An Experimental Study of the Emergent Behaviors of
Self-Organized Agent Communities

Shufeng Wang
National Laboratory for Parallel and Distributed
Processing, Changsha, 410073, China
shufeng.wang@gmail.com

Abstract—Emergent behavior is an essential feature in
multi-agent systems and plays a significant role in the applica-
tions of agent technology. Because of the huge gap between
individual agents’ behaviors and those of the whole system,
specifying and reasoning about emergent behaviors are noto-
riously difficult. Simulation has been the essential method to
study emergent behaviors in multi-agent systems. In this paper,
we report an experimental study of the emergent behaviors of
self-organized agent communities, in which emergent behaviors
play a crucial role. The experiments confirmed the results of a
theoretical analysis of agent communities using a formal theory
called Scenario Calculus. It further provided insight into the
dynamic features of the system that were very difficult to ob-
tain by using formal logic, such as the speed of convergence to
the emergent states and the relationships between the conver-
gence time and various parameters of self-organized agent
communities systems.

Keywords: Agent communities, Emergent behavior, Simulation,
Reachability, Stability, Convergence

I. INTRODUCTION

Emergent behavior is a common phenomenon in complex
systems. In both natural and artificial complex systems, in-
dividual components perform their actions and make deci-
sions based on local information, while the whole system
demonstrates properties and behaviors that have strong
global features [1]-[4]. Ant colony is a typical example in
nature which consists of a number of ants that act with very
simple rules while the whole colony can accomplish com-
plex tasks that in some cases far exceed a single ant’s capa-
bility [5]. The Amalthaea system developed by MIT Media
Lab is [6], a multi-agent system for web information re-
trieval and filtering [6]. It consists of a collection of rela-
tively simple agents that each of them only retrieves or se-
lects one particular type of information on the web. How-
ever, when organized into an evolutionary ecosystem, they
can provide information that suits a user’s interests even
when the user’s interests are changing from time to time.
Similar emergent behaviors also exist in resource allocation
in a distributed environment [7], e-commerce (such as online
auctions), peer-to-peer network [8], and many other applica-
tion areas. However, in the development of software for
complex systems, it is very difficult to understand how the
system as a whole will behave because there is a huge gap
between individual’s autonomous behaviors and those of the
whole system. Therefore, understanding emergent behaviors
is essential to the development of multi-agent systems.

Hong Zhu
Department of Computing, Oxford Brookes Univ.,
Oxford, OX33 1HX, UK
hzhu@brookes.ac.uk

In general, there are two approaches to gain insight into
such emergent behaviors [9]. The first is to conduct experi-
ments and to simulate the system and observe the emergent
behaviors. This approach has been widely used in the re-
search on emergent behaviors [5], [10], [11]. Simulation
tools and environments such as StarLogo [12] have been
developed. However, it is difficult to cover all possible sce-
narios and operating conditions of multi-agent systems.
Thus, results obtained are less conclusive because they are
more or less empirical laws. Existing multi-agent simulation
tools such as StarLogo provide strong supports to the design
of behavior rules of the agents in complex systems and the
visual representation of the evolution processes to demon-
strate their emergent behaviors. However, they support little
about repeated experiments with random initial states of the
systems with different distributions and the automatic col-
lection and statistical analysis of data. The second approach
is to analyze the system with formal theory and methods.
Theoretically speaking, formal analysis based on sound
theories can provide more conclusive results than empirical
laws. However, this approach has only started recently [13].
Few formal theories and methods have been proposed in the
literature because specifying and reasoning about emergent
behaviors are notoriously difficult. Few formal theories and
methods have been proposed in the literature. Among the
very few theories is the Scenario Calculus recently proposed
in [13]. It is desirable to conduct experiments to validate the
theory by examining whether the results of theoretical
analysis match the reality. Moreover, simulation experi-
ments can also explore some of the intrinsic features of
complex systems that are currently unable to obtain by ap-
plying formal methods.

Agent communities are typical multi-agent systems in
which emergent behaviors play a crucial role. Community is
a common phenomenon in natural ecosystems and human
societies. With the wide usage of Internet, it can easily bring
people or entities together situated at distributed locations to
form kinds of virtual communities. The considerably in-
creasing dimensions and complexity of contemporary Inter-
net-based communities require a substantial amount of
management work to organize and administrate proper
groups in a large-scale distributed environment. A series of
computational techniques have been proposed to automate
this process. A common method to organize communities is
to cluster entities according to their similarity [14], [15].
Because this kind of method employs pre-defined features
and computing models to create communities, it involves a

significant amount of computation for constructing and
re-clustering in dynamic situations. Communities can also be
formed according to the associated links between entities
[16], [17]. This approach needs a full acknowledgement of
the associations between entities to perform community
formation. This prerequisite sometimes makes the commu-
nity formation inapplicable to achieve in large-scale and
dynamic applications. The self-organizing communities ap-
proach proposed by Wang in [18] presented a novel solution
to form communities in a decentralized way. It takes the
advantage of emergent behaviors of autonomous agents to
form communities. It was proven that the average formation
time of self-organized communities may increase linearly
with the log of the number of users and also linearly with the
number of middle agents [19].

A formal theory called Scenario Calculus for the specifi-
cation of and reasoning about emergent behaviors was pro-
posed in [13] based on the SLABS language for the formal
specification of multi-agent systems [13], [20]—[23]. In [24],
it is applied to the study of the emergent behaviors in a vari-
ety of self-organized agent communities, and in particular
the autonomous formation of the communities. It further
extended the work reported in [18] and examined a variety
of subtle variants of the algorithm proposed and studied in
[19]. In particular, it formally proved the logical properties
of the reachability of community formation, the stability of
the communities, and the convergence of self-organized
communities for the variants of the algorithms and their
combinations.

In this paper, we will apply the experiment method to the
study of the emergent behaviors of self-organized agent
communities. The goals of the study are two-fold. First, the
experiments are aimed at validating the results obtained in
our previous theoretical analysis. The second is to explore
the features of community formation that are difficult to
obtain by theoretical analysis but suitable for experimental
study. Such features include the times required by an agent
community to reach an emergent state from various initial
settings, and the relationships between the convergence time
and various parameters of the self-organized agent commu-
nity systems. To achieve these goals, an experiment envi-
ronment is developed to enable us to perform systematic
repeated executions of agent community systems and to col-
lect and analyze data efficiently.

The remainder of the paper is organized as follows. Sec-
tion 2 is an overview of self-organized agent community.
Section 3 describes the experiment environment and pre-
sents experiment results. Section 4 concludes the paper with
a summary of the results and a discussion of future work.

II. SELF-ORGANIZED AGENT COMMUNITY

This section describes the structure and operations of
self-organized agent communities. A formal specification of
the system can be found in [24].

1. Structure and Operation

In a system of self-organized agent communities, there
are two types of agents: members and organizers. Each or-
ganizer organizes a community and keeps a registry of the

members of its community. Each member is registered only
to one organizer at any time. Each member is interested in a
particular category of knowledge and has certain knowledge
on a set of specific topics of the category.

A member R may raise a question to its organizer G
about a specific topic of its interested category. The organ-
izer G will then search for a member in its community who
knows this topic to answer the question. If such a member S
is found, the organizer will introduce S to R. And the mem-
ber S will then respond to the query. If the organizer G
cannot find such a member within its community, it will ask
for help from another organizer H by making a query on the
topic. If the organizer H finds a member T in its community
who knows the topic, it will pass T’s identity to organizer G.
The organizer G will then introduce T to R, and T will then
answer R’s question.

At any time, any member can raise a question on any
topic of its interested category as long as it doesn’t know. It
is possible that the same member asks the same question
many times and the questions may cover all topics in any
order. An organizer can search a member within its commu-
nity and query another organizer also in random order.

The performance of an organized community heavily de-
pends on the configuration that members are grouped in
communities. It is more efficient if a question raised by a
member can be answered within the community. If commu-
nities can reconfigure themselves so that any member can
get the answers to its questions within its own community,
the overall performance of the system will be the best.

There are various ways that communities can reconfigure
through members’ autonomous behaviors in moving from
one community to another without global information in
order to achieve optimized efficiency. Assume that, at the
beginning, a member with some knowledge of a category is
registered to an organizer at random. Therefore, the effi-
ciency of the system cannot be guaranteed. Reconfiguration
of the communities is necessary, which is achieved by
members changing their memberships to the communities. A
member moves from one community to another by deregis-
tering from one organizer and then registering to another. In
this model, members are autonomous to decide when or
where to move, which is not controlled by the organizers or
the system.

A member will make a decision about whether to move to
another community according to the community’s attraction
to it when it communicates with a member of the commu-
nity. These situations include: when a member as a requester
raises a question which can not be answered locally by any
member of its community, but can be answered by a mem-
ber of another community; or when a member as a server
answers a question raised by a member outside its commu-
nity. In other words, after a question is answered both the
requester and the server will make a decision about whether
to move. The community’s attraction can be derived from
the community itself or some member within.

Suppose that a member R raises a question on a topic,
which is not known by any member of its community. While
a member T of another community provides a successful
service of answering R’s question. Then, members T and R

will try to be in the same community. This can be achieved
by either member T moving into member R’s community or
member R moving into member T’s community. A simple
rule to decide which member will move is that the one who
is in the more attractive community will stay while the one
who is in the less attractive community will move. When the
agents calculate a community’s attraction in the same way, it
is certain that one of them will stay and the other will move,
thus they will be together after the actions. The situation is
more complicated if agents calculate the attraction differ-
ently. In such cases, it may happen that both of the requester
and the server move to the other community simultaneously,
thus they may still be separated after taking the actions. In
all cases, the question is whether agents’ moving between
communities will lead to an optimal configuration.

2. Varieties of Agent Communities

According to the different definitions of the community’s
attraction from a member’s point of view, four types of
members were studied in [24].

— CAKM (Community’s amount of knowledge of the cate-
gory): The agent measures a community’s strength of at-
traction according to the total amount of knowledge of its
interested category hold by the agents registered to the
community.

— CASM (Community’s number of agents in the specific
category): The agent measures a community’s strength
of attraction according to its the number of agents that
have the same category.

— PARM (Personal amount of knowledge of the service
provider): The agent measures a community’s strength of
attraction as according to the amount of knowledge that
the specific service provider has in the category.

— PAEM (Personal attribute irrelevant to its knowledge):
The agent measures a community’s strength of attraction
according to an attribute of the specific service provider,
where the attribute is irrelevant to its knowledge.
Therefore, we have five types of systems.

— CAKM: Systems only contain CAKM members.

— CASM: Systems only contain CASM members.

— PARM: Systems only contain PARM members.

— PAEM: Systems only contain PAEM members.

— Hybrid: Systems contain several types of members.

3. Emergent Behavior

An emergent behavior of a system of organized commu-
nities is that the members of the communities will gradually
grouped in a way so that members of the same category
come together in one group and are registered to the same
organizer. For the sake of simplicity, in the sequel, a com-
munity that is organized by organizer G will be referred to
as community G.

A. Notions and notations

In order to define clearly the emergent behavior, we first
introduce some notions and notations.

At time moment t, the population of the members of a
category C in a community G is denoted by P°(C). The

overall population of the members of a category C in the
whole system is denoted by Py (C).

At time moment t, the domain of knowledge in_category
C in a community organized by G is denoted by D;®(C). The
domain of knowledge of category C in the whole system is
denoted by Dy (C).

At time moment t, a community organized by G is com-
plete with respect to the knowledge of category C, if and
only if D,°(C)= D (C).

A world of organized communities is a closed world, if
its population does not change. A category C of knowledge
is non-trivial, if Dy (C) #@.

B. Emergent states and their properties

The result of a process of an agent community’s emer-
gent behavior is that the system reaches a state in which the
operation of the system is optimized. In [24], two emergent
states of self-organized agent communities were recognized
and studied. They are defined as follows.

The state of a world of organized communities is mature,
if for every non-trivial category C of knowledge, there is a
complete community with respect to C. And we say the
categories are mature t0o.

The state of a world of organized communities is optimal,
if every member is in a complete community of its category.

A system may demonstrate different dynamic properties
of emergent behaviors. An emergent state is called reach-
able if for every execution, the system will reach the emer-
gent state if execute the system in a time long enough. The
state is called stable, if the system will stay in the state
whenever it reaches the state. If the state is reachable and
stable, we say that the state is convergent. In [24], the prop-
erties of the emergent states in five different agent commu-
nity systems were investigated. The results are summarized
in Table 1, where Y means the emergent state is reachable
(or stable) and x means the emergent state is not always
reachable (or stable).

TABLE 1
RECURRENCE PROPERTIES OF EMERGENT BEHAVIORS
MATURITY OPTIMALITY
Reachable Stable Reachable Stable
CAKM v v N N
CASM \/ x N N
PARM v x x N
PAEM v x x N
Hybrid x x x N

III. THE EXPERIMENTS

In this section, we report the experiments that confirmed
the theoretical results and the main findings of the experi-
ments that were unknown before.

1. Experiment Environment

To enable the experiments, we developed an experiment
environment to simulate the execution of agent communities.
We also provide a graphical user interface tool to setup
simulation experiments and collect data for statistical analy-
sis. Figure 1 is the snapshot of its interface.

i sl a2 BEE
|[[Chart | Table | Statistics | Ory# Report | Member# Report | Cat# Report | Cat Size# Report
)
oo [100
a0
o0
a
=
o E) E) o S 00
simulationtio
[Manual " system Type: ~organizer #: 10 category #115 © Heration Times:[100 RAND |
oid | v | member #[100 Category Size: [20 ® Simulation Times:|100 | [=

Figure 1. Interface of the experiment environment

As shown in Figure 1, the experiments take four parame-

ters as the input to the agent community simulator:

— k: the number of organizers,

— m: the total number of member agents in the system,
— c: the number of categories of knowledge, and

— st the size of each category of knowledge.

For each given set of parameters, an initial setting of the
agent communities is generated at random according to the
uniform distribution. Thus, each agent is initially assigned at
random with a category, a non-empty set of topics and an
organizer. The randomly generated settings are non-trivial in
the sense that every organizer has at least one member and
every category has at least one member. The following con-
straints are also imposed on the parameters unless explicitly
stated otherwise: 2<k<100, 2<m<100, 1<c<100, c<m,
1<s<70. Figure 2 is a screen snapshot showing an initial
setting on the left and the setting after several iterations in an
execution of the same system on the right.

(2) 2lE elanipal i V2 - [B]x]
Chart ” Table | Members i
+# Original setting || Final setting at teration 8 =]
Frimar 16 16:42:31 GMT 2007 #FriMar 16 16:42:31 GMT 2007
#8 Calegories, 9 Organizers, 65 Members #2 Calegaries, 9 Organizers, 86 Members
cateatd: [k, K2, K3, kd] cat catd: 1, K2, K3, k]
cateats: 1, k2] cateats: [0, k2]
cateat2: K1, K2, K3, ke, K5, kB, K7, K, k9, K1) [eateatz: k1, k2, k2, ke, k8, K6, K7, ke, K, kO] =
catoatd: [k, K2) satoatd: K1, k2]
cateat?: [, k2, k3, kd, k5, kB, K7, kB, k2, k10, k11, k12, k1 3, k14, cateat?: [, K2, K3, kd, k5, kB, K7, k8, K, k10, k11, k12, ki3, K14,
K15, K16, k17, K18, k18, k20] KI5, k1B, KIT, K18, k19, k20]
cateats: [, K2, K3, ke, k5, kel satcatf K1, k2, k3, ke, K5, kb)
cateatd: [k, K2, K3, kd, ksl b cateatd: k1, k2, k3, k4, k] &
cateat!: k1, k2, K3, kd, k5, kB, kT, k8, k8, k10, k11, k13, k13, K14, catcatt: [, k2, k3, ke, k5, kB, kT, k8, k8, k10, k11, k13, k13, k14,
K15, K16, K171 KI5, K16, K17]
org orgd org orgd
PARM M4 4 cats 2[K1, k2] PAEM M9 caté 1 k4, ki)
PARM 38 Gath 5 (K3, k6, k1, k. k2] PARM M & ¢35 2 [k1, k2]
PARN M55 catd 1 [k5] PAEM m1 catt 4 16, k3, k12, k1, k13, K15, k9, ki1, k5, k2, k7]
PARN m23 cats 2 [k1, k2] PARM m38 cath 5 [k3, k6, ki, ks, k2]
PARM M40 catl 7 (K10, K14, k8, k17, K11, ks, k2] PARM M23 cats 2 [k1, k2l
CAKM md eatt 11 <10, k14, kB, k17, K16, kd, k3, k12, K13, K11, k8] PARM m34 catd 1 (k]
CAKN mM23 cat2 4 [kK10, ki, k6, k1] CAKM M8 cat! 11 [k10, k14, k8, K17, K16, kd, k3, kK12, K13, k11, k8]
CAKI M52 catl 8 KA, k18, k3, ki, k6, k1, k11, k2]
org org
PAEM mi cati 4 16, k3, k12, k1, K13, k15, k8, ki1, k5, k2, k7] org org1
PARM M49 cat3 2[K1, k2] PAENM mS0 cat3 0 (k2]
PARM M1 ¢3t8 1 [KI] CAKM mM12 cat3 1 (k1]
PARN m30 catd 2 k1, k2] PARM mda cat3 2 [k1, k2]
CASM m4B catd 5 [kK10, ki, kB, k2, k7]
oty org3
org org3 PARM m63 cat3 1 k1]
CAKNM m3 catz 1 (k1] I~ ||PARM m51 catg 1 1) =
[Manual _ system Type: - organizer #: 10 Category #:[15 ® Neration Times:|s Ranp |
[_Fie |luoria [>| Member #[100 Category Size: 20 © Simulation Times: 1 >

Figure 2. Example of initial setting and final setting

The user can select one of the five types of agent com-
munity system to perform an experiment. Two basic types of
experiments are supported by the tool. The first is to run a

system for once and to collect the data of the execution and
display them in various windows. The second is to repeat the
execution on an initial setting for a number of times and to
collect the data, display the data in a graphic user interface
and perform statistical analysis of the data.

In each execution, the algorithm is run for a certain num-
ber of iterations of user’s choice. In each iteration, there is a
random number of members to raise questions, get their
answers if exist, and then to make movement according to
the members’ behavior rules. Each member only raises one
question in one iteration cycle. After each iteration cycle, the
system’s global state is checked to see if it is in an emergent
state of mature or optimal. Figure 1 is the screen snapshot in
the middle of an execution for repeating simulation for 100
times that displays the statistical data.

2. Experiment Results

Using the tool, we systematically carried out a large
number of simulations of agent communities with a wide
range of parameters. The experiments not only validated the
results of our previous theoretical analysis, but also enabled
us to observe new phenomena of agent communities. The
following reports the main findings.

A. Validation of theoretical results

To validate the theoretical results [24] summarized in
Table 1, we set a large number of iterations for each execu-
tion of the system. Initial settings were generated for ran-
domly selected parameters in the following ranges: 2<k<100,
2<m=<100, 1=c<30, 2<s<30 and the number of iterations in
each execution n=500. For each of the five types of agent
community systems, a total of 1000 initial settings were gen-
erated at random. The system on each initial setting was run
repeatedly for 100 times.

The experiments confirmed the theoretical analysis re-
sults in the following sense.

—For an emergent state that is reachable in a type of agent
community system, it is confirmed by experiments if and
only if in all runs of the agent community system on every
initial setting the system is in the emergent state after some
iterations.

—For an emergent state that is not always reachable, the
property is confirmed if and only if there is an initial set-
ting on which there is at least one run of the agent commu-
nity system that does not reach the state in all iterations
within the set number of iterations.

—For an emergent state that is stable, the property is con-
firmed by the experiments if and only if for all initial set-
tings and every execution of the agent community system
on the setting the system reached the state after a certain
number of iterations and the system is in the state for all
iterations after that in the same execution.

—For an emergent state that is not stable, the experiments
confirm the property if and only if there is at least one ini-
tial setting and at least one execution of the agent commu-
nity system on the setting such that the system reaches the
state at a certain iteration and for at least one iteration after
that the system is not in the state in the same execution.

It is worth noting that, the experimental confirmation of
the properties is not as conclusive as the theoretical proofs
for reachability, unreachability, and stability. Only
non-stability can be conclusively confirmed. However, we
can gain a high confidence of the results from a large num-
ber of randomly generated initial settings and a large number
of random executions of the system on each initial setting to
a large number of iterations.

B. Distributions of convergence time

A question that rose in the experiments reported above is
that how many iterations one would consider to be large
enough. This question was answered by the second group of
experiments that aims to discover how fast an agent com-
munity system converges to an emergent state. The number
of iterations that a system needs to reach an emergent state
represents the time that the system needs to reach the state. It
is called the convergence time in the sequel.

18 T T T T T T

16 —»— 100 Experiments

14 + —— 1000 Experiments -

12

10 |
B -

% of experiments

[S R SO

0 5 10 15 20 25 30 35
number of terations

(a) Maturity convergence time

—=— 100 Experimerts
—#— 1000 Experiments |

% of experimerts
O = k3 W k= D@m= 0
T

O B
—
[)
(=)

numker of terations
(b) Optimality convergence time

Figure 3. Distributions of convergence time on the same initial
setting with parameters k=50, m=50, ¢=20, s=30.

Figure 3 shows the distributions of convergence time for
the mature and optimal emergent states in part (a) and (b),
respectively. In the figure, the blue line represents the results
obtained from 100 experiments, while the red line represents
1000 experiments. The x axis is the number of iterations the
system needs to converge; the y axis is the percentage of the
number of experiments in which the system converges to the
emergent state using the number of iterations. As shown in
these figures, there is no significant difference in the data
obtained from 100 experiments and from 1000 experiments.
This is confirmed in statistical data shown in Table 2.

When the systems are run on different initial settings, the
same distributions of the average convergence time were
observed as shown in Figure 4, where the x axis represents
the average iterations in which a system converges to the
emergent state, and the y axis is the same as in Figure 3. The
overall average convergence time for random initial settings
with the same parameters of k=50, m=50, c=20, s=30 is
presented in Table 3.

TABLE 2
AVERAGE CONVERGENCE TIME ON FIXED INITIAL SETTING
Maturity Optimality
Experiments | Average | Standard | Average | Standard
Times Value Deviation Value Deviation
100 9.99 18.515 20.820 213.280
1000 9.37 16.520 20.972 267.900
Relative 3.0% 57% | 04% | 11.4%
Divergence
TABLE 3
AVERAGE CONVERGENCE TIME ON RANDOM INITIAL SETTINGS OF FIXED
PARAMETERS
Maturity Optimality
Experiments | Average Standard | Average Standard
Times Value Deviation Value Deviation
100 10.848 13.852 11.681 13.693
1000 10.607 12.575 11.450 14.012
Relative | 1o, 4.8% 1.0% 2.1%
Divergence
25 T .J'., T T T T T T
|| —#— 100 Experiments
£ 20 ¢ [—— 1000 Experiments 7|
[E]
Eqst
]
&
w10
&
5
[u]

0 5 10 15 20 25 a0 35 40
number of terations

(a) Average maturity convergence time

25 T T T T T T T
—=— 100 Experiments

—=— 1000 Experiments 7]

20

% of experiments

5 10 15 20 25 30 35 40
number of terations

(b) Average optimality convergence time

Figure 4. Distribution of average convergence times on randomly
generated different initial settings of the same parameters with
k=50, m=50, c=20, s=30.

To explore the relationships between convergence time
and various parameters of agent communities, we carried out
further experiments with CAKM communities. The results
are reported below.

C. The effect of number of organizers

In the experiments that aim at understanding the effect of
the number of organizers on convergence speed, we fixed
the parameters m (the number of members), € (the number
of categories) and s (the size of each category). When k>m,
there are organizers empty, which has no effect on the op-
eration of the system. Thus the parameter k (number of or-
ganizers) varied from 2 to m. For each value of k, 100 initial
settings were generated at random with the uniform distribu-
tion, and on each initial setting the agent community system
was executed repeatedly for 100 times. The average conver-
gence time was then calculated.

1.8 T
16
141
121
1t
0ar
06
04r
02+

|:| 1 1 1 1
a0 20 40 &0 a0 100 120

number of organizers

number of terations

(a) Average maturity convergence time

25 T T T T T

20+

15 +

number of terations

|:| s 1 1 1 1 1
0 20 40 60 a0 100 120

number of organizers

(b) Average optimality convergence time

Figure 5. Convergence time for varying number k of organizers
with fixed m=100, c=1 and s=30.

The particular parameters used in this group of experi-
ments were: m=100 members, c=1 category and the size of
each category s=30. The number of iterations in each execu-
tion was set as 500, which according to the results of above
experiments is large enough for the agent community system
to converge. The results are shown in Figure 5.

D. The effect of number of members

To study the effect of the number of members on con-
vergence time, we fixed the parameters of k (number of or-
ganizers), C (the number of categories) and s (the size of

each category) and let the parameter m (the number of
members) vary.

The particular parameters used in the experiments were:
k=100 organizers, c=1 category and the size of each cate-
gory $=30. The number of iterations set in the experiments
was 500. Similar to the experiment reported in sub-section C,
100 initial settings were generated at random and on each
initial setting the CAKM agent community system was exe-
cuted for 100 times and average convergence time were
calculated.

It is worth noting that an organizer that is initially not as-
signed with any member has no effect on the operation of
the system. In order to minimize the effect of empty initial
organizers on statistical results, two strategies were used in
the random generation of the initial settings according to the
value of m. When m>k, there were at least one member ini-
tially assigned to each organizer. When msk, each organizer
was initially assigned with at most one member.

G
3
4
3
2

number of terations

sk LTl sk LTl

40 50 60 7O 80 90 100

o 10

20 30
number of members

Figure 6. Average maturity convergence time for varying number
m of member with fixed k=10, c=1 and s=30.

The experiments demonstrated that, see Figure 6, for the
maturity emergence state, when m>k, the convergence time
decreases as the number m of members increases. When
m<k, the number of non-empty organizers is equal to the
number m of members. As shown in Figure 6, the conver-
gence time first decreases, and then increases. This phe-
nomenon was observed with surprise and difficult to explain.
We believe it is the result of other factors, such as the inter-
action with the other parameters like category number and
size.

20 T T T T T T
18
16
14
12
10

number of terations

4 1 1 1 1 1 1
0 20 40 60 a0 100 120 140

number of members

Figure 7. Average optimality convergence time for varying number
m of members with fixed k=10, c=1, and s=30.

For the optimality emergence state, the experiments
showed Figure 7 that when m>k, with the number m of
members increasing, the convergence time first increases,
and then decreases. When m<k, with the number m of
members increasing, the convergence time for the optimal
state first decreases and then increases. This is in the same
pattern of the convergence time for the mature state.

E. The effect of number of categories

In the experiments to investigate the effect of the number
of categories on convergence speed, we varied the number ¢
of categories while kept the other parameters fixed. The
fixed parameters were: k=100 organizers, m=100 members
and the size of each category s=30. When c2m, there are
categories empty, which has no effect on the operation of the
system. Thus, the variable c varied in the range of 1<c<m in
this set of experiments. The number of iterations was also
500. The results are shown in Figure 8 and Figure 9.

Figure 8 shows that for the maturity emergence state,
with the number C of categories increasing, the convergence
time first increases, and then decreases.

14 T T T T T T T T T
12 7
10 -

number of terations
oo

0 10 20 30 40 S0 B0 FO B0 90 100
number of categories

Figure 8. Average maturity convergence time for varying number ¢
of categories with fixed k=100, m=100 and s=30.

25 T T T T T T T T T

20 F .

15 F .

10 A

5 - -

number of terations

|:| 1 1 1 1 1 1 1 1 1
o0 10 20 30 40 50 60 70O B8O 90 100

number of categories

Figure 9. Average optimality convergence time for varying number
¢ of categories with fixed k=100, m=100 and s=30.

Figure 9 shows that with the number c of categories in-
creasing, the convergence time for optimality emergence
state first decreases sharply, then increases gently, and at last
decreases sharply again.

F. The effect of the size of categories

In the experiments about the size of categories, we varied
the size of categories s while kept other parameters fixed,
which were k=100 organizers, m=100 members, C=1 cate-
gory. The number of iterations was 500 again.

The convergence time for both maturity and optimality
emergence states increases with the size of the category in-
creasing, as shown in Figure 10, although the speed is dif-
ference.

The above experiments were also repeated with smaller
values of the parameters. We found that the curves of
smaller parameters are not as smooth as the figures above.
However, they are in the same pattern as those presented in
this paper.

3 T T T T T T

251
2t
1571
1t

number of terations

05

|:| i 1 1 1 1 1 1
a0 10 20 30 40 a0 &0 70

size of category

(a) Average maturity convergence time

number of terations

|:| 1 1 1 1 1 1
0 10 20 30 40 a0 60 7a

size of category

(b) Average optimality convergence time

Figure 10. The average convergence time for varying values of
category size s with fixed k=100, m=100 and c=1.

IV. CONCLUSION

In this paper, we presented an experimental study of the
emergent behaviors of self-organized agent communities,
which have been analyzed by using a formal theory called
Scenario Calculus. The experiments demonstrated that ex-
perimental study can play a complimentary role to formal
methods rather than to replace one by the other. First, al-
though, theoretically speaking, the experiment results are not
100% conclusive that formal analysis can achieve, we can
use the experiment method to validate the results of theo-
retical analysis with high confidence. This also tests the im-
plementation of the simulation against the formal specifica-
tion of the multi-agent emergence system. In particular, this
paper confirmed the correctness of analysis of the properties

of the emergent behaviors of five variants of self-organized
agent communities systems.

Second, experiment method can provide insight into the
complicated dynamic emergent behaviors that are very hard
to achieve through formal analysis. In this paper, we sys-
tematically studied the convergence speed in terms of the
time an agent community needs to reach an emergent state.
The distribution of convergence time and the effects of
various parameters on the convergence time were system-
atically investigated. Table 4 summarizes the main findings
of the experiments, where 1 means increasing and | means

decreasing.
TABLE 4
RELATIONSHIPS BETWEEN SYSTEM PARAMETERS AND CONVERGENCE TIMES

Parameter Condition C01.1vergence T.1me.
Maturity Optimality
Organizers # 1 t)
m<k V1 v
Members # 1
m>k ! t
Categories # 1 t Vi
Size of category 1 t)

For the future work, we will further investigate more
complicated types of agent community systems as well as
other emergent systems. In general, we are investigating
how experiment method can be better combined with formal
analysis method in the development of complex system and
their emergent behaviors, for example, to discover the in-
trinsic laws of emergent behaviors and to facilitate the for-
mal specification and reasoning about emergent behaviors.
Another topic that worth further study is to prove the ex-
perimental results based on a probabilistic mathematical
model of agent communities.

ACKNOWLEDGEMENT

The work reported in the paper is partially supported by
the Basic Research Program (973 Program) of China Minis-
try of Science and Technology under grant 2005CB321802.

REFERENCES

[1] Holland, J. H.: Emergence: From Chaos to Order. Oxford
University Press, 1998.

[2] Johnson, S.: Emergence. Penguin Books, 2001.

[3] Fromm, J.: Types and Forms of Emergence. Arxiv preprint
nlin.AO/0506028, arxiv.org, 2005. Available online at URL:
http://arxiv.org/ftp/nlin/papers/0506/0506028.pdf, accessed on
19 March 2007.

[4] Fromm, J.: The Emergence of Complexity. Kassel University
Press, 2004.

[5] Dorigo, M., Stutzle, T.: Ant Colony Optimization. The MIT
Press, 2004.

[6] Moukas, A.: Amalthaea: information discovery and filtering
using a multi-agent evolving ecosystem. Journal of Applied
Artificial Intelligence, 11(5), pp.437-457, 1997.

[7] Walsh, W.E., Wellman, M.P., Wurman, P.R., MacKie-Mason,
J.K.: Some economics of market-based distributed scheduling.
Proc. of 18th Int’l Conf. on Distributed Computing Systems,
pp. 612-619, 1998.

[8] Wang, F., Sun, Y., Ghanea-Hercock, R.: Synaptic connection
autonomic network. Proc. of the EURESCOM Summit on
Ubiquitous Services and Applications, pp. 25-34, 2005.

[9]1 Fromm, J.: On Engineering and Emergence. Arxiv preprint
nlin.AO/0601002, arxiv.org, 2006. Available online at URL:
http://arxiv.org/abs/nlin.AO/0601002, accessed on 19 March
2007.

[10] De Wolf, T., Samaey, G. and Holvoet, T.. Engineering
self-organising emergent systems with simulation-based scien-
tific analysis. Proc. of the Fourth Int’l Workshop on Engi-
neering Self-Organising Applications, Brueckner, S. and Di
Marzo Serugendo, G. and Hales, D. and Zambonelli, F. (eds.),
Universiteit Utrecht, 2005.

[11]De Wolf, T. Samaey, G. Holvoet, T. Roose, D.: De-
centralised autonomic computing: analysing self-organising
emergent behaviour using advanced numerical methods. Proc.
of 2" Int’l Conf: on Autonomic Computing, pp. 52-63, 2005.

[12] StarLogo, http://education.mit.edu/starlogo/, accessed on 30
May, 2007.

[13] Zhu, H.: Formal reasoning about emergent behaviors of MAS.
Proc. of 17" Int’l Conf. on Software Engineering and Knowl-
edge Engineering, pp. 280-285, 2005.

[14] Duda, R.O., Hart. P.E.: Pattern Classification and Scene
Analysis. John Wiley & Sons, 1973.

[15]Lu S.Y., Fu, K.S.: A sentence-to-sentence clustering procedure
for pattern analysis. IEEE Transactions on Systems, Man and
Cybernetics, 8, pp.381-389, 1978.

[16] Iamnitchi, A., Ripeanu, M., Foster I.: Small-world file-sharing
communities. INFOCOM 2004, Hong Kong, 2004.

[17] Babaoglu, O., Meling, H., Montresor, A.: Anthill: A frame-
work for the development of agent-based peer-to-Peer systems.
Proc. of 22" Int’l Conf. on Distributed Computing Systems, pp.
15, 2003.

[18] Wang, F.: Self-organising communities formed by middle
agents. Proc. of 1" Int’l Joint Conf. on Autonomous Agents
and Multi-Agent Systems, pp. 1333-1339, 2002.

[19] Cid-Sueriro, J., Wang, F.. A scalability analysis of
self-organizing agent communities. Proc. of Int’l Conf. on
Learning, 2002.

[20] Zhu, H.: A formal specification language for agent-oriented
software engineering. Proc. of 2" Int’l Joint Conf. on
Autonomous Agents and Multi-Agent Systems, pp.1174-1175,
2003.

[21]1Zhu, H.: SLABS: A formal specification language for
agent-based systems. Int’l Journal of Software Engineering
and Knowledge Engineering, 11(5), pp.529-558, 2001

[22] Zhu, H.: Formal specification of evolutionary software agents.
Proc. of Int’l Conf. on Formal Engineering Methods, LNCS
2495, pp.249-261, 2002.

[23] Zhu, H.: The role of caste in formal specification of MAS.
Proc. of Pacific Rim Int’l Workshop on Multi-Agents, LNCS
2132, pp.1-15, 2001.

[24] Zhu, H., Wang, F.: Formal analysis of emergent behaviors of
autonomous agent communities in scenario calculus. Submit-
ted to Journal of AAMAS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

