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Abstract—Emergent behavior is an essential feature in 

multi-agent systems and plays a significant role in the applica-
tions of agent technology. Because of the huge gap between 
individual agents’ behaviors and those of the whole system, 
specifying and reasoning about emergent behaviors are noto-
riously difficult. Simulation has been the essential method to 
study emergent behaviors in multi-agent systems. In this paper, 
we report an experimental study of the emergent behaviors of 
self-organized agent communities, in which emergent behaviors 
play a crucial role. The experiments confirmed the results of a 
theoretical analysis of agent communities using a formal theory 
called Scenario Calculus. It further provided insight into the 
dynamic features of the system that were very difficult to ob-
tain by using formal logic, such as the speed of convergence to 
the emergent states and the relationships between the conver-
gence time and various parameters of self-organized agent 
communities systems. 
 
Keywords: Agent communities, Emergent behavior, Simulation, 
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I. INTRODUCTION 
Emergent behavior is a common phenomenon in complex 

systems. In both natural and artificial complex systems, in-
dividual components perform their actions and make deci-
sions based on local information, while the whole system 
demonstrates properties and behaviors that have strong 
global features [1]−[4]. Ant colony is a typical example in 
nature which consists of a number of ants that act with very 
simple rules while the whole colony can accomplish com-
plex tasks that in some cases far exceed a single ant’s capa-
bility [5]. The Amalthaea system developed by MIT Media 
Lab is [6], a multi-agent system for web information re-
trieval and filtering [6]. It consists of a collection of rela-
tively simple agents that each of them only retrieves or se-
lects one particular type of information on the web. How-
ever, when organized into an evolutionary ecosystem, they 
can provide information that suits a user’s interests even 
when the user’s interests are changing from time to time. 
Similar emergent behaviors also exist in resource allocation 
in a distributed environment [7], e-commerce (such as online 
auctions), peer-to-peer network [8], and many other applica-
tion areas. However, in the development of software for 
complex systems, it is very difficult to understand how the 
system as a whole will behave because there is a huge gap 
between individual’s autonomous behaviors and those of the 
whole system. Therefore, understanding emergent behaviors 
is essential to the development of multi-agent systems.  

In general, there are two approaches to gain insight into 
such emergent behaviors [9]. The first is to conduct experi-
ments and to simulate the system and observe the emergent 
behaviors. This approach has been widely used in the re-
search on emergent behaviors [5], [10], [11]. Simulation 
tools and environments such as StarLogo [12] have been 
developed. However, it is difficult to cover all possible sce-
narios and operating conditions of multi-agent systems. 
Thus, results obtained are less conclusive because they are 
more or less empirical laws. Existing multi-agent simulation 
tools such as StarLogo provide strong supports to the design 
of behavior rules of the agents in complex systems and the 
visual representation of the evolution processes to demon-
strate their emergent behaviors. However, they support little 
about repeated experiments with random initial states of the 
systems with different distributions and the automatic col-
lection and statistical analysis of data. The second approach 
is to analyze the system with formal theory and methods. 
Theoretically speaking, formal analysis based on sound 
theories can provide more conclusive results than empirical 
laws. However, this approach has only started recently [13]. 
Few formal theories and methods have been proposed in the 
literature because specifying and reasoning about emergent 
behaviors are notoriously difficult. Few formal theories and 
methods have been proposed in the literature. Among the 
very few theories is the Scenario Calculus recently proposed 
in [13]. It is desirable to conduct experiments to validate the 
theory by examining whether the results of theoretical 
analysis match the reality. Moreover, simulation experi-
ments can also explore some of the intrinsic features of 
complex systems that are currently unable to obtain by ap-
plying formal methods.  

Agent communities are typical multi-agent systems in 
which emergent behaviors play a crucial role. Community is 
a common phenomenon in natural ecosystems and human 
societies. With the wide usage of Internet, it can easily bring 
people or entities together situated at distributed locations to 
form kinds of virtual communities. The considerably in-
creasing dimensions and complexity of contemporary Inter-
net-based communities require a substantial amount of 
management work to organize and administrate proper 
groups in a large-scale distributed environment. A series of 
computational techniques have been proposed to automate 
this process. A common method to organize communities is 
to cluster entities according to their similarity [14], [15]. 
Because this kind of method employs pre-defined features 
and computing models to create communities, it involves a 



significant amount of computation for constructing and 
re-clustering in dynamic situations. Communities can also be 
formed according to the associated links between entities 
[16], [17]. This approach needs a full acknowledgement of 
the associations between entities to perform community 
formation. This prerequisite sometimes makes the commu-
nity formation inapplicable to achieve in large-scale and 
dynamic applications. The self-organizing communities ap-
proach proposed by Wang in [18] presented a novel solution 
to form communities in a decentralized way. It takes the 
advantage of emergent behaviors of autonomous agents to 
form communities. It was proven that the average formation 
time of self-organized communities may increase linearly 
with the log of the number of users and also linearly with the 
number of middle agents [19].  

A formal theory called Scenario Calculus for the specifi-
cation of and reasoning about emergent behaviors was pro-
posed in [13] based on the SLABS language for the formal 
specification of multi-agent systems [13], [20]−[23]. In [24], 
it is applied to the study of the emergent behaviors in a vari-
ety of self-organized agent communities, and in particular 
the autonomous formation of the communities. It further 
extended the work reported in [18] and examined a variety 
of subtle variants of the algorithm proposed and studied in 
[19]. In particular, it formally proved the logical properties 
of the reachability of community formation, the stability of 
the communities, and the convergence of self-organized 
communities for the variants of the algorithms and their 
combinations. 

In this paper, we will apply the experiment method to the 
study of the emergent behaviors of self-organized agent 
communities. The goals of the study are two-fold. First, the 
experiments are aimed at validating the results obtained in 
our previous theoretical analysis. The second is to explore 
the features of community formation that are difficult to 
obtain by theoretical analysis but suitable for experimental 
study. Such features include the times required by an agent 
community to reach an emergent state from various initial 
settings, and the relationships between the convergence time 
and various parameters of the self-organized agent commu-
nity systems. To achieve these goals, an experiment envi-
ronment is developed to enable us to perform systematic 
repeated executions of agent community systems and to col-
lect and analyze data efficiently.  

The remainder of the paper is organized as follows. Sec-
tion 2 is an overview of self-organized agent community. 
Section 3 describes the experiment environment and pre-
sents experiment results. Section 4 concludes the paper with 
a summary of the results and a discussion of future work. 

II. SELF-ORGANIZED AGENT COMMUNITY 
This section describes the structure and operations of 

self-organized agent communities. A formal specification of 
the system can be found in [24]. 

1. Structure and Operation  
In a system of self-organized agent communities, there 

are two types of agents: members and organizers. Each or-
ganizer organizes a community and keeps a registry of the 

members of its community. Each member is registered only 
to one organizer at any time. Each member is interested in a 
particular category of knowledge and has certain knowledge 
on a set of specific topics of the category. 

A member R may raise a question to its organizer G 
about a specific topic of its interested category. The organ-
izer G will then search for a member in its community who 
knows this topic to answer the question. If such a member S 
is found, the organizer will introduce S to R. And the mem-
ber S will then respond to the query. If the organizer G 
cannot find such a member within its community, it will ask 
for help from another organizer H by making a query on the 
topic. If the organizer H finds a member T in its community 
who knows the topic, it will pass T’s identity to organizer G. 
The organizer G will then introduce T to R, and T will then 
answer R’s question. 

At any time, any member can raise a question on any 
topic of its interested category as long as it doesn’t know. It 
is possible that the same member asks the same question 
many times and the questions may cover all topics in any 
order. An organizer can search a member within its commu-
nity and query another organizer also in random order. 

The performance of an organized community heavily de-
pends on the configuration that members are grouped in 
communities. It is more efficient if a question raised by a 
member can be answered within the community. If commu-
nities can reconfigure themselves so that any member can 
get the answers to its questions within its own community, 
the overall performance of the system will be the best.  

There are various ways that communities can reconfigure 
through members’ autonomous behaviors in moving from 
one community to another without global information in 
order to achieve optimized efficiency. Assume that, at the 
beginning, a member with some knowledge of a category is 
registered to an organizer at random. Therefore, the effi-
ciency of the system cannot be guaranteed. Reconfiguration 
of the communities is necessary, which is achieved by 
members changing their memberships to the communities. A 
member moves from one community to another by deregis-
tering from one organizer and then registering to another. In 
this model, members are autonomous to decide when or 
where to move, which is not controlled by the organizers or 
the system.  

A member will make a decision about whether to move to 
another community according to the community’s attraction 
to it when it communicates with a member of the commu-
nity. These situations include: when a member as a requester 
raises a question which can not be answered locally by any 
member of its community, but can be answered by a mem-
ber of another community; or when a member as a server 
answers a question raised by a member outside its commu-
nity. In other words, after a question is answered both the 
requester and the server will make a decision about whether 
to move. The community’s attraction can be derived from 
the community itself or some member within. 

Suppose that a member R raises a question on a topic, 
which is not known by any member of its community. While 
a member T of another community provides a successful 
service of answering R’s question. Then, members T and R 



will try to be in the same community. This can be achieved 
by either member T moving into member R’s community or 
member R moving into member T’s community. A simple 
rule to decide which member will move is that the one who 
is in the more attractive community will stay while the one 
who is in the less attractive community will move. When the 
agents calculate a community’s attraction in the same way, it 
is certain that one of them will stay and the other will move, 
thus they will be together after the actions. The situation is 
more complicated if agents calculate the attraction differ-
ently. In such cases, it may happen that both of the requester 
and the server move to the other community simultaneously, 
thus they may still be separated after taking the actions. In 
all cases, the question is whether agents’ moving between 
communities will lead to an optimal configuration.  

2. Varieties of Agent Communities 
According to the different definitions of the community’s 

attraction from a member’s point of view, four types of 
members were studied in [24]. 
− CAKM (Community’s amount of knowledge of the cate-

gory): The agent measures a community’s strength of at-
traction according to the total amount of knowledge of its 
interested category hold by the agents registered to the 
community. 

− CASM (Community’s number of agents in the specific 
category): The agent measures a community’s strength 
of attraction according to its the number of agents that 
have the same category. 

− PARM (Personal amount of knowledge of the service 
provider): The agent measures a community’s strength of 
attraction as according to the amount of knowledge that 
the specific service provider has in the category.  

− PAEM (Personal attribute irrelevant to its knowledge): 
The agent measures a community’s strength of attraction 
according to an attribute of the specific service provider, 
where the attribute is irrelevant to its knowledge.  
Therefore, we have five types of systems. 

− CAKM: Systems only contain CAKM members. 
− CASM: Systems only contain CASM members. 
− PARM: Systems only contain PARM members. 
− PAEM: Systems only contain PAEM members. 
− Hybrid: Systems contain several types of members. 

3. Emergent Behavior 
An emergent behavior of a system of organized commu-

nities is that the members of the communities will gradually 
grouped in a way so that members of the same category 
come together in one group and are registered to the same 
organizer. For the sake of simplicity, in the sequel, a com-
munity that is organized by organizer G will be referred to 
as community G. 

A. Notions and notations 

In order to define clearly the emergent behavior, we first 
introduce some notions and notations.  

At time moment t, the population of the members of a 
category C in a community G is denoted by Pt

G(C). The 

overall population of the members of a category C in the 
whole system is denoted by Pt

*(C). 
At time moment t, the domain of knowledge in category 

C in a community organized by G is denoted by Dt
G(C). The 

domain of knowledge of category C in the whole system is 
denoted by Dt

*(C). 
At time moment t, a community organized by G is com-

plete with respect to the knowledge of category C, if and 
only if Dt

G(C)= Dt
*(C). 

A world of organized communities is a closed world, if 
its population does not change. A category C of knowledge 
is non-trivial, if Dt

*(C) ≠∅.  

B. Emergent states and their properties 

The result of a process of an agent community’s emer-
gent behavior is that the system reaches a state in which the 
operation of the system is optimized. In [24], two emergent 
states of self-organized agent communities were recognized 
and studied. They are defined as follows. 

The state of a world of organized communities is mature, 
if for every non-trivial category C of knowledge, there is a 
complete community with respect to C. And we say the 
categories are mature too. 

The state of a world of organized communities is optimal, 
if every member is in a complete community of its category.  

A system may demonstrate different dynamic properties 
of emergent behaviors. An emergent state is called reach-
able if for every execution, the system will reach the emer-
gent state if execute the system in a time long enough. The 
state is called stable, if the system will stay in the state 
whenever it reaches the state. If the state is reachable and 
stable, we say that the state is convergent. In [24], the prop-
erties of the emergent states in five different agent commu-
nity systems were investigated. The results are summarized 
in Table 1, where √ means the emergent state is reachable 
(or stable) and × means the emergent state is not always 
reachable (or stable).  

TABLE 1  
RECURRENCE PROPERTIES OF EMERGENT BEHAVIORS 

MATURITY OPTIMALITY  
Reachable Stable Reachable Stable 

CAKM √ √ √ √ 
CASM √ × √ √ 
PARM √ × × √ 
PAEM √ × × √ 
Hybrid × × × √ 

III. THE EXPERIMENTS  
In this section, we report the experiments that confirmed 

the theoretical results and the main findings of the experi-
ments that were unknown before.   

1. Experiment Environment 
To enable the experiments, we developed an experiment 

environment to simulate the execution of agent communities. 
We also provide a graphical user interface tool to setup 
simulation experiments and collect data for statistical analy-
sis. Figure 1 is the snapshot of its interface.  



 
Figure 1. Interface of the experiment environment 

As shown in Figure 1, the experiments take four parame-
ters as the input to the agent community simulator: 
− k: the number of organizers,  
− m: the total number of member agents in the system,  
− c: the number of categories of knowledge, and  
− s: the size of each category of knowledge. 

For each given set of parameters, an initial setting of the 
agent communities is generated at random according to the 
uniform distribution. Thus, each agent is initially assigned at 
random with a category, a non-empty set of topics and an 
organizer. The randomly generated settings are non-trivial in 
the sense that every organizer has at least one member and 
every category has at least one member. The following con-
straints are also imposed on the parameters unless explicitly 
stated otherwise: 2≤k≤100, 2≤m≤100, 1≤c≤100, c≤m, 
1≤s≤70. Figure 2 is a screen snapshot showing an initial 
setting on the left and the setting after several iterations in an 
execution of the same system on the right. 

 

 
Figure 2. Example of initial setting and final setting  

The user can select one of the five types of agent com-
munity system to perform an experiment. Two basic types of 
experiments are supported by the tool. The first is to run a 

system for once and to collect the data of the execution and 
display them in various windows. The second is to repeat the 
execution on an initial setting for a number of times and to 
collect the data, display the data in a graphic user interface 
and perform statistical analysis of the data.  

In each execution, the algorithm is run for a certain num-
ber of iterations of user’s choice. In each iteration, there is a 
random number of members to raise questions, get their 
answers if exist, and then to make movement according to 
the members’ behavior rules. Each member only raises one 
question in one iteration cycle. After each iteration cycle, the 
system’s global state is checked to see if it is in an emergent 
state of mature or optimal. Figure 1 is the screen snapshot in 
the middle of an execution for repeating simulation for 100 
times that displays the statistical data.  

2. Experiment Results  
Using the tool, we systematically carried out a large 

number of simulations of agent communities with a wide 
range of parameters. The experiments not only validated the 
results of our previous theoretical analysis, but also enabled 
us to observe new phenomena of agent communities. The 
following reports the main findings.  

A. Validation of theoretical results 

To validate the theoretical results [24] summarized in 
Table 1, we set a large number of iterations for each execu-
tion of the system. Initial settings were generated for ran-
domly selected parameters in the following ranges: 2≤k≤100, 
2≤m≤100, 1≤c≤30, 2≤s≤30 and the number of iterations in 
each execution n=500. For each of the five types of agent 
community systems, a total of 1000 initial settings were gen-
erated at random. The system on each initial setting was run 
repeatedly for 100 times. 

The experiments confirmed the theoretical analysis re-
sults in the following sense.  
− For an emergent state that is reachable in a type of agent 

community system, it is confirmed by experiments if and 
only if in all runs of the agent community system on every 
initial setting the system is in the emergent state after some 
iterations.  

− For an emergent state that is not always reachable, the 
property is confirmed if and only if there is an initial set-
ting on which there is at least one run of the agent commu-
nity system that does not reach the state in all iterations 
within the set number of iterations.  

− For an emergent state that is stable, the property is con-
firmed by the experiments if and only if for all initial set-
tings and every execution of the agent community system 
on the setting the system reached the state after a certain 
number of iterations and the system is in the state for all 
iterations after that in the same execution.  

− For an emergent state that is not stable, the experiments 
confirm the property if and only if there is at least one ini-
tial setting and at least one execution of the agent commu-
nity system on the setting such that the system reaches the 
state at a certain iteration and for at least one iteration after 
that the system is not in the state in the same execution.  



It is worth noting that, the experimental confirmation of 
the properties is not as conclusive as the theoretical proofs 
for reachability, unreachability, and stability. Only 
non-stability can be conclusively confirmed. However, we 
can gain a high confidence of the results from a large num-
ber of randomly generated initial settings and a large number 
of random executions of the system on each initial setting to 
a large number of iterations.  

B. Distributions of convergence time 

A question that rose in the experiments reported above is 
that how many iterations one would consider to be large 
enough. This question was answered by the second group of 
experiments that aims to discover how fast an agent com-
munity system converges to an emergent state. The number 
of iterations that a system needs to reach an emergent state 
represents the time that the system needs to reach the state. It 
is called the convergence time in the sequel.  

 
(a) Maturity convergence time 

 
(b) Optimality convergence time 

Figure 3. Distributions of convergence time on the same initial 
setting with parameters k=50, m=50, c=20, s=30. 

Figure 3 shows the distributions of convergence time for 
the mature and optimal emergent states in part (a) and (b), 
respectively. In the figure, the blue line represents the results 
obtained from 100 experiments, while the red line represents 
1000 experiments. The x axis is the number of iterations the 
system needs to converge; the y axis is the percentage of the 
number of experiments in which the system converges to the 
emergent state using the number of iterations. As shown in 
these figures, there is no significant difference in the data 
obtained from 100 experiments and from 1000 experiments. 
This is confirmed in statistical data shown in Table 2.  

When the systems are run on different initial settings, the 
same distributions of the average convergence time were 
observed as shown in Figure 4, where the x axis represents 
the average iterations in which a system converges to the 
emergent state, and the y axis is the same as in Figure 3. The 
overall average convergence time for random initial settings 
with the same parameters of k=50, m=50, c=20, s=30 is 
presented in Table 3. 

 
TABLE 2  

AVERAGE CONVERGENCE TIME ON FIXED INITIAL SETTING 
 Maturity Optimality 

Experiments 
Times 

Average 
Value 

Standard 
Deviation 

Average 
Value 

Standard 
Deviation 

100 9.99 18.515 20.820 213.280 
1000 9.37 16.520 20.972 267.900 

Relative  
Divergence 3.0% 5.7% 0.4% 11.4% 

 
TABLE 3 

 AVERAGE CONVERGENCE TIME ON RANDOM INITIAL SETTINGS OF FIXED 
PARAMETERS 

 Maturity Optimality 
Experiments 

Times 
Average 
Value 

Standard 
Deviation 

Average 
Value 

Standard 
Deviation 

100 10.848 13.852 11.681 13.693 
1000 10.607 12.575 11.450 14.012 

Relative  
Divergence 1.1% 4.8% 1.0% 2.1% 

 

 
(a) Average maturity convergence time 

 
(b) Average optimality convergence time 

Figure 4. Distribution of average convergence times on randomly 
generated different initial settings of the same parameters with 
k=50, m=50, c=20, s=30. 



To explore the relationships between convergence time 
and various parameters of agent communities, we carried out 
further experiments with CAKM communities. The results 
are reported below.  

C. The effect of number of organizers 

In the experiments that aim at understanding the effect of 
the number of organizers on convergence speed, we fixed 
the parameters m (the number of members), c (the number 
of categories) and s (the size of each category). When k>m, 
there are organizers empty, which has no effect on the op-
eration of the system. Thus the parameter k (number of or-
ganizers) varied from 2 to m. For each value of k, 100 initial 
settings were generated at random with the uniform distribu-
tion, and on each initial setting the agent community system 
was executed repeatedly for 100 times. The average conver-
gence time was then calculated.  

 
(a) Average maturity convergence time 

 

 
 (b) Average optimality convergence time  

Figure 5. Convergence time for varying number k of organizers 
with fixed m=100, c=1 and s=30. 

The particular parameters used in this group of experi-
ments were: m=100 members, c=1 category and the size of 
each category s=30. The number of iterations in each execu-
tion was set as 500, which according to the results of above 
experiments is large enough for the agent community system 
to converge. The results are shown in Figure 5. 

D. The effect of number of members 

To study the effect of the number of members on con-
vergence time, we fixed the parameters of k (number of or-
ganizers), c (the number of categories) and s (the size of 

each category) and let the parameter m (the number of 
members) vary.  

The particular parameters used in the experiments were: 
k=100 organizers, c=1 category and the size of each cate-
gory s=30. The number of iterations set in the experiments 
was 500. Similar to the experiment reported in sub-section C, 
100 initial settings were generated at random and on each 
initial setting the CAKM agent community system was exe-
cuted for 100 times and average convergence time were 
calculated.  

It is worth noting that an organizer that is initially not as-
signed with any member has no effect on the operation of 
the system. In order to minimize the effect of empty initial 
organizers on statistical results, two strategies were used in 
the random generation of the initial settings according to the 
value of m. When m>k, there were at least one member ini-
tially assigned to each organizer. When m≤k, each organizer 
was initially assigned with at most one member.  

 
Figure 6. Average maturity convergence time for varying number 
m of member with fixed k=10, c=1 and s=30.  

The experiments demonstrated that, see Figure 6, for the 
maturity emergence state, when m>k, the convergence time 
decreases as the number m of members increases. When 
m≤k, the number of non-empty organizers is equal to the 
number m of members. As shown in Figure 6, the conver-
gence time first decreases, and then increases. This phe-
nomenon was observed with surprise and difficult to explain. 
We believe it is the result of other factors, such as the inter-
action with the other parameters like category number and 
size.  

 
Figure 7. Average optimality convergence time for varying number 
m of members with fixed k=10, c=1, and s=30. 



For the optimality emergence state, the experiments 
showed Figure 7 that when m>k, with the number m of 
members increasing, the convergence time first increases, 
and then decreases. When m≤k, with the number m of 
members increasing, the convergence time for the optimal 
state first decreases and then increases. This is in the same 
pattern of the convergence time for the mature state. 

E. The effect of number of categories 

In the experiments to investigate the effect of the number 
of categories on convergence speed, we varied the number c 
of categories while kept the other parameters fixed. The 
fixed parameters were: k=100 organizers, m=100 members 
and the size of each category s=30. When c≥m, there are 
categories empty, which has no effect on the operation of the 
system. Thus, the variable c varied in the range of 1<c<m in 
this set of experiments. The number of iterations was also 
500. The results are shown in Figure 8 and Figure 9.  

Figure 8 shows that for the maturity emergence state, 
with the number c of categories increasing, the convergence 
time first increases, and then decreases.  

 

 
Figure 8. Average maturity convergence time for varying number c 
of categories with fixed k=100, m=100 and s=30. 

 

 
Figure 9. Average optimality convergence time for varying number 
c of categories with fixed k=100, m=100 and s=30. 

 
Figure 9 shows that with the number c of categories in-

creasing, the convergence time for optimality emergence 
state first decreases sharply, then increases gently, and at last 
decreases sharply again.  

F. The effect of the size of categories 

In the experiments about the size of categories, we varied 
the size of categories s while kept other parameters fixed, 
which were k=100 organizers, m=100 members, c=1 cate-
gory. The number of iterations was 500 again.  

The convergence time for both maturity and optimality 
emergence states increases with the size of the category in-
creasing, as shown in Figure 10, although the speed is dif-
ference.  

The above experiments were also repeated with smaller 
values of the parameters. We found that the curves of 
smaller parameters are not as smooth as the figures above. 
However, they are in the same pattern as those presented in 
this paper.  

 
(a) Average maturity convergence time 

 
(b) Average optimality convergence time 

Figure 10. The average convergence time for varying values of 
category size s with fixed k=100, m=100 and c=1.  

IV. CONCLUSION 
In this paper, we presented an experimental study of the 

emergent behaviors of self-organized agent communities, 
which have been analyzed by using a formal theory called 
Scenario Calculus. The experiments demonstrated that ex-
perimental study can play a complimentary role to formal 
methods rather than to replace one by the other. First, al-
though, theoretically speaking, the experiment results are not 
100% conclusive that formal analysis can achieve, we can 
use the experiment method to validate the results of theo-
retical analysis with high confidence. This also tests the im-
plementation of the simulation against the formal specifica-
tion of the multi-agent emergence system. In particular, this 
paper confirmed the correctness of analysis of the properties 



of the emergent behaviors of five variants of self-organized 
agent communities systems. 

Second, experiment method can provide insight into the 
complicated dynamic emergent behaviors that are very hard 
to achieve through formal analysis. In this paper, we sys-
tematically studied the convergence speed in terms of the 
time an agent community needs to reach an emergent state. 
The distribution of convergence time and the effects of 
various parameters on the convergence time were system-
atically investigated. Table 4 summarizes the main findings 
of the experiments, where↑means increasing and↓means 
decreasing. 

TABLE 4  
RELATIONSHIPS BETWEEN SYSTEM PARAMETERS AND CONVERGENCE TIMES 

Convergence Time Parameter Condition 
Maturity  Optimality 

Organizers #↑  ↑ ↑ 
m≤k ↓↑ ↓↑ 

Members #↑ 
m>k ↓ ↑↓ 

Categories #↑  ↑↓ ↓↑↓ 
Size of category↑  ↑ ↑ 

 
For the future work, we will further investigate more 

complicated types of agent community systems as well as 
other emergent systems. In general, we are investigating 
how experiment method can be better combined with formal 
analysis method in the development of complex system and 
their emergent behaviors, for example, to discover the in-
trinsic laws of emergent behaviors and to facilitate the for-
mal specification and reasoning about emergent behaviors. 
Another topic that worth further study is to prove the ex-
perimental results based on a probabilistic mathematical 
model of agent communities.  
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