
Automated Analysis of Software Designs with Graphic Quality Models

QIAN ZHANG
Department of Computer Science

National University of Defense Technology
Changsha, CHINA

Email: zhangqian@nudt.edu.cn

HONG ZHU
Department of Computing
Oxford Brookes University

Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk

Abstract: Software quality models play a significant role in software quality assurance. Based on our previous
work on graphic modelling of software quality, this paper extends the quality modelling language to enhance its
expressiveness and to facilitate automated analysis of software quality as designed. A collection of algorithms
that are implemented in an automated tool for the analysis of software quality are presented and illustrated by
examples.

Keywords: Software quality, Automated software tools, Analysis of software quality, Modelling

1 Introduction
Software quality models play a significant role in the
quality assurance of software development [1]. Ex-
isting software quality models can be classified into
two types. Hierarchical models, such as McCall
model [2], Boehm model [3], ISO model [4], and the
more recent Bansiya and Davis’ model of OO soft-
ware design [5], define a set of quality related prop-
erties and organises them into a hierarchical structure
to express the positive relationships between them.
However, they are incapable of expressing negative
relations between quality related properties. A rela-
tional model usually defines a number of stereo types
of relationships between quality attributes, such as
positive, negative and neutral relations. Typical ex-
amples of such quality models include Perry Model
[6], Gillies Model [7, 8]. These quality models can
help software developers to improve software quality
by providing guidelines to software development
activities, such as in the elicitation of quality re-
quirements. However, as pointed out by Dromey [9,
10], they fail to take software structures into account.
Due to the stereo typing of relationships between
quality attributes, they are also incapable to deal with
complicated relationships between quality attributes.
They provide little help to the design of software
systems.

Addressing these problems, in [11, 12, 13], we
proposed the HASARD method to software quality
modelling and analysis in order to provide more in-
structive information about software designs. A dia-
grammatic notation for software quality modelling
was devised [11]. A method for deriving software
quality models from architectural designs was devel-
oped [13]. A software tool called SQUARE for soft-
ware quality modelling and analysis was designed
and implemented [13]. In this paper, we further de-

velop the technique by focusing on automated analy-
sis of software quality with such graphic models.

The paper is organized as follows. Section 2
briefly reviews the graphic notation for representing
software quality models and extends it with facilities
that enable automated analysis of quality models.
Section 3 discusses the methods and algorithms for
automated analysis of quality related issues in soft-
ware designs. Section 4 concludes the papers with
remarks on the current state of the implementation of
the automated analysis tools for quality analysis and
case studies of the method.

2 Graphic Quality Models
As shown in Fig. 1, a quality model in our graphical
modelling notation is a directed graph, which con-
sists of a set of nodes and a set of links between the
nodes.

Fig. 1. Graphical notation of quality models

Each node represents a quality related property of
the software system. Such a property may demon-
strate itself by a certain phenomenon of a certain
component or subsystem of the system or the whole
system. To specify such a property, a node in the
graphic quality modelling language contains three
parts in the form of compartments. The phenomenon
compartment describes a particular observable phe-
nomenon in the system. The subject compartment
specifies the entity in the system that demonstrates

Subject

[Influence] Property

Phenomenon

Annotation
of Reasons

Node: representing quality carrying prop-
erties and quality attributes and observ-
able phenomena, where the optional influ-
ence can be ‘+’ or ‘-’.

Link without annotation: representing
logic relations between the nodes.

Link with Annotation: providing addi-
tional information of the rationale of the
relation between nodes.

[+ | -]

[+ | -]

the phenomenon. The element in the subject com-
partment can be a component or a connector of the
software system, or a subsystem even the system
itself, or an external entity of the system, etc. The
property compartment gives a classification of the
phenomenon in terms of a quality carrying property,
which can be a quality attributes such as correctness
or a property that affects the quality of the system
somehow such as the size of the component. In addi-
tion to the classification of the phenomenon by a
quality attribute or quality related property, the rela-
tionship between the phenomenon and the property
could be positive or negative. A phenomenon is posi-
tive to a quality property, if the phenomenon is ob-
served, then the entity is good at the property. Oth-
erwise, the phenomenon is negative to the quality
property, i.e. the observation of the phenomenon im-
plies the entity is poor at the property. Such relation-
ships between phenomena and properties are speci-
fied in the influence factor. It is by default positive.
Positive influence is denoted by the symbol + and
negative influence is denoted by the symbol ‘-‘. This
influence factor is a new facility introduced in this
paper.

Fig. 2. Example of nodes and link

For example, in Fig. 2, the node A specifies a phe-
nomenon that the client-side subsystem of a web-
based application in the client-server architecture is
not executable on the user’s platform. It states that
this phenomenon is classified to the compatibility
issue. If the phenomenon is observed, then the com-
patibility of the system is poor. Thus, the influence is
negative.

The links, i.e. directed arcs, between the nodes
specifies the relationships between the phenomena
specified by the nodes. Such a relationship can be
either implication or prohibitive. It is also called in-
fluence factor of the link. An implication relationship
from node A to node B means that the observation of
the phenomenon on node A implies the occurrence of
the phenomenon on node B. Such an implication can
be logic causal relation, enabling condition, or plau-
sible result. A prohibitive relationship from node A
to node B means that the observation of the phe-
nomenon on node A will prevent the occurrence of
the phenomenon on node B. Such a prevention rela-
tionship can also be either logically disabling the
phenomenon of node B to happen or the phenome-
non of node B will plausibly not likely to happen.
Each link may contain an optional annotation for the

reasons why the two nodes are related. The implica-
tion relationships are denoted by the symbol ‘+’
while prohibitive relationships are denoted by the
symbol ‘-‘. By default, a link has the implication re-
lationship if it is not explicitly specified. The influ-
ence factor of link is also a new facility introduced in
this paper. Together with the influence factor of the
nodes, it not only significantly improved the expres-
siveness of the quality modelling language, but also
provided a crucial facility for automated analysis of
quality models.

For example, in Fig. 2, the link between nodes A
and B states that if the client-side code cannot be
executed on the user’s platform, the system cannot
be operated, because the interface cannot be dis-
played on the user’s screen at all. In most cases, the
reasons are self-evident and obvious. Therefore, it
provides a facility for human validation of the qual-
ity model.

Fig. 3 shows an example of quality model in the
graphic notation. It will be used through this paper to
illustrate the analysis of software quality.

3 Automated analysis algorithms
In this section, we discuss various tasks of quality analysis
at software design stage and how they can be supported by
automated tools. The algorithms for such tool support are
presented.

3.1 Contribution factors
In the analysis of software architectural designs, we
often want to know how a quality issue is addressed.
We want to know which components, connectors or
the properties of the configuration are related to the
quality issue and how they collectively provide the
solution to meet quality requirements. The contribu-
tion factors of a quality attribute is a set of properties

Fig. 3. An example of quality model

HTML files
+ Structuredness

Large size

HTML files
+ Navigability
Small number
of hyperlinks

System
+ Usability
Easy to find
required info

Web Server
- Responsiveness

Long response
time

HTML files
- Correctness

Contains
broken links

Online Help
- Availability
Not available

Client side
- Compatibility

Not executable on
user’s platform

System
- Usability

Cannot find
required info

Server side
- Performance

Execution speed
is slow

Server side
+ Load

Highly de-
manded

 Files are consid-
ered as unavail-
able when time-

out
 Simpler hyperlink
network usually

easier to navigate

 Less nodes
means less links Need long time

to transmit the
files

Web page
cannot be
displayed

Unable to

obtain files
through hyper-

links

 Unable to get help
when experiencing

difficulty

Interface
cannot be
displayed

Client side
- Compatibility

Not executable on
user’s platform

System
- Usability
Cannot be
operated

Node A Node B Link

of the components and/or connectors and the con-
figuration of the architecture that affect the quality
issue according to the design. For example, consider
the quality model given in Fig. 3. We can derive the
sub-graph shown in Fig. 4 for the contribution fac-
tors of a server’s responsiveness.

This quality analysis task can be supported by our

tools reported in [13], which implements the follow-
ing algorithm.

ALGORITHM A1 (* Derivation of contribution factors
to a quality attribute. *)
INPUT：
 QualityModel = < NodeList, LinkList >;

(* the quality model is represented as a graph that
consists of a set NodeList of nodes and a set LinkList
of links. *)

 Component; (* the name of the component *)
 QualityAttribute; (* the quality attribute *)
OUTPUT：
 RelatedNodeList; (* the set of nodes in the quality
model related to the quality attribute*)
 RelatedLinkList; (* the set of links in the quality model
related to the quality attribute *)
BEGIN
 RelatedNodeList := { };
 RelatedLinkList := { };
 FOR each node N in NodeList DO
 IF (N’s component name = Component)
 AND (N’s property = QualityAttribute)

THEN add N into RelatedNodeList;
 END_FOR;
 REPEAT

FOR each link L in LinkList DO
 BEGIN

IF (L’s head is in RelatedNodeList)
 AND (L’s head is not equal to L’s tail)

 THEN
 IF L is not in RelatedLinkList
 THEN Add link L to RelatedLinkList;

 IF L’s tail is not in RelatedNodeList
 THEN Add L’s tail to RelatedNodeList;

 END_IF
 END;

 UNTIL no more element is added into RelatedLinkList
 or RelatedNodeList;
 OUTPUT RelatedLinkList and RelatedNodeList;
END_ALGORITHM.

3.2 Impacts of design decisions
Another frequently asked question in the analysis of
a software architectural design is “what are the con-
sequences of a design decision on the properties and
functionality of a component or connector?’ In such
cases, we need to find out what are the quality attrib-
utes that are affected by the design decision. Such
information can also be derived from a well con-
structed quality model. For example, consider the
quality model depicted in Fig. 3. We can obtain the
sub-graph shown in Fig. 5 that represents the impacts
of the quality carrying property of HTML files’ size
on other quality attributes. It shows that the size of
HTML files affects the navigability and responsive-
ness of the system, which further affects the usability
of the whole system.

This analysis task can also be automated. The fol-

lowing is the algorithm that has been implemented in
our automated tools.
ALGORITHM A2 (* Derivation of the impact of a com-
ponent’s property. *)
INPUT：
 QualityModel = < NodeList, LinkList >;
 Component (* the name of the component *),
 QualityAttribute (* the property of the component *),
OUTPUT：
 EffectedNodeList (* the set of nodes in the quality
model effected by the component’s property *);
 EffectedLinkList (* the set of links in the quality model
effected by the component’s property *);
BEGIN
 EffectedNodeList := { };
 FOR each node N in NodeList DO
 IF (N’s component name = Component)
 AND (N’s property = QualityAttribute)
 THEN add N into EffectedNodeList;
 END_FOR;
 EffectedLinkList := { };
 REPEAT

Fig. 5. Affected attributes by size of HTML files

 Simpler hyperlink
network usually

easier to navigate

HTML files
+ Navigability
Small number
of hyperlinks

Web Server
- Responsiveness

Long response time

System
- Usability

Cannot find required
information

System
+ Usability

Easy to find required
information

 Less nodes
means less links Need long time

to transmit the
files

 Files are considered
as unavailable
when time-out

HTML files
+ Structuredness

Large size

HTML files
+ Structuredness

Large size

Web Server
- Responsiveness

Long response time

Server side
- Performance

Execution speed is slow

Server side
+ Load

Highly demanded

 Need long time
to transmit the

files

Fig. 4. Factors of server’s responsiveness

FOR each link L in LinkList DO
 BEGIN

IF (L’s tail is in EffectedNodeList)
 AND (L’s head is not equal to L’s tail)

 THEN
 IF L is not in EffectedLinkList
 THEN Add link L to EffectedLinkList;

 IF L’s head is not in EffectedNodeList
 THEN Add L’s head to EffectedNodeList;

 END_IF
END

 END_FOR;
 UNTIL no more element is added into EffectedLinkList
 or EffectedNodeList;
 OUTPUT EffectedLinkList and EffectedNodeList;
END_ALGORITHM.

3.3 Quality risks
A design decision may have positive as well as nega-
tive effects on a quality attribute. The negative ef-
fects may impose quality risks to the system. There-
fore, it is often desirable to know where the quality
risks are within an architectural design. This can also
be derived from a quality model.

A negative effect of a design decision can be rec-
ognised by searching for the links and nodes in the
quality model that have a negative effect on the qual-
ity attribute. Such a negative effect could be in one
the following two forms. First, there is a negative
influence factor in the node while there is a positive
influence factor on the link. Second, there is a nega-
tive influence factor on the link while there is a posi-
tive factor on the node. In the former, a phenomenon
will be observed that means the quality attribute will
be worse. In the later case, the phenomenon that in-
dicates a better value of the quality attribute will be
prohibited to happen. For example, in the quality
model depicted in Fig. 3, there is a link between the
node HTML files with the property of large size and
the node web server with a property of responsive-
ness. There is a positive influence factor marked on
the link between the large size of HTML file and the
phenomenon of ‘long response time’. This is because
that the larger the HTML file size is, the longer the
response time will be. Because the phenomenon of
long response time has a negative influence factor on
usability, the large file size has a negative effect on
usability. Therefore, a design decision of large file
size is a risk to the quality attribute of responsiveness.
The further consequences of a quality risk can be
identified and analyzed. In certain cases, a negative
effect, i.e. a quality risk, is not the consequence of a
single design decision. Instead, it can be the conse-
quence of a number of other design decisions. In that
case, all the causes must be identified so that a better
design can be made. This can also be derived from

graphic quality models by using the following algo-
rithms.
ALGORITHM A3 (* Derivation of design decisions
which have risks to the system’s quality. *)
INPUT：
 QualityModel = < NodeList, LinkList >;
OUTPUT：
 RelatedNodeList (* the set of nodes in the quality model
related to risk rising decisions *);
BEGIN
 RelatedNodeList := { };
 FOR each node N in NodeList DO

IF (N’s influence factor is negative)
THEN add N into RelatedNodeList;

 END_FOR;
 OUTPUT RelatedNodeList;
END_ALGORITHM.

3.4 Relationships between quality issues
An important question to be answered in quality
analysis is the interrelationship between two quality
issues. For example, how server’s performance is
related to the system’s usability? Answers to such
questions can be found from the quality model by
searching for all paths from a node that represents
one quality issue to the nodes that represents the
other quality issue. The algorithm used to implement
the supporting tool is given below.
ALGORITHM A4 (* Derivation of Relationships be-
tween quality issues *)
INPUT：
 QualityModel = < NodeList, LinkList >;
 Component1 (* the name of the first component *),
 Component2 (* the name of the second component *),
 QualityAttribute1 (* the first quality attribute *),
 QualityAttribute1 (* the second quality attribute *),
OUTPUT：
 RelatedNodeList (* the set of nodes in the quality model
on the paths between two quality attributes*);
 RelatedLinkList (* the set of links in the quality model
on the paths between two quality attributes *);
BEGIN
 RelatedNodeList := { };
 RelatedLinkList := { };
 Node1:=NULL;
 Node2:=NULL;
 TemptNodeList:= { };
 TemptNode:=NULL;
 FOR each node N in NodeList DO

IF (N’s component name = = Component1)
 AND (N’s property = = QualityAttribute1)
THEN Node1=N;
ELSE IF (N’s component name = = Component2)
 AND (N’s property = =QualityAttribute2)
THEN Node2:=N
END_IF;

 END_FOR;
 Add Node1 to TemptNodeList;

 CurrentNode :=Node1;
 Search(CurrentNode, Node1, Node2, QualityModel,
 TemptNodeList, RelatedLinkList,
 RelatedNodeList);
 OUTPUT RelatedLinkList and RelatedNodeList;
END_ALGORITHM.
In the algorithm A4, the following function of depth first
search is used.
FUNCTION Search (Component, Component1,
Component2, QualityModel, CurrentNodeList,
ResultLinkList, ResultNodeList)
(* Depth-First Search *)
 BEGIN
 TemptNode=NULL;

FOR each link L in LinkList that
 L’s head = = Component DO
 BEGIN

 Add L’s tail to CurrentNodeList;
 IF L’s tail= =Component2
 THEN (* Find a path and record it*)
 TemptNode=L’s tail;
 REPEAT
 Add TemptNode to ResultNodeList;
 TemptNode =
 TemptNode’s previous node
 of CurrentNodeList;
 Add link TemptL(whose head = =
 TemptNode’s Next node of

 CurrentNodeList AND
 whose tail==TemptNode)
 to ResultLinklist;

 UNTILL TemptNode= =Component1;
 Remove L’s tail From CurrentNodeList;
 ELSE (* Depth first *)

Search (L’s tail, Component1,
 Component2, QualityModel,
 CurrentNodeList, ResultLinkList,
 ResultNodeList);

END_IF
 END_FOR;
 remove Component from TemptList;
END_FUNCTION

3.5 Trade-off points
In many situations, a quality risk cannot be resolved
without compromising on other quality issues be-
cause these quality issues are conflicting with each
other. In such cases, trade-offs between the quality
attributes must be made and a balance between them
must be achieved through appropriate design deci-
sions.

For example, consider the quality model depicted
in Fig. 3. The size of HTML files positively affects
the navigability of the hypertext network, but nega-
tively affects responsiveness of the web server.
Therefore, navigability is in conflict with respon-
siveness. A trade-off between them must be made so
that responsiveness is within a tolerable range while

navigability is also acceptable. Such a trade-off oc-
curs in the form of deciding on a suitable size of
HTML file. In other words, HTML file size is a
trade-off point.

From this example, we can see that a trade-off
point is a node in the quality model that has a nega-
tive effect to one or more quality attributes and at the
same time it has positive effects on one or more
quality attributes. Trade-off points can also be de-
rived from quality models automatically. The algo-
rithm that used to implement this is given below.
ALGORITHM A5 (* Derivation of trade-off points *)
INPUT：
 QualityModel = < NodeList, LinkList >;
OUTPUT：
 RelatedNodeList (* the set of trade-off points *);
BEGIN
 RelatedNodeList={};
 TemptNodeList={};
 TemptNodeList:= result from calling A3;
 FOR each node N in TemptNodeList DO
 FOR each link L in LinkList
 AND (L’s head= =N OR L’s tail = = N) DO
 IF (L’s head !=N
 AND (L’s head’s influence factor
 = = L’s influence factor))
 THEN Add L’s head to RelatedNodeList;
 IF (L’s tail !=N
 AND (L’s tail’s influence factor
 = = L’s influence factor))
 THEN Add L’s tail to RelatedNodeList;
 END_FOR
 OUTPUT RelatedNodeList;
END_ALGORITHM

To make a right decision on a trade-off point, we
need to understand all the consequences of the de-
sign decisions. In certain complicated situations, a
trade-off point is a consequence of a number of other
design decisions. Once a trade-off point is recog-
nised, we can derive all quality attributes that the
trade-off point affects, and to find all the factors that
affect the trade-off point using the algorithms and the
automated tools as discussed above.

4 Concluding remarks
The main contributions of this paper are two folds.
First, the graphic quality modelling language pre-
sented in [11,12] is extended to enhance its expres-
siveness and to facilitate automated analysis of soft-
ware quality according to its design. Second, various
quality analysis tasks at design stage are recognised.
Algorithms to automate these quality analysis tasks
are presented. An automated software tool called
SQUARE has been developed [13]. It implemented
the algorithms for the analysis of graphic quality
models. Figure 6 shows its overall structure.

In comparison with existing methods of evaluation
and analysis of software architectures, such as sce-
nario-based methods such as SAAM, ATAM and
others [14–21], our approach can be performed sys-
tematically with strong support by automated tools
as shown in this paper. Case studies of the method
and the tool have been conducted. However, for the
sake of space, the case studies will be reported sepa-
rately.

We are further investigating how quality models
can be constructed and validated. In [11], a hazard
analysis method was proposed, which is further de-
veloped in [12, 13]. It is worth studying how the
method can be combined with scenario-based meth-
ods, for example, by representing the results of sce-
nario analysis in our graphic quality models, and/or
by deriving quality model using scenarios.

Acknowledgement
This work reported in this paper is partly supported
by 863 Hi-Tech Program of China under the Grant
No.2002AA116070.

References:
[1] B. Kitchenham, and S. L. Pfleeger, Software

Quality: The Elusive Target, IEEE Software,
Vol. 13, No.1, 1996, pp.12-21.

[2] J. McCall, P. Richards, and G. Walters, Factors
in Software Quality, Technical Report CDRL
A003, US Rome Air Development Centre,
Vol.1, 1977.

[3] B.W. Boehm, J. Brown, H. Kaspar, M. Lipow,
G. MacLeod, and M. Merrit, Characteristics of
Software Quality, TRW Series of Software
Technology, Vol. 1, North-Holland, 1978.

[4] International Organisation for Standardization,
ISO 9126: Information Technology -- Software
Product Evaluation -Quality Characteristics
and Guidelines for Their Use, ISO, 1992.

[5] J. Bansiya, and C. G. Davis, A Hierarchical
Model for Object-Oriented Design Quality As-
sessment, IEEE TSE, Vol.28, No.1, 2002, pp.4-
17.

[6] W. E. Perry, Quality Assurance for Information
Systems: Methods, Tools and Techniques, John

Wiley & Sons, 1991.

[7] A. Gillies, Modelling Software Quality in The
Commercial Environment, Software Quality
Journal, Vol.1, 1992, pp.175-191.

[8] A. Gillies, Software Quality: Theory and Man-
agement, 2nd Edition, International Thomson
Computer Press, 1997.

[9] R. G. Dromey, A Model for Software Product
Quality, IEEE TSE, Vol.21, No.2, 1995, pp.146-
162.

[10] R.G. Dromey, Cornering the Chimera, IEEE
Software, Vo.13, No.1, 1996, pp.33-43.

[11] H. Zhu, Y. Zhang, Q. Huo, and S. Greenwood,
Application of Hazard Analysis to Software
Quality Modelling, Proc. of COMPSAC’02,
IEEE CS, 2002, pp.139-144.

[12] H. Zhu, Software Design Methodology: From
Principles to Architectural Styles, Elsevier,
2005.

[13] Q. Zhang, J. Wu, and H. Zhu, Tool Support to
Model-based Quality Analysis of Software Ar-
chitectures, Proceedings of COMPSAC’06,
IEEE CS, 2006. (In press)

[14] C.-H., Lung, et al., An approach to software
architecture analysis for evolution and reusabil-
ity, Proc. of CASCON, 1997.

[15] P. Bengtsson, and J. Bosch, Scenario-based
software architecture reengineering, Proc. of
ICSR5, IEEE CS Press, 1998, pp.308-317.

[16] N., Lassing, D., Rijsenbrij, and H., van Vliet,
Towards a broader view on software architec-
ture analysis of flexibility, Proc. of APSEC’99,
IEEE CS Press, 1999, pp.238-245.

[17] P., Bengtsson, Architecture-Level Modifiability
Analysis, Ph.D. Thesis, Blekinge Institute of
Technology, Sweden, 2002.

[18] E., Folmer, J.V. Gurp, and J. Bosch, Scenario-
based assessment of software architecture us-
ability, Proc. of Workshop on Bridging the
Gaps Between Software Engineering and Hu-
man-Computer Interaction, ICSE 2003. Port-
land, Oregon.

[19] P., Bengtsson, N., Lassing, J., Bosch, and H.
van Vliet, Architecture-Level Modifibility
Analysis, The Journal of Systems and Software,
Vol. 69, 2004, pp.129-147.

[20] B. Tekinerdogan, ASAAM: aspectual software
architecture analysis method, Proc. of the
Fourth Working IEEE/IFIP Conference on
Software Architecture (WICSA'04), 2004.

[21] S. Aier and M. Schönherr, Evaluating integra-
tion architectures – A scenario-based evaluation
of integration technologies, Lecture Notes in
Computer Science, Vol. 3888, 2006, pp.2.

Figure 6. The structure of SQUARE tool

Hazard
Analysis

Tools

Quality
Analysis

Tools

Quality
Model
Editor

Architecture
Model Editor

SA
Model

Quality
Model

Quality
Analysis
Results

Model Re-
pository

Project
Manager

