
CHAPTER 1

A FORMAL DESCRIPTIVE SEMANTICS
OF UML AND ITS APPLICATIONS

Hong Zhu(1), Lijun Shan(2), Ian Bayley(1) and Richard Amphlett(1)

(1) Department of Computing and Electronics, School of Technology,
Oxford Brookes University, Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk
(2) Department of Computer Science,
National University of Defense Technology, Changsha, China

1.1 INTRODUCTION

What is the meaning of a UML diagram? Consider the simple class model of
a library system, shown in Fig. 1.1. One may interpret its meaning as follows.

The system has two classes called Member and Book. There is an
association between them, which is called Borrows. The multiplicity
upper bound of the Borrows association at the Book end is 10, and the
multiplicity upper bound of Borrows at the Member end is 1.

An alternative interpretation of the model is:

UML 2 Semantics and Applications. By Kevin Lano (Eds.)
Copyright c© 2008 John Wiley & Sons, Inc.

1

2 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

There are two types of objects in the system called members and
books. Members can borrow books. Each member can only borrow up to
10 books at any time, and each book can only be borrowed by at most 1
member at any time.

Member

Book

0..10

0..1
Borrows

Figure 1.1 Library Systems

Member

Staff Student

Figure 1.2 Classification of Members

As shown in the above example, in general ‘a model is a set of statements
about some system under study’, as Seidewitz pointed out [22]. However, the
statements themselves differ according to which formalisation of UML is being
used, and comparing the two interpretations above, we can identify two types.

• Descriptive statements describe the system based on a set of basic con-
cepts, such as class, association, multiplicity upper bound, etc. Such
statements can be used to determine which system in a given subject
domain is an instance of a model. For example, consider the statement
above that ‘the system contains two classes Member and Book ’. This is
a description of the system based on the concept of class without further
information about what a class is, but by making an assertion about its
construction.

• Functional statements define how the system functions at runtime. An
example is the statement above that ‘there are two types of objects in
the system called member and book.’ This makes an assertion about
system’s runtime behaviour, i.e. the existence of two types of runtime
entities.

The differences between these two types of statements become clearer when
they are formalised in predicate logic. The statement ‘the system contains
two classes Member and Book ’ can be formalised as follows,

Class(Member) ∧ Class(Book),

where Class(x) is a predicate that asserts that an element x is a class. The
formal representation of the statement ‘there are two types of objects in the
system called member and book ’ in predicate logic would be

∃x · Member(x) ∧ ∃y · Book(y),

where predicates Member(x) and Book(x) mean that the element x is of type
Member and Book, respectively. Obviously, the difference between these two
statements lies in the domain of the predicates.

INTRODUCTION 3

These two types of statements reflects two aspects of the semantics of UML:
the functional semantics defines how an instance of a model behaves while
descriptive semantics describes what an instance of a model ‘looks like’, i.e. it
determines which system in a given subject domain is an instance of a model.

As far as we know, all existing work hitherto on the formalisation of UML
semantics has focused on using functional statements in various formalisms
to define the functions of modelled systems. As discussed briefly in Section
1.5, such works are interesting and important for the definition of UML’s
semantics, especially since they significantly deepen our understanding object-
oriented concepts. However, a number of issues connected with the semantics
of UML are neglected, and they are best addressed by descriptive semantics.

For example, consider the Java-like programs depicted in Fig. 1.3. Which
one can be regarded as an instance of the model in Fig 1.2? Unfortunately,
the documentation of UML does not answer this question.

 (a) Program P1 (b) Program P2 (c) Program P3

class Member
{...}
class Staff extends Member
{...}
class Student extends Member
{...}

class Member
{...}
class Staff extends Member
{...}
class Student extends Member
{...}
class MScStudent extend Student
{...}

class Member {
 public enum MemberType {
 Staff, Student }
 public MemberType
 TypeOfMember;
 ...
}

Figure 1.3 Java-like Programs

To actually answer questions like this, we proposed, in [23], an approach
to formally specifying the semantics of UML in first order predicate logic
(FOPL) and reported a preliminary version of an automated software tool
called LAMBDES for the logic analysis of UML models. The theory and the
tool focus on the descriptive semantics of UML and address the following open
problems in the formalisation of UML semantics.

First, UML models are not limited to modelling computer software systems,
and each UML model can be interpreted in many different subject domains.
For example, the class diagram of Fig. 1.1 can be regarded as a model of
libraries both in the physical world and in a computer information system as
well. So, the definition of the semantics of UML must be flexible enough to
be interpreted in all subject domains.

Secondly, UML is intended to provide a holistic modelling approach to
object-oriented software development. It is designed for use at all stages of
software development and support all software development and maintenance
activities. This imposes further flexibility requirements on the formal def-
inition of its semantics. For example, if the model in Fig. 1.2 is used as a
requirements specification, all three programs in Fig. 1.3 should be considered
as correct implementation of the model. If the same model is regarded as a

4 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

design of a software system, program P3 would be regarded as not following
the design faithfully, so it would be an incorrect implementation. But, both
program P1 and P2 should be regarded as correct instances of the model. If
the diagram is the result of reverse engineering through source code analysis,
it is a correct model only for program P1. So, a good definition of UML’s
semantics should be flexible enough to cover all these situations and many
more.

Finally, UML is designed to be extensible through the use of profile defini-
tions and new stereotypes in the metamodel. The definition of UML semantics
must cover these extension mechanisms too.

In this chapter, we present the theory behind and a method for the formal
definition of UML’s descriptive semantics using FOPL to demonstrate how
the above difficulties are overcome in our approach. We will report the cur-
rent state in the development of the tool LAMBDES, which translates graphic
models into descriptive semantics in FOPL and enables the formal analysis of
models in FOPL by integration with a theorem prover. We will also demon-
strate how the semantics and the tool support both formal analysis of models
and metamodels in FOPL.

The remainder of this chapter is organised as follows. Section 1.2 presents
the descriptive semantics of UML class diagrams, interaction diagrams and
state machine diagrams. Section 1.3 describes the tool LAMBDES. Section 1.4
demonstrates the applications of the semantics and the tool by some examples.
Section 1.5 conclude the chapter with a discussion of related work and future
work.

1.2 DEFINITION OF DESCRIPTIVE SEMANTICS IN FOPL

In this section, we first outline our approach to the formal definition of UML’s
semantics, and then present the mappings from models and metamodels to
their descriptive semantics. Then we discuss how to deal with the semantics
of models in different development contexts and the extension mechanisms.

1.2.1 The Framework

As in all existing approaches to the formalisation of UML in FOPL, we define
the descriptive semantics of UML through a mapping from UML models to
a set of FOPL statements, which are constructed from a set of predicate and
constant symbols via logic connectives and quantifiers. However, in our ap-
proach, these symbols represent the basic concepts of the modelling language
rather than the concepts in the system to be modelled. For example, a pred-
icate Class(x) is defined to represent the concept class in UML. Moreover,
our approach differs from existing works in the way that the atomic predi-
cate symbols are derived. Instead of manually determining the signature of
the FOPL system, we derive the atomic predicate and constant symbols from

DEFINITION OF DESCRIPTIVE SEMANTICS 5

the metamodels because the concepts of OO modelling are specified in UML
metamodels. The collection of rules that are used to derive signature from
metamodel is called the signature mapping.

A metamodel defines not only a collection of concepts but also their inter-
relationships. The interrelationships between the concepts are properties that
all models must satisfy, and thus are the axioms of models. We also derive
these axioms from the metamodel systematically with a set of rules called
axiom rules and we represent them in the FOPL using the atomic predicates
and constants in the derived signature. These axioms are called axioms of
descriptive semantics to distinguish them from the axioms of functional se-
mantics, which define the functional semantics using the runtime properties
of the basic concepts. A typical axiom of descriptive semantics is

∀x · (Class(x) → Classifier(x)),

which means that if x is a class, it is also a classifier. In contrast, here is an
example of an axiom of functional semantics.

∀A, B · (Class(A) ∧ Class(B) ∧ Inherits(A, B) → ∀x · (A(x) → B(x))),

which means if class A inherits class B, then every instance of A is also an
instance of B. A full treatment of the functional semantics is beyond the
scope of this chapter and it will be reported elsewhere.

The descriptive semantics of a UML model is a set of formulae in FOPL
that can be systematically derived by applying a set of rules, called translation
rules. In addition, we also specify the context in which the model is used by a
set of formulae in the formal logic using the same signature. These formulae
can also be derived from the model by a set of rules, so they are mappings from
the model to the formulae and are called hypothesis mappings. In different
contexts, different rules are applied.

Fig. 1.4 illustrates the overall structure of our approach to the definition
of UML semantics.

Metamodel

Models

Signature Σ

Σ-Sentences

Axioms

Formulas Σ-Models
(Subject

DomainDΣ)
Instance

Signature
Mapping S

Axiom
Mapping AΣ

Translation
Mapping TΣ

InterpretationϕFOL Inference |−

Satisfaction |=

Structure of InstitutionStructure of
Metamodelling

Figure 1.4 Overview of the approach to formalising UML semantics

6 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

Notation: in the sequel, we will use Σ and AxmD to denote the signature
and axioms of the descriptive semantics, derived from a given metamodel that
a model M is considered as its instance. We will also use T (M) to denote
the translation mapping from models to Σ-sentences and H(M) denote a
hypothesis mapping from models to Σ-sentences that represent the context in
which model M is to be used.

Given a formal definition of UML’s semantics in the above framework, the
semantics of a model is defined as follows.

Definition 1.1 (Descriptive semantics of a model)
The descriptive semantics of a model M under the hypothesis H is [[M]]H =

AxmD ∪ T (M) ∪H(M).

A key concept of the semantics of modelling languages is the satisfaction
of a model by a system. This is defined in terms of the evaluation of the
truth value of the statements in the context of the system. Given a domain of
systems, the evaluation of atomic predicates is based on their interpretation
in a given subject domain and provides a means of determining the value of
an application of an atomic predicate. The evaluation of compound formulae
constructed from atomic predicates and constants using logic connectives and
equality is defined as usual in the FOPL. The details are omitted for the sake
of space. Formally, the notion of subject domain and the interpretation of a
formal logic in a subject domain are defined as follows.

Definition 1.2 (Subject domain)
A subject domain Dom is a triple 〈D, Σ, Eva〉, where D is a collection of

systems; Σ is a signature; Eva is an evaluation rule, i.e. a mapping from
systems s in D and Σ-formulae to the truth value True or False. Given a
Σ-formula f and system s in D, Eva(f, s) is called the interpretation of the
formula f in s. We write s |=Eva f if Eva(f, s) = true.

When there is no risk of confusion, we will omit the subscript Eva in |=Eva.
For a set F of formulae, we write s |= F to denote that for all f in F , s |= f .

Definition 1.3 (Satisfaction of a model)
Let Σ be a given signature and Dom a subject domain of Σ. A system s in

D satisfies a model M under hypothesis H according to a semantic definition
[[M]]H if s |= [[M]]H , i.e. for all formulae f in [[M]]H , s |= f . We will also
say that s is an instance of model M , and write s |= M .

1.2.2 Semantics Mappings

We will now elaborate the approach by defining the semantics mappings. We
demonstrate that the descriptive semantics of different types of diagrams can
be defined using the same set of semantics mappings.

DEFINITION OF DESCRIPTIVE SEMANTICS 7

Signature Rules

S1 : For each metaclass named C in the metamodel, a unary atomic
predicate symbol C(x) is defined to represent that the model element x
is an instance of metaclass C.
S2 : For each meta-attribute A of metaclass X with Y as its type, and
each meta-association from metaclass X to metaclass Y with A as the
association end name on Y , a binary predicate A(x, y) is defined to rep-
resent the relation between model elements of type X and the elements
of type Y .
S3 : For each enumeration value V in the metamodel, a constant symbol
V is defined.

Figure 1.5 Signature mapping rules

1.2.2.1 Signature mapping Given a metamodel, the signature of a formal
logic system can be derived by applying the rules given in Fig. 1.5.

For example, consider the simplified metamodel of UML class diagrams
shown in Fig. 1.6. The unary predicate Class(x) represents the metaclass
Class. The binary predicate specific(x, y) represents that the association
named specific connects metaclass x to metaclass y in Fig. 1.6. Table 1.1
lists all the unary and binary predicates derived from the metamodel of class
diagram shown in Fig. 1.6.

Table 1.1 Signature of Simplified Class Diagram Metamodel
Unary Concrete Generalisation, Parameter, Operation, Class,
predicates metaclasses Property, Association, DataType, Signal, Inter-

face, ParameterDirectionKind, AggregationKind,
Boolean, VisibilityKind, String, Dependency, In-
terfaceRealisation

Abstract MultiplicityElement, TypedElement, Type,
metaclasses Classifier, DirectedRelationship, Feature, Rela-

tionship, StructuralFeature, BehaviouralFeature,
NamedElement, Element, RedefinableElement

Binary Meta- isAbstract, direction, aggregation, visibility,
predicates attributes Name, isLeaf, isStatic

Meta- type, general, specific, supplier, client, contract,
associations ownedParameter, ownedAttribute(2), ownedOp-

eration(2), memberEnd, implementingClassifier
Constants Enumeration in, out, inout, return, none, shared, composite,

values bTrue, bFalse, public, private, protected, package

Constant symbols in the signature are also derived from the metamodel.
For example, two enumeration values t and f are defined in the enumeration
metaclass Boolean in Fig. 1.6, so two constant symbols t and f are derived.

8 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

MultiplicityElement

TypedElement

Type

+type0..1

Classifier

+isAbstract: Boolean

Generalisation

+general

1

DirectedRelationship

StructuralFeature BehaviouralFeature

Parameter

+direction: ParameterDirectionKind

+ownedParameter

*

Operation Class
Property

+aggregation: AggregationKind

+ownedAttribute 0..1
*

Association

+memberEnd
2..*

+ownedOperation
*

Relationship

DataType

Signal

+specific

1

Interface

+ownedOperation
*

+ownedAttribute
*

NamedElement

+visibility: VisibilityKind
+Name: String

ParameterDirectionKind
<<enumeration>>

+in
+out
+inout
+return

AggregationKind
<<enumeration>>

+none
+shared
+composite

Boolean
<<enumeration>>

+bTrue
+bFalse

VisibilityKind
<<enumeration>>

+public
+private
+protected
+package

String

Element

RedefinableElement

+isLeaf: Boolean

Dependency

NamedElement

+supplier
1..* +client1..*

Feature

+isStatic: Boolean

InterfaceRealisation

Classifier

+implementingClassifier

1Interface

+contract
1

Type

Figure 1.6 A simplified metamodel of UML class diagrams

The interpretation of the constant and predicate symbols must be defined
in the context of a subject domain. Taking the set of C++ programs as an
example, the predicate Class(User) is true if User is a class in the program.
The statement isAbstract(User, t) is true when the class User in the pro-
gram is declared to be abstract. It is worth noting that the formal definition
of descriptive semantics is independent of the subject domain and its interpre-
tation. So, we leave the definition of the interpretation open so that a model
can be interpreted in different subject domains.

1.2.2.2 Translation mapping The translation mapping is a set of rules that,
when applied to a model, generate a set of descriptive statements in the Σ-
sentences.

For example, consider the class diagram in Fig. 1.8. The following formulae
are among the statements generated by applying the translation rules.

Class(User), Class(Bank), Class(BoxOffice), isAbstract(Clerk, f).

1.2.2.3 Axiom mapping The axiom mapping for deriving axioms can be de-
fined by a set of rules, which is given in Fig.1.9.

DEFINITION OF DESCRIPTIVE SEMANTICS 9

Translation Rules

T1. For each element e in model M as an instance of metaclass C,
formula C(e) is in T (M).
T2. For each element e in model M as an instance of metaclass C, if
Attr is a metaattribute of C and v is e’s value on the metaattribute
Attr, formula Attr(e, v) is in T (M).
T3. For each pair e1 and e2 of elements in model M , formula R(e1, e2)
is in T (M), if there is an instance of metaassociation R from e1 to
e2 in M .

Figure 1.7 Translation mapping rules

Bank

+charge(cardNum: Integer, cost: Real): Bool

User

+getName(): String
+pay(cost: Real)

BoxOffice

+ticketList: List

+buyTicket(seatNum: Integer)
+refundTicket()

Customer

+cName: String
+creditCardNum: Integer

+pay(cost: Real)
+getCardNum()

Ticket

+holder: String

+buy(customerName: String)
+refund()

Clerk

+cId: Integer

+pay(cost: Real)

+server+client

0..10..1

+businessClient

+bankServer

+bOffice

+hasTicket0..*

Figure 1.8 Ticket Office System: class model

For example, from the inheritance relation from Class to Classifier in the
metamodel shown in Fig. 1.6, by applying rule A3 we can derive the axiom

∀x · (Class(x) → Classifier(x)).

The following axiom can be obtained by applying rule A2.

∀x · (Property(x) → ¬Operation(x)).

1.2.3 Context of Modelling

As discussed in section 1.1, a UML model can be understood differently in
different contexts of software development. We argue that, this variety of
meanings can be represented by additional formulae, known as the hypothesis
on the model. (Meanwhile, the core meanings of a model is still captured in
the formulae generated by the translation mapping plus the axioms that all

10 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

Axiom Rules

A1. If {C1, C2, · · · , Cn} is the set of concrete metaclasses in the meta-
model, the formula ∀x · (C1(x) ∨ C2(x) ∨ · · · ∨ Cn(x)) is an axiom.
A2. For each pair of different concrete metaclasses C
= C′, the formula
∀x · (C(x) → ¬C′(x)) is an axiom.
A3. For each generalisation relation from metaclass A to B, the formula
∀x · (A(x) → B(x)) is an axiom.
A4. If A is an abstract metaclass and {B1, B2, · · · , Bk} is the set of
metaclasses specialising A, the following formula is an axiom.

∀x · (A(x) → (B1(x) ∨ B2(x) ∨ · · · ∨ Bk(x))).
A5. For each an association A from metaclass C1 to C2, the formula
∀x, y · (A(x, y) ∧ C1(x) → C2(y)) is an axiom.
A6. For each metaattribute Attr of type T in a metaclass C, the formula
∀x, y · (C(x) ∧ (Attr(x, y) → T (y)) is an axiom.
A7. For each association A from metaclass C1 to C2, if ‘e1 · ·e′2 is its
multiplicity value, the following formula is an axiom.

∀x · (C1(x) → (e1 ≤ ||{y|A(x, y)}|| ≤ e2)).
A8. For each metaattribute Attr of type MT in a metaclass C, if ‘e1 · ·e′2
is its multiplicity value, the following formula is an axiom.

∀x · (C(x) → (e1 ≤ ||{y|(Attr(x) = y)}|| ≤ e2)).
A9. For each pair of different literal values a and b of an enumeration
metaclass, the formula a
= b is an axiom.
A10. For each enumeration value a defined in an enumeration metaclass
E, the formula E(a) is an axiom.
A11. For each enumeration metaclass E with literal values a1, a2, · · · , ak,
the following formula is an axiom.

∀x · (E(x) → ((x = a1) ∨ (x = a2) ∨ · · · ∨ (x = ak))).
A12. For each well-formedness rule formally specified in OCL, its corre-
sponding formula is an axiom.

Figure 1.9 Axiom mapping rules

models must satisfy.) Hypothesis mappings can be designed and applied to
models on a case-by-case basis to generate the formulae that represent the
contexts in which a model is used.

For example, when a model was obtained by reverse engineering all the
classes in the source code, we understand that the model is complete as a
description of classes in the system. We also assume that each class in the
model represents a different class in the source code. Such assumptions can
be represented by the following formulae.

∀c · (Class(c) → c ∈ {c1, c2, · · · , ck})
∀c, c′ · (Class(c) ∧ Class(c′) ∧ (Name(c)
= Name(c′)) → (c
= c′))

DEFINITION OF DESCRIPTIVE SEMANTICS 11

where {c1, c2, · · · , ck} is the set of classes in the model M . Such formulae can
be generated by transformation rules called hypothesis rules. Some examples
of hypothesis rules are given in Fig. 1.10.

Hypothesis Rules

H1: Distinguishability. If e1, e2, · · · , ek is the set of instances of a
concrete metaclass C in the model, to assume that these elements in
the model are all different the following set of formulae are generated
as hypotheses. {ei
= ej |i
= j ∈ {1, 2, · · · , k}}.
H2: Completeness of elements. If e1, e2, · · · , ek is the set of instances
of a concrete metaclass C in the model, to assume that these type of
elements in the model is complete, the following formula is generated
as a hypothesis.

∀x · (C(x) → ((x = e1) ∨ (x = e2) ∨ · · · ∨ (x = ek)))
H3: Completeness of relations. If {(e1, e

′
1), · · · , (en, e′n)} is the set of

instances of a relation R contained in the model, to assume the com-
pleteness of relation R in the model the following formula is generated
as a hypothesis.
∀x, y · (R(x, y) → (((x = e1)∧ (y = e′1))∨· · · ∨ ((x = en)∧ (y = e′n))))

Figure 1.10 Hypothesis mapping rules

Now we give examples of each of these rules in turn. First, in Fig. 1.8, if we
assume that class Clerk is different from class Customer, then the formula
Clerk
= Customer can be generated by applying rule H1. This hypothesis is
applicable if the model is considered as a design, as it forces the programmer
to implement the two classes Clerk and Customer separately, but not if it
is a requirements specification instead, as then a program would satisfy the
model with only one class implementing both.

Secondly, the assumption that the model in Fig. 1.8 contains all classes in
the system can be specified as follows, and generated by applying rule H2.

∀x · (Class(x) → (x = T icket) ∨ (x = Clerk) ∨ (x = Customer)∨
(x = User) ∨ (x = Bank) ∨ (x = BoxOffice))

Thirdly, for the model in Fig. 1.8, if we believe that all the inheritance
relations in the modelled system are depicted in the diagram, then we can
generate the following hypothesis by applying rule H3.

∀x, y · (specific(x, y) → ((x = ClerkUser) ∧ (y = Clerk))
∨((x = CustomerUser) ∧ (y = Customer)))

It is worth noting that the above hypothesis rules are just examples, and
are by no means to be considered as complete. The point here is that the

12 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

flexibility of UML for different uses can be explicitly revealed through a set of
optional hypothesis mappings. The manner in which the hypothesis rules are
related to the use of the modelling language will be an interesting problem
for further research.

1.2.4 Extendability and integration of multipleviews

There are two extension mechanisms in UML: meta-modelling and profiles.
The former allows the language engineers to use UML class diagrams to define
metamodels as far as it can be consistent with the OMG Meta Object Facility
(MOF). The latter enables limited extensions of a reference metamodel by
introducing new metaclasses in the form of stereotypes, for the purposes of
using models in various different platforms or domains. To demonstrate that
our approach to formal descriptive semantics is applicable to all metamodels,
we apply the semantics mappings defined previously, to the metamodels of
UML interaction diagrams and state machine diagrams, shown in Fig. 1.11
and 1.12.

Lifeline

TypedElement

Message
+sender

0..1

ConnectableElement

+represents
0..1 +event0..1

Operation SendOperationEvent SendSignalEvent Signal

+receiver 0..1

+operation

1

+signal

1

+after

0..1

MessageEvent

Figure 1.11 Simplified metamodel of interaction diagrams

It is worth noting that for multiple-view modelling languages like UML,
each view is often defined by using one metamodel that is linked to other
metamodel(s) by references to external metaclasses. For example, the meta-
model for interaction diagrams refers to the kernel, which is the metamodel
of class diagrams. Also, the metamodel of state machine diagrams refers to
the metamodel of interaction diagrams.

The references to an existing metaclass in another metamodel may occur
in one of two forms: through an association and via inheritance. In the as-
sociation case, the axioms can be generated by applying exactly the same
axiom rules as in the same metamodel. However, caution must be paid when
implementing the axiom rules because the occurrences of a metaclass in two
metamodel class diagrams may be assigned with two different internal identi-
fiers. To ensure that the new occurrences are treated as identical to its original
occurrence, the original identifier must be used.

If a metaclass is referred to via inheritance, on the other hand, new concrete
metaclass(es) are introduced. Consequently, the axiom about completeness of

DEFINITION OF DESCRIPTIVE SEMANTICS 13

Behaviour

StateMachine

ProtocolStateMachine

Vertex

Transition

PseudoState

+kind: PseudostateKind
State

Trigger

Constraint

+target

1

+vertex

*

+transition*

+source
1

PseudostateKind
<<enumeration>>

+initial
+final
+deepHistory
+shallowHistory
+join
+fork
+junction
+branch

+entry 0..1

+exit
0..1

+doActivity
0..1

+trigger

0..1

+guard
0..1

+effect
0..1

StateBehaviour

Region

+region

0..1

1..*

Classifier
+context

0..1

Figure 1.12 Simplified metamodel of state machine diagrams

the classification of the modelling elements must be modified. In this case,
the following axiom rule must be applied instead.

Axiom Rule for Cross Metamodel References

A2’. Let A be a metaclass depicted in two metamodels M1 and M2. If
{B1, B2, · · · , Bk} is the set of metaclasses that specialise A in metamodel
M1, and {C1, C2, · · · , Cp} is the set of metaclasses that specialise A in
metamodel M2, we have the following axiom for models defined by M1

and M2.
∀x · (A(x) → (B1(x) ∨ · · · ∨ Bk(x) ∨ C1(x) ∨ · · · ∨ Cp(x)))

Figure 1.13 Axiom mapping rule for Cross Metamodel References

The semantics mapping, as defined by the rules given above, was success-
fully applied to these metamodels to generate the signatures and axioms.
Table 1.2 summarises the results of applying the rules.

The same translation rules are applicable to interaction diagrams and state
machines to generate descriptive semantics of their corresponding models. For
example, Fig. 1.14 depicts a simple sequence diagram and state machine for
the ticket office system. The following formulae are among those generated
from the sequence diagram.

Message(buyT icket), sender(buyT icket, c).

Whereas the following formulae are among those generated from the state
machine.

State(available), trigger(Transition7, refund), source(Transition7, unavailable).

14 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

Table 1.2 Summary of the logic system for UML diagrams
Type of element Class Inter. State

Diag. Diag. Mach.
Signature Unary Abstract metaclass 12 3 4

Predicate Concrete metaclass 16 6 9
Binary Meta-attribute 7 0 2
Predicate Meta-association 13 7 12
Constant symbol 13 0 8

Axioms Implication of specialisation 26 3 4
Completeness of specialisation 12 2 3
Disjointness of classification 120 15 36
Domain of binary predicate 21 7 14
Enumeration constants 33 0 37
Multiplicity of meta-associations 14 9 12
Completeness of classification 1 1 1

c : User b : BoxOffice t : Ticket s : Bank

buyTicket()

pay() charge()

buy()

available

unavailable

buyrefund

(A) Sequence Diagram (B) State Machine Diagram

Figure 1.14 Example of sequence diagram and state machine

1.3 AN AUTOMATED MODEL ANALYSIS TOOL: LAMBDES

The descriptive semantics of UML class diagrams, interaction diagrams and
state machine diagrams have been implemented in an automated software tool
called LAMBDES, which stands for a Logic Analyser of Models and Meta-
models Based on Descriptive Semantics. Fig. 1.15 shows its overall structure
and main functions.

The current version of the LAMBDES toolkit consists of a GUI interface,
a number of generators and a repository of design pattern specifications. It
is integrated with a graphic modelling tool StarUML1 and a theorem prover
SPASS 2. It takes the model or metamodel’s XMI representation produced
by StarUML as input to generate a logic system in the format of SPASS’
input and invokes SPASS to perform logical analysis of the model and/or
metamodel.

1Available online at URL: http://staruml.sourceforge.net/en/
2Available online at URL: http://www.spass-prover.org/tutorial.html.

LAMBDES TOOL 15

User InterfaceLAMBDES

Logic system for metamodel

Modelling tool StarUML

Axiom
Generator

Metamodel

Metamodel in XMI

Theorem prover SPASS

Inference result

Statements

Model

Model in XMI

Signature
Generator

Formula
Generator

Signature Axioms

Proof Goal

Hypothesis

Modelling
Context

Hypothesis
Generator

Domain
Generator

Auxiliary
constants &

formulas

Conjecture
Generator

Conjecture

Logic system for model

Design Pattern
Specification

Design
Pattern
Spec

Repository

Figure 1.15 Overall structure of LAMBDES toolkit

SPASS is a general purpose theorem prover for FOPL with equality. Its
input is a text file that represents a logic system with the following parts.

1. Description: background information not used in logic inference by
SPASS;

2. Signature: declarations of the predicates and constant symbols of the
logic system;

3. Premises : a list of formulae as the premises of logic inference;

4. Conjectures : a list of formulae to be proved.

Given an input, the execution of SPASS may terminate with a proof of the
conjecture from the premises, terminate with a failure to prove, or else run
forever without producing any results, because inference in FOPL is NP-hard.
SPASS is refutationally complete [28], which means when it terminates with a
failure to prove, the conjecture cannot be proved from the premises in FOPL.

Fig. 1.16 shows a snapshot of the tool’s interface, where the input XMI
file of the model is displayed on the left and the generated FOPL system
in SPASS input format is displayed on the right. The analysis tool can be
invoked either from the tools menu or by pressing buttons.

The main functions of the key components of LAMBDES are as follows:

16 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

Figure 1.16 Screen snapshot of LAMBDES toolkit

• Signature generator implements the signature mapping rules. When
a metamodel in a UML class diagram is provided by the user, this
produces a signature in the form of SPASS symbol declarations.

• Axiom generator implements the axiom mapping rules. When a meta-
model in UML class diagram is provided, this generates a set of axioms
in the form of formulae in SPASS format using the symbols declared in
the signature generated by the signature generator.

• Formula generator implements the translation rules. When a model is
provided, it analyses the model and generates a set of formulae in the
format of SPASS input.

• Hypothesis generator takes user’s input about the context of modelling
to generate the hypothesis formulae. Fig. 1.17 shows the GUI interface
through which the user inputs the information about the context of
modelling.

• Conjecture generator takes the user’s indication of what the analysis
goal is to generate the conjecture to be proved and merges the signature,
axiom and formulae generated by other generators to form a complete
input file to SPASS.

• Design Pattern Specification Repository stores a set of formal specifi-
cations of design patterns in FOPL in the form of SPASS formulae.
Currently, it contains the specification of all 23 design patterns of the

APPLICATIONS 17

GoF book [11], based on the work reported in [5]. It supports proofs
that a design model conforms to a given design pattern.

• Domain generator takes a metamodel as input and generates a set of
constant symbols of various types of model elements and instances of
various relations to populate the domain when the metamodel is anal-
ysed.

Figure 1.17 Setting modelling context in LAMBDES toolkit

1.4 APPLICATIONS IN MODEL AND METAMODEL ANALYSIS

In this section, we demonstrate some applications of descriptive semantics in
the logic analysis of models and metamodels.

1.4.1 Consistency check of models

Let F be a set of formulae in a signature Σ. As in FOPL, if we can deduce
that if F
 false, then F is inconsistent. Thus, we can check if a model is
logically consistent or not.

18 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

Definition 1.4 (Logical consistency)
Model M is said to be logically inconsistent in the descriptive semantics if

[[M]]H
 false; otherwise, we say that the model is logically consistent in the
descriptive semantics.

In [23], it is proved that a logically inconsistent model is not satisfiable in
a subject domain, where a consistent interpretation of formulae is applied.

Definition 1.5 (Consistent interpretation of formulae in a subject domain)
Let Dom = 〈D, Sig, Eva〉 be a subject domain. The interpretation of Σ-

formulae in Dom is consistent w.r.t. FOPL if and only if for all formulae
q and p1, p2, · · · , pk that p1, p2, · · · , pk
 q, and for all systems s in D that
Eva(pi, s) = true for i = 1, 2, · · · , k, we always have Eva(q, s) = true.

Theorem 1.1 (Unsatisfiability of inconsistent model)
A model M that is logically inconsistent in descriptive semantics is not sat-

isfiable on any subject domain whose interpretation of formulae is consistent
w.r.t. FOPL.

For example, using the LAMBDES tool, we generated the descriptive se-
mantics of the model of the Ticket Office shown in Fig. 1.2 and Fig. 1.6 and
invoked the SPASS theorem prover to prove that each set of formulae gen-
erated from the three diagrams in the model are logically consistent. Their
union is also consistent. Therefore, the model is consistent.

We have also made various minor changes to the diagrams in the model
Ticket Office. Some changes led to logically inconsistent sets of formulae, and
these were detected by theorem prover SPASS. It is, therefore, possible to
check the consistency of models through logic inferences based on descriptive
semantics.

It is worth noting in general though, that logical consistency does not
guarantee that the model is satisfiable in a subject domain.

In additional to logical consistency, many other quality attributes of models
can also be expressed in first order logic and checked through logic inference.
For example, in [7], Cheng et al. studied 25 quality problems in software
models using the tool DesignAdvisor. As show in Table 1.5, among these
quality problems, 20 attributes can be represented in FOPL as indicated in
the Repr column and 17 attributes are implemented in the LAMBDES tool
as indicated in the Impl column. Those quality attributes that cannot be
checked by LAMBDES tool include: (A) 5 quality issues defined on the bases
of metrics, which cannot be represented in FOPL without arithmetics; (B) 1
quality issues related to stereo types of dependence relation, which the current
version of LAMBDES does not deal with; and (C) 2 quality issues about the
missing pre/post conditions of methods, which is not dealt with in the current
implementation of the LAMBDES tool. Note that, in the UML metamodel,
the order of parameters in a signature cannot be represented. Thus, two
signatures are regarded as same if the orders are ignored.

APPLICATIONS 19

Table 1.3 Summary of Using LAMBDES for Model Quality Checking
Error Description Repr. Impl.
Severe Errors:
Abstract class not inherited Yes Yes
Circular association Yes Yes
Circular dependency Yes Yes
Abstract class inherits from concrete class Yes Yes
Class inherits from one or more non-base classes Yes Yes
Interface to class expected but defined improperly Yes Yes
Two methods exist in the model with the same signature Yes Yes
Two objects exist in the model with the same name Yes Yes
Parent accessing attributes/operations of child class Yes Yes
Moderate Errors:
Number of associations above user-defined threshold No No
Number of attributes above user-defined threshold No No
Number of methods above user-defined threshold No No
Base artifact in an inheritance tree is concrete Yes Yes
Number of messages passed to a class above user-defined No No

threshold
Multiple inheritance Yes Yes
Operation has more arguments than user-defined threshold No No
Base class in inheritance tree has publicly accessible Yes Yes

attributes
Low Severity Errors:
A dependency has no declared stereotype Yes No
Interface not used Yes Yes
Missing Associations Yes Yes
Missing Dependencies Yes Yes
No classes are dependent on this class Yes Yes
Operation missing post-conditions Yes No
Operation missing pre-conditions Yes No
A class’s methods or attributes are unused by other classes Yes Yes

1.4.2 Validation of consistency constraints

It is often desirable to check models against consistency constraints. Fig.
1.18 gives some examples of these consistency constraints and show how such
constraints can be formally specified as Σ-formulae. They cannot be derived
from the axioms, and are not required for logical consistency so we clearly do
need a separate notion of consistency w.r.t. a set of constraints, as follows.

Definition 1.6 (Consistency w.r.t. consistency constraints)
Given a set of consistency constraints C = {c1, c2, · · · , cn}, the consis-

tency of a model M w.r.t. the constraints C in descriptive semantics is the
consistency of the set U = [[M]]H ∪ C of Σ-formulae. In particular, we say
that a model M fails on a specific constraint ck, if [[M]]H is consistent, but
[[M]]H ∪ {ck} is not.

20 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

Examples of consistency constraints

(1) A life line must represent an instance of a class [8, 25].
∀x, y, z · (Lifeline(x)∧ represent(x, y) ∧ type(y, z) → Class(z))

(2) A message must represent an operation call of its receiver [8].
∀x, y, z, u · (Message(x) ∧ event(x, y) ∧ SendOperationCall(y)∧

receiver(x, z) ∧ type(z, u) → ownedOperation(u, y))
(3) The classifier of a message’s sender must be associated to the classifier
of its receiver [8].

∀x, y, z, u, v · (Message(x) ∧ sender(x, y) ∧ type(y, u)∧
receiver(x, z) ∧ type(z, v) → ∃w, m, n · (Association(w) ∧

memberEnd(w, m) ∧ AssociateT o(m, u) ∧
memberEnd(w, n) ∧ AssociateT o(n, v)))

(4) A protocol state transition must refer to an operation, and that
operation must apply to the context classifier of the state machine.

∀x, y, z · (ProtocolStateMachine(x) ∧ transition(x, y)∧
trigger(y, z) ∧ context(x, u) →

Operation(z) ∧ ownedOperation(u, z))
(5) The order of messages in an interaction diagram must be consistent
with the order of triggers on transitions in the state machine [8, 15].

∀x, y, z, u · (Message(x) ∧ event(x, z)∧
Message(y) ∧ event(y, u) ∧ after(x, y) → Trigs(z, u)).

Figure 1.18 Examples of consistency constraints

It is important to know if a consistency constraint is valid and effective.
Such formal analysis becomes possible now that the descriptive semantics are
formally defined. First, for a consistency constraint to be valid, it must be
consistent with the semantics of the modelling language.

Definition 1.7 (Validity of consistency constraints)
Let AxmD be the set of axioms of descriptive semantics. A set C =

{c1, c2, · · · , cn} of consistency constraints is valid if AxmD ∪ C is logically
consistent.

Secondly, a consistency constraint is not effective if it does not impose any
additional restriction on models. This is true if the constraint can be deduced
from the axioms in FOPL. Thus, we have the following definition.

Definition 1.8 (Effectiveness of consistency constraints)
Let Axm be a set of axioms. A set C = {c1, c2, · · · , cn} of consistency

constraints is ineffective w.r.t. the set Axm of axioms if Axm
 C.

APPLICATIONS 21

So a formal analysis of consistency constraints can be performed through
logic inference. For example, we have used the LAMBDES tool to prove that
the constraints given in Fig. 1.18 are all valid. We have also proven that they
are effective by detecting models that are consistent w.r.t. the axioms but
inconsistent w.r.t. the constraints.

1.4.3 Consistency check of metamodels

The LAMBDES tool can also be used to analyse metamodels by proving or
disproving the consistency of the axioms generated from the metamodel. If
the derived axioms are inconsistent, then the metamodel is not well-defined.

We have conducted a case study with two metamodels. The first is the UML
2.0 metamodel defined in the Classes, Common Behaviours, Interactions and
State Machines packages. The second is the profile of AspectJ proposed in [10]
for aspect-oriented modelling. This case study was intended to demonstrate
the applicability of descriptive semantics in the analysis of proper uses of
profiles as extension mechanisms. Table 1.4 summarises the logic system
generated from the metamodels.

Table 1.4 Summary of the Logic Systems
Type of element UML 2.0 AspectJ

Metamodel Profile
Signature Unary Abstract metaclass 27 6

Predicate Concrete metaclass 99 25
Binary Meta-attribute 58 11
Predicate Meta-association 255 12
Constant symbol 46 7
Total 485 61

Axioms Implication of specialisation 133 26
Completeness of specialisation 25 6
Disjointness of classification 4851 300
Domain of binary predicate 321 23
Enumeration constants 196 18
Multiplicity of meta-associations 222 18
Completeness of classification 1 1
Total 5740 392

Two types of errors in the metamodels were detected: incompleteness errors
and inconsistency errors. For an example of incompleteness, in the UML 2.0
metamodel, the data types of metaattributes are either enumeration types,
e.g. VisibilityKind, or primitive types, e.g. String. The enumeration types are
defined in the metamodel, while the primitive types are used in the metamodel
without definition. This contradicts the statement in the Classes Package
that “each metaclass is completely described” [18]. Incompleteness errors
were detected by the SPASS theorem prover with error reports where symbol
declarations were missing.

22 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

For an example of inconsistency, in the UML 2.0 metamodel, Occurence-
Specification is specified as an abstract metaclass in one diagram and as a
concrete metaclass in another. This error has been corrected in UML 2.1 [19].
A more subtle inconsistency detected, this time within the AspectJ meta-
model, is that there are two association ends both named composee: one on
the association from PointCut to PointCutConjunction and the other on the
association from PointCut to PointCutDisjunction. Since an association end
represents a directed relation that enables navigation between elements, two
association ends of the same name from the same metaclass cause ambiguity
in the direction of the navigation. This problem is detected by the theorem
prover SPASS when checking the consistency of the axioms generated from
AspectJ metamodel, which include the following formulae.

∀x · (PointCutConjunction(x) → ¬PointCutDisjunction(x))
∀x · (PointCut(x) ∧ composee(x, y) → PointCutConjunction(x))
∀x · (PointCut(x) ∧ composee(x, y) → PointCutDisjunction(x))

Another form of inconsistency in metamodels is the violation of the principle
of strict modelling, which states that

In an n-level modelling architecture M0, M1, · · · , Mn, every element
of an Mm-level model must be an instance-of exactly one element of an
Mm+1-level model, for all 0 ≤ m < n − 1, and any relationship other
than the instance-of relationship between two elements X and Y implies
that level(X) = level(Y). [2]

According to this principle, each model element must belong to one and only
one concrete metaclass in the metamodel, hence the axiom mapping rules
A1 and A2. However, both UML 2.0 and AspectJ metamodels violate this
principle. In particular, they contain concrete metaclasses as subclasses of
concrete metaclasses. Therefore, a model element can belong to two concrete
metaclasses, and the meanings of the model element is ambiguous. Table 1.5
lists such ambiguities in the UML 2.0 metamodel.

1.4.4 Conformance of design to design patterns

Software design patterns are frequently used to share design expertise. They
document solutions to commonly occurring design problems. Tool support
for patterns has been much reported at the code level [17] but not at the
modelling and design stages, and the latter is increasingly important with
the advent of model-driven software development methodologies. Here, we
demonstrate that the descriptive semantics of UML and the LAMBDES tool
can be applied to formally prove the conformance of a design represented in a
UML model to a pattern formally specified in the FOPL. More details about
a case study on this topic will be reported separately.

In [3, 5], Bayley and Zhu advanced an approach to the formal specification
of design patterns using FOPL on UML models. Here a design pattern P is

APPLICATIONS 23

Table 1.5 Summary of ambiguity in UML 2.0 metamodel
Package Concrete super-metaclasses Concrete Sub-metaclasses
Classes InstanceSpecification EnumerationLiteral

Class AssociationClass
Association AssociationClass
DataType PrimitiveType
Abstraction Realisation
Realisation Substitution
Dependency Usage

Common OpaqueBehaviour FunctionBehaviour
behaviours Constraint IntervalConstraint

IntervalConstraint TimeConstraint
Class Behaviour

Interactions CombinedFragment ConsiderIgnoreFragment
InteractionUse PartDecomposition

State Transition ProtocolTransition
machines State FinalState

StateMachine ProtocolStateMachine

specified as a predicate p = Spec(P) such that a design model M conforms
to a pattern P , if the evaluation of the predicate p on model M is true. For
example, the following is the specification of the Template Method pattern
taken from [5].

Components

• AbstractClass ∈ classes
• templateMethod ∈ AbstractClass.opers
• others ⊆ AbstractClass.opers

Static Conditions

• templateMethod.isLeaf
• templateMethod
∈ others
• ∀o ∈ others . ¬o.isLeaf

Dynamic Conditions

• The template method calls the non-leaf operations.
∀o ∈ others . callsHook(templateMethod, o)

The static conditions relate to the class diagram and the dynamic condi-
tions relate to the sequence diagram. Here, classes denotes the set of classes
in the class diagram. If C is a class then C.opers denotes the set of oper-
ations of class C. If o is an operation then o.isLeaf is true when o is not
redefined in a subclass. So the static conditions state that there must be
a class AbstractClass with a non-redefined operation templateMethod that
calls a set others of separate redefined operations.

In the dynamic conditions, the predicate callsHook(op, op′) used above is
defined as ∃C ∈ subs(C′) · calls(op, C.op′), where calls(op, op′) denotes that
in the sequence diagram, there exists messages m and m′ in messages, the

24 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

set of messages, such that m, labeled with operation op, calls m′, labeled with
operation op′.

The mix of maths and text forming the specification above is meant to be
read as a single (commented) predicate in which the variables AbstractClass,
templateMethod and others are existentially quantified and the four condi-
tions are conjoined together into a single predicate on those three variables.
The general form for the predicate is

∃v1 : T1∃v2 : T2 · · · ∃vn : Tn · (Prs ∧ Prd)
where Prs and Prd are the static and dynamic conditions as predicates and
the vi : Ti are the variables free in Prs and Prd.

An assignment α is a mapping from free variables in p to elements in
model M . The evaluation of a predicate p on a model M in the context of
an assignment α, written Evaα(M, p), is the truth value of p when the free
occurrences of each variable x in p are replaced by α(x). If Evaα(M, p) = true,
we say that model M satisfies predicate p under the assignment α, and write
M |=α p. When there is no free variable in the predicate p, its truth value is
independent of the assignment so the subscript α can be omitted.

From the above discussion it is apparent that although FOPL is used both
in the descriptive semantics of UML and in the formal specification of design
patterns in [3, 4, 5], the universes of discourses are different. To bridge the
semantic gap, the formal specification of design patterns given in [5] must
be translated into Σ-sentences, i.e. in the syntax of LAMBDES tool. The
translation is fairly straightforward because both languages use the same basic
concepts of object-orientation. For Template Method pattern, we get the
following.

%%%
% Template Method Pattern Specification %
%%%
formula(exists([
%Components:
xAbstractClass, xTemplateMethod, xOthers],

and(
%Static conditions:
Class(xAbstractClass),
ownedOperation(xAbstractClass,xTemplateMethod),
ownedOperation(xAbstractClass,xOthers),
isLeaf(xTemplateMethod,bTrue),
not(equal(xTemplateMethod,xOthers)),
isLeaf(xOthers,bFalse)

%Dynamic conditions:
callsHook(xTemplateMethod,xOthers)

))).

The translation mentioned above must meet the following correctness re-
quirement.

APPLICATIONS 25

Definition 1.9 (Correctness of translation)
Let p be a predicate on models, and p′ be a predicate on systems. The predicate
p′ is a correct translation of p, if for all models M , we have M |= p ↔ ∀s ∈
D · (s |= ([[M]] → p′)), where D is a subject domain.

Once a specification Spec(P) of pattern P is correctly translated into
Spec′(P), then, given a design model M represented in UML diagrams, we can
decide whether the design M conforms to pattern P by proving or disproving
the logic statement [[M]] → Spec′(P) in FOL. For example, the translated
specification of Template Method pattern can be deduced from the formulae
generated from the class diagram in Figure 1.19.

AbstractClassXX

+TemplateMethod()
+Others()

ConcreteClassXX

Figure 1.19 Example design instance in template method pattern

The following theorem states that if we can prove [[M]] → Spec′(P) in
FOPL for model M and pattern P , then every system that is an instance of
M must conform to pattern P . The proof is omitted for the sake of space.

Theorem 1.2 Suppose that Spec′(P) is a correct translation of the formal
specification Spec(P) of pattern P . For all models M , if [[M]] ⇒ Spec′(P) is
true in FOPL, then, for all systems s ∈ D, s |= M and M |= Spec(P) imply
s |= Spec′(P).

We have translated the specifications given in [5] for all 23 design pat-
terns in the GoF book into LAMBDES format. They are stored in a pattern
specification repository. The conjecture generator of the LAMBDES tool is
implemented to enable the proof (or disproof) of the conformance of a UML
design model to a pattern. We have also conducted an experiment with the
LAMBDES tool on its ability to recognise patterns in design instances. The
experiment results show that the false negative error rate (for rejecting a pat-
tern it should accept) is 0% while the false positive error rate (for accepting a
pattern it should reject) is below 22%. Details of the experiment are omitted
here for the sake of space, and will be reported separately.

1.4.5 Logic analysis of design patterns

It is worth noting that the specification of a design pattern may contain errors.
The conditions to satisfy the pattern may be in conflict with the semantics of
the modelling language, or they may be in conflict with each other. Such logic
errors can be detected by using LAMBDES tool and SPASS theorem prover.

26 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

In particular, let Spec(P) be a specification of a pattern P . If AxmD ∪
Spec(P)
 false, we can conclude that Spec(P) contains such errors.

In the development of the pattern specification repository, using LAMB-
DES and SPASS, we have proved that for all specifications of design patterns
P in the repository, AxmD ∪ Spec(P)

 false. So, all the specifications in
our repository are consistent with the axioms of descriptive semantics.

Another application of LAMBDES and SPASS in the logic analysis of de-
sign patterns is to prove relations between patterns, for example, to prove one
pattern is a specialisation of another. In [4], it is argued that the relationship
that a design pattern P is a specialisation of pattern Q can be written as
Spec(P) → Spec(Q). Such a relationship can be formally proved by using
LAMBDES and SPASS to infer that AxmD ∪ Spec(P)
 Spec(Q). In the
context of descriptive semantics, we can now prove the following property of
the pattern specialisation relation.

Theorem 1.3 Let Dom be a subject domain that is consistent with FOPL.
If AxmD ∪ Spec(P)
 Spec(Q), then, for all systems x ∈ Dom, if x is an
instance of P then x is also an instance of pattern Q, i.e. ∀x·(x |= Spec(P) →
x |= Spec(Q)).

1.5 CONCLUSION

In this chapter, we presented a framework for formalisation of UML semantics
and defined a formal descriptive semantics of UML in FOPL. We introduce
a tool called LAMBDES, which translates UML class diagrams, interaction
diagrams and state machine diagrams to FOPL systems and is integrated
with the theorem prover SPASS to enable various logic analysis of models
and metamodels. A number of applications of the descriptive semantics and
the tool LAMBDES are demonstrated.

1.5.1 Related work

Remarkable efforts have been made in the past decade to formalise UML
semantics, so as to address the underspecification and ambiguity in UML’s
semantics.

With regards to the formalisation of class diagrams, often considered to be
the most important type of UML diagram, a number of proposals have been
advanced. The work by Evans et al. defines classifier, association, general-
isation and attribute etc. in Z schemas [9]. Relations between objects and
classifiers are specified as axioms. Diagrammatical transformation rules are
defined as deduction rules to prove properties of UML models. In [1], a survey
of the different approaches to formalising class diagram with Z or Object-Z
can be found. FOPL and description logics (DLs) are used to formalise class
diagram in [6]. By encoding UML class diagrams in DL knowledge bases, DL
reasoning systems can be used to reason about class diagrams.

CONCLUSION 27

The formalisation of other types of diagrams has also been investigated,
especially on state machine diagrams. In [26], a rule-based operational se-
mantics of state machines is proposed based on transition systems. Other
work on operational semantics of state machines is reported in [27]. In [14], a
coalgebra framework for defining the formal semantics of sequence diagrams
was proposed.

Great efforts have also been made to formalise the different diagrams in
one semantic framework. Considering the semantics of a UML model as a
set of acceptable structured process, the authors of [21] map class diagrams
and state machines into algebraic specifications in Casl-ltl [20]. Another work
aiming at integrating the semantics of class diagrams, object diagrams and
state machine diagrams is based on graph transformation [13].

To bridge the gap between UML and formal methods, the extensibility
mechanism of UML profiles is used to define specialisations of UML. In [24],
a profile UML-B is designed so that the semantics of specialised UML entities
can be defined via a translation into B. In [16], an integrated formal method
combining the process algebra CSP with the specification language Object-Z
is used as the intermediate specification language to link UML and Java. A
UML profile for CSP-OZ is designed with the aim of generating part of the
CSP-OZ specifications from the specialised UML models.

The above existing methods define the semantics of UML by mapping mod-
els into a specific semantic domain, such as labeled transition systems, or OO
software systems specified in a formal notation such as Z. The properties of OO
systems are specified as axioms and are used to reason about UML models. In
other words, they mostly address just the functional semantics of UML. Each
method focuses on certain properties of OO systems, so only a certain subset
of UML is formalised. However, it is hard to see how these approaches could
work either alone or together for fully-fledged UML. Most importantly, the
ambiguity in descriptive semantics is not addressed in these works. Instead,
their formalisation approaches are based on explicit or implicit assumptions
about the descriptive semantics. They do not achieve automatic translation of
UML models to formal specifications and this is necessary to facilitate formal
reasoning.

In comparison with the existing works, our approach separates descriptive
semantics from functional semantics so that the overall structure of seman-
tics is much clearer and simpler. It also conforms the theory of institution
proposed by Goguen and Burstall [12] for the study of formal specification
languages. As shown in the chapter, our approach successfully addressed the
problems of the requirements of flexibility in using models in different software
development context by introducing hypothesis mappings into the semantics
framework. It also successfully addressed the problem of extensibility of the
semantics definition by defining semantics mappings from the metamodel to
the logic system so that when new stereotype metaclasses are introduced, new
atomic predicate and function symbols can be derived from profile definition,
or even from a completely new metamodel. The universality of the semantic

28 UML DESCRIPTIVE SEMANTICS AND APPLICATIONS

mappings are clearly demonstrated by the application to class diagrams, in-
teraction diagrams and state machine diagrams as well as in the case study
of AspectJ profile. Our approach is also independent of the interpretation of
the logic in any particular subject domain. Therefore, the semantics can be
interpreted in the subject domain of computerised information systems, real
world objects and physical systems, human societies, etc. as far as the basic
concepts of object orientation apply. These are open problems that have not
been solved in existing works.

Our approach is scalable as shown in the case study of the main parts
of UML 2.0 containing four large packages and the real example of AspectJ
profile, all 23 design patterns in the GoF category, etc. Our approach is also
highly automated in the sense that a graphical model edited by the modelling
tool StarUML can be input into LAMBDES to generate formal semantics of
the model, to invoke a theorem prover to check its consistency, its conformance
to design patterns, etc. Our approach applies not only to models, but also to
metamodels.

1.5.2 Future work

We are investigating how functional semantics can be formally specified and
the interplay between descriptive semantics and functional semantics. The
static functional semantics has also been developed, and this will be reported
separately.

We are also studying the logic properties of the descriptive semantics re-
ported here. It is apparent that the axioms of descriptive semantics are con-
sistent, as proved in the experiment by using SPASS. The particular problems
that we are interested in include whether the axioms and various other seman-
tics mappings are complete.

One of the problems that we encounter in the case studies and experiments
is the inefficiency of the theorem prover. When the number of formulae in
the logic system is more than a thousand, the proof that the formulas are
consistent does not terminate, and this would appear to be a bottleneck for
the practical uses of the LAMBDES tool.

References

1. N. Amlio and F. Polack. Comparison of formalisation approaches of UML class
constructs. In in Z and Object-Z. In Bert et al, pages 339–358. Springer, 2003.

2. C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM
Trans. Model. Comput. Simul., 12(4):290–321, 2002.

3. I. Bayley and H. Zhu. Formalising design patterns in predicate logic. In Proc.
of SEFM’07 , 2007.

4. I. Bayley and H. Zhu. On the composition of design patterns. In Proc. of
QSIC’09, pages 27–36, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

5. I. Bayley and H. Zhu. Specifying behavioural features of design patterns in first
order logic. In Proc. of COMPSAC’08, pages 203–210, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

6. D. Berardi, A. Cal, and D. Calvanese. Reasoning on UML class diagrams.
Artificial Intelligence, 168:70–118, 2005.

7. B. H. Cheng, R. Stephenson1, and B. Berenbach. Lessons learned from auto-
mated analysis of industrial UML class models. In MoDELS 2005, LNCS Vol.
3713, pages 324–338, 2005. Springer-Verlag, Berlin Heidelberg.

8. A. Egyed. Instant consistency checking for the UML. In Proc. of ICSE’06, pages
381–390, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

9. A. Evans, R. B. France, K. Lano, and B. Rumpe. The UML as a formal modeling
notation. In UML’98: Selected papers from the First International Workshop

UML 2 Semantics and Applications. By Kevin Lano (Eds.)
Copyright c© 2008 John Wiley & Sons, Inc.

29

30 REFERENCES

on The Unified Modeling Language UML’98, pages 336–348, London, UK, 1999.
Springer-Verlag.

10. J. Evermann. A meta-level specification and profile for AspectJ in UML. Journal
of Object Technology, 6(7):27–49, 2007.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

12. J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for spec-
ification and programming. J. ACM, 39(1):95–146, 1992.

13. S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An integrated seman-
tics for UML class, object and state diagrams based on graph transformation.
In IFM ’02: Proceedings of the Third International Conference on Integrated
Formal Methods, pages 11–28, London, UK, 2002. Springer-Verlag.

14. S. Meng and L. S. Barbosa. A coalgebraic semantic framework for reasoning
about UML sequence diagrams. In Proc. of QSIC’08, pages 17–26, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

15. T. Mens, Der, and J. Simmonds. Maintaining consistency between UML models
with description logic tools. In ECOOP Workshop on Object-Oriented Reengi-
neering, 2003.

16. M. Muller, E. Olderog, H. Rasch, and H. Wehrheim. Linking CSP-OZ with
UML and Java: A case study. In Integrated Formal Methods, Vol. 2999, Lecture
Notes in Computer Science, pages 267–286. Springer, 2004.

17. N. Nija Shi and R. Olsson. Reverse engineering of design patterns from java
source code. In Proc. of ASE’06, Tokyo, Japan, pages 123–134, September 2006.

18. OMG. Unified Modeling Language: Superstructure version 2.0. Object Man-
agement Group, 2005.

19. OMG. Unified Modeling Language: Superstructure version 2.1.1. Object Man-
agement Group, 2007.

20. G. Reggio, E. Astesiano, and C. Choppy. Casl-ltl : A casl extension for dy-
namic reactive systems – summary. Technical Report DISI-TR-99-34, DISI –
Universit‘a di Genova, Italy, 1999.

21. G. Reggio, M. Cerioli, and E. Astesiano. Towards a rigorous semantics of UML
supporting its multiview approach. In FASE ’01: Proceedings of the 4th In-
ternational Conference on Fundamental Approaches to Software Engineering,
pages 171–186, London, UK, 2001. Springer-Verlag.

22. E. Seidewitz. What models mean. IEEE Software, 20(5):26–32, 2003.

23. L. Shan and H. Zhu. A formal descriptive semantics of UML. In Proc. of
ICFEM’08, pages 375–396. Springer, October 2008.

24. C. Snook and M. Butler. UML-B: Formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol., 15(1):92–122, 2006.

25. R. Van, D. Straeten, J. Simmonds, and T. Mens. Detecting inconsistencies
between UML models using description logic. In Proc. of DL2003, 2003.

26. D. Varr. A formal semantics of UML statecharts by model transition systems. In
in Proceedings ICGT 2002: International Conference on Graph Transformation,
Lecture Notes in Computer Science, pages 378–392. Springer-Verlag, 2002.

REFERENCES 31

27. M. von der Beeck. A structured operational semantics for UML-statecharts.
Software Systems Model, 1:130–141, 2002.

28. C. Weidenbach. Spass - version 0.49. Journal of Automated Reasoning,
18(2):247–252, 1997.

