

Agent-Oriented Modelling and Specification of Web Services

 Hong Zhu Lijun Shan
 Dept of Comp., Oxford Brookes Univ. Dept of Comp. Sci., National Univ. of Def. Tech.
 Oxford OX33 1HX, UK Changsha, 410073, China
 Email: hzhu@brookes.ac.uk Email: lijunshancn@yahoo.com

Abstract
Web services (WS) provide a technology for inte-

grating applications over the Internet. This paper pro-
poses a multi-agent conceptual model of WS and an
agent-oriented modelling and formal specification
method to address the difficulties in developing WS
applications. The paper presents a graphic model of the
general architecture of WS in agent-oriented modelling
language CAMLE and an abstract specification in the
formal specification language SLABS. It also illustrates
how agent-oriented modelling and formal specification
can be applied to the development of WS applications by
an example of online auction WS and its requester ap-
plication. It is shown that models and formal specifica-
tions enable software engineers to specify not only the
service provider’s functionality and behaviour, but also
the requirements and restrictions on service requesters’
behaviour. Such semantic information is crucial for the
success of dynamic integration of WS.

1. Introduction
Web services (WS) is characterised by the dominant

of program-to-program interactions [1]. In view of the
infrastructure of WS becoming pervasive, a new para-
digm of service-oriented computing is emerging. In
comparison with other distributed computing tech-
niques, such as CORBA, Java RMI and DCOM, it does
not only offer more flexibility and looser coupling so
that it is more suitable for internet computing [2], but it
is also fundamentally different from them [3]. The
components of WS applications, such as service pro-
viders, are autonomous, active and persistent computa-
tional entities that control their own resources and their
own behaviour. They have social ability and collaborate
with each other through dynamic discovery and invo-
cation of services. Entities having these features have
been studied in AI community as agents, c.f. [4]. In this
paper, we propose a conceptual model of WS in which
computational entities that provide or request services
are regarded as agents. Here, the word ‘agent’ has the
same meaning as in ‘real estate agents’ where agents
provide services to clients for buying or selling proper-
ties, and ‘travel agents’ where agents provides clients

with the services of purchasing transportation tickets
and booking hotels, etc.

The description of the semantics of WS components
is of particular importance. First, the components in a
WS application are usually developed by different
vendors. Developers of service providers and those of
the service requesters are usually separated by space
and time. The most effective channel of communication
between them is perhaps through documentation. Sec-
ond, WS technology enables dynamic software integra-
tion at runtime. It does not only require the interface
between integrated entities syntactically compatible, but
more importantly, the interactions must be semantically
correct. To enable dynamic search of services, informal
documentation of services is insufficient. It has been
recognised that in addition to the descriptions of the
syntactical aspects of WS, such as the formats of the
messages and the parameter types of each service, the
description of semantic aspects, such as business proc-
esses, is of significant importance for the success of WS
technology [5, 6]. However, the existing standards are
inadequate to describe the semantics of WS. Solutions
to the problem proposed in the literature rely on ontol-
ogy for taxonomic descriptions of the functionality of
each service, and workflow descriptions for the restric-
tions on the orders that services are called; see e.g. [7,
8]. Questions remain that whether ontology and work-
flow descriptions are expressive enough to provide the
required semantic information for the development and
dynamic discovery and invocation of WS. In [9], we
proposed the uses of an agent oriented formal specifi-
cation language SLABS to formally specify the seman-
tics of WS components [10]. In this paper, we further
develop the method by using an agent-oriented model-
ling language CAMLE [11] to develop WS applications.
Graphic models are easier to construct and more read-
able than formal specifications. They are then auto-
matically transformed into formal specifications in
SLABS by our modelling tools.

The paper is organised as follows. Section 2 outlines
the conceptual model of multi-agent systems (MAS)
and argues that MAS is suitable for WS. Section 3
discusses the modelling of WS applications in CAMLE
and illustrates our approach with an example of online

auction services. Section 4 presents the formal specifi-
cations in SLABS automatically generated by CAMLE
tool. Section 5 concludes the paper with a summary of
the proposed method and a discussion on the directions
for future research.

2. Conceptual model of WS
In this section, we argue that WS can be regarded as

MAS and outline a conceptual model for WS.

2.1. The notion of agents
Agent is the most important but controversial notion

in agent-based computing. It is often characterised by
certain properties, see e.g. [12, 13]. The following have
been widely considered as the most important ones.
(a) Autonomy: the capability of performing actions
without explicit commands and having control over
their state as well as their behaviour [12, 14, 15, 16].
(b) Pro-activity: the capability of exhibiting opportun-
istic and goal-directed behaviour and taking initiative.
(c) Responsiveness: the capability of perceiving the
environment and responding in a timely fashion.
(d) Sociality: the capability of interacting with other
agents and humans to complete their own tasks and to
help others.

These properties match the features of software
systems that run on the servers linked to the Internet and
constitute a WS application. Service providers, re-
questers and registries perform their tasks autono-
mously in the sense that none of them should be
considered as commanding the others. For example, a
provider can refuse a service request. A requester can
also stop further participation in the service process if
the service provider does not satisfy the requester’s
business criteria. Each side has no control over the other.
The interactions between two components of WS are
essentially collaborations. A service requester may ini-
tiate the interaction with a service request. However, a
service provider by no means has to be passive during
the whole process of service. It may also take initiative
actions from time to time. Therefore, at this very ab-
stract level, agent technology is suitable for WS appli-
cations.

However, not all agent models developed in AI re-
searches are suitable for WS. For example, in the BDI
models, agents have mental states consisting of belief,
desire and intension that control their behaviours [17,
18]. Game theory models define agents as computa-
tional entities that aim at maximising their utility func-
tions. It is questionable if ordinary programmers can
produce WS systems productively through thinking of
belief, desire and intention, or games and utility func-
tions. Moreover, WS has been considered as an attrac-
tive technology for wrapping existing IT assets so that
new solutions can be deployed quickly and recomposed

to address new opportunities [1]. Few of existing IT
assets can be considered as agents in these models.

2.2. Meta-model of agents and MAS
Our agent model is from a software engineering

perspective [19, 20, 21].
We define agents as active and persistent computa-

tional entities that encapsulate data, operations and
behaviours and situate in their designated environments.
Here, data represents an agent's state. Operations are the
actions that an agent can take to modify its state and/or
to affect the environment. Behaviours are sequences of
state changes and operations performed by the agent in
the context of its environment. By encapsulation, we
mean that an agent's state can only be changed by the
agent itself, and an agent has its own rules that govern
its behaviour. Each agent must also have an explicit
specification of its designated environment. Therefore,
agents have a structure containing the following ele-
ments.
• Agent name. It is the identity of the agent.
• Environment description. It specifies a set of agents

that influence the agent.
• State space. It defines the states that the agent can be

in. It is divided into two parts. The visible part con-
sists of a set of variables whose values are visible but
cannot be changed by other computational entities.
The internal part consists of a set of variables which
are not visible by other entities.

• Actions. They are the atomic actions that the agent can
take. Each action has a name and may have parameters.
An action can be either visible or internal. Visible ac-
tions generate events visible by other agents, while
internal actions are not visible to any other agent.

• Behaviour rules. It is the agent’s body that determines
its behaviour and has the following structure.

Begin
 Initialisation of internal state;
 Loop
 Perception of the situation in its environment;
 Decision on the action to take, which can be
 (1) visible or internal actions;
 (2) changes of visible or internal state;
 (3) joining into or retreating from a caste;
 end of loop;
end
In the context of WS, the components in a WS ap-

plication can be modelled by a number of agents. For
example, a WS provider can be considered as an agent,
whose services as the visible actions. The information
that a WS publishes on the Internet can be considered as
visible state, while an invisible state represents the in-
ternal state of the software system. The behaviour rules
determine the way that the WS fulfils its tasks.

A MAS consists of a set of interactive agents that are
grouped into castes. Caste is a new concept first intro-
duced by SLABS. It is a natural evolution of the con-

cepts of classes in object-orientation and data types in
procedural programming. It can play a significant role
in agent-oriented software development [22]. The no-
tion of caste is defined as a set of agents with the same
structural and behavioural characteristics. Agents are
instances of castes. It has the structure and behaviour
characteristics defined by the caste. An example of
behaviour characteristics is that an agent follows a
specific communication protocol to communicate with
other agents. Therefore, such a communication protocol
can be specified by defining a caste with the protocol as
behaviour characteristic. For example, we can define
the caste WS Agent as those using TCP/IP protocols
with messages encoded compliant with SOAP. The
relationship between agents and castes is similar to what
is between objects and classes. What is different is that
an agent can join a caste or retreat from a caste at
run-time dynamically. In modelling language CAMLE,
how agents change their casteship is described by mi-
gration relations.

Inheritance relationships can also be defined be-
tween castes. A sub-caste inherits the structure and
behaviour from its super-castes. But, a sub-caste cannot
overwrite the structures and behaviour rules of its su-
per-castes. Multiple inheritances are allowed to enable
an agent to belong to more than one society and play
more than one role at the same time.

Our model of agents also allows agents to be
formed from a group of other agents. The former are
called compound agents and the latter component
agents. In such a case, a whole-part relationship exists
between the compound and the component agents,
which is represented as an aggregate relation between
castes in CAMLE. In the design of CAMLE language,
we identified three types of commonly used whole-part
relationships between agents according to the ways a
component agent is bound to the compound agent and
the ways a compound agent controls its components.
The strongest binding is composition in which the
compound agent is responsible for creation and de-
struction of its components. If the compound agent is
destroyed, the components no longer exist. The weakest
binding is aggregation, in which the lifetimes of the
compound and the component are independent, so that
the component agent will not be affected at all when the
compound agent is destroyed. Between these two is the
congregation whole-part relation. With such a relation,
when the compound agent is destroyed, the component
agents will still exist, but they will lose the membership
to the component caste. This is a novel type of
whole-part relationship that has not been investigated in
the literature so far to our knowledge.

In the context of WS, service providers and service
requesters are grouped into castes. Different castes
represent different types of service requesters and dif-

ferent types of service providers. An agent can join a
caste to become a valid requester and quit from the caste
after receiving the services or when it is unsatisfied with
the services. When it is a member of the caste, it must
obey the behaviour rules in order to obtain the required
services. However, it has no obligations to follow the
rules after quitting from the caste. The organisational
structure of a MAS is depicted in a caste model in
CAMLE. It describes the castes and their inheritance,
whole-part and migration relations. Figure 1 shows the
architecture of WS in a caste model. It states that a WS
application may consist of a number of WS providers,
WS requesters and a set of business agents that imple-
ment business rules and processes. A business agent can
participate in service provider and/or service requester
castes. The providers and requesters must be WS agents
that comply with SOAP protocol.

Figure 1. Caste diagram of WS architecture

Figure 2. Collaboration model of WS architecture
Communication plays a crucial role in MAS as well

as in WS. Components of a WS application must com-
municate to collaborate with each other. There are two
means of communication in our meta-model: visible
actions and visible states. Communication by visible
actions is similar to sending a message through the
Internet (or broadcasting a message on a network),
which requires the sender to take an action (i.e. to send
the message) and the receiver(s) to observe the action
(i.e. to catch the message). Communication by visible
states matches the way of communication by publishing
information on the web. These are the basic modes of

Migrate
Participate

Inherit

Caste Caste node

Aggregate

Congregate
Composite

Caste diagram notation

WS Agent

Registry WS Provider WS Requester

Business Agent

WS Application

AgentName:Caste
Agent node

CasteName

Caste node

Communication link

Actions

Notation

communications through the Internet. Our meta-model
does not give details about the communication protocols,
syntactic formats and their semantics. Such details are
important in the development of WS. The modelling
language provides software engineers with collabora-
tion diagrams to specify such details about communi-
cations. It enables engineers to work at a very high level
of abstraction and to focus on the functionality and
behaviour aspects rather than on syntactic details.

The power of agent-based systems has been best
demonstrated in dynamic environment [23, 24], which
is also a basic property of Internet-based computing.
Usually, the environment of an agent consists of a set of
different types of entities, such as software objects,
equipments, devices, human beings, and software sys-
tems, etc. As argued in [10, 25], all of these types of
entities can be considered as agents as defined above.
Therefore, in our agent model, the environment of an
agent contains a subset of the agents that may affect the
behaviour of the agent. Moreover, we emphasizes that
agents are situated in their designated environments,
which is specified as the set of agents in a caste, or a
specific agent in a caste, or a parameter the represent
an agent in a caste, or a combination of the above. It
differs from a completely open environment, where
every element in the system can always affect the be-
haviour of an agent. It also differs from a fixed envi-
ronment, where an agent can only be affected by a fix
set of entities in the system. In either fixed or open
environments, the agent cannot change its environment.
The concept of designated environment gives software
developers more power of control over the environment
so that software agents have more protection in dynamic
environments. It is worth noting that both open and
fixed environments are special cases of the designated
environments.

In our models of MAS, the behaviours of agents are
defined in terms of agents’ responses to environment
scenarios. A scenario represents the observation of an
agent towards its environment at a particular time.

Figure 3. Format and example of scenario diagram

Figure 3 gives the format and an example of sce-
nario diagrams, which depicts the situation that an auc-
tioneer informs the agent that its bid failed. Behaviour
diagrams describe agents’ designed behaviour in certain
scenarios. Figure 4 shows an example of behaviour
diagram. It specifies a simple behaviour rule of the
Service Registry that when there is a WS requester that
sends a Search request to the registry with description of
services C, the registry will reply with a list of services
that matches the description.

Figure 4. Example behaviour rule of service registry

Readers are referred to [10, 11, 26, 27] for more
details of the meta-model and CAMLE language.

3. Modelling WS Application Systems
In this section we discuss how WS application sys-

tems can be modelled in CAMLE. We will illustrate our
method with an example of online auction services. We
will demonstrate how developers of service provider
model the service provider system without over-re-
stricting the development of the users of the services,
and how the design knowledge is specified in the model
for the developers of the requesters.

3.1. Service provider’s perspective
The first step is to identify the types of agents that

participate in the operation of the system and specify
them as castes. From the online auction service pro-
vider’s point of view, there are two types of agents that
will interact with their software. Sellers can ask for the
service provider to set up an online auction to sell its
goods with certain conditions. Buyers can then bid for
the goods online. Therefore, we have three different
castes in this application: (a) Auction Service Providers,
(b) Sellers, (c) Buyers. Sellers and buyers are service
requesters; hence they are sub-castes of Service Re-
questers defined in the previous section. Auction service
providers are service providers for sellers and buyers,
hence, a sub-caste of Service Providers. This leads to
the caste diagram from the auction service provider’s
perspective shown in Figure 5. Of course, the Auction
Service Providers can be compound and more compli-
cated than what is depicted in the diagram. However, its
internal structure is hidden from the users of the system.

Environment scenario

Premise

Previous
pattern Pre-condition

Transition bar

Response
activity

Figure 5. Caste diagram from provider’s perspective
There are two types of services that an online auc-

tion provider provides to different types of service re-
questers. It sets up online auctions according to a
seller’s request. It also conducts online auctions via
accepting bids from buyers. The communications with
the sellers and buyers are depicted in the generic col-
laboration diagram in Figure 7.

There are two scenarios in the collaboration between
the service provider and its requesters. The first is to set
an auction for a seller. The second is to run the online
auction to sell the item to buyers. Each scenario is
modelled by a scenario-specific collaboration diagram,
as shown in Figure 6.

While collaboration diagrams are expressive enough
to describe workflow in the form of action sequences, it
is not capable of expressing the semantics of business
rules. For example, in the interaction with buyers, an
auction service provider must follow the following
rules.
(1) When a buyer requests to join the auction, its credit

must be checked and the membership issued if its
credit is OK;

(2) When receives a bid from a member buyer, the auc-
tioneer must acknowledge the receipt of the bid with
a unique bid identifier;

(3) Every received bid must be compared with the cur-
rent best bid. If the new bid beats the current best bid,
the new bid becomes the current best bid; otherwise,
a failure message is sent to the bidder;

(4) By the scheduled finish time of the auction, an ac-
ceptance message must be sent to the winner;

(5) Payment from the bid winner must be cleared and
fund transferred to the seller with commission
charged with the agreed commission rate.

Figure 6. Scenario-specific collaboration diagrams
The protocol is specified by a behaviour diagram for

the Auction Service Providers caste. A behaviour dia-
gram contains the behaviour rules for the agents. For
example, the rule (1) above is specified in Figure 88.

In the development of a service, certain assumptions
on the service requesters’ behaviour must be made. For
example, in the interactions with the auction service
provider, the buyers must follow an interaction protocol.
(1) A buyer must join an auction before the scheduled

start date of the auction and become a member of the
auction before it submits any bid;

(2) A buyer’s bid for an item must be better than the
current best bid for the item;

(3) By the scheduled finish time of the auction, only the
best bid is accepted and its buyer must buy the item;

(4) If a buyer’s bid is beaten by another bid, the beaten
bid is failed;

(5) A buyer can quit from the auction only after its bid
becomes failed.
The complete protocol is expressed as two sets of

rules; one for the auctioneer
and one for the buyers. Thus, a
behaviour diagram is also
associated to the Buyer caste
as a part of the model from the
provider’s perspective. Simi-
larly, there is a set of behav-
iour rules for the Seller caste.
The details are omitted for the
sake of space.

(a) Scenario of setting up an auction for a seller

(b) Scenarios of running an auction

Figure 7. Generic collaboration diagram from auction service provider’s perspective

Figure 8. A behaviour rule of service provider

3.2. Service requester’s perspective
We now discuss how CAMLE can be used to de-

velop models from the requester’s perspective.
Consider an online flight ticketing service that sells

air tickets via an e-commerce website. For each flight, it
will try to sell the unsold tickets by online auction when
the time reaches 7 days before the scheduled date of
flight. Suppose the normal business rules and process of
the software is specified as a caste Ticket Seller. For the
sack of space, the detail of the caste is omitted in this
paper. When a ticket seller wants to sell air tickets by
auction, it will become a member of the Seller caste and
obey the behaviour rules specified in the service pro-
vider’s model. Such agents, which are called Sell By
Auction, must satisfy all the structure and behaviour
requirements specified in the castes Ticket Sellers and
Sellers. They can be specified as the sub-caste of Ticket
Sellers and Seller to model their behaviours. As shown
in Figure 9, an alternative caste model that enables a
Ticket Seller to use the auction WS is to have a par-
ticipation relation from Ticket Seller to Seller. In this
case, an agent of the caste Ticket Seller joins the Seller
caste dynamically and uses the auction service after
joining the caste. Such dynamic integration is what WS
meant to be. Hence, it is a better model than the static
model.

 Figure 9. Caste model from requester’s perspective
For the castes shown in Figure 9, the behaviour

diagrams for caste WS Agents, Service Provider, Ser-
vice Requester and Service Registry are common to all
WS applications. Hence, they should be treated as the
public information and ideally as a part of the WS

standard. The models and specification of caste Auction
Service Provider, Buyer and Seller are provided by the
WS providers. They define the syntax, semantics as
well as the pragmatics of the auction WS. They are also
public and should be stored with the WS registration.

4. Generation of Formal Specifications
The modelling environment developed for CAMLE

contains a number of automated tools, which include
tools for consistency checking [28] and generation of
formal specifications in SLABS. In SLABS, each caste
is specified in the following syntax, which can also be in
the equivalent graphic format shown in Figure 10.

Caste-description ::=
 Caste name [<= { caste-name [(instantiation)] , }+ ;]
 [environment-description ;]
 [structure-description ;] [behavior-description ;]
 end name

 Figure 10. Format of caste description in SLABS
The SLABS language uses transition rules as a fa-

cility to explicitly specify how observations of the en-
vironment are related to the agent’s behaviour. Each rule
consists of a description of a scenario of the environ-
ment, the action to be taken by the agent in the scenario
and a condition of the agent’s internal state and previous
behaviour.

Behaviour-rule ::= [< rule-name >:] pattern | [prob] −> event ,
 [if Scenario] [where pre-cond] ;
The formal specifications of castes Service Provider

and Buyer given in Figure 11 are generated from
CAMLE models. Similarly, the specifications of other
castes can be generated. Details are omitted.

With the formal specification, we can formally
prove the properties of a WS if it satisfies the specifi-
cation. For example, the following are some examples
of the properties that can be inferred from the specifi-
cation of the auction service system.
• If a buyer submits a bid, the auctioneer will send an

acknowledgement message ‘BidRecieved’.
• Buyer only submits a bid that beats the current best

bid.
• By the end of auction, the current bid must be the best

bid, and that bid will be accepted by the auctioneer. In
that case, an acceptance message ‘BidAccepted’ will
be send to the buyer who submitted the bid.

• Once a buyer receives an acceptance message, it will
pay for the item.

• Any bid submitted to the auction that failed must be
beaten by at least one bid.

Visible state-variables and actions
Invisible state-variables and actions

Behaviour-specification

Name <= castes (instantiation)

Environment
description

These properties are important for the auction ser-
vice requesters. However, they are deeply related to the
semantics of the service description that are inade-
quately specified in existing of WS descriptions.

Figure 11. Specifications generated from models

5. Concluding remarks
In this paper, we argued that WS applications should

be understood as multi-agent systems. We proposed an
approach to use the graphic agent-oriented modelling
language CAMLE to model WS applications. It is il-
lustrated by an example of online auction service to
demonstrate how models of WS in CAMLE can help
developers from both service provider and service re-
quester’s perspectives. Another advantage of modelling
WS in CAMLE is that formal specifications can be
automatically generated so that properties of a WS can
be formally proved.

The structure of modelling and formal specification
of WS proposed in this paper provides a modular de-
scription of the semantics of the services provided. It
also enables explicit specifications of the service pro-
vider’s assumptions on the service requester’s behav-
iour. Hence, the designated environment of the service
provider can be clearly stated for developers on both
sides. The same specification can also be used by de-
velopers of service requesters so that the application can
be smoothly integrated without too much demand of
technique supports from the service provider.

There are a number of issues worthy further research.
We are investigating how formal specifications of WS
can be represented in a format that complies with XML
standard and can be used to describe WS and facilitate
the dynamic search and integration of WS applications.
We are developing a method and formal logic that en-
ables formal specifications to be used in service search
and query. Formal specifications should also be helpful
in quality assurance in the development of WS applica-
tions through validation, verification and testing. We
are working on automated testing of WS applications
based on formal specifications. We have already de-
veloped an experimental programming language based
on our meta-model of MAS for implementing
agent-oriented software systems. Further research is in
progress to write WS in such a programming language.
How to derive implementations from formal specifica-
tions is also an interesting topic for further research.

Acknowledgement
The work reported in this paper is supported by

China High-Technology Research and Development
Programme under the grant 2002AA116070.

References

[1] K. Gottschalk, et al., “Introduction to Web services ar-
chitecture”, IBM Systems Journal, 41(2), 2002, pp. 170-177.

[2] C. Lau, and A. Ryman, “Developing XML Web services
with WebSphere Studio Application Developer”, IBM Sys-
tems Journal, 41(2), 2002, pp. 178-197.

VAR
ServiceDescription: WSDL;

ACTION
Register(R: Service Registries, service: WSDL);
Unregister(R: Service Registries, service: WSDL);

VAR

State: {Start Service, In Service, Stop Service}

[!State=Start Service] |→

Register(R, ServiceDescription)!State’=In Service;
[!State=In Service, !State=Stop Service] |→

Unregister(R, ServiceDescription);

Service Providers

VAR BusinessInfo: UDDI;
ACTION Submit_Bid(AuctionID, MembershipID, BID);

Pay(BID_ID, PAYMENT);
Join_Auction(Auction Service Providers, AuctionID);

VAR Membership: {Yes, No}; MID: MembershipID;

Auction: AuctionID; Bid_ID: BID_ID;

<Join Auction>:

[!Membership= No]
 |→ time: Join_Auction(Auctioneer, AID);

if Auctioneer:[Announce_Auction(d, AID)];
where Auct∈ Auctioner.AuctionInfo
& time < Auct.Start & Auct.ID=AID

<Get Membership ID>:
[Join_Auction(Auctioneer, AID)]

|→ !Membership’=Yes & Auction’=AID, MID’=mid
if Auctioneer:[Accept_Member(Self, AID, mid)

<Submit Bid>:
[!Membership=Yes] |→ Submit_Bid(Auction, MID, Bid);

where Beat(Bid, Auctioneer.auct.Current_Bid)
& Auct∈ Auctioneer.AuctionInfo
& Auction.Auct.ID=Auction

<Receive Acknowledge Of Bid>:
[Submit_Bid(Auction, MID, Bid)] |→!Bid_ID’=bidID;

 if Auctioneer:[Bid_Received (Self, AID, mid, bidID)],
 where AID=Auction & mid = MID;
<Revise Bid After Failure>:

[Submit_Bid(Auction, MID, Bid)]
|→; Submit_Bid(Auction, MID, Bid2)

 If Auctioneer:[Bid_Failed(Self, AID, mid, bidID), $^k],
where Auct ∈ Auctioneer.AuctionInfo
& Auct.ID=Auction
& Beat(Bid, Auct.Current_Bid)
& Bid_ID = bidID & MID=mid;

<Pay Accepted Bid>:
[Submit_Bid(Auction, MID, Bid)]

|→; Pay(Bid_ID, Payment)
 If Auctioneer:[Bid_Accepted (Self, AID, mid, bidID)],

Where AID=Auction & Bid_ID=bidID & MID = mid
<Quit From Auction>:
 [!Membership=Yes]

 |→ Quit_Auction(AuctionID)!Membership’=No,
 if Auctioneer:[Bid_Failed(Self, AID, bidID), $^k]
 where Auction=AID & Bid_ID = bidID

Auctioneer:
Auction
Service
Provider

Buyers <= Service Requesters

[3] M. Stal, “Web Services: Beyond Component-Based Com-
putting”, C. ACM, 45(10), 2002, pp. 71-76.

[4] M. Huhns, and M. P. Singh (Eds.), Readings in Agents,
Morgan Kaufmann, San Francisco, 1997.

[5] F. Leymann, D. Roller, and M.-T. Schmidt, “Web services
and business process management”, IBM Systems Journal,
41(2), 2002, pp. 198-211.

[6] P. Lambros, M.-T. Schmidt, and C. Zentner, Combine
Business Process Management Technology and Business
Services to Implement Complex Web Services, IBM Corpora-
tion, 2001.

[7] F. Leymann, Web Services Flow Language, IBM Corpo-
ration, 2001.

[8] S. Thatte, XLANG-Web Services for Business Process
Design, Microsoft Corporation, 2001.

[9] H. Zhu, B. Zhou, X. Mao, L. Shan, and D. Duce,
“Agent-Oriented Formal Specification of Web Services”,
Proc. of the AAC-GEVO’04 Workshop at GCC’04, Springer,
Oct. 2004.

[10] H. Zhu, “SLABS: A Formal Specification Language for
Agent-Based Systems”, Int. J. of Software Engineering and
Knowledge Engineering, 11(5), 2001, pp. 529-558.

[11] L. Shan, and H. Zhu, “CAMLE: A Caste-Centric
Agent-Oriented Modelling Language and Environment”,
Proc. of SELMAS'04 at ICSE'94, Edinburgh, UK., 2004, IEE,
pp. 66-73.

[12] N.R. Jennings, “On agent-based software engineering”,
Artificial Intelligence, 117, 2000, pp. 277-296.

[13] D.B. Lange, “Mobile Objects and mobile agents: The
future of distributed computing?”, Proceedings of The Euro-
pean Conference on Object-Oriented Programming, 1998.

[14] N.R. Jennings, “Agent-Oriented Software Engineering”,
Multi-Agent System Engineering, Proceedings of 9th Euro-
pean Workshop on Modelling Autonomous Agents in a
Multi-Agent World, Valencia, Spain, 1999, Springer, Berlin,
Heidelberg, New York, pp.1-7.

[15] B. Bauer, J.P., Muller, and J. Odell, “Agent UML: a
formalism for specifying multiagent software systems”,
Agent-Oriented Software Engineering, M. Wooldridge,
(Eds), Springer, 2001, pp. 91-103.

[16] J. Odell, H. Van Dyke Parunak, and B. Bauer, “Repre-
senting Agent interaction protocols in UML”, Agent-Oriented
Software Engineering, M. Wooldridge (Eds), Springer, 2001,
pp. 121-140.

[17] A.S. Rao, and M.P. Georgreff, “Modeling Rational
Agents within A BDI-Architecture”, Proc. of the Interna-
tional Conference on Principles of Knowledge Representation
and Reasoning, 1991, pp. 473-484.

[18] M. Wooldrighe, Reasoning About Rational Agents, The
MIT Press, 2000.

[19] P. Ciancarini, and M. Wooldridge, Agent-Oriented

Software Engineering, LNCS 1957, Springer-Verlag, 2000.

[20] M. Wooldridge, G. Weiss, and P. Ciancarini,
Agent-Oriented Software Engineering II, LNCS 2222,
Springer, 2002.

[21] L. Shan, and H. Zhu, “CAMLE: A Caste-Centric
Agent-Oriented Modelling Language and Environment”,
Proc. of SELMAS’04 at ICSE’94, Edinburgh, UK, IEE, May
2004, pp. 66-73.

[22] H. Zhu, “The role of caste in formal specification of
MAS”, Proc. of PRIMA’2001, Taipei, Taiwan, Springer,
2001, pp.1-15.

[23] N.R. Jennings, and M.J. Wooldridge, Agent Technology:
Foundations, Applications, And Markets, Springer, Berlin,
Heidelberg, New York, 1998.

[24] M. Huhns, and M.P. Singh, Readings in Agents, Morgan
Kaufmann, San Francisco, 1997.

[25] H. Zhu, “Formal Specification of Agent Behaviour
through Environment Scenarios”, Formal Aspects of
Agent-Based Systems, Rash, J., et al. (Eds), Springer, 2001,
pp. 263-277.

[26] L. Shan, and H. Zhu, “Modelling and specification of
scenarios and agent behaviour”, IEEE/WIC conference on
Intelligent Agent Technology (IAT’03), Halifax, Canada, Oct.
2003.

[27] H. Zhu, A Formal Specification Language for
Agent-Oriented Software Engineering, Department of Com-
puting, Oxford Brookes University, 2002.

[28] L. Shan, and H. Zhu, “Consistency Check in Modeling
Multi-Agent Systems”, Proc. of COMPSAC’04, IEEE CS,
Sept., 2004, pp. 114-121.

