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1. Introduction 

Models are created and used as the main artefacts of software engineering in the 
model-driven development methodology. By raising the level of abstraction in software 
development, model-driven engineering (MDE) facilitates a wide range of automation from 
architectural design to integration, testing, maintenance and evolution. With the introduction 
of the Unified Modelling Language (UML), MDE has become very popular today with a 
large body of practitioners and a wide availability of supporting tools. However, the lack of 
a rigorous definition of the semantics of UML has been a long lasting issue.  

1.1. UML and Its Metamodel Hierarchy 

UML is defined through metamodelling; i.e. a metamodel is employed to specify the 
UML modelling language. A metamodel is a model of some syntactically valid models. Due 
to the need to define the syntax and semantics of the metamodel, a meta-metamodel is 
further specified. This leads a four-layer metamodel hierarchy, where a model at layer i is an 
instance of some model at layer (i+1), for i∈{0, 1, 2}. Following the terminology used in 
the UML documentation [2], in the sequel we write ‘a Mi model’ to denote ‘a model at layer 
i’. In particular, a system in the real world is regarded as an M0 model, which is an instance 
of a user model (an M1 model) in the UML language. The metamodel of UML is an M2 
model. The meta-metamodel of UML, called MOF (MetaObject Facility) model, is the only 
M3 model in the four-layer metamodel hierarchy. MOF is intended to be the core of many 
MDE technologies including UML, CWM (Common Warehouse Metamodel), SPEM 
(Software & Systems Process Engineering Metamodel), XMI (XML Metadata Interchange), 
etc.[3]. According to the UML and MOF documentations [2, 3], the hierarchy is allowed to 
have more than 4 layers. 

The metamodel and the meta-metamodel of UML are actually defined in the UML’s class 
diagram notation. Therefore, this metamodelling approach is reflective in the sense that the 
modeling language is defined in its own notation. Because the notation of UML class 
diagram is fairly self-descriptive, this approach works well to some extent. UML class 
diagram incarnates the idea of object-orientation using nodes to denote classifications of 
objects and edges to denote relationships between objects. In fact, a metamodel can be 
regarded as a representation of the ontology underlying a modelling language. In the 
metamodel of UML, for instance, concepts such as Class, Property and Generalisation are 
represented as classes and depicted as nodes in a class diagram, and 
generalisation/specialisation and whole-part relationships between the concepts are 
represented as inheritances and compositions and depicted as edges between the class nodes. 
In the same way, concepts used in a metamodel can be classified and depicted in a class 
diagram at a higher layer, i.e. a meta-metamodel.  

1.2. Problem Identification 

However, this appealing feature of reflective uses of class diagrams in modelling and 
meta-modelling imposes a great challenge to defining the semantics of UML. That is, can 
the semantics of UML class diagram be applied to all layers uniformly in the metamodel 
hierarchy?  

Although the metamodel hierarchy is fairly well described and intuitively understandable, 
the basic notions involved in modelling and metamodelling are not precisely and rigorously 
defined in the OMG documentations. A key question we are concerned with is the exact 
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meaning of the ‘instance of’ relation between a Mi model and a Mi+1 model in the 
metamodel hierarchy. According to the UML documentations, real world systems or 
software systems can be regarded as instances of a UML model. However, little has been 
said about how to judge whether a system is an instance of a model. Take a simple class 
diagram that contains one and only one class node labelled with identifier A as an example. 
It can be interpreted in any of the following ways, while the official UML documentation 
does not specify which one is correct.  
• There is only one class in the system and it is named A.  
• There is at least one class named A in the system (which may have other classes). 
• There is only one class in the system and its name does not matter.  
• There is at least one class in the system and its name does not matter.  

 In our previous work [1, 4], we argued that each of the above interpretations of the 
instance-of relation between real world systems and UML models has its own role in 
software development. Therefore, all of them should be regarded as valid semantics of UML 
models.  In order for the semantics of UML to incorporate all these interpretations, we 
have introduced the notion of usage context of models. Given a specific usage context, the 
hypothesis on how to interpret a model can be explicitly described as a part of the semantics 
of the model. However, the instance-of relation between models and metamodels cannot be 
so flexible. For example, given a metamodel which contains only one class node named 
Classifier, it can only be interpreted to: there is one and only one type of elements in the 
model, and the type is Classifier. A model that contains elements of other types is not an 
instance of the metamodel, because such types are undefined. The above two examples 
reveal that the instance-of relation between M0 and M1 is different from that between M1 and 
M2. A question is: can we identify and formally specify the usage contexts of class diagrams 
for their uses as metamodels and meta-metamodels?  

Considering the whole multi-layer metamodel hierarchy, the above questions can be 
generalised into: (a) What are the relationships between any two models at adjacent layers in 
the metamodel hierarchy? (b) Can the semantics of models at different layers be unified in 
one rigorous and precise semantic definition?  

This paper addresses these problems with a unified semantic framework for the 
metamodel hierarchy. In our previous work on the formal semantics of UML, we have 
proposed the notions of descriptive semantics and functional semantics as two separate 
aspects of UML semantics. The former describes the structure of a model’s instances by 
specifying element types that can be used in the models’ instances and relationships between 
the elements, while the latter characterises the functional and behavioural properties of its 
instances. This paper further develops this approach by generalising it to a unified definition 
of the semantics of metamodels and meta-metamodels. In fact, the framework can be 
extended to any number of layers of metamodelling. Descriptive semantics and functional 
semantics of models are defined through two mappings from class diagrams to predicate 
logic formulas, respectively. The functional semantics of a model at any layer can be 
specified independent of its descriptive semantics and then integrated with descriptive 
semantics to form a complete semantics of the model. The basic concepts involved in the 
metamodel hierarchy, such as instance-of relation and subject domain, are precisely defined. 
The valid instances of a Mi model M are, mathematically speaking, structures in the 
signature determined by the model M and satisfying the formulas that represent the 
descriptive and functional semantics of M. The subject domain of a modelling language, i.e. 
the collection of systems that can be described by the language, can then be defined as the 
set of instances of the metamodel specifying the language.  
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1.3. Organisation of the Paper 

The paper is organised as follows. Section 2 outlines our approach. Section 3 formally 
defines the basic concepts of the UML metamodel hierarchy. Section 4 is devoted to the 
descriptive semantics of models at all layers of the hierarchy. We present a set of rules that 
translate a model into a set of descriptive statements. We also identify the context of using 
class diagrams as Mi layer models for i>1, and specify the context as a set of rules that 
derive formulas from models. Section 5 presents a set of axioms of OO concepts as the static 
functional semantics of UML models. Section 6 integrates the descriptive semantics and 
functional semantics by a set of rules that derives a set of statements representing the 
functional semantics of models. Section 7 discusses the application of the formal semantics 
of UML in model-driven software development. Section 8 compares our work with related 
work. Finally, Section 9 summarises the main contributions of this paper and discusses 
future work.  

2. Overview of the Proposed Approach 

As Seidewitz pointed out [5], a software model, like models in any other scientific 
disciplines, is ‘a set of statements about some system under study’, where statements are 
expressions that can be evaluated to a truth value with respect to the modelled systems. 
Further, Seidewitz stated that a model’s meaning has two aspects: one is the model’s 
relationship to the things being modelled, and the other is about the properties and functions 
of the systems being modelled. In our previous work [1], we have demonstrated that these 
two aspects of semantics of models can be specified and examined separately. The former is 
called the descriptive semantics, which describes the structure of a model’s instances, thus 
can be used to check the instance-of relationship by examining the structure of the system 
against the model. The latter is called the functional semantics, which focuses on the 
functionality and behaviour of the system being modelled. For example, consider the UML 
class diagram CD1 depicted in Fig. 1. Informally, from the descriptive point of view, the 
semantics of the model is a set of statements 
such as  

− Person is a class;  
− Woman is a class; and  
− Woman is subclass of Person.  
These statements can be formally 

represented in predicate logic formulas as 
Class(Person), Class(Woman), and 
Inherits(Woman, Person), respectively. To 
judge whether a give system S (such as a 
program written in Java) is an instance of the 
model, we evaluate whether the following is 
true:  

S |= Class(Person)∧Class(Woman)∧Inherits(Woman, Person).  

It can be evaluated without referring to the behaviour of class and the properties of 
subclass/inheritance relation. For example, consider the Java program skeleton given in Fig. 
1(b). We can judge that it is an instance of the model by recognizing that Person is a class 
and Woman is also a class and there is an inheritance relation from Woman to Person.  

From functional semantics point of view, the semantics of the model CD1 in Fig. 1 

  
(a) Class Diagram CD1  (b) Java Program Skeleton 

Fig. 1 An M1 model 

class Person { 
  Name: String; 
   …  
}; 
class Woman 
  extends Person { 
  … 
} 
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contains a set of statements like the following: 
− Person is a set of objects;  
− Woman is a set of objects;  
− Any object of Woman is also an object of Person, etc.   
Using predicate logic formulas, we write Person(x) to represent ‘object x is a Person’, 

and Woman(x) for “object x is a Woman”. Then, the third statement above can be 
represented formally as ∀x. (Woman(x)→Person(x)). This statement imposes a constraint on 
the dynamic behaviour of a system, e.g. a Java program, as an instance of the model. From 
the functional semantics point of view, the model depicted in Fig. 1 also contains many 
other statements. For example, it also states that any attribute of Person is also an attribute 
of Woman. Here we only give some examples of such statements for the purpose of 
illustration. 

In [1], we have developed a formal descriptive semantics of UML by defining mappings 
from UML models into predicate logic. As shown in Fig. 2, the mappings consist of the 
following sets of rules:  

− Sig: signature mapping, which maps a metamodel N to a set of unary and binary 
predicate symbols and constant symbols. These symbols form a signature of predicate 
logic language.  

− Axm: axiom mapping, which maps a metamodel N into a set of formulas over the 
signature Sig(N). Axm(N) represents the functional semantics of metamodel N, which 
is a set of statements must be satisfied by the models as instances of N.  

− Sem: semantic mapping, which maps a model D into a set of formulas over the 
signature Sig(N), where N is a metamodel of D. Sem(D) describes the content of D in 
terms of types of the elements in D and relationships between the elements.   

− Hyp: hypothesis mapping, which maps a model D into a set of formulas over Sig(N) , 
where N is the metamodel of D. Hyp(D) represents the hypothesis on how D is 
interpreted in a specific context.  

Given a model D as an instance of metamodel N, the descriptive semantics of D is the set 
Axm(N) ∪ Sem(D) ∪ Hyp(D) of formulas over signature Sig(N).  

The above mappings have been implemented in a prototype tool called LAMBDES, 
which is integrated with a theorem prover SPASS [6] to enable automated reasoning about 
models. The mappings have been successfully applied to the class diagram, sequence 
diagram and state machine diagram of UML. Descriptive semantics of UML models has 
been used to check the consistency of models [4], to recognise design patterns in models and 
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Model  
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Domain  
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Instance of 
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Σ-Formulas
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|= 

Structure of Formal Semantics Structure of 
Metamodelling

Hypothesis  
Hyp 

Representation as
 

Fig. 2 Framework of the formal descriptive semantics [1]
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to analyse relationships between design patterns [1]. The 
axiom mapping on metamodels has been used to check if a 
metamodel is well-defined in the sense that it is logically 
consistent [7] and if constraints imposed on M1 models (e.g. 
well-formedness rules in OCL defined in the UML 
documentation or additional consistency rules) are valid in 
the sense that they are logically consistent with the 
metamodel. 

In this paper, we demonstrate that the above view to the 
semantics of models can equally be applied to models at 
other layers in the multi-layer metamodel hierarchy. In 
particular, at M2 layer, OO concepts such as class and 
property are also used to classify elements in a metamodel, but called metaclass and 
meta-property respectively to avoid confusion. Take the class diagram CD2 in Fig. 3 as an 
example. From the descriptive semantics point of view, the statements of the metamodel 
include:  

− Classifier is a metaclass; 
− Class is a metaclass; and 
− Class inherits Classifier. 

The above statements of the metamodel can be formalised as the following set of formulas.  
{MetaClass(Classifier), MetaClass(Class), Inherits(Class, Classifier)}   
From the functional semantics perspective, the inheritance arrow from metaclass Class to 

Classifier states that any instance of Class is also an instance of Classifier. This can be 
formalised as follows.  
 ∀x.(Class(x)→Classifier(x)) 

The two aspects of semantics reveal that a metamodel in the multi-layer hierarchy plays 
two roles:  

− As an abstract syntax, it defines the structure of its instances. In a Mi model (i>1), 
classes define element types in the instances of the model, and properties of the classes 
define inter-element relationships in the instances. This aspect is captured by the 
descriptive semantics, which specifies the element types and the relationships defined 
in a model with a set of first order formulas. The descriptive semantics of a model can 
be used to check if a system is a model’s instance by examining whether the types of 
the elements in the system and their relationships are valid with respect to the model. 

− As an ontological semantics, it defines a conceptual model of its instances. A Mi 
model (i>1), which defines a modelling language or a meta-modelling language, 
specifies the basic concepts underlying the language and the relationships between the 
concepts. Hence, it can be regarded as defining the ontology underlying the language. 
The functional semantics further characterises the basic concepts and their 
relationships by a set of axioms about their properties.  

It is worth noting that we recognise the existence of semantic information contained in 
class diagrams when used as metamodels rather than merely abstract syntax. We argue that a 
class diagram depicts an ontology or a conceptual model of the subject domain. Viewing a 
metamodel as an ontology implies that the metamodel contains important semantic 
information, though an ontology is far from complete to define the semantics of a modelling 
language. For example, in the UML metamodel, a metaclass named Class refers to the 
notion of class in object-oriented software development paradigm. If the name is changed to 
something else, e.g. ‘box’, it no longer refers to the notion of class in object-orientation, 

 

Fig. 3 A M2 model CD2 
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though the abstract syntax of UML is unchanged.  
Concerning the whole multi-layer metamodel hierarchy, we propose a semantic 

framework for unifying the semantics of models at different layers. In this framework, the 
key question ‘what is the instance-of relation?’ is answered in the following way.  

First, we formally define the semantics of a Mi model M as a set of statements. In the 
sequel, we will write M  to denote the set of formulas that the model M states. Thus, the 
‘instance-of’ question is equivalent to ‘whether a system satisfies the statements of the 
model’. In other words, a systems S is an instance of model M, if S satisfies the statements 
of M. In particular, as discussed above, the statements that a model makes are represented as 
a set of formulas in a predicate logic language, whose signature Σ is determined by its 
metamodel N. Moreover, we will divide the set M  into two subsets: M Des for the 
descriptive semantics, and M Fun for the functional semantics. We will present rules to 
derive the sets of formulas M Des and M Fun from a class diagram M.  

Second, we use mathematical structures (called algebras for short) of certain signature as 
abstract representations of systems in a subject domain. Therefore, the subject domain of a 
modelling language can be defined as a set of mathematical structures in the signature of the 
language. By doing so, the model theory of mathematical logics can be applied to formally 
define the satisfaction relationship |= between a system S and a model M. Therefore, system 
S is an instance of model M can be formally defined as S |= M . What’s important is that 
any Mi model (for all i>0) can be regarded as an algebra, too. Thus, the subject domains of 
models at all layers is unified at a high level of abstraction.  

Consequently, the statement ‘a Mi model M is an instance of a Mi+1 model N’ can also be 
formally translated into M |= N . When separating descriptive from functional semantics, 
this is equivalent to M |= N Des∪ N Fun; or equivalently, M |= N Des and M|= N Fun. The 
former holds if M is an Σ-algebra, where Σ=Sig(N). This can be checked by parsing M 
according to N.  

Moreover, we represent the descriptive semantics M Des of M in the form of a set of logic 
formulas that characterises the mathematical structures of its instances. It is observed that 
the model M itself is also in that structure. Thus, the correctness of the definition of 
descriptive semantics of class diagrams can be expressed as M |= M Des. We prove the 
correctness of the rules to derive M Des from M in this paper.  

Furthermore, we define the functional semantics of UML class diagrams by a set of 
axioms that characterises the concepts of object-orientation underlying UML class diagrams. 
These axioms are represented in the form of higher order predicate logic formulas. It is 
observed that this set of axioms is independent of the usage of the class diagram, thus they 
are applicable to models and metamodels at all layers of the metamodel hierarchy.  

Finally, the descriptive semantics and functional semantics are integrated through a set of 
rules that derive a set of first order logic formulas from models that all its instances must 
satisfy. We prove that the rules are correct in the sense they can be deduced from the 
functional and descriptive semantics.  

The key feature of our approach is that the semantics of models/metamodels at different 
layers is unified into one theory, where the mappings from M to M Des and M Fun is 
invariant to the layer in which the model is interpreted, and the definitions of the concepts of 
metamodel hierarchy are identical for all layers.  

3. Basic Concepts of Metamodel hierarchy 

In this section, we define the basic concepts of metamodel hierarchy. We start with the 
concept of signatures of predicate logic languages and mathematical structures, and present 
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a set of rules to derive signatures from models at all layers in the UML metamodel 
hierarchy. Then, we define the notion of subject domain of models and modelling 
languages, etc. Finally, we define the concept of instance-of relation.  

3.1. Signature 

Let’s first review the notion of signatures of predicate logic languages in which formulas 
are written.  

Definition 1. (Signature) 
The signature Σ of a predicate logic language PrL consists of three disjoint finite sets of 

symbols: a set Σ0 of constant symbols, a set Σ1 of unary predicate symbols, and a set Σ2 of 
binary predicate symbols. � 

In general, a signature of predicate logic language may also contain N-ary (N=3, 4, …) 
predicate symbols and function symbols. But, we will not use them in this paper.   

Given an UML class diagram D, we define the signature derived from D, written Sig(D), 
through the following set of three signature rules SR0, SR1, and SR2. They derive constant, 
unary predicate and binary predicate symbols from a class diagram, respectively. In the 
following discussion, we assume that a UML class diagram D is a Mi+1 model, i.e. the 
metamodel of some Mi models, where i≥0.  

An enumeration class in D defines a data type whose values are the enumeration literals. 
We use a constant symbol to represent an enumeration value. Let D.EnumValue denote the 
set of enumeration values in D. Hence, we have the following signature rule.  

Rule SR0. (Constants)  
For each enumeration value V given in an enumeration class E in D, we include a 

constant symbol V in Σ0. Formally, Σ0=SR0(D) = {V | V∈D.EnumValue). � 
For example, Fig. 4shows examples of models at different layers in the metamodel 

 

Fig. 4 Examples of models in the metamodel hierarchy 
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hierarchy, where A0 partly depicts a snapshot of a run-time program, A1 is a user-defined 
UML model, A2 is a subset of UML metamodel, and A3 is a subset of the MOF model. The 
enumeration class AggregationKind in A3 defines a data type for the attribute aggregation of 
class MetaProperty. By applying SR0 on A3, we obtain constant symbols none, shared and 
composite from the enumeration values of AggregationKind.  

A class in model D is a classification of elements in an instance of D. Let D.Class denote 
the set of classes in D. Thus, we have the following signature mapping.  

Rule SR1. (Unary predicate symbols) 
For each class named C in D, we include a unary predicate symbol C in Σ1 ⊆Sig(D). 

Formally, Σ1=SR1(D) = {C | C∈D.Class}. � 
Informally, for an element x in a Mi model M, C(x) means that element x has type C. For 

example, given class diagrams in Fig. 4 , by applying rule SR1 to A1, we obtain a unary 
predicate symbol Person(x). The formula Person(Alice) means that the element Alice in A0 is 
of type Person. By applying SR1 on A2, we derive two unary predicates symbols Class(x) 
and Property(x). Formula Class(Person) means that the element Person in A1 is a class; and 
Property(name) means that name is a property. By applying SR1 on A3, we derive unary 
predicate MetaClass(x), MetaAssociation(x), MetaProperty(x) and AggregationKind(x). 
Then formulas MetaClass(Class), MetaClass(Property), MetaAssociation(l1), 
MetaAssociation(a2), MetaProperty(type) and MetaProperty(ownedAttribute) assert the 
types of elements in model A2.  

In class diagram D, an association between classes X and Y with label A on the 
association end at Y’s side defines a relationship A that instances of X and instances of Y 
may hold in an instance model of D. An attribute A of X with Y as the data type also defines 
such a relationship. Let D.Property and D.AssociationEnd denote the set of properties and 
association ends in D, respectively. We use a binary predicate to represent a relationship, 
hence the following signature rule.  

Rule SR2 (Binary predicates). 
For each attribute R of class X with class Y as the data type, and each association from 

class X to class Y with R as the association end in D, we include a binary predicate symbol R 
in Σ2. Formally, Σ2 = SR2(D) = {R | R∈D.Property ∨ R∈D.AssociationEnd}. � 

Informally, for a pair of elements (x, y), R(x, y) means that there is an R relationship 
between x and y. For example, by applying SR2 on A1 in Fig. 4, we obtain a binary predicate 
symbol name(x, y). The formula name(p, Alice) means that the value of the attribute name of 
p in A0 is Alice. By applying SR2 on A2, we obtain binary predicate symbols 
ownedAttribute(x, y) and type(x, y). The attribute definition ‘name: string’ in A1 can be 
described as ownedAttribute(Person, name) and type(name, string). By applying SR2 on A3, 
we obtain binary predicate symbols aggregation(x, y), metaType(x, y) and 
metaMemberEnd(x, y). The statements about the attribute aggregation of the association 
ends of association l1 in A1 can be stated as aggregation(el1, composite) and 
aggregation(ownedAttribute, none).  

Definition 2 (Signature induced from metamodel)  
Let D be a UML class diagram. We define Σ = Σ0∪Σ1∪Σ2 = Sig(D) = SR0(D) ∪ SR1(D) ∪ 

SR2(D) to be the signature induced from D, where Σi = SRi(D), i= 0, 1, 2. � 

3.2. Subject Domain 

We use mathematical structures to represent systems in subject domains at all layers of 
the UML metamodel hierarchy. Given a signature Σ, we call such mathematical structures 
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Σ-algebras.   

Definition 3. (Σ-Algebra) 
Let Σ=Σ0∪Σ1∪Σ2 be any given signature. An Σ-algebra A=(A, Pr, Rel) is a mathematical 

structure where A is an non-empty set, called the carrier set, Pr is a set of unary predicates 
on A, and Rel is a set of binary predicates on A, such that,  

− for each constant symbol c∈Σ0, there is a corresponding element cA∈A;  
− for each unary predicate symbol P∈Σ1, there is a corresponding unary predicate PA 

∈Pr;  
− for each binary predicate symbol R∈Σ2, there is a corresponding binary predicate RA 

∈Rel. � 
Given a signature Σ, to represent a system S as a Σ-algebra AS, we first consider each 

unary predicate symbol P in Σ as representing a type of elements. We identify the elements 
in the system S that are regarded as of type P. The set of such elements identified for all 
unary predicates in Σ forms the carrier set A of the algebra AS. The unary predicate PA in AS 

corresponding to symbol P is defined such that PA(a) is true for an element a∈A if and only 
if the element a is of type P. Each binary predicate symbol R in Σ is regarded as 
representing a relation on the elements in the system. The corresponding relation RA in AS is 

defined such that RA(a, b) is true for elements a,b∈A if and only if the relation holds 
between these two elements in the system S. In the case that the carrier set A is the empty set 
∅, the algebra AS is trivial. This indicates that the system cannot be meaningfully 
represented as a Σ-algebra.  

Example 1. (Program as algebra) 
Let signature Σ be Σ0∪Σ1∪Σ2, where Σ0 = ∅,  Σ1 = {Class, Attribute}, and Σ2 = {Inherits, 

HasAttribute}. Consider the Java program skeleton given in Fig. 1(b). We can represent it as 
the following algebra, which is referred to as Alg1 in the sequel.  

A={Person, Woman, Name} 
Class(Person)=true, Class(Woman)=true, Class(Name)=false; 
Attribute(Person)=false, Attribute(Woman)=false, Attribute(Name)=true; 
Inherits(Woman, Person)=true;  HasAttribute(Woman, Person)=false;  
Inherits(Woman, Name)=false; HasAttribute(Woman, Name)=true;  
Inherits(Woman, Woman)=false; HasAttribute(Woman, Woman)=false;  
Inherits(Person, Woman)=false;  HasAttribute(Person, Woman)=false;  
Inherits(Person, Name)=false; HasAttribute(Person, Name)=true;  
Inherits(Person, Person)=false; HasAttribute(Person, Person)=false;  
Inherits(Name, Person)=false;  HasAttribute(Name, Person)=false;  
Inherits(Name, Woman)=false;  HasAttribute(Name, Woman)=false;  
Inherits(Name, Name)=false; HasAttribute(Name, Name)=false.   
The mathematical structure Alg1 satisfies the statements Class(Person), Class(Woman) 

and Inherits(Woman, Person) in the descriptive semantics of the model CD1. � 
Extracting algebraic structural information from program source code has been 

implemented by various reverse engineering tools such as those used to recover design 
patterns in software [8].  

Similarly, information contained in graphic models can also be represented as algebras  
following the same procedure described above for extracting algebraic structural 
information from software systems.  

Example 2. (Model as algebra) 
Let signature Σ’ be Σ’0 ∪Σ’1 ∪Σ’2 , where Σ’0 = ∅, Σ’1 = {MetaClass,  
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MetaRelation},  Σ’2 =∅ . Here, we interpret the unary predicate symbol MetaClass as the 
type of the element types in the model, and the unary predicate symbol MetaRelation as the 
type of the relations between the elements in the model. Therefore, the ‘elements’ x in CD1 
such that MetaClass(x) is true are Class, and Attribute. The ‘elements’ x in CD1 such that 
MetaRelation(x) is true are Inherits and HasAttribute. The carrier set is, therefore, {Class, 
Attribute, Inherits, HasAttribute}. The class diagram CD1 given in Fig. 1(a) can thus be 
represented as the following algebra, which is referred to as Alg2.  

A = {Class, Attribute, Inherits, HasAttribute}. 
MetaClass(Class)=true,  MetaRelation(Class)=false, 
MetaClass(Attribute)=true,  MetaRelation(Attribute)=false,  
MetaClass(Inherits)=false,  MetaRelation(Inherits)=true,  
MetaClass(HasAttribute)=false; MetaRelation(HasAttribute)=true;  
The mathematical structure Alg2 can be used to evaluate the truth of descriptive 

statements at metamodel level, such as MetaClass(Class) ∧MetaClass(Attribute).  
� 

It is worth noting that the representation of a model or system as an algebra depends on 
the signature and the semantics interpretation of the symbols in the signature. One system or 
model can be represented differently when the signature is different or the interpretation of 
the symbols is different. For example, consider the class diagram CD1 depicted in Fig. 1. 
Given the signature is Σ in Example 1, we can interpret the unary predicate symbol Class as 
the class nodes in a class diagram, the unary predicate symbol Attribute as the items in the 
attribute compartments of class nodes, etc. Consequently, the model CD1 can be represented 
exactly the same as the algebra Alg1. Being able to represent both the class diagram CD1 and 
the Java program skeleton given in Fig. 1 as the same algebra Alg1 reflects the fact that the 
Java program is an instance of the model CD1 in the context of the signature Σ.  

Definition 4. (Subject domain) 
Let class diagram D be a Mi model and Σ=Sig(D) the signature induced from D. The 

collection of all Σ-algebra is called the immediate subject domain of model D, denoted by 
Dom<i>(D). For i≥1, the ultimate subject domain of a Mi model D, denoted by Dom*(D) is 
inductively defined as follows.  
  For i=1, Dom*(D)=Dom<1>(D).  

  For i>1, Dom*(D)= { }*( ) ( )i
x xDom D D Dom D< >∈U  � 

For example, let U denote the metamodel of the UML language and N the set of all UML 
models. U is a M2 model. As illustrated by Example 1, any UML model can be represented 
as a mathematical structure in the signature induced from U. Therefore, the immediate 
subject domain of the model U is the set of all UML models, i.e. Dom<2>(U) = N. For a M1 
model Ux∈N, its immediate subject domain Dom<1>(Ux) is the collection of all mathematical 
structures in the signature induced from Ux, including the OO programs whose static 
structures are captured by Ux. Therefore, the ultimate subject domain of UML contains all 
OO programs written in Java or any object-oriented programming languages, i.e.  

 SubDom(U) = { }2( ) ( )x xSubDom U U SubDom U< >∈U  = { }( )x xSubDom U U N∈U  

In general, for a M2 model D which defines a modelling language L, its immediate 
subject domain contains all models in L, and its ultimate subject domain contains all 
mathematical structures in the signatures induced from models in L. For the only M3 model 
MOF, since any M2 model is an instance of MOF and can be represented as a mathematical 
structure induced from MOF, its immediate subject domain is the set of all M2 models. The 
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ultimate subject domain of MOF contains the subject domains of all M2 model.  

3.3. Instance-of Relation 

Informally, a system S is an instance of a model M, if (a) S is in the subject domain of the 
model, i.e. the system S can be represented as a mathematical structure in the signature 
induced from M; and, (b) S satisfies the statements of M. The following defines the syntax 
of the formulas representing statements of models.  

Definition 5 (Formulas)  
Given a signature Σ=Σ0∪Σ1∪Σ2, and a collection V=V0∪V1∪V2 of disjoint and countable 

sets of variables, the predicate logic formulas are inductively defined as follows. 
− For all unary predicate symbols P∈Σ1, constant symbols c∈Σ0, and variables x∈V0, 

P(c) and P(x) are formulas; 
− For all binary predicate symbols R∈Σ2, constant symbols c1, c2 ∈ Σ0, and variables x1, 

x2 ∈ V0, R(c1, c2), R(x1, c2), R(c1, x2) and R(x1, x2) are formulas; 
− For all variables X∈V1, constant symbols c∈Σ0, and variables x∈V0, X(c) and X(x) are 

formulas; 
− For all variables X∈V2, constant symbols c1, c2 ∈Σ0, and variables x1, x2 ∈V0, X(c1, c2), 

X(x1, c2), X(c1, x2) and X(x1, x2) are formulas;  
− F1 ∧ F2 , F1 ∨ F2 , F1 ⇒ F2, F1 ⇔ F2 , ¬ F1 are formulas, If F1 and F2 are formulas;  
− ∀x.F and ∃x.F are formulas, if x ∈ V and F is a formula.  
In the sequel, we write Formula(Σ,V) to denote the set of formulas in signature Σ with 

variables in V. � 
Let A be a Σ-algebra, an assignment α of variables V to Σ-algebra A is a mapping from V 

to A such that  
(a) for each x∈V0, α(x) ∈A;  
(b) for each x∈V1, α(x) ∈Pr; and 
(c) for each x∈V2, α(x) ∈Rel.  
Given a Σ-algebra A, a formula φ, and an assignment α of variables in φ, we define 

EvaA,α(φ) as follows.  
− EvaA,α(P(c))=True, if and only if PA(cA) is true in A;  
− EvaA,α(P(x))=True, if and only if PA(α(x)) is true in A; 
− EvaA,α(R(c1, c2))=True, if and only if RA(c1A,c2A) is true in A;  
− EvaA,α(R(x1, c2))=True, if and only if RA(α(x1), c2A) is true in A;  
− EvaA,α(R(c1, x2))=True, if and only if RA(c2A, α(x2)) is true in A;  
− EvaA,α(R(x1, x2))=True, if and only if RA(α(x1), α(x2)) is true in A;  
− EvaA,α(X(c))=True, if and only if Pα(cA) is true in A, where Pα=α(X);  
− EvaA,α(X(x))=True, if and only if Pα(α(x)) is true in A, where Pα=α(X);  
− EvaA,α(X(c1, c2))=True, if and only if Rα(c1A,c2A) is true in A, where Rα=α(X); 
− EvaA,α(X(x1, c2))=True, if and only if Rα(α(x1), c2A) is true in A, where Rα=α(X); 
− EvaA,α(X(c1, x2))=True, if and only if Rα(c2A, α(x2)) is true in A, where Rα=α(X);  
− EvaA,α(X(x1, x2))=True, if and only if Rα(α(x1), α(x2)) is true in A, where Rα=α(X);  
− EvaA,α(F1 ∧ F2 )=True, if and only if EvaA,α(F1)=True and EvaA,α(F2)=True;   
− EvaA,α(F1 ∨ F2 )=True, if and only if EvaA,α(F1 )=True or EvaA,α(F2)=True; 
− EvaA,α(F1 ⇒ F2)=True, if and only if EvaA,α(F1)=False or EvaA,α(F2)=True;  
− EvaA,α(F1 ⇔ F2 )=True, if and only if EvaA,α(F1)=EvaA,α(F2); 
− EvaA,α(¬ F)=True, if and only if EvaA,α(F )=False; 
− EvaA,α(∀x.F)=True, if and only if EvaA,,α’ (F)=True for all assignment α’ such that 

α’(z)=α(z) for all z≠x; 
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− EvaA,α(∃x.F)=True, if and only if EvaA,,α’ (F)=True for at least one assignment α’ such 
that α’(z)=α(z) for all z≠x.  

Definition 6 (Satisfaction relation)  
Let Σ be any given signature, A be a Σ-algebra and F be a formula in signature Σ. We say 

that A satisfies F, written A |= F, if there is an assignment α in A such that 
EvaA,α(F)=True.  

Let Φ be a set of formulas in signature Σ. We say that A satisfies Φ, write A |=Φ, if for 
all F∈Φ, we have that A |=F. � 

For example, by the above definition of |=, it is easy to see that the following statement is 
true in the algebra given in Example 2.  

∀x.HasAttribute(Person, x) → HasAttribute(Woman, x). 

Note that the above definition applies to models at all layers in the metamodel hierarchy.  
By representing systems and models at all layers of metamodel hierarchy as mathematical 

structures and defining the semantics of models/metamodels as a set of statements, the 
instance-of relation between a structure and a model can be defined by employing the 
satisfaction relation.  

Definition 7 (Instance-of relation) 
Let M be a system/model at Mi level, and N be a Mi+1 model, for i≥0. Let RepΣ(M) denote 

the representation of M as a mathematical structure in the signature Σ and SemanticsΣ(N) be 
the set of statements in the signature Σ that defines the semantics of N. We say that M is an 
instance of N, if  

(a) RepΣ(M) is a non-trivial Σ-algebra, where Σ=Sig(N); and  
(b) RepΣ(M) |= SemanticsΣ(N).  
For the sake of convenience, in the sequel we will also write M |=ΣΦ  to denote that the 

algebraic representation of model M in signature Σ satisfies the Σ statements in Φ. When 
there is no risk of confusion, we also omit the subscript Σ. � 

In the following two sections, we will define the functional and descriptive semantics for 
UML models and metamodels at all layers.   

4. Descriptive Semantics  

In this section, we present a set of rules to derive a set of formulas from a class diagram 
to represent the descriptive semantics of the model. We will demonstrate that the rules are 
applicable to class diagrams used at all layers of the UML metamodel hierarchy. We will 
then identify the characteristics of using class diagrams in metamodelling and specify the 
usage context as a set of rules that derive additional descriptive statements from models.  

4.1. Translation mapping 

Given a Mi+1 model N, and a Mi model D, the following set of translation mapping rules 
translate D into a set of formulas in the signature Σ determined by N. At the same time, the 
rules check if D is a Σ-algebra.  

Rule TR1. (Classification of elements) 
For each element a of type C in model D, a formula C(a) is generated, if C is a concrete 

class in N. If D contains an element whose type is not a concrete class in N, D is not an 
instance of N. � 

We write RN(M) to denote the set of statement generated from Mi model M based on Mi+1 
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model N by applying rule R. The subscript N may be omitted when there is no risk of 
confusion.  

For example, by applying rule TR1 to the M2 model A2 in Fig. 4 based on the M3 model 
A3, the following formulas are derived, stating that Class and Property are instances of 
MetaClass, a is an instance of MetaAssociation, ownedAttribute and owner are instances of 
MetaProperty.  
 TR1A3(A2) = {MetaClass(Class), MetaClass(Property),  
 MetaAssociation(l1), MetaAssociation(l2),  
 MetaProperty(ownedAttribute), MetaProperty(type) } 

By applying rule TR1 to the M1 model A1 in Fig. 4 and the UML metamodel, the 
following formulas can be derived, stating that Person is an instance of Class and Name is 
an instance of Property. 

TR1A2(A1)={Class(Person), Property(Name)} 
Elements in a model bear certain relationship, which are mostly expressed through their 

relative position. In a class diagram, for instance, an attribute definition inside a class node 
indicates that the class owns this attribute. Such implicitly specified relationships in a model 
should be explicitly expressed in the descriptive semantics of the model. Hence we have the 
following mapping rule.  

Rule TR2. (Relationships between elements) 
For a pair (e1, e2) of elements in a model M which has relationship R, a formula in the 

form of R(e1, e2) is generated, if R is a meta-relation (i.e. either a meta-attribute or a 
meta-association in the metamodel N. If R is not a meta-relation in the metamodel N, the 
model is not an instance of the metamodel N. � 

 
For example, by applying rule TR2 to A2 in Fig. 4 and the M2 model A3 as the metamodel, 

the following formulas can be derived.  
 TR2A3(A2)={metaMemberEnd(l1, ownedAttribute), metaMemberEnd(a2, type),  

metaType(ownedAttribute, Property), metaType(type, Class)} 
By applying rule TR2 to A1 in Fig. 4using the UML metamodel as the metamodel, the 

following formulas can be derived.  
 TR2A2(A1)={ownedAttribute(Person, Name), type(Name, String)} 

Note that the translation rules play two roles. First, it derives a set of formulas as a part of 
the descriptive semantics of the model. Second, it checks if a model is in the structure 
required by its metamodel. If the formulas are successfully generated, then it is a Σ-algebra. 
Thus, it satisfies the descriptive semantics of its metamodel.  

It is also interesting to observe that a M3 model can be used as its own metamodel when 
applying the translation rules. For example by applying rule TR2 to A3 in Fig. 4 using A3 
itself as the metamodel, the following formulas are derived. 
 TR2A3(A3) = { meta-metaOwnedAttribute(MetaProperty, aggregation), 
  meta-metaType(aggregation, AggregationKind), 
  meta-metaMemberEnd(k1, metaOwnedAttribute),  
  meta-metaType(metaOwnedAttribute, MetaProperty), 
  meta-metaMemberEnd(k2, metaType),  
  meta-metaType(metaType, MetaClass),  
  meta-metaMemberEnd(k3, metaMemberEnd),  
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  meta-metaType(metaMemberEnd, MetaProperty)}. 
where, to avoid naming confliction and confusion, a prefix ‘meta-’ is added to each symbol 
of A3 when it is used as the metamodel. This reveals the reflection of the M3 model, which 
“extends a model with the ability to be self describing” [3].  

In the sequel, we write TRN(M) to denote the set of statements generated from Mi model 
M based on Mi+1 model N by applying rule TR1 and TR2. We also often omit the subscript N 
when there is no risk of confusion. That is,  
 TRN(M) = TR1N(M) ∪TR2N(M) .  

It is easy to see that the translation mapping is complete in the sense that every element 
and relationship in a Mi model is represented in the generated formulas. The following 
theorem proves that the above rules are correct as the descriptive semantics of class 
diagrams.  

Theorem 1. (Correctness of the descriptive semantics mappings) 
Let N be a Mi+1 model and M be a Mi model. If model M is a valid instance of N, then the 

following two statements are true. 
(a) The formulas generated are syntactically valid. Formally,  

 TRN(M) ⊆ Formula(Sig(N), ∅).  
(b) The model M’s structure is reflected in the generated formulas. Formally,  

 M |= TRN(M).  
Proof.  
(a) We prove statement (a) via contradiction.  

Assume there is a formula φ  such that φ∈TRN(M)s, but φ ∉Formula(Sig(N),∅). If φ is 
generated by applying rule TR1, then, according to the definition of TR1, there is an element 
a in model M of type C such that φ=C(α). Since, φ ∉Formula(Sig(N),∅), we have that C is 
not a class in metamodel N, according to SR1. Therefore, there is a model element in M that 
does not belong to a class in the metamodel. Thus, M is not a valid instance of N. This 
contradicts the condition of the theorem. Similarly, if φ is generated by applying rule TR2, 
we have that there are elements a1 and a2 in model M that are related by a relation R and 
φ=R(a1, a2). Because φ∉Formula(Sig(N),∅), according to the signature mapping rule SR2, R 
is not an attribute or association in the metamodel N. Therefore, elements a1 and a2 in model 
M cannot be related in a valid instance model of N. This contradicts the condition of the 
theorem. In conclusion, the assumption that φ ∉Formula(Sig(N),∅) is not true. Thus, the 
statement (a) holds.    
(b) Now, we prove statement (b). 

Let φ∈TRN(M). If φ is generated by applying rule TR1, according to the definition of 
TR1, there is an element a in model M of type C such that φ=C(α). Because 
C(α)∈Formula(Sig(N)) according to statement (a) proved above, C is a unary predicate 
symbol in the signature of the algebraic representation of model M. Therefore, in the 
algebraic representation of M, we have C(α)=true. Thus, M|=φ.  If φ is generated by 
applying rule TR2, we have that there are elements a1 and a2 in model M that are related by 
a relation R and φ=R(a1, a2). Similarly, we have that in the algebraic representation of M, we 
have the R(a1, a2)=true. Therefore, we also have that M|=φ. Thus, statement (b) is also true.  
� 

Note that, the set of formulas derived from a class diagram using the translation rules 
allow flexibility in the interpretation of the diagrams differently according to the usage of 
the model. In the following subsection, we identify the usage context of class diagrams in 
metamodelling and specify the context in the form of a set of rules.  
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4.2. Hypothesis mapping  

The interpretation of a UML model depends on the context in which the model is used. 
For example, a UML model may play the role of a sketch design of a program, which means 
each element in the model is supposed to have a corresponding element of the same type in 
the program, but the program may be allowed to have elements that are not depicted in the 
diagram. A model may also be used as a detailed design, which requires it to depict all 
classes in the program as well as all attributes and operations of the classes. Such 
assumptions on the relationship between a model and the modelled structures are not 
explicitly specified in the model, but are necessary when interpreting the model, therefore 
need to be formalised in descriptive semantics. Our approach is to allow the users to specify 
a set of hypothesis about the uses of the model in the form of logic formulas. In this section, 
we discuss the context of using class diagrams in metamodelling and define a set of 
hypothesis mappings that characterises the context.  

Let e1, e2, …, ek be the set of elements in a Mi model M, and C be their direct type.  

Rule HR1. (Distinguishability of elements) 
Elements of type C are all different. Thus, we have the following set of formulas:  

 {ei ≠ej | for i≠j∈{1, 2, …k}}.  � 
For example, the class diagram B2 in Fig. 5 is a metamodel, and we expect that 

Association is different from Generalisation and Class, etc. By applying rule HR1 to class 
nodes in B2, we obtain the following set of formulas. 
 HR1(B2) = {Association ≠ Class, Association ≠ Generalisation, Association ≠ Classifier…}  

When HR1 is applied to classes in B1, we obtain the following set of formulas.  
 HR1(B1) ={Person ≠ Woman, Person ≠ Man, Man ≠ Woman}  

These formulas are necessary when B1 is used as a model of the real world, where 
woman, man and person are different concepts. However, if B1 is used as a requirements 
specification of a software system, these formulas may be unnecessary, because a program 
containing one class implementing Person with an attribute Sex, whose value is Male or 
Female, is also be a correct implementation of B1. In this case, the hypothesis rule HR1 is 
not applicable.  

Rule HR2. (Completeness of elements) 
The set of elements of a type C is complete. Formally,  

 ∀x. (C(x) → (x = e1) ∨ (x = e2) ∨ … ∨ (x = ek)).  � 
For example, by applying rule HR2 to classes in B2 in Fig. 5, we obtain the following 

formula.  

 ∀x. (MetaClass(x) → (x = Association) ∨ (x = Class)  
 ∨ (x = Generalisation) ∨ (x = Classifier)) 

This means in the modelling language specified by B2, the metaclasses can only be 
Association, Generalisation, Class and Classifier. Therefore, elements in the instances of B2 

can only be of type Association, Generalisation, Class or Classifier.  
When HR2 rule is applied to B1, we obtain the following formula.  

 HR2(B1)={∀x.((Class(x) → (x = Person) ∨ (x = Man) ∨ (x = Woman)))} 
This formula is not required if a program containing additional classes is regarded as a 

correct implementation of B1. It is required when B1 is used as a model derived from code in 
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reverse engineering.   
Similarly, we have the following hypothesis on the completeness of relations in 

metamodels. Let R(x1, x2) be a binary predicate, R(e1,1, e1,2), R(e2,1, e2,2), …, R(en,1, en,2) be 
the set of R relations explicitly depicted in the metamodel.  

Rule HR3. (Completeness of relations) 
Relation R is completely depicted in metamodels. Formally, we have the following 

formula:  
 ∀x1, x2.(R(x1, x2) → ((x1=e1,1)∧(x2=e1,2))∨((x1= e2,1)∧ (x2= e2,2))∨… ((x1= en,1)∧ (x2= en,2)))  
  � 

This hypothesis states that all relations of a certain type are explicitly specified in 
metamodels, thus any additional relation in an instance model will be regarded as not 
satisfying the metamodel. For example, by applying HR3 to the relationship specific in B2 in 
Fig. 5 , the following formula can be obtained.   
 ∀x, y. specific(x, y) → ((x=cc) ∧ (y=Class)) ∨ ((x=ac) ∧ (y= Association)) 
where cc is the identifier of the generalisation arrow from Class to Classifier, and ac the 
identifier of the generalisation arrow from Association to Classifier.  

Again, this rule is not always applicable to models at layer M1. If it is applied to the 
relationship specific in B1 in Fig. 5, we obtain the following formula.  
 ∀x, y. specific(x, y) → ((x=wp) ∧ (y=Person)) ∨ ((x=mp) ∧ (y= Person)) 
where wp is the identifier of the generalisation arrow from Woman to Person, and mp the 
identifier of the generalisation arrow from Man to Person. This is not necessarily true, 
because, for example, there may be additional classes in the system and additional 
inheritance between them.  

One of the most important hypothesis on the uses of class diagrams as metamodels is the 
strict metamodelling principle. It was proposed by Atkinson [9] to ensure that a metamodel 
is a well-defined abstract syntax of modelling language. The strict metamodelling principle 
states that:  

“In an n-level modelling architecture M0, M1, …, Mn, every element of an Mi-level model 
must be an instance-of exactly one element of an Mi+1-level model, for all 0 ≤ i < n-1.”  

Therefore, we have the following hypothesis rule, which asserts that an element is only in 
one concrete class.  

Rule HR4. (Disjointness of classification)  
Let C1, C2, …, Cn be the set of concrete classes in D. For each pair of different concrete 

classes Ci and Cj, i≠j, we include the formula ∀x. (Ci(x)→ ¬ Cj(x)) in Axm(D). � 
For example, by applying rule HR4 on B2 in Fig. 5, the following statements are derived, 

which state that instances of Class, Association and Generalisation are disjoint with each 
other.  

 HR4(D2) = {∀x. (Class(x)→¬ Association(x)),  
 ∀x. (Association(x)→¬ Generalisation(x)), 
  ∀x. (Class (x)→¬ Generalisation(x)) } 

Rule HR4 is sometimes applicable to models at M1 level, but not always. For example, by 
applying HR4 on B1, the following axioms on instances of B1 are derived, which state that 
instances of Man and Woman are disjoint.  
 HR4(D1) = {∀x. (Woman(x) → ¬ Man(x))} 
In this case, it is true. However, the rule is not always applicable, especially when ‘multiple 
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inheritances’ is allowed.  
Note that the above rules are also based on a metamodel N to determine the type an 

element belongs to. We have omitted this issue in the above discussion for the sake of 
readability. In the sequel, we write HRN(M) to denote the set of statements generated from a 
model M according to a metamodel N by applying the above hypothesis rules.  

To conclude this section, we now formally define the descriptive semantics of 
metamodels at all layers as the set of statements generated by the translation rules and 
hypothesis rules.  

Definition 8 (Descriptive semantics) 
Given a Mi model M as an instance of metamodel N at Mi+1 level, the descriptive 

semantics of M, written �M�Des, is defined to be the set of formulas TRN(M) ∪ HRN(M). �  

5. Functional Semantics 

As discussed in Section 2, the functional semantics of UML defines the properties of the 
basic OO concepts underlying the language. In general, functional semantics include both 
static and dynamic semantics, where the former are time invariant and/or time independent 
features, while the latter are the temporal aspect of functionality and behaviour. Since 
models are static, i.e. the set of statements that a model states are invariant of time, the 
functional semantics of metamodels only involves static functional semantics. Thus, in this 
paper we only give the static functional semantics of metamodels.  

We specify the OO concepts by a set of axioms in second order predicate logic. The 
predicates used in the axioms, except for the additionally defined ones, are from the 
signature induced from the UML metamodel. These axioms are applicable to all models and 
systems at all levels.  

The static functional semantics for OO systems consists of the following axioms.  

5.1. Basic Axioms  

The first group of axioms are about the basic properties of classes and objects.  

Axiom 1. (Classification of objects)  
Every object must be an instance of a class. Formally,  

 ∀x .(Object(x)→ ∃C.(Class(C)∧ C(x))). � 

Axiom 2. (Attribute declarations)  
Every attribute declared in a class is a property of the class. Let HasAttribute be a binary 

predicate. Formally, we have that 
 ∀x .∀C .(Class(C) ∧ Property(x) ∧ OwnedAttribute(C, x) → HasAttribute(C, x))  � 

Axiom 3. (Operations declarations)  
Every operation declared in a class is an operation of the class. Formally, 

 ∀x .∀C .(Class(C) ∧Operation(x) ∧ OwnedOperation(C, x) → HasOperation(C, x))  � 
The following axiom is about the composition relation.  

Axiom 4. (Composite relation)  
Assume that there is a composite relation from class A to class B (i.e. B is a part of A). 

For each object x in class B, there is an object y in class A such that x is a part of y.  
 ∀A.∀B.((Class(A) ∧ Class(B) ∧ Association(C) ∧ 
        memberEnd(C, b) ∧ type(b, B) ∧ aggregation(b, composite) ) 
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             →∀x. (B(x) →∃!y.(A(y) ∧b(x,y))) 
The following axioms are about enumeration classes.  

Axiom 5. (Distinguishability of the literal constants) 
The different literals in an enumeration class are different values.   

 ∀A.(Enumeration(A) ∧ ownedLiteral(A, v1) ∧ ownedLiteral(A, v2) → (v1 ≠v2)) � 

Axiom 6. (Completeness of the enumeration) 
An enumeration class only has it literals as instances.   

 ∀A.(EnumClass(A) → (∀x.(A(x) → ownedLiteral(A, x))) � 

5.2. Axioms on Inheritance  

The following axioms define the notion of inheritance.   

Axiom 7. (Inheritance) 
If class A inherits class B, every instance of A is also an instance of B. 

 ∀A .∀B .(Class(A) ∧Class(B) ∧Inherits(A,B) → ∀x (A(x) →B(x))) � 

Axiom 8. (Inherited attributes)  
If class A inherits class B, every attribute of B is also an attribute of A. 

 ∀A.∀B.(Class(A) ∧ Class(B) ∧ Inherits(A,B) 
 →∀x.(Property(x) ∧ HasAttribute(B, x) →HasAttribute(A,x))) � 

Axiom 9. (Inherited operations)  
If class A inherits class B, every operation of B is also an operation of A 

 ∀A.∀B.(Class(A) ∧ Class(B) ∧ Inherits(A,B) 
 → ∀x.(Operation(x) ∧ HasOperation(B, x) →HasOperation(A,x))) � 

Axiom 10. (Abstract class) 
If class A is abstract, for every object x, if x is an instance  of class A, then, there must be 

a subclass B of A such that x is an instance of B. 
 ∀A.(Class(A) ∧IsAbstract(A) → ∀x.(A(x) →∃B.(Class(B)∧Inherits(B, A) ∧ B(x))) � 

5.3. Axioms on Type Constraints 

When classes are regarded as types, type consistency and type checking rule can be 
defined. This is reflected in the following axioms.  

Axiom 11. (Attribute type)  
If an attribute a of class A is of type class B, then, for all instance x of class A, the value 

of x on attribute a must be an instance of class B.  
 ∀A,B,a.(Class(A) ∧HasAttribute(A, a) ∧ CurrentType(a, A, B)  
 → (∀x, y. (a(x, y) ∧ A(x) → B(y)))) � 

Axiom 12. (Association type constraint)  
Let a be an association between classes A and B. For all objects x of class A, the objects y 

that x associates to through a must be in class B. Similarly, for all objects y of class B, the 
objects x that y associates to through a must be in class A.  
∀A.∀B.(Class(A) ∧ Class(B) ∧ Association(a) ∧ memberEnd(a, Ea) ∧  
 CurrentType(Ea, A) ∧memberEnd(a, Eb) ∧ CurrentType(Eb, B)  
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            → (∀x, y. Eb(x, y) ∧ A(x) → B(y)) ∧ (∀x, y. Ea(y, x) ∧ B(y) → A(x))) � 
The following axioms are about the redefinition of attributes and operations. Let 

CurrentType(x, y, z) be a 3-ary predicate. 

Axiom 13. (Redefined attributes)  
If class A inherits class B and A declares an attribute a with type TA, then the type of 

attribute a is TA regardless what is defined in class B. 
 ∀A, B.(Class(A) ∧ Class(B) ∧ Inherits(A, B) ∧ OwnedAttribute(A, a) ∧ Type(a, TA)  
 → CurrentType(a, A, TA)) � 

Axiom 14. (Unredefined attributes)  
If class A inherits attribute a from B without redefining a, then the type of attribute a is as 

in B.  
 ∀A.∀B.(Class(A) ∧ Class(B) ∧ Inherits(A, B) ∧  
 CurrentType(a, B, TB) ∧ ¬OwnedAttribute(A, a)   
       → CurrentType(a, A, TB)) � 

Axiom 15. (Type of the literal constants) 
The type of a literal value is the enumeration class in which the literal is declared.  

 ∀A.(EnumClass(A) ∧ ownedLiteral(A, v) → A(v))  � 

5.4. Axioms on Multiplicity 

The following axioms are about multiplicity.  

Axiom 16. (Multiplicity of association) 
Let a be an association between classes A and B. If the lower and upper limits of the 

multiplicity of a on class B’s end are n and m, respectively, then for all objects x of class A, 
the number of objects associated to x through association a must between n and m.  
∀A.∀B.(Class(A) ∧ Class(B) ∧ Association(a) ∧  
 memberEnd(a, Ea) ∧ type(Ea, A) ∧ memberEnd(a, Eb) ∧ type(Eb, B) ∧ 
 upperValue(Eb, m) ∧  lowerValue(Eb, n)  
         → (∀x. A(x) → n≤||{y | Eb(x, y)}||≤m)) � 

Axiom 17. (Multiplicity of attributes) 
Let a be an attribute of class A. If the multiplicity of attribute a has n and m as its lower 

and upper limits, then, for all objects x of class A, the number of objects as the value of x’s 
the attribute a must between n and m.   
 ∀A.(Class(A) ∧ ownedAttribute(A, a) ∧ upperValue(a, m) ∧ lowerValue(a, n)  
     → (∀x. A(x) → n≤||{y | a(x, y) }||≤m)) � 

Definition 9 (functional semantics of class diagrams) 
Let M be any given class diagram in UML, the functional semantics of M consists of the 

axioms given above. We write �M�Fun to denote the functional semantics of M. � 
The above axioms hold for models at all layers of the metamodel hierarchy. This is the 

foundation for unifying the semantics of models and metamodels. The next section discusses 
how functional semantics can be integrated with the translation and hypothesis rules to 
further enhance the semantics for metamodels.  
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6. Integration of Functional and Descriptive Semantics 

In this section, we discuss how functional semantics and descriptive semantics can be 
integrated into one logic system so that the semantics of metamodels can be formalized. We 
will first illustrate the way that two semantics are integrated then present a set of rules to 
derive formulas directly from class diagrams.  

6.1. Integrating Two Semantics 

Let’s start with an example at model level. Consider the class diagram CD1 depicted in 
Fig. 1. By applying the translation rules TR1 and TR2, we derive the following set of 
statements when the metamodel is B1.  
 Class(Woman),  (1) 
 Class(Person),  (2) 
 Generalisation(wp),  specific(wp, Woman),  general(wp, Person).  (3) 

These statements are descriptive and assert that class Woman inherits class Person. 
Formally, 
 Inherits(Woman, Person).  (4) 
where the predicate Inherits is not derived from the metamodel using the signature mapping, 
but it is defined as follows using the predicates derivable from the metamodel.  
 Inherits(A,B) = ∃x (Generalisation(x) ∧ specific(x, A) ∧ general(x, B).  (5) 

On the other hand, we have the following axiom (Axiom 7) in the functional semantics of 
objection orientation.  
 ∀A .∀B .(Class(A) ∧Class(B) ∧Inherits(A,B) → ∀x (A(x) →B(x))) (6) 

Using formulas (1), (2) and (4), we derive the following statement from (6).  
 ∀x (Woman(x) →Person(x)).  (7) 

This statement is a property that objects of the system at run time must satisfy. It has been 
investigated in the research on semantics of UML, e.g. [10, 11].  

Now, let’s consider the metamodel of class diagram CD2 depicted in Fig. 3. Applying the 
translation rules to this diagram, the following formulas can be obtained.  
 MetaClass(Class),  (8) 
 MetaClass(Classifier),  (9) 
 MetaGeneralisation(cc),  specific(cc, Class),  general(cc, Classifier).  (10) 
where MetaClass is Class at meta-level and MetaGeneralisation is Generalisation at 
meta-level. They are introduced to avoid confusion. Thus, from (9) and the definition of 
Inherits in (5), we have that  
 Inherits(Class, Classifier). (11) 

This is again a descriptive statement about the metamodel CD2. Since the axioms of 
functional semantics also apply to metamodel, we can derive the following statement from 
(8)~(11): 
 ∀x.(Class(x) →Classifier(x)).  (12) 

This is a statement that all models (i.e. the instances of metamodel CD2) must satisfy.  
From the above examples, we make two important observations. 
First, the axioms of functional semantics are high order formulas, which contain variables 

that range over predicates; while formulas (7) and (12) are first order.  
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Second, and more importantly, formulas obtained by applying translation rules like (8) ~ 
(10) and formulas derived by applying the axioms are in different signatures. The predicate 
symbols derived from the meta-metamodel (e.g. MetaClass and MetaGeneralisation) are 
eliminated by the combining the functional and descriptive formulas. For example, formula 
(12) is in the same signature as formulas (1)~(3), rather than the signature of (8)~(10).  

In general, for a model M at level i, the descriptive statements are in the signature derived 
from its metamodel N at level i+1. By combining them with the axioms of functional 
semantics, which contains predicate symbols derived from N and M, will generate 
statements in the signature derived from M, which is one level lower than N.  

Consequently, by replacing functional axioms with formulas like (7) or (12), checking a 
system is an instance of a model can be done without looking at the metamodel. Similarly, 
checking if a model is an instance of a metamodel does not need to look at the 
meta-metamodel, etc. In other words, the instance-of relation is defined only involving two 
adjacent levels.  

The following subsection demonstrates that formulas like (7) or (12) can be derived 
systematically without using a logic inference engine, but just a few transformation rules on 
the models.  

6.2. Axiom Mapping 

We now define a set of rules to derive formulas in first order logic from a class diagram. 
These rules are based on the functional semantics thus the formulas are the axioms to be 
satisfied by all its instances. Thus, the rules are called axiom mappings.  

A. Classification of elements  

There are two kinds of classes in a class diagram: concrete classes and abstract classes. 
Every element in an instance of a class diagram D must be an instance of at least one 
concrete class in D. Note that a M1 model may depict only a subset of the classes in the 
modelled systems. Therefore the following axiom rule is applicable for a M1 model under 
the hypothesis that all classes in the modelled system are depicted in the model. For a M2 or 
M3 model, however, the following axiom rule is always applicable because a M2 or M3 
model must define all types of elements in its instance models. We have the following 
axiom rule to explicitly state the constraint.  

Rule AR1. (Completeness of classification)  
Let {C1, C2, … Cn} be the set of concrete classes in class diagram D. We include in 

Axm(D) the formula.  
 ∀x. (C1(x) ∨ C2(x) … ∨ Cn(x)) .  � 

For example, by applying rule AR1 on B2 in Fig. 5, the following statement as the 
functional semantics of B2 is derived, stating that the type of any element is Generalisation, 
Class or Association. 
 AR1(B2) = {∀x. (Generalisation(x) ∨ Class(x) ∨ Association(x)) } 

By applying AR1 on B1 in Fig. 5, the following formula as the semantics of model B1 is 
derived, which states that the type of any element is Woman or Man. 
 AR1(B1) = {∀x. (Woman(x) ∨ Man(x))} 

An element in a model has one and only one type; otherwise the element is 
incomprehensible. Therefore, if a model N is an instance of D, every element in N must be 
an instance of at most one concrete class in D. Hence the following axiom rule is defined. 
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B. Inheritance hierarchy  

Inheritance hierarchy of classes represents taxonomy of concepts. “Each instance of the 
specific classifier is also an indirect instance of the general classifier” [12]. This relation 
can be expressed as logic implication between the predicates, thus we have the following 
axiom rule.  

Rule AR2. (Logical implication of inheritance)  
For a generalisation from class A to class B in a class diagram D, we include in Axm(D) 

the following formula.  
 ∀x. (A(x) →B(x))  � 

For example, by applying AR2 to B2 in Fig. 5, the following statements can be derived, 
stating that if an element is an instance of Class or Association, it is also an instance of 
Classifier. 
 AR2 (B2) = {∀x. (Class (x) →Classifier(x)), ∀x. (Association (x) →Classifier(x))}  

By applying AR2 to B1 in Fig. 5, the following statements can be derived, stating that if 
an element is an instance of Man or Woman, it is also an instance of Person. 
 AR2 (B1) = {∀x. (Man(x) → Person(x)), ∀x. (Woman(x) →Person(x))}   

A model must have its elements completely and uniquely classified by classes in its 
metamodel. If model N is an instance of model D, an element in N as an instance of an 
abstract class in D must be an instance of some concrete class in D. Hence the following 
axiom rule is defined. 

Rule AR3. (Completeness of specialisations)  
Let A be an abstract class and C1, C2, …, Ck be the set of classes specialising A in a class 

diagram D. We include formula ∀x. (A(x) → (C1(x) ∨ C2(x) ∨ … ∨ Ck(x))) in Axm(D). � 
For example, by applying AR3to model B2 in Fig. 5, the following statement can be 

 
Fig. 5 Examples of models for applying axiom mapping rules. 
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derived, stating that if a model element is an instance of Classifier, its type must be either 
Class or Association.  
 AR3(B2) = {∀x. (Classifier(x) → (Class(x) ∨Association(x)))} 

By applying AR3to model B1 in Fig. 5, the following statement can be derived, stating 
that if an element is an instance of Person, it must be an instance of either Man or Woman. 
 AR3 (B1) = {∀x. Person (x) → Woman(x) ∨Man(x) }  

C. Type constraints   

Binary predicates derived from associations and attributes in a model D define possible 
relationships between two elements in an instance of D. An axiom implicitly specified in D 
is such a relationship only exists between elements of certain types. Thus, we have the 
following axiom rule. 

Rule AR4. (Type constraints)  
For each binary predicate A(x, y) derived from an association from metaclass C1 to C2 in 

D, or from an attribute A of type C2 in a metaclass C1, we include the following formula in 
Axm(D).  
 ∀x, y. (A(x, y) ∧ C1(x) →C2(y))  � 

For example, by applying AR4to B2 in Fig. 5, the following statements are derived. The 
first, for instance, states that in an instance of B2, the value of attribute isAbstract of a 
classifier must be a boolean value.  
 AR4(B 2) ={∀x, y. (isAbstract(x, y) ∧Classifier (x) →bool(y)), 
 ∀x, y. (specific(x, y) ∧Generalisation (x) →Class (y)), 
 ∀x, y. (general(x, y) ∧Generalisation (x) →Class (y))} 

By applying AR4to B1 in Fig. 5, the following statement can be derived, stating that in an 
instance of B1, the name of an object of Person must be a string.  
 AR4 (B 1) ={∀x, y. (name(x, y) ∧ Person(x) →string(y))}. 
   

D. Multiplicity constraints   

Association ends and attributes are constrained by multiplicity. They “constrains the size 
of the collection […] of instances at the other end”[12]. Thus, we have the following rule. 

Rule AR5. (Multiplicity of binary predicate) 
For each binary predicate A(x, y) derived from an association from class C1 to C2 in D, let 

Mul be the multiplicity value specified on the association end A, we include formula below 
in Axm(D):  

If Mul = 0..1:  ∀x, y, z. (C1(x) ∧ A(x, y) ∧ A(x, z) → (y = z)) 
If Mul = 1..*:  ∀x.( C1(x) →∃ y. A(x, y)) 
If Mul = 2..*:    ∀ x.( C1(x) →∃ y, z. A(x, y) ∧ A(x, z) ∧ (y≠ z)) 
If Mul = 1 or unspecified:  

 ∀x. (C1(x) →∃ y. A(x, y)), ∀x, y, z. (C1(x) ∧ A(x, y) ∧ A(x, z) → (y = z))  
If Mul = 0..2:   

 ∀x, y, z, u.( C1(x) ∧ A(x, y) ∧ A(x, z) ∧ A(x, u) →(y = z) ∨ (y = u) ∨ (u = z))   � 
For example, by applying AR5to B2 in Fig. 5, the following statements are derived, 

stating that any generalisation element in an instance of B2 must have a single specific end 
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and a single general end.    
 AR5 (B2) ={∀x. (Generalisation(x) →∃y. specific(x, y)), 
 ∀x, y, z. (Generalisation (x) ∧ specific (x, y) ∧ specific (x, z) → (y = z)),  
 ∀x. (Generalisation(x) → ∃y. general(x, y)), 
 ∀x, y, z. (Generalisation (x) ∧ general (x, y) ∧ general (x, z) → (y = z)) } 

E. Properties of enumeration values 

Each enumeration class in a model defines a data type, and the enumeration values 
defined in the enumeration class are the domain of the data type. With signature mapping, 
we can map enumeration values into constants. The following axiom rules explicitly state 
that the constants are instances of the enumeration class, are distinguishable from one 
another, and define a complete domain of the data type. 

Rule AR6 (Distinguishability of the literal constants):  
For each pair of different literal values a and b of an enumeration type, we include a 

formula a ≠b in Axm(D). � 

Rule AR8 (Type of the literal constants):  
For each enumeration value a defined in an enumeration class E, we include the formula 

E(a) in Axm(D). � 

Rule AR9 (Completeness of the enumeration):  
An enumeration type only contains the listed literal constants as its values, hence for each 

enumeration class E with literal values a1, a2, …, ak, we include the following formula in 
Axm(D).  
 ∀x. E(x)→ (x = a1) ∨ (x = a2) ∨…∨ (x = ak)  � 

For example, by applying AR7 to A3 in Fig. 4, the following axioms on instances of A3 are 
derived, stating that constants none, shared and composite are different values.     
 AR7(A3) ={none ≠ shared, none ≠ composite, composite ≠ shared} 

By applying AR8 to A3, the following axioms on instances of A3 are derived, stating that 
constants none, shared and composite have AggregationKind as their type.  

 AR8(A3) ={AggregationKind(none),  
 AggregationKind(shared),  
 AggregationKind(composite)} 
By applying AR9 to A3, the following axioms on instances of A3 are derived, stating that 

constants none, shared and composite are the complete set of values of type 
AggregationKind.  
 AR9(A3) ={∀x. AggregationKind (x) →(x = none) ∨ (x = shared) ∨ (x = composite) } 

The following theorem proves that the axiom mapping rules are correct with respect to 
the functional axioms.  

Theorem 2 (Correctness and Completeness of Functional Semantics Mapping) 
For all class diagrams D and its metamodel N, for all formulas φ in Axm(D), we have that 

�D�Des ∪�N�Fun |− φ .  

Proof. (sketch)  

We prove the statement by proving that the formulas generated by each axiom mapping 
can be derived from the axioms of functional semantics and the formulas in the descriptive 
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semantics. Let φ in Axm(D).  
Case 1: When φ is generated by applying Rule AR1, we have that  

 φ = ∀x. (C1(x) ∨ C2(x) … ∨ Cn(x))  
where, according to the condition of Rule AR1, {C1, C2, … Cn} is the set of concrete classes 
in class diagram D. Thus, according to Rule TR1, we have that Class(C1), Class(C2), …, 
Class(Cn) in �D�Des. By Axiom 1, we have that  
 ∀x .(∃C.(Class(C)∧ C(x))). 
Let x be any given object. Assume that C is the class such that Class(C)∧ C(x)) holds. If C is 
a concrete class, C is one of C1, C2, …, Cn. Thus, the statement is true. If C is an abstract 
class, by TR2, we have that IsAbstract(C, True) ∈�D�Des. Then, by Axiom 10, we have that 
there is C’ in D such that Class(C’), Inherits(C’,C) and C’(x). If C’ is a concrete class, then, 
the statement is true; otherwise, repeat the above argument for a finite number of times, we 
can find a concrete class C” such that C”(x) is true. Since {C1, C2, … Cn} contains all 
concrete classes in class diagram D, we can deduce that C” ∈{C1, C2, … Cn}. Therefore, 
∀x. (C1(x) ∨ C2(x) … ∨ Cn(x)) is true. In other words, �D�Des∪�N�Fun |− φ. 

Case 2: When φ is generated by applying Rule AR2, we have that  
 φ = ∀x. (A(x) →B(x))  
where, according to the condition of Rule AR2, we have that A and B are classes and there is 
a generalisation from class A to class B in a class diagram D. Thus, according to Rule TR1, 
we have that Class(A), Class(B), and Inherits(A,B) are in �D�Des. Therefore, by Axiom 7, 
we deduce that ∀x. (A(x) →B(x)). That is, �D�Des∪�N�Fun |− φ.  

Case 3: When φ is generated by applying Rule AR3, we have that  
 φ =∀x. (A(x) → (C1(x) ∨ C2(x) ∨ … ∨ Ck(x))), 
where, A is an abstract class and {C1, C2, …, Ck} is the set of classes specialising A in a 
class diagram D. Therefore, we have that the following formulas are in �D�Des.  
 Class(A), IsAbstract(A, True), Class(C1), …, Class(Ck). 
By Axiom 10, we have that, for all x such that A(x) is true, there is a class B such that B is a 
subclass of A and B(x) is true. Since {C1, C2, …, Ck} contains all subclasses of A, we have 
that B ∈{C1, C2, …, Ck}. In other words, (C1(x) ∨ C2(x) ∨ … ∨ Ck(x)) is true. Therefore, we 
can deduce that ∀x. (A(x) → (C1(x) ∨ C2(x) ∨ … ∨ Ck(x))). That is, �D�Des∪�N�Fun |− φ.  

Case 4: When φ is generated by applying Rule AR4, we have that  
 φ =∀x, y. (A(x, y) ∧ C1(x) →C2(y))  
where binary predicate A(x, y) either represents an association from metaclass C1 to C2 in D, 
or represents an attribute A of type C2 in a metaclass C1. Here, we only give the proof for the 
case when the predicate A represents an attribute in metaclass C1. The other case is similar, 
hence omitted for the sake of space.  

When the predicate A represents an attribute in metaclass C1 and attribute A’s type is C2, 
according to TR1 and TR2, we have that formulas Class(C1), HasAttribute(C1,A) are in 
�D�Des and formula CurrentType(A,C1,C2) can be deduced from the definition of predicate 
CurrentType and formulas in �D�Des. By Axiom 11 below,  
 ∀A.(Class(A) ∧HasAttribute(A, a) ∧ CurrentType(a, A, B)  
 → (∀x, y. (a(x, y) ∧ A(x) → B(y)))), 
we have that (∀x, y. (A(x, y) ∧ C1(x) → C2(y))). That is, �D�Des∪�N�Fun |− φ.  

Case 5: When φ is generated by applying Rule AR5, the proof is very similar to the proof 
given in Case 4, but the axioms in the functional semantics used in the proof are Axiom 16 
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and 17. Details are omitted for the sake of space.  
Case 6: When φ is generated by applying Rule AR6, the proof is very similar to the proof 

given in Case 3, but the axioms in the functional semantics used in the proof are Axiom 5. 
Details are omitted for the sake of space.  

Case 7: When φ is generated by applying Rule AR7, the proof is very similar to the proof 
given in Case 3, but the axioms in the functional semantics used in the proof are Axiom 15. 
Details are omitted for the sake of space.  
Case 8: When φ is generated by applying Rule AR8, the proof is very similar to the proof 
given in Case 1, but the axioms in the functional semantics used in the proof are Axiom 6. 
Details are omitted for the sake of space.  
� 

Note that, the above proof of the correctness of the axiom rules also demonstrate that the 
rules cover all axioms except Axiom 2 and 3, which can be regarded as ‘definitions’ of the 
predicates HasOperation and HasAttribute. This suggests that this set of rules is complete 
with regard to the set of axioms of functional semantics in the sense that, for all first order 
formulas φ  in the signature of Sig(N), �D�Des∪�N�Fun|−φ implies that �D�Des∪Axm(D)|− 
φ. Intuitively, for each axiom of the functional semantics, there is a corresponding axiom 
rule. Therefore, a deduction of a formula φ from �D�Des∪�N�Fun can be replaced by an 
equivalent deduction of the formulas φ from �D�Des ∪ Axm(D) as far as φ does not contain 
higher order variables. However, the rigorous proof of the completeness still remains open, 
and will be a topic for future work.  

Also note that UML class diagram can be complemented with constraints in OCL. For 
example, well-formedness rules as a part of the UML metamodel are specified in the UML 
documentation [12]. Such OCL constraints are also axioms that instances of a class diagram 
must satisfy. Thus, we have an additional rule that does not correspond to any axioms of 
functional semantics.  

Rule AR10 (OCL constraints).  
For each constraint formally specified in OCL, we include a corresponding formula in 

Axm(D). �  
Note that this rule is also applicable to class diagrams used as models in all layers of the 

UML metamodel hierarchy.  

7. Applications of the Formal Semantics  

In this section, we discuss the application of the formal semantics in model-driven 
software development.  

7.1. Applications of descriptive semantics  

In Section 5, we illustrated with examples that the descriptive semantics mapping can be 
applied to models at any layer in the multi-layer hierarchy. In the view that ‘a model is a set 
of statements in some modelling language’[13], descriptive semantics of a model represents 
the model’s statements in a first order logic which is derived from the modelling language 
by applying signature mapping on the metamodel of the language. Predicates in the first 
order logic represent element types in the model and relationships between the elements, 
regardless of how to interpret the element types and the relationships in a subject domain. 
As shown in our previous work [4], descriptive semantics mapping is applicable not only to 
class diagrams, but also to any other types of diagrams in M1 models. As long as the type of 
each element and the relationship between elements can be identified, descriptive semantics 
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mapping is applicable. This is the reason why descriptive semantics mapping can be applied 
on models at different layers in the metamodel hierarchy.  

Descriptive semantics has several applications. First, based on the definition of ‘instance 
of’, descriptive semantics can be used to reason if a model satisfies a metamodel. We have 
conducted case studies on some UML models to check their well-formedness [4]. The 
models were translated by LAMBDES into logic systems in SPASS format and their logic 
properties were verified using SPASS. For M2 models, the descriptive semantics provides a 
way to logically prove if it is a valid instance of the M3 model.  

Second, when a subject domain is regarded as a collection of mathematical structures, the 
descriptive semantics of a model can be evaluated to a truth value with respect to a structure 
in the subject domain. Therefore, descriptive semantics of a model can be used to evaluate if 
a model is satisfied by a system. Hypothesis mapping explicitly represent the specific use of 
the model, therefore provides the flexibility of interpreting models differently in different 
context.  

Third, as descriptive semantics are logical representations of the content of a model, it 
can be used to reason about certain properties of the model. In our previous work, the 
descriptive semantics of M1 models has been used to analyse their consistency with respect 
to user-defined consistency rules [4]. Descriptive semantics of UML class diagrams has also 
been used to recognise patterns from software designs, and to formally analyse the logic 
relations between design patterns [1, 14]. 

7.2. Applications of functional semantics  

In section 4, we illustrated with examples that functional semantics mapping can be 
applied to models at any layer in the multi-layer hierarchy. Functional semantics formalises 
the properties of basic OO concepts through the mappings defined on UML class diagrams, 
because the constructs in class diagrams represent the OO concepts. Since M2 and M3 
models are all UML class diagrams and based on the same OO conception, functional 
semantics mapping can be equally applied to them.  

For M2 models, functional semantics can be used to verify if a class diagram is a 
well-defined metamodel of some models. We conducted case studies on the functional 
semantics of UML 2.0 metamodel and a profile for AspectJ [7]. Using our prototype tool 
LAMBDES, the metamodels were translated into logic systems in the SPASS format and 
their logic properties such as consistency and completeness were checked by invoking 
SPASS. Inconsistencies and incompleteness were discovered in the metamodels.  

For M1 models, functional semantics provides a way to generate properties of programs 
from models. Properties described in a UML model, such as multiplicity specifications or 
OCL rules, are a part of the functional semantics of the model, and hence axioms over the 
run-time behaviour of the modelled system. Such constraints can be used to formally verify 
a program, or automatically inserted into programs as assertions or pre/post-conditions for 
during the code-generation phase of MDE.   

8. Related work 

With UML gaining popularity of in the past two decades, great efforts have been made to 
formalise the semantics of UML models and metamodels, e.g. [15, 16]. The most closely 
related works are those addressing the semantics of basic concepts of the metamodel 
hierarchy, such as models, interpretation of models, metamodels and conformance of 
models to metamodels [17, 18]. Among them, Poernomo [19] formalises the metamodels 
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and the conformance of models to a metamodel based on type lambda calculus. Boronat and 
Meseguer [4], and Egea and Rusudefines [18] define the semantics of MOF in membership 
equational logic (MEL).  

The following compares our approach with the existing work by discussing how key 
issues in the formalisation of UML metamodel hierarchy were addressed differently.  

8.1. On the metamodel hierarchy   

It is recognised that many artefacts, besides UML models, can also be considered as 
models and the languages specifying them as metamodels in the four-layer metamodel 
hierarchy [18-20]. Examples of M0, M1 and M2 models in different technical spaces are: 

− XML: documents, schemas and the schemas of XML Schema; 
− EBNF: programs, grammars and the grammar of EBNF; 
− DBMS: instantiated database tables, database table declarations and database model. 
Viewing them in a same layered metamodel hierarchy enables to tackle the problems on 

the coordination between the artefacts and the interoperability of their supporting tools, 
which is an important topic in the context of MDE. Existing techniques for transforming 
models include XMI (XML Metadata Interchange) for bridging with the XML space, JMI 
(Java Metadata Interchange) for bridging with the Java space, CMI (Corba Model 
Interchange) for bridging with the Corba space, etc. Bézivin et al [20] pointed out that such 
techniques are under the principle of metamodel-driven model transformations in the sense 
that transformations are developed according to M2 layer so as to transform models at M1 
layer. 

Incorporating artefacts from various technical spaces in a same layered metamodel 
hierarchy, on one hand, reveals that a same real-world thing can be captured by different 
artefacts. On the other hand, when a UML-centric viewpoint is taken, it enables to explain 
the semantics of UML models within various technical spaces. In this paper, we examine the 
logic relations between these artefacts and regard the artefacts as forming subject domain of 
UML models. The formal definition of subject domain characterises the widely used 
intuitive notion of the system being modelled. Consequently, UML models can be 
interpreted to many other structures beyond software systems or systems in the real world. 
To our knowledge, none of existing researchers take this view on the interpretation of 
models. 

8.2. On semantics of models  

Addressing the under-specification and ambiguity in UML’s semantics, remarkable 
efforts have been made in the past decade to formalise UML semantics. Much of the 
publications are about the functional semantics aiming at ‘a deeper understanding of OO 
[13].The following proposals are among the most well-known. 

The formalisation of class diagram is considered the most important type of diagrams in 
UML, and a number of proposals have been advanced. Evans et al. have used Z schemas to 
define classifier, association, generalisation and attribute etc.[20]. Relations between objects 
and classifiers are specified as axioms. Diagrammatical transformation rules are defined as 
deduction rules to prove properties of UML models. There are a number of other researchers 
who have also used Z or its variants, such as Object-Z, to formalising class diagram; see 
[21] for a survey of different approaches of this type. First order logic (FOL) and description 
logics (DLs) have been used to formalise class diagram, too [10]. By encoding UML class 
diagrams in DL knowledge bases, DL reasoning systems can be used to reason about class 
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diagrams. Our work on the functional semantics is inspired in the works on logic 
representations of class diagrams. However, we differ from others by specifying the axioms 
in higher predicate order logic in the signature derived from the metamodels. Therefore, our 
definition of the functional semantics is independent of the model and the layer on which the 
model is interpreted. Our rules that derive the functional semantics of a particular model are 
formally proved to be correct with respect to the axioms.  

Formalisation of other types of diagrams has also been investigated, especially on state 
machine diagram. For example, Varro [22] has proposed a rule-based operational semantics 
of state machine based on transition systems. Another work on operational semantics of 
state machine has been reported in [23]. Great efforts have also been made on formalising 
different diagrams in one semantic framework. Considering the semantics of a UML model 
as a set of acceptable structured process, Reggio, Cerioli and Astesianothe [24] map class 
diagrams and state machines into algebraic specifications in Casl-ltl. Kuske et al. has 
employed graph transformation in an attempt to integrate semantics of class diagram, object 
diagram and state machine diagrams [25]. In our previous work on the formalisation of 
UML, we have also formalised of other types of UML diagrams such as sequence diagram 
and state machines in a unified framework, which is generalised in this paper. Readers are 
referred to [4] for details. Comparison with related works in this direction is beyond the 
scope of this paper, thus omitted.  

To bridge the gap between UML and formal methods, the extensibility mechanism of 
UML profile is used to define specialisations of UML. In [26], a profile UML-B is designed 
so that the semantics of specialised UML entities is defined via a translation into B. In [27], 
Moller et al. used a combination of the process algebra CSP and the specification language 
Object-Z as the intermediate specification language to link UML and Java. A UML profile 
for CSP-OZ is designed with the aim of generating part of the CSP-OZ specifications from 
the specialised UML models.   

The above existing methods define the semantics of UML by mapping models into a 
specific semantic domain, such as labelled transition systems, or OO software systems 
specified in a formal notation such as Z. The properties of OO systems are specified as 
axioms and used to reason about UML models. In other words, they mostly addressed the 
functional semantics of UML. Each method focuses on certain properties of OO systems, 
hence a certain subset of UML is formalised. However, it is hard to see how these 
approaches could work either alone or together for the full-fledged UML. Most importantly, 
the ambiguity in descriptive semantics is not addressed in these works. Instead, their 
semantics formalisations are based on explicit or implicit assumption on the descriptive 
semantics. Automation of translating UML models to formal specifications to facilitate 
automated reasoning of UML models has not been achieved in the existing methods.  

As a recent effort towards the executable semantics of UML, OMG launched the 
Semantics of a Foundational Subset for Executable UML Models (fUML) [13]. On the 
introduction section on the semantics of models, it is stated that ‘the same model may have 
different “meanings” under different interpretations’. On the semantics of metamodels, 
fUML also regards ‘the statements of the metamodel as axioms about the modelling 
language’. However, such notions are only informally explained through examples, but not 
reflected in the semantics definitions.  

In our approach, we make it explicit how models can be interpreted differently in 
different usage context through hypothesis mappings. In this paper, we discussed the 
particular usage of class diagrams as metamodels and presented a set of hypothesis mapping 
rules to derive the formulas represent such hypothesis from class diagrams.   
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8.3. On semantics of metamodels  

The formal definition of modelling language BON reported in [28] is similar to our 
approach. In [28], the metamodel of BON is depicted in BON notation and then specified in 
formal specification language PVS. Modelling concepts of BON, including abstractions 
such as Class and Feature and relationships such as Aggregation and Association, are 
specified as types in PVS. Inheritance hierarchy in the metamodel are mimicked by subtype 
relations. The semantic relations between the modelling concepts are defined as functions in 
PVS. The signature of a PVS system is manually defined according to the metamodel. Then, 
well-formedness constraints on BON models are specified as axioms in PVS. When BON 
models are formalised in PVS, their well-formedness with respect to the metamodel can be 
checked using PVS theorem prover. It is reported that the BON metamodel was analysed 
and debugged through the formalisation. In comparison, we view a metamodel as more than 
the definition of the signature of the modelling language. For example, from an inheritance 
hierarchy in a metamodel, not only types of model elements and subtype relations can be 
generated, but also axioms on the classification of model elements. Moreover, our method is 
applicable to all metamodels. In other words, the domain of the semantics mapping is the set 
of metamodels in UML class diagrams rather than a specific metamodel for a specific 
language.   

Viewing the role of a metamodel in the four-layer metamodel hierarchy as a type of 
models, a few proposals on the semantics of metamodels and MOF have been reported in 
the literature [19, 29].  

Similar to our distinction of descriptive semantics and functional semantics, Poernomo 
identify two aspects of a metamodel: as an object-based representation (as data) and as a 
class-based representation (as a type of models) [19]. A higher-order typed lambda calculus 
with dependent sum and product types in Constructive Type Theory (CTT) is used to 
formalise the semantics of metamodels. Classes and objects are treated using recursive 
records. The four levels of the MOF correspond to the CTT’s predicative hierarchy of type 
universes, where Type0, Type1, Type2, . . . are defined. M2 level classifiers, for instance, are 
given a dual representation as objects of the MOF class types and as Type1 class types. In 
this framework, the conformance relation is implicitly provided by construction: only valid 
models can be defined as terms, and their definition constitutes a formal proof of the fact 
that the model belongs to the corresponding type by means of the Curry-Howard 
isomorphism. 

Boronat and Meseguer propose an algebraic semantics for MOF [29]. The problems they 
address are similar to ours, i.e., the basic notions of the hierarchy not yet fully formally 
defined in the current MOF standard, including what is a model, what is a metamodel and 
what is reflection in the MOF framework, etc. They present a reflective, algebraic, 
executable framework for precise metamodelling based on membership equational logic 
(MEL) that supports the MOF standard. The formal framework provides a formal semantics 
of the basic notions. In particular, they formalize the notions of: (i) model type which is a 
type in MEL allowing models to be considered as first-class citizens, (ii) metamodel 
realization which is a MEL theory referring to the mathematical representation of a 
metamodel, and (iii) conformance relation, by means of a reflective semantics that 
associates a mathematical metamodel realization to each metamodel in MOF. By using the 
Maude language, which directly supports MEL specifications, this formal semantics is 
executable. This executable semantics has been integrated within the Eclipse Modeling 
Framework as a plug-in tool called MOMENT2.  

Egea and Rusu investigate conformance of models to metamodels by formalising models 
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with MEL [30]. First, two invariants are defined: a metamodel does not have cyclic 
generalizations and each association is linked to two classes. Then, both metamodels 
enriched with OCL invariants and models are represented as MEL specifications. Two 
levels of conformance are defined: structurally conformant and semantical conformance. A 
model is structural conformance to a metamodel if the model theory provides an actual 
interpretation of the MEL specification denoting the metamodel. Semantical conformance 
requires, in addition to structural conformance, that all the invariants imposed on the 
metamodel become true in its instance model. 

In comparison, Egea and Rusu’s notion of structural conformance is similar to ours, and 
their way to evaluate the conformance of a model to a metamodel through formalising them 
to logic theories is also close to ours. There are two key differences. First, we regard OCL 
invariants within a model as part of the model. With axiom mapping, OCL invariants within 
a model are syntactically transformed to first order formulas, which is a part of the axioms 
imposed on the instances of the model. Second, the two pre-defined invariants are 
unnecessary in our semantics definition. In particular, if there is a generalization cycle in a 
class diagram, axioms generated from it are logically inconsistent, indicating that it cannot 
acts as a metamodel of some models. A formal definition of well-defined metamodel was 
given in [7]. This difference reveals that our axiom mapping is sufficient and necessary to 
express the properties that a well-defined metamodel must hold . We do not require an 
association to have two ends, as it is stated in UML superstructure that ‘An association 
specifies a semantic relationship that can occur between typed instances. It has at least two 
ends represented by properties, each of which is connected to the type of the end.’ [12] In 
summary, we do not impose additional information to the semantics of a metamodel.  

9. Conclusion 

In this section, we summarise the contribution of this paper and discuss further work.  

9.1. Summary  

The contribution of the paper is a unified semantic framework for the multi-layer 
metamodel hierarchy. For an individual model, its descriptive semantics and functional 
semantics are distinguished to capture different aspects of semantics of models. They are 
integrated by linking the functional semantics of metamodel at layer Mi+1 to the descriptive 
semantics of models at layer Mi, where i can be any natural number ≥0.  

Our semantics provides clear and formal definitions of the basic concepts in the 
metamodel hierarchy. First, the semantics of a model is a set of statements about the system 
under study. These statements are represented as predicate logic formulas in the signature 
defined by the metamodel of the model. Furthermore, they are classified into two parts, 
descriptive ones and functional ones. The former is used to judge if a system is an instance 
of the model, and the latter is about the properties of the functionality and dynamic 
behaviours of the system.  

Second, the concept of subject domain of a model is formally defined to be a set of 
mathematical structures of the signature defined by the model. Therefore, whether a 
collection of structures qualify to be a subject domain of some models can be precisely 
determined. Not only systems can be regarded as such mathematical structures, but also 
models at various layers.  

Third, the instance-of relationship between system and model (also between models and 
metamodels) is formally defined, which enables to precisely determine the relationship 
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between models and metamodels through logic reasoning. The semantic definition is equally 
applicable to various layers in the metamodel hierarchy.  

Finally, we revised the semantics mapping rules that we proposed in our previous work 
on UML models so that they are applicable to all layers. In this paper, we also proved the 
correctness and completeness of the axiom mapping rules with respect to the static 
functional semantics. We have also proved the correctness of descriptive semantics mapping 
rules and the correctness of employing a theorem prover to validate the instance-of relation 
between models and metamodels.  

9.2. Future work  

We have considered essential elements in class diagrams in the current semantics 
definition, but have not considered some elements e.g. visibility property. To express the 
semantics, especially the functional semantics of such elements, is among our further work.  

We will also explore the application of the semantics definitions to various model 
analysis tasks in MDE. One possible direction is to apply functional semantics on M1 model 
for model-driven program verification. Functional semantics of M3 model can be used to 
verify the logic consistency of meta-metamodel as well as the well-formedness of M2 
models. We will also investigate the mechanism of reflection in MOF model. 

The aim of the four-layer metamodel hierarchy is to facilitate the interchange of models 
in different formats. To bridge different technical spaces, research on model transformations 
and tool interoperability based on metamodels and meta-metamodels have been reported in 
the literature [20, 31, 32]. We consider to work on this direction based on the semantics 
presented in this paper and applying institution theory [33] in the similar way that graphic 
extension of BNF is studied [34].  
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