. They can also be directed, bi-directed or 
undirected with various styles of arrows. Hence, such 
relations in a model are also often called edges, or arcs or 
arrows. Relations are usually associated with nodes, but 
sometimes associated with other relations in the diagram. 
For example, in UML class diagrams, a relation can be 
defined between a node and an association, which is also 
a relation. Relations can also be specified on more than 
two nodes. For example, a swim-lane in an activity 



diagram of UML specifies that a set of activity nodes are 
the actions taken by one actor. Thus, it is in fact a 
relation represented in the form of a set though not stated 
as such in UML manual. This is also an example that a 
relation may be visually represented other than as an 
edge or line. Relations between model elements in a 
diagram may be implicitly specified through the 
positions of the elements drawn in the diagram. Another 
example is that, in UML sequence diagrams, a message 
arrow is drawn above another to indicate that former is 
sent before the latter.  

Elements in a diagram are often annotated with text and 
numeric values of various syntax formats. For examples, 
nodes in various types of diagrams are almost always 
associated with text string as its name. Relations may 
also be named. For example, an arrow in data flow 
diagram can be associated with a name of a data entity to 
represent the data flow from one process to another. 
Type systems in modelling languages can also be defined 
on the data types annotated to various types of nodes and 
relations. A diagram is not only needed to be graphically 
well-formed, but also well-formed with respect to the 
annotations in the sense that the values associated to each 
node and each relation are type compatible with their 
required date types and formats.  

Definition 3 (Annotationally typed languages) 

A modelling language ML is annotationally typed, if for 
each type T of diagrams, the following conditions hold. 

(a)  For each diagram type T, the language ML defines a 
fixed finite number of fields fT,i, i=1,…nT, for the 
annotations that can be associated to a diagram of 
type T, and for each field fT,i a given data type FTT,i 
of the values that can be assigned to the field fT,i. 

(b)  For each node or relation type t in diagrams of type 
T, ML defines a finite set of fields ft,i, i=1, …, nt, for 
the annotations that can be associated to the nodes 
or relations of type t, and for each field ft,i, a given 
data type dt,i, i=1, …nt, of the values that can be 
assigned to the field ft,i.  

A diagram D of type T in ML is annotationally well-
formed, iff the values assigned to the annotation fields of 
the diagrams, the nodes and the relations in the diagrams 
are all compatible to the data types defined by ML. � 

Annotationally typed modelling languages further restrict 
the freedom in the annotations associated to the elements 
of the models to prevent errors and facilitate automated 
reinforcement of the quality of models. Unfortunately, 
not all modelling tools have taken the advantages of such 
type systems.  

Definition 4 (Typed modelling languages) 

A modelling language ML is typed, iff it is both 
graphically and annotationally typed. A model M in the 
typed ML is well-formed (or well-typed), if all diagrams 
of M are both graphically and annotationally well-formed. 
� 

Another vehicle to deal with the complexity in modelling 
is the hierarchical decompositions of systems so that 
diagrams at different levels of abstraction represent a 
complicated system with different granularities and 
contain different amount of details. Consequently, a view 
to a system may have a set of diagrams of the same type 
to describe the system at different levels of details.  

A typical example of language facilities that support 
hierarchical levels of abstraction is in the dataflow and 
control flow diagrams in structured analysis and design 
methods. A data flow model of a system may contain a 
number of data flow diagrams at different levels of 
abstraction. At the top level, a system is modelled by a 
dataflow diagram called context diagram that only 
contains one process node and a number of data flows 
that represent the information flow from external entities 
into the system and the output produced by the system. A 
process in a dataflow diagram can be refined into a lower 
level dataflow diagram to specify how the process is 
statically structured and how it dynamically works.  

It is worthy noting that two diagrams of the same type 
are not necessarily ordered by the refinement relation. 
They may be at the same level of abstraction, but 
represent different aspects of the system. For example, 
two activity diagrams may represent the interactions 
between a system and its environment in two different 
scenarios.  

Definition 5 (Hierarchical modelling languages)  

A modelling language ML is a hierarchical modelling 
language on its type T, if the following conditions hold. 

(a)  The T-submodel M.T of a model M in ML can have 
more than one diagram. 

(b)  The user can define a binary relation ≺T on the 

subset M.T of diagrams so that D1≺T D2 means that 
diagram D2 is a refinement of diagram D1. In the 
sequel, we will also say that D1 is at the higher level 
than D2, or D2 is at the lower level than D1.  

(c)  The user can define a binary relation ;≺T on the 

subset M.T of diagrams so that D1;≺T D2 means that 
diagram D1 and D2 are at the same level of 
abstraction.  

A model is well-formed with respect to the refinement 
relation, iff the following conditions hold.  

(i)  The relation ≺T has asymmetry, transitivity and 
irreflexity; 

(ii)  The relation ;≺T is an equivalence relation, i.e., it 
has reflexity, transitivity, and symmetry;  

(iii)  For all D1 and D2 in MT, D1;≺T D2 implies that both 

D1≺T D2 and D2≺T D1 are not true;  

where, a binary relation < on a domain D is transitive, if  



∀x,y,z∈D.(x<y& y<z ⇒x<z). 

Relation < is asymmetric, if  

∀x, y∈D.(x<y & y<x⇒ x=y). 

Relation < is irreflexive, if ∀x∈D.(¬(x<x)). 

Relation < is reflexive, if ∀x∈D.(x<x). 

Relation < is symmetric, if ∀x, y∈D.(x<y ⇒y<x). 

� 

The refinement relation is often specified by modellers 
through annotations on diagrams.  

Example 1. (Refinement relation between SSADM 
dataflow diagrams) 

SSADM’s numbering rules for specifying the refinement 
relations between dataflow diagrams follow.  

In the level 1 data flow diagram, the processes are 
numbered as 1, 2, …, K. If a process in the level n data 
flow diagram is numbered as x, the data flow diagram 
that refines process x must also be numbered as x, and 
the processes in the diagram x, which is at level n+1, 
must be numbered as x.1, x.2, …. We can prove that a 
model that follows this scheme of numbering is well-
formed with respect to the refinement relation. � 

Notation for Defining Syntax and Type Systems 
To define the type system and abstract syntax of a 
modelling language, we propose the following notation 
given in Table 1, which is called GEBNF (Graphically 
Extended BNF).  

Example 2. (Use case diagrams) 

For example, the following GEBFN formulas define the 
structure and types for use case diagrams of UML.  

<Use Case View>::= <Use Case Diagram>+ 
<Use Case Diagram>::=  
 <Actor>*, <Use Case>+, <Association>*,   
 <Generalisation>*, <Extend>*, <Include>*,  
 <Scope> 
The above GEBNF formula defines that a use case 
diagram consists of at least one use case node and some 
actor nodes, actor-use case association and some include 
extend and generalisation relations. The following 
GEBNF formulas define the annotations and types of the 
nodes and relations in use case diagrams.  

<Actor> ::= /Actor Name/: <Name>, <Attribute>* 
<Use Case> ::= /Use Case Name/: <Name> 
<Association> ::= <Actor> <Use Case> 
<Generalization> ::= <Use Case> <Use Case> 
<Extend> ::= <Use Case> <Use Case> 
<Include> ::= <Use Case> <Use Case> 
<Scope> ::= <Use case node>+. 

According to the above definition, a use case diagram 
that contains a line between two actor nodes is not well-
formed, because there is no such relation type.  � 

Table 1: GEBNF Notation 

Notation Meaning  Example and explanation 

<X> X is a concept or 
a type of entities 
in the model 

<Model> and <Diagram> 
represent the concepts of models 
and diagrams, respectively. 

X ::= Y X is defined as 
Y 

<Model> ::= <Diagram>* : a 
model is defined as a number of 
diagrams.  

X* Repetition of X 
(include null) 

<Diagram>*: the entity consists 
of a number N of diagrams, where 
N ≥ 0.  

X+ Repetition of X 
(exclude null) 

<Diagram>+: the entity consists 
of a number N of diagrams, where 
N ≥ 1. 

X | Y Choice of X and 
Y 

<Actor node>|<Use case node> 
means that the entity is either an 
actor node or a use case node.  

X , Y X and Y, the 
union of X and 
Y 

<Actor node>,<Use case node>: 
an entity that consists of an actor 
node and a use case node.  

[ X ] X is optional  [<Actor>]: element of actor is 
optional.  

X Y Order pairs 
consists of X 
and Y 

<Actor node> <Use case node>: 
an element that consists of an 
order pair of an actor node and a 
use case node.  

/X/ An annotation 
field named as 
X 

/Use case name/: the annotation 
field called use case name.  

X : Y The type of X is 
Y.  

/Use case name/: Text : the type 
of the annotation use case name is 
text.  

(X) Parenthesis  It is used to change the 
preferences of the expression.  

‘abc’ Terminal 
element, the 
literal value of a 
string 

‘extends’: the literal value of the 
string ‘extends’.  

Text [!F] Predefined type 
Text with syntax 
specified by F, 
where F is a 
BNF 

Text: a text in any format; 
Text ! <object name> ‘:’ <class 
name> : the text that consists of 
an object name and a class name 
separated by a colon.  

CONSISTENCY AND COMPLETENESS 

The type systems of modelling languages discussed 
above and the well-formedness conditions based on the 
type systems can prevent and detect a large number of 
errors in modelling. However, they alone are insufficient 
to detect more complicated errors such as those across 
the boundary of a diagram, even the boundary of a type 
of sub-model. Therefore, consistency and completeness 
constraints are defined on models to facilitate the 
detection and prevention of such errors in modelling.  



Consistency Constraints 
Generally speaking, a consistency constraint C is a 
predicate defined on models such that C(M) = true means 
that the model is consistent with respect to the constraint; 
otherwise, the model is inconsistent and hence, not sound. 
Informally, a consistency constraint restricts how models 
should be constructed so that certain types of conflicts in 
the information specified by the model can be prevented 
and detected.  

There are several taxonomies of consistency constraints 
that can be defined on modelling languages, which are 
discussed as follows.  

Intra-diagram vs. Inter-diagram constraints 
A consistency constraint C is called intra-diagram, if it is 
defined on a specific type T of diagram of the model in 
the form of  

C(M) ⇔ ∀D∈M.T. C’(D), 

where C’ is a predicate defined on D.  

A consistency constraint C is inter-diagram, if it is 
defined on two or more diagrams. For example, a consis-
tency constraint C that is defined on two diagrams of 
type T is an inter-diagram consistency constraint, where  

C(M) ⇔ ∀D,D’∈M.T.C’(D, D’), 

and C’ is a predicate defined on D and D’. 

Inter-model vs. Intra-model constraints 
A consistency constraint C is called inter-model, if it is 
defined on diagrams of more than one type, say between 
diagrams of types T1 and T2, so that  

C(M) ⇔∀D∈M.T1, D’∈M.T2.C’(D, D’), 

where C’ is a predicate defined on D and D’. 

For hierarchical modelling languages, consistency 
constraints can also be classified into vertical and 
horizontal constraints, and global and local constraints.  

Vertical vs. Horizontal constraints  
A consistency constraint C is a horizontal constraint if it 
is defined between diagrams of a type T at the same 
abstraction level. Formally,  

C(M) ⇔∀Dx,Dy∈M.T[Dx;≺T Dy⇒C’(Dx, Dy)], 

where C’ is a predicate on two diagrams of type T. 

A vertical consistency constraint C is defined between 
diagrams that have refinement relationships between 
them, that is, in the form of 

C(M) ⇔∀Dx,Dy∈M.T[Dx≺T Dy⇒C’(Dx, Dy)], 

where C’ is a predicate on two diagrams of type T.  

Local vs Global constraints 
A consistency constraint C is called global on a 
particular type of diagrams, if it is defined on the whole 
set of diagrams of the type. Otherwise, it is called local 
constraint. For example, a global consistency constraint 

C can be defined in the following form. 

C(M) ⇔ ∀Dx∈M. T1[C’(Dx, M.T2)], 

where C’ is a predicate defined on a diagram of type T1 
and a set of diagrams of type T2. 

Completeness Constraints 
A completeness constraint restricts the construction of 
the models so that certain types of errors due to the lack 
of information can be prevented and detected.  

Both consistency constraints and completeness 
constraints can be specified in the form of predicates. It 
is hard to distinguish one from the other in their syntactic 
structures. However, the consequence of the violation of 
a consistency constraint differs from that of a 
completeness constraint.  

A violation of a consistency constraint implies that there 
is an error in the model due to confliction between 
different parts of the model. The error must be modified 
in order to obtain a sound model. Otherwise, the model 
will not make sense. If the model serves as a 
specification of a system to be implemented, there will 
be no system that satisfies it. A consistency constraint, 
therefore, is a correctness criterion. Therefore, a violation 
of a consistency constraint means that the model is 
incorrect. In an automated modelling tool that checks the 
consistency of the models, an error must be reported 
once a violation of a consistency constraint is detected.  

In contrast, a violation of a completeness constraint 
implies that a certain piece of information is missing. 
Thus, more information should be added into the system. 
Otherwise, the model leaves a space for ambiguity and 
different interpretations. If a model serves as a 
specification of a system to be implemented, 
incompleteness does not mean that there is no system 
that satisfies the specification. Instead, there may be a too 
wide range of choices so that a system that satisfies the 
specification may still have unexpected properties and 
behaviours on certain aspects seriously. In such cases, 
incompleteness may result in an implementation of a 
wrong system. Therefore, there is no guarantee that a 
system developed according to the model will always 
lead to a right system. It is practically impossible to work 
out which is the implementation that the users actually 
want due to the lack of crucial pieces of information.  

However, a model’s incompleteness can often be 
intentional, for example, when the model is constructed 
incrementally so that information is gradually added into 
the system through a series of stages. Thus, 
incompleteness should not be treated as incorrectness, 
while the identification of what is missing in the model 
may be very useful as a guide to the modeller in 
searching for required information. In an automated 
modelling tool that checks the completeness of the 
models, a violation of a completeness constraint should, 
therefore, be reported as warnings, rather than errors.  



Formal Notation for Defining Constraints 
The notation for defining type systems for graphical 
modelling languages proposed above is not sufficient to 
define the consistency and completeness constraints. The 
following proposes a first order language for formal 
definition of such constraints based on the type system.  

Let ϕ be an n-ary operator defined on the type t1, t2, …, tn, 
that results in a value of type t. Let ρ be an n-ary relation 
defined on the type t1, t2, …, tn.  

• Expressions are formed by finite applications of the 
following constructions.  

- Variables of various types are expressions of 
their own types. 

- Constants are expressions of their own types.  

- ϕ(e1, e2, …, en) is an expression of type t, if e1, 
e2, …, en are expressions of types t1, t2, …, tn, 
respectively.  

- e.f is an expression, if e is an expression of type 
t and f is a field defined by the language ML for 
the type t. The type of e.f is ft, if the type for 
field f is defined to be of type ft by ML. 

- e.t is an expression, whose value is the set of the 
elements of type t in e, where type t is defined in 
ML. 

- Type(e) is an expression if e is an expression. 
The value of Type(e) is the type of e.  

• Statements are formed by finite application of the 
following constructions.  

- ρ(e1, e2, …, en) is a statement, if e1, e2, …, en are 
expressions of types t1, t2, …, tn, respectively; in 
particular, e1 = e2 and e1 ∈ e2 are statements, if e1 
and e2 are expressions.  

- Type(e) = t is a statement, if e is an expression 
and t is a type name.  

- ¬ρ, ρ1 ⇒ρ2 , ρ1 ⇔ρ2, ρ1 ∧ρ2, and ρ1 ∨ρ2  are 
statements, if ρ, ρ1 andρ2  are statements. 

- ∀X∈E.S and ∃X∈E.S are statements, if X is a 
free variable in statement S. 

Consistency and completeness constraints can be 
formally specified as statements of the first order 
language defined above.  

Example 3. (Example of consistency constraint) 

A consistency constraint for use case diagram is that if a 
use case node A extends use case node B, use case node 
A drawn within the scope box implies that node B is also 
within the scope box. This can be specified as follows. 

∀D∈M.<Use case diagram>[∀X∈D.<Use case node> 
(X∈D.<Scope>⇒∀Y∈D.<Use case node> 

([X,Y]∈D.<Extend relation>⇒Y∈D.<Scope>))].    
� 

Example 4. (Example of completeness constraint) 

In use case driven requirements engineering, a typical 
usage of UML is to define the functions of an 
information system by a use case diagram. For each use 
case, an activity diagram defines the interactions between 
the users and the system. The following formally 
specifies this completeness constraint.  

∀D∈M.<Use case diagram>[∀X∈D.<Use case node> 
[∃AD∈M.<Activity diagram> 

(X./Use case name/= AD./Title/)]].   
� 

CONCLUSION 

In this paper, we clarified the notions of well-formedness, 
consistency and completeness in the context of graphic 
modelling languages. The BNF notation for the 
definition of syntax of textual programming languages 
was adapted and extended for the definition of abstract 
syntax and type systems of graphic modelling languages. 
In comparison with other notations, such as meta-model, 
it is simple, precise and widely applicable. We believe 
that definitions in the GEBNF notation can be easily 
translated into data structure for implementation of 
modelling tools for automatic checking well-formedness, 
and to translate into machine understandable notations 
such as XML. Based on the abstract syntax and type 
definitions in GEBNF, a first order language for the 
specification of consistency and completeness constraints 
was presented and illustrated by examples. Such 
specifications can be easily translated into automatic 
consistency and completeness checkers according to our 
previous experiences in the design and implementation of 
modelling tools.  

We are applying the proposed framework and notations 
to the definition of nontrivial modelling languages and 
modelling environment. It is worth further investigating 
how to formally specify the whole UML and define its 
consistency and completeness constraints.  

REFERENCES 

Andre, P., Romanczuk, A., Royer, J-C. 2000. “Check the 
Consistency of UML Class Diagrams Using Larch Prover”. 
Proc. of 3rd Rigorous Object-Oriented Methods Workshop, 
Clark T., (ed.), BCS. 

Astesiano, E. & Reggio, G. 2003. “An Attempt at Analysing 
the Consistency Problems in the UML from a Classical 
Algebraic Viewpoint”. Recent Trends in Algebraic 
Development Techniques, Selected Papers of the 15th Int. 
Workshop WADT'02, LNCS, Springer Verlag. 

Dalal, S. R., et al. 1999. “Model-based testing in practice”, 
Proc. of ICSE ’99, 285-294. 

Finklestein A, et al. 1994. “Inconsistency handling in multi-
perspective specifications”, IEEE TSE 20(8), 569–578. 

Fowler, M. 2004. “UML Distilled: A Brief Guide to the 
Standard Object Modeling Language”, Addison Wesley. 

Hares, J.S. 1990. “SSADM for the Advanced Practitioner”. 
John Wiley and Sons.  



Hunter A, and Nuseibeh B. 1998. “Managing inconsistent 
specifications: reasoning, analysis and action”, ACM 
TOSEM 7(4), 335-367. 

Inverardi, P., Muccini, H., Pelliccione, P. 2001. “Automated 
check of architectural models consistency using SPIN”. 
Proc. of ASE’01, San Diego, California, 346. 

Jin, L. and Zhu, H. 1997. “Automatic generation of formal 
specification from requirements definition”, Proc. of 
ICFEM’97, Hiroshima, Japan, 243-251. 

Kuzniarz, L. et al. (eds.) 2002. “Consistency Problems in UML-
based Software Development” Proc. of UML’02, Research 
Report. Blekinge Institute of Technology. 

Nentwich, C., Emmerich, W. & Finkelstein, A. 2001. “Static 
Consistency Check for Distributed Specifications”. Proc. of 
ASE’01, Coronado Island, CA, 115-124. 

Nentwich, C., Emmerich, W., &  Finkelstein, A. 2003. 
“Flexible Consistency Check”. ACM TOSEM 12(1), 28-63. 

OMG, 2004. “Unified Modeling Language: Superstructure”. 
Version 2.0, formal/05-07-04.  

Paige, R. F., Ostroff, J. S., and Brooke, P. J. 2002. “Check the 
Consistency of Collaboration and Class Diagrams using 
PVS”. Proc. of 4th Workshop on Rigorous Object-Oriented 
Methods, London, British Computer Society. 

Pap, Z. S. et al. 2001. “Completeness and Consistency Analysis 
of UML Statechart Specifications”. Proc. of IEEE Design 
and Diagnostics of Electronic Circuits and Systems 
Workshop, 83-90. 

Paradkar, A. 2005. “Case studies on fault detection 
effectiveness of model based test generation techniques”, 
Proc. of A-MOST '05, ACM SIGSOFT Software 
Engineering Notes 30(4). 

Quatrani, T. 2003. “Visual Modelling with Rational Rose 2002 
and UML”, Addison Wesley.  

Schafer, T., Knapp, A., & Merz, S. 2001. “Model Check UML 
State Machines and Collaborations”. Workshop on Software 
Model Check, Paris. 

Shan, L. and Zhu, H. 2004. “Consistency Check in Modeling 
Multi-Agent Systems”. Proc. of COMPSAC’04, IEEE CS, 
Hong Kong, 114-121. 

Xu, J. and Zhu, H. 1996. “Requirements analysis and 
specification as a problem of software automation -- Some 
researches on requirements analysis”. Proc. SEKE'96, 
Nevada, USA, 457-464.  

Xu, J., Jin, L., & Zhu, H. 1996. “Tool support of orderly 
transition from informal to formal descriptions in 
requirements engineering”. Proc. of IFIP'96, 199-206. 

Xu, J., Zhu, H., et al. 1995. “From requirements definition to 
formal functional specification -- A transformational 
approach”. Science in China, Supp. 38 (Sept.). 

Yourdon E. 1989. “Modern structured analysis”. Prentice-Hall, 
Englewood Cliffs, NJ.  

Zhu, H. and Shan, L. 2005. “Caste-Centric Modelling of Multi-
Agent Systems: The CAMLE Modelling Language and 
Automated Tools”. in Model-driven Software Development, 
Beydeda, S. and Gruhn, V. (eds), Springer, 57-89.  

Zhu, H., Jin, L., and Diaper, D. 1999. “Application of Task 
Analysis to the Validation of Software Requirements”, 
Proc. SEKE'99, Kaiserslautern, Germany, 239-245. 

Zhu, H., Jin, L., Diaper, D. 2002. “Software requirements 
validation via task analysis”, Journal of System and 
Software 61(2), 145-169. 

AUTHOR BIOGRAPHIES 

HONG ZHU is a professor of 
computer science at Oxford Brookes 
University, UK. He obtained his 
BSc, MSc and PhD degrees in 
Computer Science from Nanjing 
University, China, in 1982, 1984 
and 1987, respectively. He worked 
for Nanjing University as a lecturer, 
associate professor and then full 
professor from August 1987 to 

November 1998. From October 1990 to December 1994, 
he was a research fellow at Brunel University and then 
the Open University, UK, while on leave from Nanjing 
University. He joined Department of Computing of 
Oxford Brookes University in November 1998 as senior 
lecturer in computing and became a professor of 
computer science in October 2004. He is a member of 
British Computer Society, ACM, IEEE Computer 
Society, China Computer Federation, and China 
Artificial Intelligence Association. His research interests 
are in the area of software engineering including 
software development methodology, software testing, 
agent technology, automated software development tools, 
etc. He has published widely, which include two books, 
five peer reviewed book chapters, twenty two refereed 
journal papers in English, twelve refereed journal papers 
in Chinese, and more than sixty papers in refereed 
international conference/workshop proceedings. He has 
won a number of prizes in China for his research 
achievements, which include the Premier’s Award of 
Distinguished Young Scientists in China awarded by the 
National Natural Science Foundation of China, and 
Professorship of Cheung Kong Scholars Programme by 
the Ministry of Education of China. His email address is 
hzhu@brookes.ac.uk. His webpage can be found at 
http://cms.brookes.ac.uk/staff/HongZhu.  

LIJUN SHAN is a PhD candidate 
at the Department of Computer 
Science of the National University 
of Defence Technology, where she 
obtained BSc and MSc degrees in 
Computer Science in 2000 and 
2003, respectively. Her research 
interest is in software development 
methodology, in particular, the 
agent-oriented methodology, 

service-oriented software engineering and model-driven 
software development. She has developed an agent-
oriented modelling language CAMLE and implemented 
its automated modelling environment. She has published 
7 papers in referred international conference proceedings 
and 2 peer reviewed book chapters, and has one paper 
accepted by an international journal. Her email address is 
lijunshancn@yahoo.com.  

 

 


