

Int J Software Informatics, Vol.X, No.X, February 2011, pp. xxx-xxx E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

©2010 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

Unifying the Semantics of Models and Meta-Models in the
Multi-Layered UML Meta-Modelling Hierarchy

Lijun Shan(1) and Hong Zhu(2)

(1) National Digital Switching System Engineering and Technological Research Center,

Zhengzhou, China, Email: slj@ndsc.com.cn

(2) Department of Computing and Electronics, Oxford Brookes University,

Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

Abstract UML is defined through metamodelling in a four-layer metamodel hierarchy, where

metamodels and meta-metamodels are also presented in the form of UML class diagrams. However, the

meanings of models and metamodels as well as the basic concepts involved in modelling and metamodelling

are not precisely defined in the OMG documentations. In the past few years, a large amount of research

efforts on the formalisation of UML semantics has been reported in the literature, but how to formalise the

metamodel hierarchy still remains an open problem. This paper presents a framework of unified formal

semantics of the metamodel hierarchy. It is based on our previous work on the formal semantics of UML, in

which we proposed the notions of descriptive semantics and functional semantics as two separate aspects of

UML semantics. The former describes the structure of a model’s instances, and the latter characterises the

functional and behavioural properties of its instances. This paper further develops this approach by

generalising it to metamodels and meta-metamodels. We prove that the semantics of models, metamodels

and meta-metamodels can be defined in a unified way. The basic concepts involved in the metamodel

hierarchy, such as subject domain and instance-of relation, can also be precisely defined based on the unified

semantics framework.

Keywords: Software models, Unified Modelling Language UML, Metamodel, Metamodel hierarchy,

Formal semantics.

Authors (Shan LJ, Zhu H). Title (Unifying the semantics of models and meta-models in the

multi-layered UML metamodel hierarchy). Int J Software Informatics, 201x, x(x): xxx-xxx.

http://www.ijsi.org/1673-7288/4/i55.htm

2 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

1. Introduction

Models are created and used as the main artefacts of software engineering in the
model-driven development methodology. By raising the level of abstraction in software
development, model-driven engineering (MDE) facilitates a wide range of automation from
architectural design to integration, testing, maintenance and evolution. With the introduction
of the Unified Modelling Language (UML), MDE has become very popular today with a
large body of practitioners and a wide availability of supporting tools. However, the lack of
a rigorous definition of the semantics of UML has been a long lasting issue.

1.1. UML and Its Metamodel Hierarchy

UML is defined through metamodelling; i.e. a metamodel is employed to specify the
UML modelling language. A metamodel is a model of some syntactically valid models. Due
to the need to define the syntax and semantics of the metamodel, a meta-metamodel is
further specified. This leads a four-layer metamodel hierarchy, where a model at layer i is an
instance of some model at layer (i+1), for i∈{0, 1, 2}. Following the terminology used in
the UML documentation [2], in the sequel we write ‘a Mi model’ to denote ‘a model at layer
i’. In particular, a system in the real world is regarded as an M0 model, which is an instance
of a user model (an M1 model) in the UML language. The metamodel of UML is an M2
model. The meta-metamodel of UML, called MOF (MetaObject Facility) model, is the only
M3 model in the four-layer metamodel hierarchy. MOF is intended to be the core of many
MDE technologies including UML, CWM (Common Warehouse Metamodel), SPEM
(Software & Systems Process Engineering Metamodel), XMI (XML Metadata Interchange),
etc.[3]. According to the UML and MOF documentations [2, 3], the hierarchy is allowed to
have more than 4 layers.

The metamodel and the meta-metamodel of UML are actually defined in the UML’s class
diagram notation. Therefore, this metamodelling approach is reflective in the sense that the
modeling language is defined in its own notation. Because the notation of UML class
diagram is fairly self-descriptive, this approach works well to some extent. UML class
diagram incarnates the idea of object-orientation using nodes to denote classifications of
objects and edges to denote relationships between objects. In fact, a metamodel can be
regarded as a representation of the ontology underlying a modelling language. In the
metamodel of UML, for instance, concepts such as Class, Property and Generalisation are
represented as classes and depicted as nodes in a class diagram, and
generalisation/specialisation and whole-part relationships between the concepts are
represented as inheritances and compositions and depicted as edges between the class nodes.
In the same way, concepts used in a metamodel can be classified and depicted in a class
diagram at a higher layer, i.e. a meta-metamodel.

1.2. Problem Identification

However, this appealing feature of reflective uses of class diagrams in modelling and
meta-modelling imposes a great challenge to defining the semantics of UML. That is, can
the semantics of UML class diagram be applied to all layers uniformly in the metamodel
hierarchy?

Although the metamodel hierarchy is fairly well described and intuitively understandable,
the basic notions involved in modelling and metamodelling are not precisely and rigorously
defined in the OMG documentations. A key question we are concerned with is the exact

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 3

meaning of the ‘instance of’ relation between a Mi model and a Mi+1 model in the
metamodel hierarchy. According to the UML documentations, real world systems or
software systems can be regarded as instances of a UML model. However, little has been
said about how to judge whether a system is an instance of a model. Take a simple class
diagram that contains one and only one class node labelled with identifier A as an example.
It can be interpreted in any of the following ways, while the official UML documentation
does not specify which one is correct.
• There is only one class in the system and it is named A.
• There is at least one class named A in the system (which may have other classes).
• There is only one class in the system and its name does not matter.
• There is at least one class in the system and its name does not matter.

 In our previous work [1, 4], we argued that each of the above interpretations of the
instance-of relation between real world systems and UML models has its own role in
software development. Therefore, all of them should be regarded as valid semantics of UML
models. In order for the semantics of UML to incorporate all these interpretations, we
have introduced the notion of usage context of models. Given a specific usage context, the
hypothesis on how to interpret a model can be explicitly described as a part of the semantics
of the model. However, the instance-of relation between models and metamodels cannot be
so flexible. For example, given a metamodel which contains only one class node named
Classifier, it can only be interpreted to: there is one and only one type of elements in the
model, and the type is Classifier. A model that contains elements of other types is not an
instance of the metamodel, because such types are undefined. The above two examples
reveal that the instance-of relation between M0 and M1 is different from that between M1 and
M2. A question is: can we identify and formally specify the usage contexts of class diagrams
for their uses as metamodels and meta-metamodels?

Considering the whole multi-layer metamodel hierarchy, the above questions can be
generalised into: (a) What are the relationships between any two models at adjacent layers in
the metamodel hierarchy? (b) Can the semantics of models at different layers be unified in
one rigorous and precise semantic definition?

This paper addresses these problems with a unified semantic framework for the
metamodel hierarchy. In our previous work on the formal semantics of UML, we have
proposed the notions of descriptive semantics and functional semantics as two separate
aspects of UML semantics. The former describes the structure of a model’s instances by
specifying element types that can be used in the models’ instances and relationships between
the elements, while the latter characterises the functional and behavioural properties of its
instances. This paper further develops this approach by generalising it to a unified definition
of the semantics of metamodels and meta-metamodels. In fact, the framework can be
extended to any number of layers of metamodelling. Descriptive semantics and functional
semantics of models are defined through two mappings from class diagrams to predicate
logic formulas, respectively. The functional semantics of a model at any layer can be
specified independent of its descriptive semantics and then integrated with descriptive
semantics to form a complete semantics of the model. The basic concepts involved in the
metamodel hierarchy, such as instance-of relation and subject domain, are precisely defined.
The valid instances of a Mi model M are, mathematically speaking, structures in the
signature determined by the model M and satisfying the formulas that represent the
descriptive and functional semantics of M. The subject domain of a modelling language, i.e.
the collection of systems that can be described by the language, can then be defined as the
set of instances of the metamodel specifying the language.

4 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

1.3. Organisation of the Paper

The paper is organised as follows. Section 2 outlines our approach. Section 3 formally
defines the basic concepts of the UML metamodel hierarchy. Section 4 is devoted to the
descriptive semantics of models at all layers of the hierarchy. We present a set of rules that
translate a model into a set of descriptive statements. We also identify the context of using
class diagrams as Mi layer models for i>1, and specify the context as a set of rules that
derive formulas from models. Section 5 presents a set of axioms of OO concepts as the static
functional semantics of UML models. Section 6 integrates the descriptive semantics and
functional semantics by a set of rules that derives a set of statements representing the
functional semantics of models. Section 7 discusses the application of the formal semantics
of UML in model-driven software development. Section 8 compares our work with related
work. Finally, Section 9 summarises the main contributions of this paper and discusses
future work.

2. Overview of the Proposed Approach

As Seidewitz pointed out [5], a software model, like models in any other scientific
disciplines, is ‘a set of statements about some system under study’, where statements are
expressions that can be evaluated to a truth value with respect to the modelled systems.
Further, Seidewitz stated that a model’s meaning has two aspects: one is the model’s
relationship to the things being modelled, and the other is about the properties and functions
of the systems being modelled. In our previous work [1], we have demonstrated that these
two aspects of semantics of models can be specified and examined separately. The former is
called the descriptive semantics, which describes the structure of a model’s instances, thus
can be used to check the instance-of relationship by examining the structure of the system
against the model. The latter is called the functional semantics, which focuses on the
functionality and behaviour of the system being modelled. For example, consider the UML
class diagram CD1 depicted in Fig. 1. Informally, from the descriptive point of view, the
semantics of the model is a set of statements
such as

− Person is a class;
− Woman is a class; and
− Woman is subclass of Person.
These statements can be formally

represented in predicate logic formulas as
Class(Person), Class(Woman), and
Inherits(Woman, Person), respectively. To
judge whether a give system S (such as a
program written in Java) is an instance of the
model, we evaluate whether the following is
true:

S |= Class(Person)∧Class(Woman)∧Inherits(Woman, Person).

It can be evaluated without referring to the behaviour of class and the properties of
subclass/inheritance relation. For example, consider the Java program skeleton given in Fig.
1(b). We can judge that it is an instance of the model by recognizing that Person is a class
and Woman is also a class and there is an inheritance relation from Woman to Person.

From functional semantics point of view, the semantics of the model CD1 in Fig. 1

(a) Class Diagram CD1 (b) Java Program Skeleton

Fig. 1 An M1 model

class Person {
 Name: String;
 …
};
class Woman
 extends Person {
 …
}

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 5

contains a set of statements like the following:
− Person is a set of objects;
− Woman is a set of objects;
− Any object of Woman is also an object of Person, etc.
Using predicate logic formulas, we write Person(x) to represent ‘object x is a Person’,

and Woman(x) for “object x is a Woman”. Then, the third statement above can be
represented formally as ∀x. (Woman(x)→Person(x)). This statement imposes a constraint on
the dynamic behaviour of a system, e.g. a Java program, as an instance of the model. From
the functional semantics point of view, the model depicted in Fig. 1 also contains many
other statements. For example, it also states that any attribute of Person is also an attribute
of Woman. Here we only give some examples of such statements for the purpose of
illustration.

In [1], we have developed a formal descriptive semantics of UML by defining mappings
from UML models into predicate logic. As shown in Fig. 2, the mappings consist of the
following sets of rules:

− Sig: signature mapping, which maps a metamodel N to a set of unary and binary
predicate symbols and constant symbols. These symbols form a signature of predicate
logic language.

− Axm: axiom mapping, which maps a metamodel N into a set of formulas over the
signature Sig(N). Axm(N) represents the functional semantics of metamodel N, which
is a set of statements must be satisfied by the models as instances of N.

− Sem: semantic mapping, which maps a model D into a set of formulas over the
signature Sig(N), where N is a metamodel of D. Sem(D) describes the content of D in
terms of types of the elements in D and relationships between the elements.

− Hyp: hypothesis mapping, which maps a model D into a set of formulas over Sig(N) ,
where N is the metamodel of D. Hyp(D) represents the hypothesis on how D is
interpreted in a specific context.

Given a model D as an instance of metamodel N, the descriptive semantics of D is the set
Axm(N) ∪ Sem(D) ∪ Hyp(D) of formulas over signature Sig(N).

The above mappings have been implemented in a prototype tool called LAMBDES,
which is integrated with a theorem prover SPASS [6] to enable automated reasoning about
models. The mappings have been successfully applied to the class diagram, sequence
diagram and state machine diagram of UML. Descriptive semantics of UML models has
been used to check the consistency of models [4], to recognise design patterns in models and

Metamodel

Model

Signature Σ

Σ-Sentences

Axioms

Descriptions

Subject
Domain

(Σ-Algebras)

Instance of

Sig

Axm

Sem

Σ-Algebra
Σ-Formulas

Satisfaction
|=

Structure of Formal Semantics Structure of
Metamodelling

Hypothesis
Hyp

Representation as

Fig. 2 Framework of the formal descriptive semantics [1]

6 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

to analyse relationships between design patterns [1]. The
axiom mapping on metamodels has been used to check if a
metamodel is well-defined in the sense that it is logically
consistent [7] and if constraints imposed on M1 models (e.g.
well-formedness rules in OCL defined in the UML
documentation or additional consistency rules) are valid in
the sense that they are logically consistent with the
metamodel.

In this paper, we demonstrate that the above view to the
semantics of models can equally be applied to models at
other layers in the multi-layer metamodel hierarchy. In
particular, at M2 layer, OO concepts such as class and
property are also used to classify elements in a metamodel, but called metaclass and
meta-property respectively to avoid confusion. Take the class diagram CD2 in Fig. 3 as an
example. From the descriptive semantics point of view, the statements of the metamodel
include:

− Classifier is a metaclass;
− Class is a metaclass; and
− Class inherits Classifier.

The above statements of the metamodel can be formalised as the following set of formulas.
{MetaClass(Classifier), MetaClass(Class), Inherits(Class, Classifier)}
From the functional semantics perspective, the inheritance arrow from metaclass Class to

Classifier states that any instance of Class is also an instance of Classifier. This can be
formalised as follows.
 ∀x.(Class(x)→Classifier(x))

The two aspects of semantics reveal that a metamodel in the multi-layer hierarchy plays
two roles:

− As an abstract syntax, it defines the structure of its instances. In a Mi model (i>1),
classes define element types in the instances of the model, and properties of the classes
define inter-element relationships in the instances. This aspect is captured by the
descriptive semantics, which specifies the element types and the relationships defined
in a model with a set of first order formulas. The descriptive semantics of a model can
be used to check if a system is a model’s instance by examining whether the types of
the elements in the system and their relationships are valid with respect to the model.

− As an ontological semantics, it defines a conceptual model of its instances. A Mi
model (i>1), which defines a modelling language or a meta-modelling language,
specifies the basic concepts underlying the language and the relationships between the
concepts. Hence, it can be regarded as defining the ontology underlying the language.
The functional semantics further characterises the basic concepts and their
relationships by a set of axioms about their properties.

It is worth noting that we recognise the existence of semantic information contained in
class diagrams when used as metamodels rather than merely abstract syntax. We argue that a
class diagram depicts an ontology or a conceptual model of the subject domain. Viewing a
metamodel as an ontology implies that the metamodel contains important semantic
information, though an ontology is far from complete to define the semantics of a modelling
language. For example, in the UML metamodel, a metaclass named Class refers to the
notion of class in object-oriented software development paradigm. If the name is changed to
something else, e.g. ‘box’, it no longer refers to the notion of class in object-orientation,

Fig. 3 A M2 model CD2

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 7

though the abstract syntax of UML is unchanged.
Concerning the whole multi-layer metamodel hierarchy, we propose a semantic

framework for unifying the semantics of models at different layers. In this framework, the
key question ‘what is the instance-of relation?’ is answered in the following way.

First, we formally define the semantics of a Mi model M as a set of statements. In the
sequel, we will write M to denote the set of formulas that the model M states. Thus, the
‘instance-of’ question is equivalent to ‘whether a system satisfies the statements of the
model’. In other words, a systems S is an instance of model M, if S satisfies the statements
of M. In particular, as discussed above, the statements that a model makes are represented as
a set of formulas in a predicate logic language, whose signature Σ is determined by its
metamodel N. Moreover, we will divide the set M into two subsets: M Des for the
descriptive semantics, and M Fun for the functional semantics. We will present rules to
derive the sets of formulas M Des and M Fun from a class diagram M.

Second, we use mathematical structures (called algebras for short) of certain signature as
abstract representations of systems in a subject domain. Therefore, the subject domain of a
modelling language can be defined as a set of mathematical structures in the signature of the
language. By doing so, the model theory of mathematical logics can be applied to formally
define the satisfaction relationship |= between a system S and a model M. Therefore, system
S is an instance of model M can be formally defined as S |= M . What’s important is that
any Mi model (for all i>0) can be regarded as an algebra, too. Thus, the subject domains of
models at all layers is unified at a high level of abstraction.

Consequently, the statement ‘a Mi model M is an instance of a Mi+1 model N’ can also be
formally translated into M |= N . When separating descriptive from functional semantics,
this is equivalent to M |= N Des∪ N Fun; or equivalently, M |= N Des and M|= N Fun. The
former holds if M is an Σ-algebra, where Σ=Sig(N). This can be checked by parsing M
according to N.

Moreover, we represent the descriptive semantics M Des of M in the form of a set of logic
formulas that characterises the mathematical structures of its instances. It is observed that
the model M itself is also in that structure. Thus, the correctness of the definition of
descriptive semantics of class diagrams can be expressed as M |= M Des. We prove the
correctness of the rules to derive M Des from M in this paper.

Furthermore, we define the functional semantics of UML class diagrams by a set of
axioms that characterises the concepts of object-orientation underlying UML class diagrams.
These axioms are represented in the form of higher order predicate logic formulas. It is
observed that this set of axioms is independent of the usage of the class diagram, thus they
are applicable to models and metamodels at all layers of the metamodel hierarchy.

Finally, the descriptive semantics and functional semantics are integrated through a set of
rules that derive a set of first order logic formulas from models that all its instances must
satisfy. We prove that the rules are correct in the sense they can be deduced from the
functional and descriptive semantics.

The key feature of our approach is that the semantics of models/metamodels at different
layers is unified into one theory, where the mappings from M to M Des and M Fun is
invariant to the layer in which the model is interpreted, and the definitions of the concepts of
metamodel hierarchy are identical for all layers.

3. Basic Concepts of Metamodel hierarchy

In this section, we define the basic concepts of metamodel hierarchy. We start with the
concept of signatures of predicate logic languages and mathematical structures, and present

8 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

a set of rules to derive signatures from models at all layers in the UML metamodel
hierarchy. Then, we define the notion of subject domain of models and modelling
languages, etc. Finally, we define the concept of instance-of relation.

3.1. Signature

Let’s first review the notion of signatures of predicate logic languages in which formulas
are written.

Definition 1. (Signature)
The signature Σ of a predicate logic language PrL consists of three disjoint finite sets of

symbols: a set Σ0 of constant symbols, a set Σ1 of unary predicate symbols, and a set Σ2 of
binary predicate symbols. �

In general, a signature of predicate logic language may also contain N-ary (N=3, 4, …)
predicate symbols and function symbols. But, we will not use them in this paper.

Given an UML class diagram D, we define the signature derived from D, written Sig(D),
through the following set of three signature rules SR0, SR1, and SR2. They derive constant,
unary predicate and binary predicate symbols from a class diagram, respectively. In the
following discussion, we assume that a UML class diagram D is a Mi+1 model, i.e. the
metamodel of some Mi models, where i≥0.

An enumeration class in D defines a data type whose values are the enumeration literals.
We use a constant symbol to represent an enumeration value. Let D.EnumValue denote the
set of enumeration values in D. Hence, we have the following signature rule.

Rule SR0. (Constants)
For each enumeration value V given in an enumeration class E in D, we include a

constant symbol V in Σ0. Formally, Σ0=SR0(D) = {V | V∈D.EnumValue). �
For example, Fig. 4shows examples of models at different layers in the metamodel

Fig. 4 Examples of models in the metamodel hierarchy

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 9

hierarchy, where A0 partly depicts a snapshot of a run-time program, A1 is a user-defined
UML model, A2 is a subset of UML metamodel, and A3 is a subset of the MOF model. The
enumeration class AggregationKind in A3 defines a data type for the attribute aggregation of
class MetaProperty. By applying SR0 on A3, we obtain constant symbols none, shared and
composite from the enumeration values of AggregationKind.

A class in model D is a classification of elements in an instance of D. Let D.Class denote
the set of classes in D. Thus, we have the following signature mapping.

Rule SR1. (Unary predicate symbols)
For each class named C in D, we include a unary predicate symbol C in Σ1 ⊆Sig(D).

Formally, Σ1=SR1(D) = {C | C∈D.Class}. �
Informally, for an element x in a Mi model M, C(x) means that element x has type C. For

example, given class diagrams in Fig. 4 , by applying rule SR1 to A1, we obtain a unary
predicate symbol Person(x). The formula Person(Alice) means that the element Alice in A0 is
of type Person. By applying SR1 on A2, we derive two unary predicates symbols Class(x)
and Property(x). Formula Class(Person) means that the element Person in A1 is a class; and
Property(name) means that name is a property. By applying SR1 on A3, we derive unary
predicate MetaClass(x), MetaAssociation(x), MetaProperty(x) and AggregationKind(x).
Then formulas MetaClass(Class), MetaClass(Property), MetaAssociation(l1),
MetaAssociation(a2), MetaProperty(type) and MetaProperty(ownedAttribute) assert the
types of elements in model A2.

In class diagram D, an association between classes X and Y with label A on the
association end at Y’s side defines a relationship A that instances of X and instances of Y
may hold in an instance model of D. An attribute A of X with Y as the data type also defines
such a relationship. Let D.Property and D.AssociationEnd denote the set of properties and
association ends in D, respectively. We use a binary predicate to represent a relationship,
hence the following signature rule.

Rule SR2 (Binary predicates).
For each attribute R of class X with class Y as the data type, and each association from

class X to class Y with R as the association end in D, we include a binary predicate symbol R
in Σ2. Formally, Σ2 = SR2(D) = {R | R∈D.Property ∨ R∈D.AssociationEnd}. �

Informally, for a pair of elements (x, y), R(x, y) means that there is an R relationship
between x and y. For example, by applying SR2 on A1 in Fig. 4, we obtain a binary predicate
symbol name(x, y). The formula name(p, Alice) means that the value of the attribute name of
p in A0 is Alice. By applying SR2 on A2, we obtain binary predicate symbols
ownedAttribute(x, y) and type(x, y). The attribute definition ‘name: string’ in A1 can be
described as ownedAttribute(Person, name) and type(name, string). By applying SR2 on A3,
we obtain binary predicate symbols aggregation(x, y), metaType(x, y) and
metaMemberEnd(x, y). The statements about the attribute aggregation of the association
ends of association l1 in A1 can be stated as aggregation(el1, composite) and
aggregation(ownedAttribute, none).

Definition 2 (Signature induced from metamodel)
Let D be a UML class diagram. We define Σ = Σ0∪Σ1∪Σ2 = Sig(D) = SR0(D) ∪ SR1(D) ∪

SR2(D) to be the signature induced from D, where Σi = SRi(D), i= 0, 1, 2. �

3.2. Subject Domain

We use mathematical structures to represent systems in subject domains at all layers of
the UML metamodel hierarchy. Given a signature Σ, we call such mathematical structures

10 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

Σ-algebras.

Definition 3. (Σ-Algebra)
Let Σ=Σ0∪Σ1∪Σ2 be any given signature. An Σ-algebra A=(A, Pr, Rel) is a mathematical

structure where A is an non-empty set, called the carrier set, Pr is a set of unary predicates
on A, and Rel is a set of binary predicates on A, such that,

− for each constant symbol c∈Σ0, there is a corresponding element cA∈A;
− for each unary predicate symbol P∈Σ1, there is a corresponding unary predicate PA

∈Pr;
− for each binary predicate symbol R∈Σ2, there is a corresponding binary predicate RA

∈Rel. �
Given a signature Σ, to represent a system S as a Σ-algebra AS, we first consider each

unary predicate symbol P in Σ as representing a type of elements. We identify the elements
in the system S that are regarded as of type P. The set of such elements identified for all
unary predicates in Σ forms the carrier set A of the algebra AS. The unary predicate PA in AS

corresponding to symbol P is defined such that PA(a) is true for an element a∈A if and only
if the element a is of type P. Each binary predicate symbol R in Σ is regarded as
representing a relation on the elements in the system. The corresponding relation RA in AS is

defined such that RA(a, b) is true for elements a,b∈A if and only if the relation holds
between these two elements in the system S. In the case that the carrier set A is the empty set
∅, the algebra AS is trivial. This indicates that the system cannot be meaningfully
represented as a Σ-algebra.

Example 1. (Program as algebra)
Let signature Σ be Σ0∪Σ1∪Σ2, where Σ0 = ∅, Σ1 = {Class, Attribute}, and Σ2 = {Inherits,

HasAttribute}. Consider the Java program skeleton given in Fig. 1(b). We can represent it as
the following algebra, which is referred to as Alg1 in the sequel.

A={Person, Woman, Name}
Class(Person)=true, Class(Woman)=true, Class(Name)=false;
Attribute(Person)=false, Attribute(Woman)=false, Attribute(Name)=true;
Inherits(Woman, Person)=true; HasAttribute(Woman, Person)=false;
Inherits(Woman, Name)=false; HasAttribute(Woman, Name)=true;
Inherits(Woman, Woman)=false; HasAttribute(Woman, Woman)=false;
Inherits(Person, Woman)=false; HasAttribute(Person, Woman)=false;
Inherits(Person, Name)=false; HasAttribute(Person, Name)=true;
Inherits(Person, Person)=false; HasAttribute(Person, Person)=false;
Inherits(Name, Person)=false; HasAttribute(Name, Person)=false;
Inherits(Name, Woman)=false; HasAttribute(Name, Woman)=false;
Inherits(Name, Name)=false; HasAttribute(Name, Name)=false.
The mathematical structure Alg1 satisfies the statements Class(Person), Class(Woman)

and Inherits(Woman, Person) in the descriptive semantics of the model CD1. �
Extracting algebraic structural information from program source code has been

implemented by various reverse engineering tools such as those used to recover design
patterns in software [8].

Similarly, information contained in graphic models can also be represented as algebras
following the same procedure described above for extracting algebraic structural
information from software systems.

Example 2. (Model as algebra)
Let signature Σ’ be Σ’0 ∪Σ’1 ∪Σ’2 , where Σ’0 = ∅, Σ’1 = {MetaClass,

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 11

MetaRelation}, Σ’2 =∅ . Here, we interpret the unary predicate symbol MetaClass as the
type of the element types in the model, and the unary predicate symbol MetaRelation as the
type of the relations between the elements in the model. Therefore, the ‘elements’ x in CD1
such that MetaClass(x) is true are Class, and Attribute. The ‘elements’ x in CD1 such that
MetaRelation(x) is true are Inherits and HasAttribute. The carrier set is, therefore, {Class,
Attribute, Inherits, HasAttribute}. The class diagram CD1 given in Fig. 1(a) can thus be
represented as the following algebra, which is referred to as Alg2.

A = {Class, Attribute, Inherits, HasAttribute}.
MetaClass(Class)=true, MetaRelation(Class)=false,
MetaClass(Attribute)=true, MetaRelation(Attribute)=false,
MetaClass(Inherits)=false, MetaRelation(Inherits)=true,
MetaClass(HasAttribute)=false; MetaRelation(HasAttribute)=true;
The mathematical structure Alg2 can be used to evaluate the truth of descriptive

statements at metamodel level, such as MetaClass(Class) ∧MetaClass(Attribute).
�

It is worth noting that the representation of a model or system as an algebra depends on
the signature and the semantics interpretation of the symbols in the signature. One system or
model can be represented differently when the signature is different or the interpretation of
the symbols is different. For example, consider the class diagram CD1 depicted in Fig. 1.
Given the signature is Σ in Example 1, we can interpret the unary predicate symbol Class as
the class nodes in a class diagram, the unary predicate symbol Attribute as the items in the
attribute compartments of class nodes, etc. Consequently, the model CD1 can be represented
exactly the same as the algebra Alg1. Being able to represent both the class diagram CD1 and
the Java program skeleton given in Fig. 1 as the same algebra Alg1 reflects the fact that the
Java program is an instance of the model CD1 in the context of the signature Σ.

Definition 4. (Subject domain)
Let class diagram D be a Mi model and Σ=Sig(D) the signature induced from D. The

collection of all Σ-algebra is called the immediate subject domain of model D, denoted by
Dom<i>(D). For i≥1, the ultimate subject domain of a Mi model D, denoted by Dom*(D) is
inductively defined as follows.
 For i=1, Dom*(D)=Dom<1>(D).

 For i>1, Dom*(D)= { }*() ()i
x xDom D D Dom D< >∈U �

For example, let U denote the metamodel of the UML language and N the set of all UML
models. U is a M2 model. As illustrated by Example 1, any UML model can be represented
as a mathematical structure in the signature induced from U. Therefore, the immediate
subject domain of the model U is the set of all UML models, i.e. Dom<2>(U) = N. For a M1
model Ux∈N, its immediate subject domain Dom<1>(Ux) is the collection of all mathematical
structures in the signature induced from Ux, including the OO programs whose static
structures are captured by Ux. Therefore, the ultimate subject domain of UML contains all
OO programs written in Java or any object-oriented programming languages, i.e.

 SubDom(U) = { }2() ()x xSubDom U U SubDom U< >∈U = { }()x xSubDom U U N∈U

In general, for a M2 model D which defines a modelling language L, its immediate
subject domain contains all models in L, and its ultimate subject domain contains all
mathematical structures in the signatures induced from models in L. For the only M3 model
MOF, since any M2 model is an instance of MOF and can be represented as a mathematical
structure induced from MOF, its immediate subject domain is the set of all M2 models. The

12 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

ultimate subject domain of MOF contains the subject domains of all M2 model.

3.3. Instance-of Relation

Informally, a system S is an instance of a model M, if (a) S is in the subject domain of the
model, i.e. the system S can be represented as a mathematical structure in the signature
induced from M; and, (b) S satisfies the statements of M. The following defines the syntax
of the formulas representing statements of models.

Definition 5 (Formulas)
Given a signature Σ=Σ0∪Σ1∪Σ2, and a collection V=V0∪V1∪V2 of disjoint and countable

sets of variables, the predicate logic formulas are inductively defined as follows.
− For all unary predicate symbols P∈Σ1, constant symbols c∈Σ0, and variables x∈V0,

P(c) and P(x) are formulas;
− For all binary predicate symbols R∈Σ2, constant symbols c1, c2 ∈ Σ0, and variables x1,

x2 ∈ V0, R(c1, c2), R(x1, c2), R(c1, x2) and R(x1, x2) are formulas;
− For all variables X∈V1, constant symbols c∈Σ0, and variables x∈V0, X(c) and X(x) are

formulas;
− For all variables X∈V2, constant symbols c1, c2 ∈Σ0, and variables x1, x2 ∈V0, X(c1, c2),

X(x1, c2), X(c1, x2) and X(x1, x2) are formulas;
− F1 ∧ F2 , F1 ∨ F2 , F1 ⇒ F2, F1 ⇔ F2 , ¬ F1 are formulas, If F1 and F2 are formulas;
− ∀x.F and ∃x.F are formulas, if x ∈ V and F is a formula.
In the sequel, we write Formula(Σ,V) to denote the set of formulas in signature Σ with

variables in V. �
Let A be a Σ-algebra, an assignment α of variables V to Σ-algebra A is a mapping from V

to A such that
(a) for each x∈V0, α(x) ∈A;
(b) for each x∈V1, α(x) ∈Pr; and
(c) for each x∈V2, α(x) ∈Rel.
Given a Σ-algebra A, a formula φ, and an assignment α of variables in φ, we define

EvaA,α(φ) as follows.
− EvaA,α(P(c))=True, if and only if PA(cA) is true in A;
− EvaA,α(P(x))=True, if and only if PA(α(x)) is true in A;
− EvaA,α(R(c1, c2))=True, if and only if RA(c1A,c2A) is true in A;
− EvaA,α(R(x1, c2))=True, if and only if RA(α(x1), c2A) is true in A;
− EvaA,α(R(c1, x2))=True, if and only if RA(c2A, α(x2)) is true in A;
− EvaA,α(R(x1, x2))=True, if and only if RA(α(x1), α(x2)) is true in A;
− EvaA,α(X(c))=True, if and only if Pα(cA) is true in A, where Pα=α(X);
− EvaA,α(X(x))=True, if and only if Pα(α(x)) is true in A, where Pα=α(X);
− EvaA,α(X(c1, c2))=True, if and only if Rα(c1A,c2A) is true in A, where Rα=α(X);
− EvaA,α(X(x1, c2))=True, if and only if Rα(α(x1), c2A) is true in A, where Rα=α(X);
− EvaA,α(X(c1, x2))=True, if and only if Rα(c2A, α(x2)) is true in A, where Rα=α(X);
− EvaA,α(X(x1, x2))=True, if and only if Rα(α(x1), α(x2)) is true in A, where Rα=α(X);
− EvaA,α(F1 ∧ F2)=True, if and only if EvaA,α(F1)=True and EvaA,α(F2)=True;
− EvaA,α(F1 ∨ F2)=True, if and only if EvaA,α(F1)=True or EvaA,α(F2)=True;
− EvaA,α(F1 ⇒ F2)=True, if and only if EvaA,α(F1)=False or EvaA,α(F2)=True;
− EvaA,α(F1 ⇔ F2)=True, if and only if EvaA,α(F1)=EvaA,α(F2);
− EvaA,α(¬ F)=True, if and only if EvaA,α(F)=False;
− EvaA,α(∀x.F)=True, if and only if EvaA,,α’ (F)=True for all assignment α’ such that

α’(z)=α(z) for all z≠x;

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 13

− EvaA,α(∃x.F)=True, if and only if EvaA,,α’ (F)=True for at least one assignment α’ such
that α’(z)=α(z) for all z≠x.

Definition 6 (Satisfaction relation)
Let Σ be any given signature, A be a Σ-algebra and F be a formula in signature Σ. We say

that A satisfies F, written A |= F, if there is an assignment α in A such that
EvaA,α(F)=True.

Let Φ be a set of formulas in signature Σ. We say that A satisfies Φ, write A |=Φ, if for
all F∈Φ, we have that A |=F. �

For example, by the above definition of |=, it is easy to see that the following statement is
true in the algebra given in Example 2.

∀x.HasAttribute(Person, x) → HasAttribute(Woman, x).

Note that the above definition applies to models at all layers in the metamodel hierarchy.
By representing systems and models at all layers of metamodel hierarchy as mathematical

structures and defining the semantics of models/metamodels as a set of statements, the
instance-of relation between a structure and a model can be defined by employing the
satisfaction relation.

Definition 7 (Instance-of relation)
Let M be a system/model at Mi level, and N be a Mi+1 model, for i≥0. Let RepΣ(M) denote

the representation of M as a mathematical structure in the signature Σ and SemanticsΣ(N) be
the set of statements in the signature Σ that defines the semantics of N. We say that M is an
instance of N, if

(a) RepΣ(M) is a non-trivial Σ-algebra, where Σ=Sig(N); and
(b) RepΣ(M) |= SemanticsΣ(N).
For the sake of convenience, in the sequel we will also write M |=ΣΦ to denote that the

algebraic representation of model M in signature Σ satisfies the Σ statements in Φ. When
there is no risk of confusion, we also omit the subscript Σ. �

In the following two sections, we will define the functional and descriptive semantics for
UML models and metamodels at all layers.

4. Descriptive Semantics

In this section, we present a set of rules to derive a set of formulas from a class diagram
to represent the descriptive semantics of the model. We will demonstrate that the rules are
applicable to class diagrams used at all layers of the UML metamodel hierarchy. We will
then identify the characteristics of using class diagrams in metamodelling and specify the
usage context as a set of rules that derive additional descriptive statements from models.

4.1. Translation mapping

Given a Mi+1 model N, and a Mi model D, the following set of translation mapping rules
translate D into a set of formulas in the signature Σ determined by N. At the same time, the
rules check if D is a Σ-algebra.

Rule TR1. (Classification of elements)
For each element a of type C in model D, a formula C(a) is generated, if C is a concrete

class in N. If D contains an element whose type is not a concrete class in N, D is not an
instance of N. �

We write RN(M) to denote the set of statement generated from Mi model M based on Mi+1

14 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

model N by applying rule R. The subscript N may be omitted when there is no risk of
confusion.

For example, by applying rule TR1 to the M2 model A2 in Fig. 4 based on the M3 model
A3, the following formulas are derived, stating that Class and Property are instances of
MetaClass, a is an instance of MetaAssociation, ownedAttribute and owner are instances of
MetaProperty.
 TR1A3(A2) = {MetaClass(Class), MetaClass(Property),
 MetaAssociation(l1), MetaAssociation(l2),
 MetaProperty(ownedAttribute), MetaProperty(type) }

By applying rule TR1 to the M1 model A1 in Fig. 4 and the UML metamodel, the
following formulas can be derived, stating that Person is an instance of Class and Name is
an instance of Property.

TR1A2(A1)={Class(Person), Property(Name)}
Elements in a model bear certain relationship, which are mostly expressed through their

relative position. In a class diagram, for instance, an attribute definition inside a class node
indicates that the class owns this attribute. Such implicitly specified relationships in a model
should be explicitly expressed in the descriptive semantics of the model. Hence we have the
following mapping rule.

Rule TR2. (Relationships between elements)
For a pair (e1, e2) of elements in a model M which has relationship R, a formula in the

form of R(e1, e2) is generated, if R is a meta-relation (i.e. either a meta-attribute or a
meta-association in the metamodel N. If R is not a meta-relation in the metamodel N, the
model is not an instance of the metamodel N. �

For example, by applying rule TR2 to A2 in Fig. 4 and the M2 model A3 as the metamodel,

the following formulas can be derived.
 TR2A3(A2)={metaMemberEnd(l1, ownedAttribute), metaMemberEnd(a2, type),

metaType(ownedAttribute, Property), metaType(type, Class)}
By applying rule TR2 to A1 in Fig. 4using the UML metamodel as the metamodel, the

following formulas can be derived.
 TR2A2(A1)={ownedAttribute(Person, Name), type(Name, String)}

Note that the translation rules play two roles. First, it derives a set of formulas as a part of
the descriptive semantics of the model. Second, it checks if a model is in the structure
required by its metamodel. If the formulas are successfully generated, then it is a Σ-algebra.
Thus, it satisfies the descriptive semantics of its metamodel.

It is also interesting to observe that a M3 model can be used as its own metamodel when
applying the translation rules. For example by applying rule TR2 to A3 in Fig. 4 using A3
itself as the metamodel, the following formulas are derived.
 TR2A3(A3) = { meta-metaOwnedAttribute(MetaProperty, aggregation),
 meta-metaType(aggregation, AggregationKind),
 meta-metaMemberEnd(k1, metaOwnedAttribute),
 meta-metaType(metaOwnedAttribute, MetaProperty),
 meta-metaMemberEnd(k2, metaType),
 meta-metaType(metaType, MetaClass),
 meta-metaMemberEnd(k3, metaMemberEnd),

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 15

 meta-metaType(metaMemberEnd, MetaProperty)}.
where, to avoid naming confliction and confusion, a prefix ‘meta-’ is added to each symbol
of A3 when it is used as the metamodel. This reveals the reflection of the M3 model, which
“extends a model with the ability to be self describing” [3].

In the sequel, we write TRN(M) to denote the set of statements generated from Mi model
M based on Mi+1 model N by applying rule TR1 and TR2. We also often omit the subscript N
when there is no risk of confusion. That is,
 TRN(M) = TR1N(M) ∪TR2N(M) .

It is easy to see that the translation mapping is complete in the sense that every element
and relationship in a Mi model is represented in the generated formulas. The following
theorem proves that the above rules are correct as the descriptive semantics of class
diagrams.

Theorem 1. (Correctness of the descriptive semantics mappings)
Let N be a Mi+1 model and M be a Mi model. If model M is a valid instance of N, then the

following two statements are true.
(a) The formulas generated are syntactically valid. Formally,

 TRN(M) ⊆ Formula(Sig(N), ∅).
(b) The model M’s structure is reflected in the generated formulas. Formally,

 M |= TRN(M).
Proof.
(a) We prove statement (a) via contradiction.

Assume there is a formula φ such that φ∈TRN(M)s, but φ ∉Formula(Sig(N),∅). If φ is
generated by applying rule TR1, then, according to the definition of TR1, there is an element
a in model M of type C such that φ=C(α). Since, φ ∉Formula(Sig(N),∅), we have that C is
not a class in metamodel N, according to SR1. Therefore, there is a model element in M that
does not belong to a class in the metamodel. Thus, M is not a valid instance of N. This
contradicts the condition of the theorem. Similarly, if φ is generated by applying rule TR2,
we have that there are elements a1 and a2 in model M that are related by a relation R and
φ=R(a1, a2). Because φ∉Formula(Sig(N),∅), according to the signature mapping rule SR2, R
is not an attribute or association in the metamodel N. Therefore, elements a1 and a2 in model
M cannot be related in a valid instance model of N. This contradicts the condition of the
theorem. In conclusion, the assumption that φ ∉Formula(Sig(N),∅) is not true. Thus, the
statement (a) holds.
(b) Now, we prove statement (b).

Let φ∈TRN(M). If φ is generated by applying rule TR1, according to the definition of
TR1, there is an element a in model M of type C such that φ=C(α). Because
C(α)∈Formula(Sig(N)) according to statement (a) proved above, C is a unary predicate
symbol in the signature of the algebraic representation of model M. Therefore, in the
algebraic representation of M, we have C(α)=true. Thus, M|=φ. If φ is generated by
applying rule TR2, we have that there are elements a1 and a2 in model M that are related by
a relation R and φ=R(a1, a2). Similarly, we have that in the algebraic representation of M, we
have the R(a1, a2)=true. Therefore, we also have that M|=φ. Thus, statement (b) is also true.
�

Note that, the set of formulas derived from a class diagram using the translation rules
allow flexibility in the interpretation of the diagrams differently according to the usage of
the model. In the following subsection, we identify the usage context of class diagrams in
metamodelling and specify the context in the form of a set of rules.

16 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

4.2. Hypothesis mapping

The interpretation of a UML model depends on the context in which the model is used.
For example, a UML model may play the role of a sketch design of a program, which means
each element in the model is supposed to have a corresponding element of the same type in
the program, but the program may be allowed to have elements that are not depicted in the
diagram. A model may also be used as a detailed design, which requires it to depict all
classes in the program as well as all attributes and operations of the classes. Such
assumptions on the relationship between a model and the modelled structures are not
explicitly specified in the model, but are necessary when interpreting the model, therefore
need to be formalised in descriptive semantics. Our approach is to allow the users to specify
a set of hypothesis about the uses of the model in the form of logic formulas. In this section,
we discuss the context of using class diagrams in metamodelling and define a set of
hypothesis mappings that characterises the context.

Let e1, e2, …, ek be the set of elements in a Mi model M, and C be their direct type.

Rule HR1. (Distinguishability of elements)
Elements of type C are all different. Thus, we have the following set of formulas:

 {ei ≠ej | for i≠j∈{1, 2, …k}}. �
For example, the class diagram B2 in Fig. 5 is a metamodel, and we expect that

Association is different from Generalisation and Class, etc. By applying rule HR1 to class
nodes in B2, we obtain the following set of formulas.
 HR1(B2) = {Association ≠ Class, Association ≠ Generalisation, Association ≠ Classifier…}

When HR1 is applied to classes in B1, we obtain the following set of formulas.
 HR1(B1) ={Person ≠ Woman, Person ≠ Man, Man ≠ Woman}

These formulas are necessary when B1 is used as a model of the real world, where
woman, man and person are different concepts. However, if B1 is used as a requirements
specification of a software system, these formulas may be unnecessary, because a program
containing one class implementing Person with an attribute Sex, whose value is Male or
Female, is also be a correct implementation of B1. In this case, the hypothesis rule HR1 is
not applicable.

Rule HR2. (Completeness of elements)
The set of elements of a type C is complete. Formally,

 ∀x. (C(x) → (x = e1) ∨ (x = e2) ∨ … ∨ (x = ek)). �
For example, by applying rule HR2 to classes in B2 in Fig. 5, we obtain the following

formula.

 ∀x. (MetaClass(x) → (x = Association) ∨ (x = Class)
 ∨ (x = Generalisation) ∨ (x = Classifier))

This means in the modelling language specified by B2, the metaclasses can only be
Association, Generalisation, Class and Classifier. Therefore, elements in the instances of B2

can only be of type Association, Generalisation, Class or Classifier.
When HR2 rule is applied to B1, we obtain the following formula.

 HR2(B1)={∀x.((Class(x) → (x = Person) ∨ (x = Man) ∨ (x = Woman)))}
This formula is not required if a program containing additional classes is regarded as a

correct implementation of B1. It is required when B1 is used as a model derived from code in

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 17

reverse engineering.
Similarly, we have the following hypothesis on the completeness of relations in

metamodels. Let R(x1, x2) be a binary predicate, R(e1,1, e1,2), R(e2,1, e2,2), …, R(en,1, en,2) be
the set of R relations explicitly depicted in the metamodel.

Rule HR3. (Completeness of relations)
Relation R is completely depicted in metamodels. Formally, we have the following

formula:
 ∀x1, x2.(R(x1, x2) → ((x1=e1,1)∧(x2=e1,2))∨((x1= e2,1)∧ (x2= e2,2))∨… ((x1= en,1)∧ (x2= en,2)))
 �

This hypothesis states that all relations of a certain type are explicitly specified in
metamodels, thus any additional relation in an instance model will be regarded as not
satisfying the metamodel. For example, by applying HR3 to the relationship specific in B2 in
Fig. 5 , the following formula can be obtained.
 ∀x, y. specific(x, y) → ((x=cc) ∧ (y=Class)) ∨ ((x=ac) ∧ (y= Association))
where cc is the identifier of the generalisation arrow from Class to Classifier, and ac the
identifier of the generalisation arrow from Association to Classifier.

Again, this rule is not always applicable to models at layer M1. If it is applied to the
relationship specific in B1 in Fig. 5, we obtain the following formula.
 ∀x, y. specific(x, y) → ((x=wp) ∧ (y=Person)) ∨ ((x=mp) ∧ (y= Person))
where wp is the identifier of the generalisation arrow from Woman to Person, and mp the
identifier of the generalisation arrow from Man to Person. This is not necessarily true,
because, for example, there may be additional classes in the system and additional
inheritance between them.

One of the most important hypothesis on the uses of class diagrams as metamodels is the
strict metamodelling principle. It was proposed by Atkinson [9] to ensure that a metamodel
is a well-defined abstract syntax of modelling language. The strict metamodelling principle
states that:

“In an n-level modelling architecture M0, M1, …, Mn, every element of an Mi-level model
must be an instance-of exactly one element of an Mi+1-level model, for all 0 ≤ i < n-1.”

Therefore, we have the following hypothesis rule, which asserts that an element is only in
one concrete class.

Rule HR4. (Disjointness of classification)
Let C1, C2, …, Cn be the set of concrete classes in D. For each pair of different concrete

classes Ci and Cj, i≠j, we include the formula ∀x. (Ci(x)→ ¬ Cj(x)) in Axm(D). �
For example, by applying rule HR4 on B2 in Fig. 5, the following statements are derived,

which state that instances of Class, Association and Generalisation are disjoint with each
other.

 HR4(D2) = {∀x. (Class(x)→¬ Association(x)),
 ∀x. (Association(x)→¬ Generalisation(x)),
 ∀x. (Class (x)→¬ Generalisation(x)) }

Rule HR4 is sometimes applicable to models at M1 level, but not always. For example, by
applying HR4 on B1, the following axioms on instances of B1 are derived, which state that
instances of Man and Woman are disjoint.
 HR4(D1) = {∀x. (Woman(x) → ¬ Man(x))}
In this case, it is true. However, the rule is not always applicable, especially when ‘multiple

18 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

inheritances’ is allowed.
Note that the above rules are also based on a metamodel N to determine the type an

element belongs to. We have omitted this issue in the above discussion for the sake of
readability. In the sequel, we write HRN(M) to denote the set of statements generated from a
model M according to a metamodel N by applying the above hypothesis rules.

To conclude this section, we now formally define the descriptive semantics of
metamodels at all layers as the set of statements generated by the translation rules and
hypothesis rules.

Definition 8 (Descriptive semantics)
Given a Mi model M as an instance of metamodel N at Mi+1 level, the descriptive

semantics of M, written �M�Des, is defined to be the set of formulas TRN(M) ∪ HRN(M). �

5. Functional Semantics

As discussed in Section 2, the functional semantics of UML defines the properties of the
basic OO concepts underlying the language. In general, functional semantics include both
static and dynamic semantics, where the former are time invariant and/or time independent
features, while the latter are the temporal aspect of functionality and behaviour. Since
models are static, i.e. the set of statements that a model states are invariant of time, the
functional semantics of metamodels only involves static functional semantics. Thus, in this
paper we only give the static functional semantics of metamodels.

We specify the OO concepts by a set of axioms in second order predicate logic. The
predicates used in the axioms, except for the additionally defined ones, are from the
signature induced from the UML metamodel. These axioms are applicable to all models and
systems at all levels.

The static functional semantics for OO systems consists of the following axioms.

5.1. Basic Axioms

The first group of axioms are about the basic properties of classes and objects.

Axiom 1. (Classification of objects)
Every object must be an instance of a class. Formally,

 ∀x .(Object(x)→ ∃C.(Class(C)∧ C(x))). �

Axiom 2. (Attribute declarations)
Every attribute declared in a class is a property of the class. Let HasAttribute be a binary

predicate. Formally, we have that
 ∀x .∀C .(Class(C) ∧ Property(x) ∧ OwnedAttribute(C, x) → HasAttribute(C, x)) �

Axiom 3. (Operations declarations)
Every operation declared in a class is an operation of the class. Formally,

 ∀x .∀C .(Class(C) ∧Operation(x) ∧ OwnedOperation(C, x) → HasOperation(C, x)) �
The following axiom is about the composition relation.

Axiom 4. (Composite relation)
Assume that there is a composite relation from class A to class B (i.e. B is a part of A).

For each object x in class B, there is an object y in class A such that x is a part of y.
 ∀A.∀B.((Class(A) ∧ Class(B) ∧ Association(C) ∧
 memberEnd(C, b) ∧ type(b, B) ∧ aggregation(b, composite))

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 19

 →∀x. (B(x) →∃!y.(A(y) ∧b(x,y)))
The following axioms are about enumeration classes.

Axiom 5. (Distinguishability of the literal constants)
The different literals in an enumeration class are different values.

 ∀A.(Enumeration(A) ∧ ownedLiteral(A, v1) ∧ ownedLiteral(A, v2) → (v1 ≠v2)) �

Axiom 6. (Completeness of the enumeration)
An enumeration class only has it literals as instances.

 ∀A.(EnumClass(A) → (∀x.(A(x) → ownedLiteral(A, x))) �

5.2. Axioms on Inheritance

The following axioms define the notion of inheritance.

Axiom 7. (Inheritance)
If class A inherits class B, every instance of A is also an instance of B.

 ∀A .∀B .(Class(A) ∧Class(B) ∧Inherits(A,B) → ∀x (A(x) →B(x))) �

Axiom 8. (Inherited attributes)
If class A inherits class B, every attribute of B is also an attribute of A.

 ∀A.∀B.(Class(A) ∧ Class(B) ∧ Inherits(A,B)
 →∀x.(Property(x) ∧ HasAttribute(B, x) →HasAttribute(A,x))) �

Axiom 9. (Inherited operations)
If class A inherits class B, every operation of B is also an operation of A

 ∀A.∀B.(Class(A) ∧ Class(B) ∧ Inherits(A,B)
 → ∀x.(Operation(x) ∧ HasOperation(B, x) →HasOperation(A,x))) �

Axiom 10. (Abstract class)
If class A is abstract, for every object x, if x is an instance of class A, then, there must be

a subclass B of A such that x is an instance of B.
 ∀A.(Class(A) ∧IsAbstract(A) → ∀x.(A(x) →∃B.(Class(B)∧Inherits(B, A) ∧ B(x))) �

5.3. Axioms on Type Constraints

When classes are regarded as types, type consistency and type checking rule can be
defined. This is reflected in the following axioms.

Axiom 11. (Attribute type)
If an attribute a of class A is of type class B, then, for all instance x of class A, the value

of x on attribute a must be an instance of class B.
 ∀A,B,a.(Class(A) ∧HasAttribute(A, a) ∧ CurrentType(a, A, B)
 → (∀x, y. (a(x, y) ∧ A(x) → B(y)))) �

Axiom 12. (Association type constraint)
Let a be an association between classes A and B. For all objects x of class A, the objects y

that x associates to through a must be in class B. Similarly, for all objects y of class B, the
objects x that y associates to through a must be in class A.
∀A.∀B.(Class(A) ∧ Class(B) ∧ Association(a) ∧ memberEnd(a, Ea) ∧
 CurrentType(Ea, A) ∧memberEnd(a, Eb) ∧ CurrentType(Eb, B)

20 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

 → (∀x, y. Eb(x, y) ∧ A(x) → B(y)) ∧ (∀x, y. Ea(y, x) ∧ B(y) → A(x))) �
The following axioms are about the redefinition of attributes and operations. Let

CurrentType(x, y, z) be a 3-ary predicate.

Axiom 13. (Redefined attributes)
If class A inherits class B and A declares an attribute a with type TA, then the type of

attribute a is TA regardless what is defined in class B.
 ∀A, B.(Class(A) ∧ Class(B) ∧ Inherits(A, B) ∧ OwnedAttribute(A, a) ∧ Type(a, TA)
 → CurrentType(a, A, TA)) �

Axiom 14. (Unredefined attributes)
If class A inherits attribute a from B without redefining a, then the type of attribute a is as

in B.
 ∀A.∀B.(Class(A) ∧ Class(B) ∧ Inherits(A, B) ∧
 CurrentType(a, B, TB) ∧ ¬OwnedAttribute(A, a)
 → CurrentType(a, A, TB)) �

Axiom 15. (Type of the literal constants)
The type of a literal value is the enumeration class in which the literal is declared.

 ∀A.(EnumClass(A) ∧ ownedLiteral(A, v) → A(v)) �

5.4. Axioms on Multiplicity

The following axioms are about multiplicity.

Axiom 16. (Multiplicity of association)
Let a be an association between classes A and B. If the lower and upper limits of the

multiplicity of a on class B’s end are n and m, respectively, then for all objects x of class A,
the number of objects associated to x through association a must between n and m.
∀A.∀B.(Class(A) ∧ Class(B) ∧ Association(a) ∧
 memberEnd(a, Ea) ∧ type(Ea, A) ∧ memberEnd(a, Eb) ∧ type(Eb, B) ∧
 upperValue(Eb, m) ∧ lowerValue(Eb, n)
 → (∀x. A(x) → n≤||{y | Eb(x, y)}||≤m)) �

Axiom 17. (Multiplicity of attributes)
Let a be an attribute of class A. If the multiplicity of attribute a has n and m as its lower

and upper limits, then, for all objects x of class A, the number of objects as the value of x’s
the attribute a must between n and m.
 ∀A.(Class(A) ∧ ownedAttribute(A, a) ∧ upperValue(a, m) ∧ lowerValue(a, n)
 → (∀x. A(x) → n≤||{y | a(x, y) }||≤m)) �

Definition 9 (functional semantics of class diagrams)
Let M be any given class diagram in UML, the functional semantics of M consists of the

axioms given above. We write �M�Fun to denote the functional semantics of M. �
The above axioms hold for models at all layers of the metamodel hierarchy. This is the

foundation for unifying the semantics of models and metamodels. The next section discusses
how functional semantics can be integrated with the translation and hypothesis rules to
further enhance the semantics for metamodels.

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 21

6. Integration of Functional and Descriptive Semantics

In this section, we discuss how functional semantics and descriptive semantics can be
integrated into one logic system so that the semantics of metamodels can be formalized. We
will first illustrate the way that two semantics are integrated then present a set of rules to
derive formulas directly from class diagrams.

6.1. Integrating Two Semantics

Let’s start with an example at model level. Consider the class diagram CD1 depicted in
Fig. 1. By applying the translation rules TR1 and TR2, we derive the following set of
statements when the metamodel is B1.
 Class(Woman), (1)
 Class(Person), (2)
 Generalisation(wp), specific(wp, Woman), general(wp, Person). (3)

These statements are descriptive and assert that class Woman inherits class Person.
Formally,
 Inherits(Woman, Person). (4)
where the predicate Inherits is not derived from the metamodel using the signature mapping,
but it is defined as follows using the predicates derivable from the metamodel.
 Inherits(A,B) = ∃x (Generalisation(x) ∧ specific(x, A) ∧ general(x, B). (5)

On the other hand, we have the following axiom (Axiom 7) in the functional semantics of
objection orientation.
 ∀A .∀B .(Class(A) ∧Class(B) ∧Inherits(A,B) → ∀x (A(x) →B(x))) (6)

Using formulas (1), (2) and (4), we derive the following statement from (6).
 ∀x (Woman(x) →Person(x)). (7)

This statement is a property that objects of the system at run time must satisfy. It has been
investigated in the research on semantics of UML, e.g. [10, 11].

Now, let’s consider the metamodel of class diagram CD2 depicted in Fig. 3. Applying the
translation rules to this diagram, the following formulas can be obtained.
 MetaClass(Class), (8)
 MetaClass(Classifier), (9)
 MetaGeneralisation(cc), specific(cc, Class), general(cc, Classifier). (10)
where MetaClass is Class at meta-level and MetaGeneralisation is Generalisation at
meta-level. They are introduced to avoid confusion. Thus, from (9) and the definition of
Inherits in (5), we have that
 Inherits(Class, Classifier). (11)

This is again a descriptive statement about the metamodel CD2. Since the axioms of
functional semantics also apply to metamodel, we can derive the following statement from
(8)~(11):
 ∀x.(Class(x) →Classifier(x)). (12)

This is a statement that all models (i.e. the instances of metamodel CD2) must satisfy.
From the above examples, we make two important observations.
First, the axioms of functional semantics are high order formulas, which contain variables

that range over predicates; while formulas (7) and (12) are first order.

22 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

Second, and more importantly, formulas obtained by applying translation rules like (8) ~
(10) and formulas derived by applying the axioms are in different signatures. The predicate
symbols derived from the meta-metamodel (e.g. MetaClass and MetaGeneralisation) are
eliminated by the combining the functional and descriptive formulas. For example, formula
(12) is in the same signature as formulas (1)~(3), rather than the signature of (8)~(10).

In general, for a model M at level i, the descriptive statements are in the signature derived
from its metamodel N at level i+1. By combining them with the axioms of functional
semantics, which contains predicate symbols derived from N and M, will generate
statements in the signature derived from M, which is one level lower than N.

Consequently, by replacing functional axioms with formulas like (7) or (12), checking a
system is an instance of a model can be done without looking at the metamodel. Similarly,
checking if a model is an instance of a metamodel does not need to look at the
meta-metamodel, etc. In other words, the instance-of relation is defined only involving two
adjacent levels.

The following subsection demonstrates that formulas like (7) or (12) can be derived
systematically without using a logic inference engine, but just a few transformation rules on
the models.

6.2. Axiom Mapping

We now define a set of rules to derive formulas in first order logic from a class diagram.
These rules are based on the functional semantics thus the formulas are the axioms to be
satisfied by all its instances. Thus, the rules are called axiom mappings.

A. Classification of elements

There are two kinds of classes in a class diagram: concrete classes and abstract classes.
Every element in an instance of a class diagram D must be an instance of at least one
concrete class in D. Note that a M1 model may depict only a subset of the classes in the
modelled systems. Therefore the following axiom rule is applicable for a M1 model under
the hypothesis that all classes in the modelled system are depicted in the model. For a M2 or
M3 model, however, the following axiom rule is always applicable because a M2 or M3
model must define all types of elements in its instance models. We have the following
axiom rule to explicitly state the constraint.

Rule AR1. (Completeness of classification)
Let {C1, C2, … Cn} be the set of concrete classes in class diagram D. We include in

Axm(D) the formula.
 ∀x. (C1(x) ∨ C2(x) … ∨ Cn(x)) . �

For example, by applying rule AR1 on B2 in Fig. 5, the following statement as the
functional semantics of B2 is derived, stating that the type of any element is Generalisation,
Class or Association.
 AR1(B2) = {∀x. (Generalisation(x) ∨ Class(x) ∨ Association(x)) }

By applying AR1 on B1 in Fig. 5, the following formula as the semantics of model B1 is
derived, which states that the type of any element is Woman or Man.
 AR1(B1) = {∀x. (Woman(x) ∨ Man(x))}

An element in a model has one and only one type; otherwise the element is
incomprehensible. Therefore, if a model N is an instance of D, every element in N must be
an instance of at most one concrete class in D. Hence the following axiom rule is defined.

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 23

B. Inheritance hierarchy

Inheritance hierarchy of classes represents taxonomy of concepts. “Each instance of the
specific classifier is also an indirect instance of the general classifier” [12]. This relation
can be expressed as logic implication between the predicates, thus we have the following
axiom rule.

Rule AR2. (Logical implication of inheritance)
For a generalisation from class A to class B in a class diagram D, we include in Axm(D)

the following formula.
 ∀x. (A(x) →B(x)) �

For example, by applying AR2 to B2 in Fig. 5, the following statements can be derived,
stating that if an element is an instance of Class or Association, it is also an instance of
Classifier.
 AR2 (B2) = {∀x. (Class (x) →Classifier(x)), ∀x. (Association (x) →Classifier(x))}

By applying AR2 to B1 in Fig. 5, the following statements can be derived, stating that if
an element is an instance of Man or Woman, it is also an instance of Person.
 AR2 (B1) = {∀x. (Man(x) → Person(x)), ∀x. (Woman(x) →Person(x))}

A model must have its elements completely and uniquely classified by classes in its
metamodel. If model N is an instance of model D, an element in N as an instance of an
abstract class in D must be an instance of some concrete class in D. Hence the following
axiom rule is defined.

Rule AR3. (Completeness of specialisations)
Let A be an abstract class and C1, C2, …, Ck be the set of classes specialising A in a class

diagram D. We include formula ∀x. (A(x) → (C1(x) ∨ C2(x) ∨ … ∨ Ck(x))) in Axm(D). �
For example, by applying AR3to model B2 in Fig. 5, the following statement can be

Fig. 5 Examples of models for applying axiom mapping rules.

24 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

derived, stating that if a model element is an instance of Classifier, its type must be either
Class or Association.
 AR3(B2) = {∀x. (Classifier(x) → (Class(x) ∨Association(x)))}

By applying AR3to model B1 in Fig. 5, the following statement can be derived, stating
that if an element is an instance of Person, it must be an instance of either Man or Woman.
 AR3 (B1) = {∀x. Person (x) → Woman(x) ∨Man(x) }

C. Type constraints

Binary predicates derived from associations and attributes in a model D define possible
relationships between two elements in an instance of D. An axiom implicitly specified in D
is such a relationship only exists between elements of certain types. Thus, we have the
following axiom rule.

Rule AR4. (Type constraints)
For each binary predicate A(x, y) derived from an association from metaclass C1 to C2 in

D, or from an attribute A of type C2 in a metaclass C1, we include the following formula in
Axm(D).
 ∀x, y. (A(x, y) ∧ C1(x) →C2(y)) �

For example, by applying AR4to B2 in Fig. 5, the following statements are derived. The
first, for instance, states that in an instance of B2, the value of attribute isAbstract of a
classifier must be a boolean value.
 AR4(B 2) ={∀x, y. (isAbstract(x, y) ∧Classifier (x) →bool(y)),
 ∀x, y. (specific(x, y) ∧Generalisation (x) →Class (y)),
 ∀x, y. (general(x, y) ∧Generalisation (x) →Class (y))}

By applying AR4to B1 in Fig. 5, the following statement can be derived, stating that in an
instance of B1, the name of an object of Person must be a string.
 AR4 (B 1) ={∀x, y. (name(x, y) ∧ Person(x) →string(y))}.

D. Multiplicity constraints

Association ends and attributes are constrained by multiplicity. They “constrains the size
of the collection […] of instances at the other end”[12]. Thus, we have the following rule.

Rule AR5. (Multiplicity of binary predicate)
For each binary predicate A(x, y) derived from an association from class C1 to C2 in D, let

Mul be the multiplicity value specified on the association end A, we include formula below
in Axm(D):

If Mul = 0..1: ∀x, y, z. (C1(x) ∧ A(x, y) ∧ A(x, z) → (y = z))
If Mul = 1..*: ∀x.(C1(x) →∃ y. A(x, y))
If Mul = 2..*: ∀ x.(C1(x) →∃ y, z. A(x, y) ∧ A(x, z) ∧ (y≠ z))
If Mul = 1 or unspecified:

 ∀x. (C1(x) →∃ y. A(x, y)), ∀x, y, z. (C1(x) ∧ A(x, y) ∧ A(x, z) → (y = z))
If Mul = 0..2:

 ∀x, y, z, u.(C1(x) ∧ A(x, y) ∧ A(x, z) ∧ A(x, u) →(y = z) ∨ (y = u) ∨ (u = z)) �
For example, by applying AR5to B2 in Fig. 5, the following statements are derived,

stating that any generalisation element in an instance of B2 must have a single specific end

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 25

and a single general end.
 AR5 (B2) ={∀x. (Generalisation(x) →∃y. specific(x, y)),
 ∀x, y, z. (Generalisation (x) ∧ specific (x, y) ∧ specific (x, z) → (y = z)),
 ∀x. (Generalisation(x) → ∃y. general(x, y)),
 ∀x, y, z. (Generalisation (x) ∧ general (x, y) ∧ general (x, z) → (y = z)) }

E. Properties of enumeration values

Each enumeration class in a model defines a data type, and the enumeration values
defined in the enumeration class are the domain of the data type. With signature mapping,
we can map enumeration values into constants. The following axiom rules explicitly state
that the constants are instances of the enumeration class, are distinguishable from one
another, and define a complete domain of the data type.

Rule AR6 (Distinguishability of the literal constants):
For each pair of different literal values a and b of an enumeration type, we include a

formula a ≠b in Axm(D). �

Rule AR8 (Type of the literal constants):
For each enumeration value a defined in an enumeration class E, we include the formula

E(a) in Axm(D). �

Rule AR9 (Completeness of the enumeration):
An enumeration type only contains the listed literal constants as its values, hence for each

enumeration class E with literal values a1, a2, …, ak, we include the following formula in
Axm(D).
 ∀x. E(x)→ (x = a1) ∨ (x = a2) ∨…∨ (x = ak) �

For example, by applying AR7 to A3 in Fig. 4, the following axioms on instances of A3 are
derived, stating that constants none, shared and composite are different values.
 AR7(A3) ={none ≠ shared, none ≠ composite, composite ≠ shared}

By applying AR8 to A3, the following axioms on instances of A3 are derived, stating that
constants none, shared and composite have AggregationKind as their type.

 AR8(A3) ={AggregationKind(none),
 AggregationKind(shared),
 AggregationKind(composite)}
By applying AR9 to A3, the following axioms on instances of A3 are derived, stating that

constants none, shared and composite are the complete set of values of type
AggregationKind.
 AR9(A3) ={∀x. AggregationKind (x) →(x = none) ∨ (x = shared) ∨ (x = composite) }

The following theorem proves that the axiom mapping rules are correct with respect to
the functional axioms.

Theorem 2 (Correctness and Completeness of Functional Semantics Mapping)
For all class diagrams D and its metamodel N, for all formulas φ in Axm(D), we have that

�D�Des ∪�N�Fun |− φ .

Proof. (sketch)

We prove the statement by proving that the formulas generated by each axiom mapping
can be derived from the axioms of functional semantics and the formulas in the descriptive

26 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

semantics. Let φ in Axm(D).
Case 1: When φ is generated by applying Rule AR1, we have that

 φ = ∀x. (C1(x) ∨ C2(x) … ∨ Cn(x))
where, according to the condition of Rule AR1, {C1, C2, … Cn} is the set of concrete classes
in class diagram D. Thus, according to Rule TR1, we have that Class(C1), Class(C2), …,
Class(Cn) in �D�Des. By Axiom 1, we have that
 ∀x .(∃C.(Class(C)∧ C(x))).
Let x be any given object. Assume that C is the class such that Class(C)∧ C(x)) holds. If C is
a concrete class, C is one of C1, C2, …, Cn. Thus, the statement is true. If C is an abstract
class, by TR2, we have that IsAbstract(C, True) ∈�D�Des. Then, by Axiom 10, we have that
there is C’ in D such that Class(C’), Inherits(C’,C) and C’(x). If C’ is a concrete class, then,
the statement is true; otherwise, repeat the above argument for a finite number of times, we
can find a concrete class C” such that C”(x) is true. Since {C1, C2, … Cn} contains all
concrete classes in class diagram D, we can deduce that C” ∈{C1, C2, … Cn}. Therefore,
∀x. (C1(x) ∨ C2(x) … ∨ Cn(x)) is true. In other words, �D�Des∪�N�Fun |− φ.

Case 2: When φ is generated by applying Rule AR2, we have that
 φ = ∀x. (A(x) →B(x))
where, according to the condition of Rule AR2, we have that A and B are classes and there is
a generalisation from class A to class B in a class diagram D. Thus, according to Rule TR1,
we have that Class(A), Class(B), and Inherits(A,B) are in �D�Des. Therefore, by Axiom 7,
we deduce that ∀x. (A(x) →B(x)). That is, �D�Des∪�N�Fun |− φ.

Case 3: When φ is generated by applying Rule AR3, we have that
 φ =∀x. (A(x) → (C1(x) ∨ C2(x) ∨ … ∨ Ck(x))),
where, A is an abstract class and {C1, C2, …, Ck} is the set of classes specialising A in a
class diagram D. Therefore, we have that the following formulas are in �D�Des.
 Class(A), IsAbstract(A, True), Class(C1), …, Class(Ck).
By Axiom 10, we have that, for all x such that A(x) is true, there is a class B such that B is a
subclass of A and B(x) is true. Since {C1, C2, …, Ck} contains all subclasses of A, we have
that B ∈{C1, C2, …, Ck}. In other words, (C1(x) ∨ C2(x) ∨ … ∨ Ck(x)) is true. Therefore, we
can deduce that ∀x. (A(x) → (C1(x) ∨ C2(x) ∨ … ∨ Ck(x))). That is, �D�Des∪�N�Fun |− φ.

Case 4: When φ is generated by applying Rule AR4, we have that
 φ =∀x, y. (A(x, y) ∧ C1(x) →C2(y))
where binary predicate A(x, y) either represents an association from metaclass C1 to C2 in D,
or represents an attribute A of type C2 in a metaclass C1. Here, we only give the proof for the
case when the predicate A represents an attribute in metaclass C1. The other case is similar,
hence omitted for the sake of space.

When the predicate A represents an attribute in metaclass C1 and attribute A’s type is C2,
according to TR1 and TR2, we have that formulas Class(C1), HasAttribute(C1,A) are in
�D�Des and formula CurrentType(A,C1,C2) can be deduced from the definition of predicate
CurrentType and formulas in �D�Des. By Axiom 11 below,
 ∀A.(Class(A) ∧HasAttribute(A, a) ∧ CurrentType(a, A, B)
 → (∀x, y. (a(x, y) ∧ A(x) → B(y)))),
we have that (∀x, y. (A(x, y) ∧ C1(x) → C2(y))). That is, �D�Des∪�N�Fun |− φ.

Case 5: When φ is generated by applying Rule AR5, the proof is very similar to the proof
given in Case 4, but the axioms in the functional semantics used in the proof are Axiom 16

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 27

and 17. Details are omitted for the sake of space.
Case 6: When φ is generated by applying Rule AR6, the proof is very similar to the proof

given in Case 3, but the axioms in the functional semantics used in the proof are Axiom 5.
Details are omitted for the sake of space.

Case 7: When φ is generated by applying Rule AR7, the proof is very similar to the proof
given in Case 3, but the axioms in the functional semantics used in the proof are Axiom 15.
Details are omitted for the sake of space.
Case 8: When φ is generated by applying Rule AR8, the proof is very similar to the proof
given in Case 1, but the axioms in the functional semantics used in the proof are Axiom 6.
Details are omitted for the sake of space.
�

Note that, the above proof of the correctness of the axiom rules also demonstrate that the
rules cover all axioms except Axiom 2 and 3, which can be regarded as ‘definitions’ of the
predicates HasOperation and HasAttribute. This suggests that this set of rules is complete
with regard to the set of axioms of functional semantics in the sense that, for all first order
formulas φ in the signature of Sig(N), �D�Des∪�N�Fun|−φ implies that �D�Des∪Axm(D)|−
φ. Intuitively, for each axiom of the functional semantics, there is a corresponding axiom
rule. Therefore, a deduction of a formula φ from �D�Des∪�N�Fun can be replaced by an
equivalent deduction of the formulas φ from �D�Des ∪ Axm(D) as far as φ does not contain
higher order variables. However, the rigorous proof of the completeness still remains open,
and will be a topic for future work.

Also note that UML class diagram can be complemented with constraints in OCL. For
example, well-formedness rules as a part of the UML metamodel are specified in the UML
documentation [12]. Such OCL constraints are also axioms that instances of a class diagram
must satisfy. Thus, we have an additional rule that does not correspond to any axioms of
functional semantics.

Rule AR10 (OCL constraints).
For each constraint formally specified in OCL, we include a corresponding formula in

Axm(D). �
Note that this rule is also applicable to class diagrams used as models in all layers of the

UML metamodel hierarchy.

7. Applications of the Formal Semantics

In this section, we discuss the application of the formal semantics in model-driven
software development.

7.1. Applications of descriptive semantics

In Section 5, we illustrated with examples that the descriptive semantics mapping can be
applied to models at any layer in the multi-layer hierarchy. In the view that ‘a model is a set
of statements in some modelling language’[13], descriptive semantics of a model represents
the model’s statements in a first order logic which is derived from the modelling language
by applying signature mapping on the metamodel of the language. Predicates in the first
order logic represent element types in the model and relationships between the elements,
regardless of how to interpret the element types and the relationships in a subject domain.
As shown in our previous work [4], descriptive semantics mapping is applicable not only to
class diagrams, but also to any other types of diagrams in M1 models. As long as the type of
each element and the relationship between elements can be identified, descriptive semantics

28 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

mapping is applicable. This is the reason why descriptive semantics mapping can be applied
on models at different layers in the metamodel hierarchy.

Descriptive semantics has several applications. First, based on the definition of ‘instance
of’, descriptive semantics can be used to reason if a model satisfies a metamodel. We have
conducted case studies on some UML models to check their well-formedness [4]. The
models were translated by LAMBDES into logic systems in SPASS format and their logic
properties were verified using SPASS. For M2 models, the descriptive semantics provides a
way to logically prove if it is a valid instance of the M3 model.

Second, when a subject domain is regarded as a collection of mathematical structures, the
descriptive semantics of a model can be evaluated to a truth value with respect to a structure
in the subject domain. Therefore, descriptive semantics of a model can be used to evaluate if
a model is satisfied by a system. Hypothesis mapping explicitly represent the specific use of
the model, therefore provides the flexibility of interpreting models differently in different
context.

Third, as descriptive semantics are logical representations of the content of a model, it
can be used to reason about certain properties of the model. In our previous work, the
descriptive semantics of M1 models has been used to analyse their consistency with respect
to user-defined consistency rules [4]. Descriptive semantics of UML class diagrams has also
been used to recognise patterns from software designs, and to formally analyse the logic
relations between design patterns [1, 14].

7.2. Applications of functional semantics

In section 4, we illustrated with examples that functional semantics mapping can be
applied to models at any layer in the multi-layer hierarchy. Functional semantics formalises
the properties of basic OO concepts through the mappings defined on UML class diagrams,
because the constructs in class diagrams represent the OO concepts. Since M2 and M3
models are all UML class diagrams and based on the same OO conception, functional
semantics mapping can be equally applied to them.

For M2 models, functional semantics can be used to verify if a class diagram is a
well-defined metamodel of some models. We conducted case studies on the functional
semantics of UML 2.0 metamodel and a profile for AspectJ [7]. Using our prototype tool
LAMBDES, the metamodels were translated into logic systems in the SPASS format and
their logic properties such as consistency and completeness were checked by invoking
SPASS. Inconsistencies and incompleteness were discovered in the metamodels.

For M1 models, functional semantics provides a way to generate properties of programs
from models. Properties described in a UML model, such as multiplicity specifications or
OCL rules, are a part of the functional semantics of the model, and hence axioms over the
run-time behaviour of the modelled system. Such constraints can be used to formally verify
a program, or automatically inserted into programs as assertions or pre/post-conditions for
during the code-generation phase of MDE.

8. Related work

With UML gaining popularity of in the past two decades, great efforts have been made to
formalise the semantics of UML models and metamodels, e.g. [15, 16]. The most closely
related works are those addressing the semantics of basic concepts of the metamodel
hierarchy, such as models, interpretation of models, metamodels and conformance of
models to metamodels [17, 18]. Among them, Poernomo [19] formalises the metamodels

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 29

and the conformance of models to a metamodel based on type lambda calculus. Boronat and
Meseguer [4], and Egea and Rusudefines [18] define the semantics of MOF in membership
equational logic (MEL).

The following compares our approach with the existing work by discussing how key
issues in the formalisation of UML metamodel hierarchy were addressed differently.

8.1. On the metamodel hierarchy

It is recognised that many artefacts, besides UML models, can also be considered as
models and the languages specifying them as metamodels in the four-layer metamodel
hierarchy [18-20]. Examples of M0, M1 and M2 models in different technical spaces are:

− XML: documents, schemas and the schemas of XML Schema;
− EBNF: programs, grammars and the grammar of EBNF;
− DBMS: instantiated database tables, database table declarations and database model.
Viewing them in a same layered metamodel hierarchy enables to tackle the problems on

the coordination between the artefacts and the interoperability of their supporting tools,
which is an important topic in the context of MDE. Existing techniques for transforming
models include XMI (XML Metadata Interchange) for bridging with the XML space, JMI
(Java Metadata Interchange) for bridging with the Java space, CMI (Corba Model
Interchange) for bridging with the Corba space, etc. Bézivin et al [20] pointed out that such
techniques are under the principle of metamodel-driven model transformations in the sense
that transformations are developed according to M2 layer so as to transform models at M1
layer.

Incorporating artefacts from various technical spaces in a same layered metamodel
hierarchy, on one hand, reveals that a same real-world thing can be captured by different
artefacts. On the other hand, when a UML-centric viewpoint is taken, it enables to explain
the semantics of UML models within various technical spaces. In this paper, we examine the
logic relations between these artefacts and regard the artefacts as forming subject domain of
UML models. The formal definition of subject domain characterises the widely used
intuitive notion of the system being modelled. Consequently, UML models can be
interpreted to many other structures beyond software systems or systems in the real world.
To our knowledge, none of existing researchers take this view on the interpretation of
models.

8.2. On semantics of models

Addressing the under-specification and ambiguity in UML’s semantics, remarkable
efforts have been made in the past decade to formalise UML semantics. Much of the
publications are about the functional semantics aiming at ‘a deeper understanding of OO
[13].The following proposals are among the most well-known.

The formalisation of class diagram is considered the most important type of diagrams in
UML, and a number of proposals have been advanced. Evans et al. have used Z schemas to
define classifier, association, generalisation and attribute etc.[20]. Relations between objects
and classifiers are specified as axioms. Diagrammatical transformation rules are defined as
deduction rules to prove properties of UML models. There are a number of other researchers
who have also used Z or its variants, such as Object-Z, to formalising class diagram; see
[21] for a survey of different approaches of this type. First order logic (FOL) and description
logics (DLs) have been used to formalise class diagram, too [10]. By encoding UML class
diagrams in DL knowledge bases, DL reasoning systems can be used to reason about class

30 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

diagrams. Our work on the functional semantics is inspired in the works on logic
representations of class diagrams. However, we differ from others by specifying the axioms
in higher predicate order logic in the signature derived from the metamodels. Therefore, our
definition of the functional semantics is independent of the model and the layer on which the
model is interpreted. Our rules that derive the functional semantics of a particular model are
formally proved to be correct with respect to the axioms.

Formalisation of other types of diagrams has also been investigated, especially on state
machine diagram. For example, Varro [22] has proposed a rule-based operational semantics
of state machine based on transition systems. Another work on operational semantics of
state machine has been reported in [23]. Great efforts have also been made on formalising
different diagrams in one semantic framework. Considering the semantics of a UML model
as a set of acceptable structured process, Reggio, Cerioli and Astesianothe [24] map class
diagrams and state machines into algebraic specifications in Casl-ltl. Kuske et al. has
employed graph transformation in an attempt to integrate semantics of class diagram, object
diagram and state machine diagrams [25]. In our previous work on the formalisation of
UML, we have also formalised of other types of UML diagrams such as sequence diagram
and state machines in a unified framework, which is generalised in this paper. Readers are
referred to [4] for details. Comparison with related works in this direction is beyond the
scope of this paper, thus omitted.

To bridge the gap between UML and formal methods, the extensibility mechanism of
UML profile is used to define specialisations of UML. In [26], a profile UML-B is designed
so that the semantics of specialised UML entities is defined via a translation into B. In [27],
Moller et al. used a combination of the process algebra CSP and the specification language
Object-Z as the intermediate specification language to link UML and Java. A UML profile
for CSP-OZ is designed with the aim of generating part of the CSP-OZ specifications from
the specialised UML models.

The above existing methods define the semantics of UML by mapping models into a
specific semantic domain, such as labelled transition systems, or OO software systems
specified in a formal notation such as Z. The properties of OO systems are specified as
axioms and used to reason about UML models. In other words, they mostly addressed the
functional semantics of UML. Each method focuses on certain properties of OO systems,
hence a certain subset of UML is formalised. However, it is hard to see how these
approaches could work either alone or together for the full-fledged UML. Most importantly,
the ambiguity in descriptive semantics is not addressed in these works. Instead, their
semantics formalisations are based on explicit or implicit assumption on the descriptive
semantics. Automation of translating UML models to formal specifications to facilitate
automated reasoning of UML models has not been achieved in the existing methods.

As a recent effort towards the executable semantics of UML, OMG launched the
Semantics of a Foundational Subset for Executable UML Models (fUML) [13]. On the
introduction section on the semantics of models, it is stated that ‘the same model may have
different “meanings” under different interpretations’. On the semantics of metamodels,
fUML also regards ‘the statements of the metamodel as axioms about the modelling
language’. However, such notions are only informally explained through examples, but not
reflected in the semantics definitions.

In our approach, we make it explicit how models can be interpreted differently in
different usage context through hypothesis mappings. In this paper, we discussed the
particular usage of class diagrams as metamodels and presented a set of hypothesis mapping
rules to derive the formulas represent such hypothesis from class diagrams.

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 31

8.3. On semantics of metamodels

The formal definition of modelling language BON reported in [28] is similar to our
approach. In [28], the metamodel of BON is depicted in BON notation and then specified in
formal specification language PVS. Modelling concepts of BON, including abstractions
such as Class and Feature and relationships such as Aggregation and Association, are
specified as types in PVS. Inheritance hierarchy in the metamodel are mimicked by subtype
relations. The semantic relations between the modelling concepts are defined as functions in
PVS. The signature of a PVS system is manually defined according to the metamodel. Then,
well-formedness constraints on BON models are specified as axioms in PVS. When BON
models are formalised in PVS, their well-formedness with respect to the metamodel can be
checked using PVS theorem prover. It is reported that the BON metamodel was analysed
and debugged through the formalisation. In comparison, we view a metamodel as more than
the definition of the signature of the modelling language. For example, from an inheritance
hierarchy in a metamodel, not only types of model elements and subtype relations can be
generated, but also axioms on the classification of model elements. Moreover, our method is
applicable to all metamodels. In other words, the domain of the semantics mapping is the set
of metamodels in UML class diagrams rather than a specific metamodel for a specific
language.

Viewing the role of a metamodel in the four-layer metamodel hierarchy as a type of
models, a few proposals on the semantics of metamodels and MOF have been reported in
the literature [19, 29].

Similar to our distinction of descriptive semantics and functional semantics, Poernomo
identify two aspects of a metamodel: as an object-based representation (as data) and as a
class-based representation (as a type of models) [19]. A higher-order typed lambda calculus
with dependent sum and product types in Constructive Type Theory (CTT) is used to
formalise the semantics of metamodels. Classes and objects are treated using recursive
records. The four levels of the MOF correspond to the CTT’s predicative hierarchy of type
universes, where Type0, Type1, Type2, . . . are defined. M2 level classifiers, for instance, are
given a dual representation as objects of the MOF class types and as Type1 class types. In
this framework, the conformance relation is implicitly provided by construction: only valid
models can be defined as terms, and their definition constitutes a formal proof of the fact
that the model belongs to the corresponding type by means of the Curry-Howard
isomorphism.

Boronat and Meseguer propose an algebraic semantics for MOF [29]. The problems they
address are similar to ours, i.e., the basic notions of the hierarchy not yet fully formally
defined in the current MOF standard, including what is a model, what is a metamodel and
what is reflection in the MOF framework, etc. They present a reflective, algebraic,
executable framework for precise metamodelling based on membership equational logic
(MEL) that supports the MOF standard. The formal framework provides a formal semantics
of the basic notions. In particular, they formalize the notions of: (i) model type which is a
type in MEL allowing models to be considered as first-class citizens, (ii) metamodel
realization which is a MEL theory referring to the mathematical representation of a
metamodel, and (iii) conformance relation, by means of a reflective semantics that
associates a mathematical metamodel realization to each metamodel in MOF. By using the
Maude language, which directly supports MEL specifications, this formal semantics is
executable. This executable semantics has been integrated within the Eclipse Modeling
Framework as a plug-in tool called MOMENT2.

Egea and Rusu investigate conformance of models to metamodels by formalising models

32 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

with MEL [30]. First, two invariants are defined: a metamodel does not have cyclic
generalizations and each association is linked to two classes. Then, both metamodels
enriched with OCL invariants and models are represented as MEL specifications. Two
levels of conformance are defined: structurally conformant and semantical conformance. A
model is structural conformance to a metamodel if the model theory provides an actual
interpretation of the MEL specification denoting the metamodel. Semantical conformance
requires, in addition to structural conformance, that all the invariants imposed on the
metamodel become true in its instance model.

In comparison, Egea and Rusu’s notion of structural conformance is similar to ours, and
their way to evaluate the conformance of a model to a metamodel through formalising them
to logic theories is also close to ours. There are two key differences. First, we regard OCL
invariants within a model as part of the model. With axiom mapping, OCL invariants within
a model are syntactically transformed to first order formulas, which is a part of the axioms
imposed on the instances of the model. Second, the two pre-defined invariants are
unnecessary in our semantics definition. In particular, if there is a generalization cycle in a
class diagram, axioms generated from it are logically inconsistent, indicating that it cannot
acts as a metamodel of some models. A formal definition of well-defined metamodel was
given in [7]. This difference reveals that our axiom mapping is sufficient and necessary to
express the properties that a well-defined metamodel must hold . We do not require an
association to have two ends, as it is stated in UML superstructure that ‘An association
specifies a semantic relationship that can occur between typed instances. It has at least two
ends represented by properties, each of which is connected to the type of the end.’ [12] In
summary, we do not impose additional information to the semantics of a metamodel.

9. Conclusion

In this section, we summarise the contribution of this paper and discuss further work.

9.1. Summary

The contribution of the paper is a unified semantic framework for the multi-layer
metamodel hierarchy. For an individual model, its descriptive semantics and functional
semantics are distinguished to capture different aspects of semantics of models. They are
integrated by linking the functional semantics of metamodel at layer Mi+1 to the descriptive
semantics of models at layer Mi, where i can be any natural number ≥0.

Our semantics provides clear and formal definitions of the basic concepts in the
metamodel hierarchy. First, the semantics of a model is a set of statements about the system
under study. These statements are represented as predicate logic formulas in the signature
defined by the metamodel of the model. Furthermore, they are classified into two parts,
descriptive ones and functional ones. The former is used to judge if a system is an instance
of the model, and the latter is about the properties of the functionality and dynamic
behaviours of the system.

Second, the concept of subject domain of a model is formally defined to be a set of
mathematical structures of the signature defined by the model. Therefore, whether a
collection of structures qualify to be a subject domain of some models can be precisely
determined. Not only systems can be regarded as such mathematical structures, but also
models at various layers.

Third, the instance-of relationship between system and model (also between models and
metamodels) is formally defined, which enables to precisely determine the relationship

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 33

between models and metamodels through logic reasoning. The semantic definition is equally
applicable to various layers in the metamodel hierarchy.

Finally, we revised the semantics mapping rules that we proposed in our previous work
on UML models so that they are applicable to all layers. In this paper, we also proved the
correctness and completeness of the axiom mapping rules with respect to the static
functional semantics. We have also proved the correctness of descriptive semantics mapping
rules and the correctness of employing a theorem prover to validate the instance-of relation
between models and metamodels.

9.2. Future work

We have considered essential elements in class diagrams in the current semantics
definition, but have not considered some elements e.g. visibility property. To express the
semantics, especially the functional semantics of such elements, is among our further work.

We will also explore the application of the semantics definitions to various model
analysis tasks in MDE. One possible direction is to apply functional semantics on M1 model
for model-driven program verification. Functional semantics of M3 model can be used to
verify the logic consistency of meta-metamodel as well as the well-formedness of M2
models. We will also investigate the mechanism of reflection in MOF model.

The aim of the four-layer metamodel hierarchy is to facilitate the interchange of models
in different formats. To bridge different technical spaces, research on model transformations
and tool interoperability based on metamodels and meta-metamodels have been reported in
the literature [20, 31, 32]. We consider to work on this direction based on the semantics
presented in this paper and applying institution theory [33] in the similar way that graphic
extension of BNF is studied [34].

References

[1] Zhu H, Shan L, Bayley I and Amphlett R. A formal descriptive semantics of UML
and its applications. In: UML 2 Semantics and Applications, Lano K, eds. 2009, John
Wiley & Sons, Inc. 95-123.

[2] OMG. Unified Modeling Language: Infrastructure. Version 2.3. Object Management
Group. 2010. http://www.omg.org/spec/UML/2.3/. (Last access: Feb 2011)

[3] OMG. Meta Object Facility (MOF) 2.0 Core Specification. Object Management
Group. 2006. http://www.omg.org/cgi-bin/doc?formal/2006-01-01. (Last access: Feb
2011)

[4] Shan L and Zhu H. A formal descriptive semantics of UML. In: Proc. of the 10th
International Conference on Formal Engineering Methods (ICFEM 2008). 2008.
375-396.

[5] Seidewitz E, What models mean. IEEE Software, 2003. 20(5): 26 - 31.
[6] Max Planck Institut Informatik. SPASS: An Automated Theorem Prover for

First-Order Logic with Equality. 2011. http://www.spass-prover.org. (Last access:
Jan 2011)

[7] Shan L and Zhu H. Semantics of metamodels in UML. In: Proc. of the 3rd IEEE
International Symposium on Theoretical Aspects of Software Engineering (TASE
2009). 2009. 55-62.

[8] Dong J, Zhao Y and Peng T. Architecture and design pattern discovery techniques –
a review. In: Proc. of the 2007 International Conference on Software Engineering
Research and Practice (SERP 2007). Volume II. 2007. 621-627.

[9] Atkinson C. Meta-modeling for distributed object environments. In: Proc. of the 1st
International Conference on Enterprise Distributed Object Computing. 1997. 90-101.

34 International Journal of Software and Informatics, Vol.X, No.X, Feburary 201X

[10] Berardi D, Cal A and Calvanese D. Reasoning on UML class diagrams. Artificial
Intelligence, 2005. 168(1): 70 - 118.

[11] Kaneiwa K and Satoh K. Consistency checking algorithms for restricted UML class
diagrams. In: Proc. of the 4th International Symposium on Foundations of
Information and Knowledge Systems (FoIKS 2006). 2006. 219 - 239.

[12] OMG. Unified Modeling Language: Superstructure. Version 2.3. Object
Management Group. 2010. http://www.omg.org/spec/UML/2.3/. (Last access: Feb
2011)

[13] OMG. Semantics of a Foundational Subset for Executable UML Models. 1.0. Beta 3
Edition. 2010. http://www.omg.org/spec/FUML/. (Last access: Feb 2011)

[14] Zhu H, Bayley I, Shan L and Amphlett R. Tool support for design pattern recognition
at model level. In: Proc. of the 33rd Annual IEEE International Computer Software
and Applications Conference (COMPSAC 2009). 2009. 228-233.

[15] Clark T, Evans A and Kent S. The metamodelling language calculus: Foundation
semantics for UML. In: Proc. of the 4th International Conference on Fundamental
Approaches to Software Engineering (FASE 2001). 2001. 17-31.

[16] Favre L. Foundations for MDA-based forward engineering. Journal of Object
Technology, 2005. 4(1): 129-153.

[17] Bézivin J. On the unification power of models. Software and System Modeling,
2005. 4(2): 171-188.

[18] Kühne T. Matters of (meta-) modeling. Software and Systems Modeling, 2006. 5(4):
369-385.

[19] Poernomo I. The meta-object facility typed. In: Proc. of the 21st Annual ACM
Symposium on Applied Computing (SAC 2006). 2006. 1845-1849.

[20] Bézivin J, Devedzic V, Djuric D, Favreau J-M, Gasevic D and Jouault F. An
M3-neutral infrastructure for bridging model engineering and ontology engineering.
In: Proc. of the 1st International Conference on Interoperability of Enterprise
Software and Applications. 2005. 159-171.

[21] Amálio N and Polack F. Comparison of formalisation approaches of UML class
constructs in Z and Object-Z. In: Proc. of the 3rd International Conference of B and Z
Users (ZB 2003). LNCS 2651. 2003. 339 - 358.

[22] Varro D. A formal semantics of UML statecharts by model transition systems. In:
Proc. of the 1st International Conference on Graph Transformation (ICGT 2002).
LNCS 2505. 2002. 378 - 392.

[23] Beeck Mvd. A structured operational semantics for UML-statecharts. Software and
System Modeling, 2002. 1(2): 130 - 141.

[24] Reggio G, Cerioli M and Astesiano E. Towards a rigorous semantics of UML
supporting its multiview approach. In: Proc. of the 4th International Conference on
Fundamental Approaches to Software Engineering (FASE 2001). LNCS 2029. 2001.
171 - 186.

[25] Kuske S, Gogolla M, Kollmann R and Kreowski H-J. An integrated semantics for
UML class, object and state diagrams based on graph transformation. In: Proc. of the
3rd International Conference on Integrated Formal Methods (IFM 2002). LNCS 2335.
2002. 11 – 28.

[26] Snook C and Butler M. UML-B: Formal modeling and design aided by UML. ACM
Transactions on Software Engineering and Methodology, 2006. 15(1): 92-122.

[27] Möller M, Olderog E-R, Rasch H and Wehrheim H. Linking CSP-OZ with UML and
Java: A case study. In: Proc. of the 4th International Conference on Integrated Formal
Methods (IFM 2004). 2004. 267 - 286.

[28] Paige RF and Ostroff JS. Metamodelling and conformance checking with PVS. In:
Proc. of the 4th International Conference on Fundamental Approaches to Software
Engineering (FASE 2001). 2001. 2 - 16.

[29] Boronat A and Meseguer J. An algebraic semantics for MOF. Formal Aspects of

Shan LJ and Zhu H: Unifying Semantics of Models and Metamodels 35

Computing, 2010. 22(3-4): 269-296.
[30] Egea M and Rusu V. Formal executable semantics for conformance in the MDE

framework. Innovations in Systems and Software Engineering, 2010. 6: 73–81.
[31] Bruneliere H, Cabot J, Clasen C, Jouault F and Bézivin J. Towards model driven tool

interoperability: Bridging Eclipse and Microsoft modeling tools. In: Proc. of the 6th
European Conference on Modelling Foundations and Applications (ECMFA 2010).
2010. 32-47.

[32] Jouault F, Vanhooff B, Bruneliere H, Doux G, Berbers Y and Bézivin J. Inter-DSL
coordination support by combining metamodeling and model weaving. In: Proc. of
the 25th Annual ACM Symposium on Applied Computing (SAC 2010). 2010.
2011-2018.

[33] Goguen JA. Data, schema, ontology and logic integration. Logic Journal of the IGPL,
2005. 13(6): 685-715.

[34] Zhu H. On the theoretical foundation of meta-modelling in graphically extended bnf
and first order logic. In Proc. of the 4th IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE 2010). 2010. 95-104.

