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Abstract

The formal specification of design patterns is widely recognized as being vital to their effective
and correct use in software development. It can clarify the concepts underlying patterns, elimi-
nate ambiguity and thereby lay a solid foundation for tool support. This paper further advances
a formal meta-modelling approach that uses first order predicate logic to specify design patterns.
In particular, it specifies both structural and behavioural features of design patterns and systemat-
ically captures the variants in a well-structured format. The paper reports a case study involving
the formal specification of all 23 patterns in the Gang of Four catalog. It demonstrates that the
approach improves the accuracy of pattern specifications by covering variations and clarifying
the ambiguous parts of informal descriptions.
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1. Introduction

Design patterns are a technique for documenting solutions to recurring design problems and
for sharing design expertise in an application-independent fashion (Coad, 1992; Berczuk, 1995;
Gamma et al., 1995). They are commonly presented in Alexandrian form, in which design
principles are first explained in informal English, and then clarified with illustrative diagrams
and specific code examples (Gamma et al., 1995). This format is informative enough for humans
to understand the design principle and to learn how to apply patterns to solve their own problems.

However, as Eden and Hirshfeld (2001) pointed out, the Alexandrian format is very informal
and hence brings such ambiguity that it is often a matter of dispute whether an implementation
conforms to a pattern or not. Furthermore, it is now widely recognised that poor presentation of
patterns can lead to poor system quality (PLAC, 2007), and can actually impede maintenance and
evolution, according to the empirical studies in (Khomh and Guéhéneuc, 2008), which suggests
that patterns should be used with caution. Mathematical notations can help eliminate this ambi-
guity by clarifying the underlying notions. So it is no surprise that the past few years have seen
much research into formal pattern specification but, as we argue in Section 2, the full potential
of formal pattern specification has still not yet been realised.

Another weakness of the Alexandrian format is that it presents knowledge in an unstructured
way. Each pattern is described separately, with relationships to other patterns merely indicated.
But understanding individual patterns in isolation is not enough. They need to be cataloged
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(Winn and Calder, 2003) and combined to solve real-world problems. Formal specification can
not only remove ambiguity, as discussed above, but also lay a solid foundation for reasoning
about their properties and their inter-relationships.

In our approach, we define the abstract syntax of UML, in which the software design mod-
els are represented, using the meta-notation Graphical Extension of BNF (GEBNF). From this
GEBNF definition, we can systematically derive primitive predicates on these design models,
and thus a First-Order predicate Logic (FOL) language, in which design patterns can be formally
specified as predicates on designs, predicates that are satisifed if and only if the design conforms
to the pattern. They are written in a scheme that explicitly demarcates the structural features,
behavioural features and allowable variants.

Our main contributions here are:

• the meta-notation GEBNF

• the GEBNF definition of a non-trivial subset of UML with class and sequence diagrams

• the mechanism for deriving primitive predicates on models

• the formal scheme for specifying design patterns as complex predicates on models.

Other related contributions mentioned only briefly here, for reasons of space, are:

• the specification of all 23 patterns in the GoF book (we show just some of these)

• a prototype software tool called LAMBDES-DP for recognising patterns

• the formal proof and definition of various properties of patterns

• experiments on the 23 patterns that show the tool has a high precision and recall rate

• a definition of transformations on patterns such as lifting

• a definition, using these, of pattern composition as an operation on predicates

The remainder of the paper is organized as follows. Section 2 reviews related work and
discusses the problems associated with them. Section 3 describes our formal meta-modeling
framework, which is based on the abstract syntax definition of modeling language in GEBNF
and on the induced first-order logic. Section 4 presents the scheme in which design patterns are
specified and illustrates it with a number of examples. Section 5 reports a case study on the
formal specification of the patterns in the GoF book (Gamma et al., 1995) and the main results of
the experiments with the tool LAMBDES-DP. Section 6 concludes the paper with a discussion
of the directions for future work.

2. Related Work and Associated Problems

Some recent research efforts have adapted existing modeling notations and formal specifi-
cation techniques, while others have developed new languages specifically for the purpose. In
this section, we divide the existing work into modelling and meta-modelling approaches. The
first specifies design patterns as a model of software systems, i.e. as a set of features within its
program code structure and/or run-time behaviors. The second approach, to which our work be-
longs, specifies design patterns as meta-models, i.e. as a set of features of the models themselves.



2.1. The Modeling Approach

Of the two approaches, this was the first to be explored, and it can even be seen within GoF
itself, where each design pattern is illustrated with an OMT class diagram. But even when ac-
companied by a sequence diagram, a class diagram is not enough to capture all the information
conveyed by a design pattern. So many researchers proposed extensions to object-oriented mod-
els. For example, Lauder and Kent (1998) proposed a three-layer modeling approach consisting
of role models, type models and concrete class models. Lano et al. (1996) also focused at the
code-level and treated patterns as transformations from flawed solutions to improved solutions.
Guennec et al. (2000) extended the UML meta-model to incorporate collaboration occurrences
and to use the Object Constraint Language (OCL) to constrain the collaborations. Zdun and
Avgeriou (2005) identified architectural primitives that occur in patterns from the component-
and-connector view. Mak et al. (2004) define the notion of collaborations by extending UML to
action semantics.

Existing formal specification techniques have also been applied. Mikkonen (1998) formalizes
the temporal behaviors of software in a temporal logic of actions. Taibi et al. (2003) formalize
structural features as relations between program elements, specify post-conditions with predicate
logic and describe the desired behavior with temporal logic. Taibi (2006) also investigated how
pattern composition can be defined in this framework.

Dozens of tools have been developed to recognize patterns by analyzing source code. Ex-
amples include FUJABA (Niere et al., 2002), HEDGEHOG (Blewitt et al., 2005) and PINOT
(Nija Shi and Olsson, 2006); see (Dong et al., 2007) for a recent survey and review. These tools
often use an intermediate representation of program structure and behavior features. The most
common of these representations include logic programs (Krämer and Prechelt, 1996; Huang
et al., 2005), relational databases (Seemann and von Gudenberg, 1998) and the first-order logic
predicates (Beyer et al., 2005). They can all be regarded as model-level pattern specifications.
They are matched by the tool with design information extracted from the source code. But the
level of abstraction is too low and the specifications are, of necessity, overwhelmed with details
related to programming language-specific issues. This makes it difficult to achieve high preci-
sion and recall in pattern recognition (Dong et al., 2007). Even worse, some behavioral properties
cannot be extracted from source code because they are non-determinable in general.

A further problem is that “formal specification languages were not molded to express im-
plementation details”, as Eden et al. (1997) put it. They describe external characteristics pre-
cisely without specifying implementation details at all, but a design pattern is all about the
implementation-oriented solution to a kind of problem. Graphic modeling languages like UML
are not expressive enough either. GoF’s own descriptions of design patterns have to rely mainly
on informal notes, using diagrams only as illustration, because in the absence of formalisation
they are neither precise nor general enough, as is widely recognised. Finally, while tools like
PINOT (Nija Shi and Olsson, 2006) are desirable, design-level tools are better still as they would
minimise errors at the design stage, which is earlier. In which case, design patterns must be
specified in terms of the structural and behavioural features of design models rather than source
code. This naturally motivates the second approach, to which our work belongs.

2.2. The Meta-Modeling Approach

The LePUS approach, advanced by Eden (2001, 2002), is to include both modelling and
meta-modelling facilities in the same language. To support modelling, LePUS has ground en-
tities from object-oriented design such as classes, attributes and methods, connected by ground



relations such as inherit, invoke and create. To support meta-modelling, LePUS has typed sets
of these ground entities plus some rudiments, which reflect the common building blocks within
GoF design patterns. Examples of these are called clan, tribe, hierarchy and bijection, and their
semantics are all formally defined in predicate logic. So each well-formed LePUS diagram is
equivalent to a formula ϕ(x1, x2, · · · , xn) in first-order predicate logic, where the free variables
x1, x2, · · · , xn are the participants in the pattern and the relation ϕ between them represents the
collaborations. Relationships between patterns can be described as logic relations (Eden and
Hirshfeld, 2001). Recently, the visual notations and the underlying first-order logic language
have been formally defined (Eden et al., 2007) and referred to as LePUS3 and Class-Z, respec-
tively. A tool has been implemented to extract information from Java programs and represent it
in the form of LePUS3 diagrams. It can then decide and prove automatically whether or not the
program satisfies a pattern specification written in LePUS3 (Gasparis et al., 2008b,a). However,
LePUS’s rudiments cover only the static structural features of design patterns and they ignore
dynamic behavioral features.

Another well-known work in this category is the Design Pattern Modeling Language (DPML)
of Maplesden et al. (2001, 2002). In this language, design pattern solutions are modeled as
a collection of participants, representing structural features such as classes and methods, plus
associated constraints and dimensions. Constraints either relate to a single object realising a
participant, in which case they are written as natural language annotations within curly brackets,
or two such objects, in which case, they are binary relations drawn as lines with arrowheads
between the two participants. These are predefined and examples include implements, extends,
realizes, declared in, defined in and refers to. Dimensions specify the set of objects playing
a role and dimension keys can be used to specify that two or more participants have the same
dimension ie the same number of instances of the roles. When the binary relations are applied
to participants associated with dimensions, they can be mapped to a total, regular, complete
or incomplete relation between the sets of objects. The facilities for modelling are kept more
separate from those for meta-modelling than is the case with LePUS.

DPML also defines a set of visual notations for specifying the instance models of patterns.
A tool called DPTool, reported in (Maplesden et al., 2002), supports both pattern specification,
and the checking of pattern conformance, with respect to a UML model. DPML does have some
shortcomings though that affect its expressivity and precision. For a start, the constraints on
participants are informal and again, only structural features of design patterns can be specified.
Also, some important issues are not addressed and thus remain open problems. These include
how to reason about patterns, how to compose them, and how to specify variants without having
to use a separate DPML diagram for each one.

LePUS and DPML both mixed modelling and meta-modelling together in the same language
but the Role-Based Meta-modeling Language RBML proposed by France et al. (2004) took a
strict meta-modeling approach. RBML extends UML for meta-modelling in a UML-like nota-
tion. A pattern is viewed as a meta-model so each instance of the pattern is a model in UML.
The participants of a pattern and the relations between them are represented in graphic notation
as roles. Further constraints are represented in the Object Constraint Language OCL, and the se-
mantics of methods and attributes can be defined as OCL templates, instantiated for each pattern.
An RBML meta-model can be translated into a UML meta-model in the form of a UML class
diagram. We can also determine whether a UML model conforms to a design pattern specified
by an RBML meta-model. The expressiveness of RBML has been demonstrated by defining the
meta-models of class diagrams, sequence diagrams and state machine diagrams for such design
patterns as Observer and Visitor (Kim, 2004).



Based on RBML specifications like these, Kim and Lu (2006) proposed a logic programming
approach to identifying patterns in UML class diagrams. In this approach, a UML model is a
set of Prolog facts and a pattern is a Prolog query. They illustrated the approach with the Visitor
pattern, but without the details of how to translate UML designs into Prolog programs, nor how to
translate RBML pattern specifications into Prolog queries. More recently, Kim and Shen (2007)
developed an algorithm to check if a UML model conforms to a pattern specified in RBML.
They have implemented it as a tool called RBMLCC, an add-on component of IBM Rational
Rose. They also report a case study where 7 of the 23 GoF patterns are specified (Kim and Shen,
2008). However, the tool does not fully support RBML yet. In particular, OCL constraints and
OCL templates are omitted.

Another work in this broad category, also with tool support, is that on the Pattern Description
Language PDL (Albin-Amiot et al., 2001), though PDL diagrams are, strictly speaking, neither
‘models’ nor ‘meta-models’. PDL is defined by an extended meta-model of UML and again,
design patterns are specified in a graphical notation. A diagram that conforms to this extended
meta-model is called an abstract model and it must be ‘instantiated’ into a concrete model as
an instance of the pattern. However, this instantiation is not simply the conformance relation
from model to meta-model seen in the OMG’s four-layer meta-modeling architecture. For this
reason, Elaasar et al. (2006) propose a Pattern Modeling Framework PMF. It extends the Meta
Object Facility (MOF) (i.e. the M3 layer of OMG’s four-layer meta-modeling architecture) to
define a meta-modeling language called Epattern with which one can specify patterns in any
MOF-compliant modeling language at the M2 layer and take advantages of existing modeling
and meta-modeling tools.

In general, the graphic meta-modeling approach suffers from several drawbacks. First, meta-
models are difficult to understand. This is partly solved in RBML, DPML and PDL by introduc-
ing new graphic notations for meta-models, but the semantics for these are complex and have
not been formally defined. Secondly, graphic meta-models are ambiguous as all UML-based
languages are, since UML is itself informal. LePUS has its semantics formally specified, but its
notation is not widely used by designers and it does not handle behavioural features. Thirdly,
graphic meta-models are not expressive enough to specify patterns accurately. RBML uses OCL
to compensate but OCL is designed for modelling and has expressiveness issues when used
in meta-modelling, for which there is no tool support anyway (France et al., 2004). Fourthly,
graphic meta-models do not support formal reasoning about design patterns, such as that needed
to compose two patterns or to decide whether one pattern is a special case of another. Finally, and
most importantly, variants cannot be specified other than by using a different diagram for each
one. As we shall see, the Adapter patterns has two variants: Object Adapter, with an association
relation between the Adapter and Adaptee, and Class Adapter with an inheritance relation. These
cannot be depicted both on one diagram.

2.3. Previous work
This paper presents our research work from the past few years. Some preliminary results

have been reported at conferences. The meta-notation GEBNF was first proposed in (Zhu and
Shan, 2006), but it has been simplified and formalised in this paper. Its use in design patterns
was first proposed and outlined in (Bayley and Zhu, 2007), but only structural features were
included. In (Bayley and Zhu, 2008b), behavioural features were specified as well, thereby
improving the accuracy of pattern specification, and a case study of all 23 GoF patterns was also
reported. In (Bayley and Zhu, 2008a), a family of composition operators on design patterns was
defined with the help of transformations such as lifting. More recently, in (Zhu et al., 2009),



the LAMBDES-DP tool was reported, together with the pattern recognition experiments that
were performed on it. This paper further advances the approach by extending the scheme for
pattern specification with alternative and optional conditions. We show that such variations can
be specified formally and systematically in the first-order logic. This is difficult to achieve in
graphic or meta-modelling languages, if not completely impossible.

3. Formal Meta-Modeling in GEBNF and First Order Logic

Each pattern is a subset of design models with certain structural and behavioral features. So
formal specification of patterns is a meta-modeling problem. As in (Bayley and Zhu, 2007), our
approach to meta-modeling begins by first defining the domain of all models in an abstract syntax
for modeling languages written in the meta-notation GEBNF (Zhu and Shan, 2006), which stands
for Graphic Extension of BNF. Then, for each design pattern, we define a first-order predicate to
constrain the models such that each model that satisfies the predicate is an instance of the pattern.
Such a predicate is written in a first-order language induced from the abstract syntax definition of
the graphic modeling language. So, a meta-model in our approach comprises an abstract syntax
in GEBNF plus a first-order predicate.

In this section, we first formally define the meta-notation GEBNF (Zhu and Shan, 2006;
Bayley and Zhu, 2007) and then use it to define the domain of models for UML class diagrams
and sequence diagrams.

3.1. Graphical Extension of BNF

As is the case with the BNF definition of the syntax of a programming language, a GEBNF
definition of the syntax of a modeling language is a set of syntax rules defining non-terminal
symbols based on terminal symbols. The extensions that GEBNF brings to BNF are twofold.
The first is field naming, which enables a set of function symbols to be deduced from a syntax
definition to form a signature of a first-order predicate logic language. The second is the facil-
ity for referential occurrences of non-terminal symbols, so that two-dimensional structures like
graphs can be defined.

3.1.1. GEBNF Meta-Notation
Definition 1. (GEBNF meta-notation)

In GEBNF, the abstract syntax of a modeling language is defined as a tuple 〈R,N, T, S 〉,
where N is a finite set of non-terminal symbols, and T is a finite set of terminal symbols, each of
which represents a set of values. Furthermore, R ∈ N is the root symbol and S is a finite set of
syntax rules of the form

Y ::= L1 : X1, L2 : X2, · · · , Ln : Xn,

where Y ∈ N, L1, L2 , · · ·, Ln are called field names, and X1, X2 , · · ·, Xn are the fields. Each field
can be an expression, which is inductively defined as follows.

• For all Y ∈ N ∪ T , Y is an expression.

• For all Y ∈ N, Y is an expression.

• If Y is an expression, Y∗, Y+ and [Y] are expressions.

• If Y1, Y2, · · · , Yn are expressions, Y1 | Y2 | · · · | Yn is an expression. �



Table 1: Meanings of the GEBNF Notation

Notation Meaning Example and explanation

L1 : X1, Ordered sequence consisting of k ClassName : T ext, Attributes : Attribute∗,
L2 : X2, fields of type X1, X2, · · · , Xk that Methods : Method∗ means that the entity
· · · , can be access by the field names consists of three parts called ClassName,
Lk : Xk L1, L2, · · · , Lk. Attributes and Methods, respectively.
X∗ Repetition of X Diagram∗ means that the entity consists of a

number N of diagrams, where N ≥ 0.
X+ Repetition of X (non-zero) Diagram+ means that the entity consists of a

number N of diagrams, where N ≥ 1.
[X] X is optional [Actor] means an optional element of type Actor.
X Reference to an existing element ClassNode is a reference to an existing

of type X in the model class node.
X1| · · · |Xn Choice of X1, X2, · · · , Xn ActorNode|UseCaseNode means that the

entity is either an actor node or a use case node.

The meaning of the meta-notation is explained in Table 1. Each terminal and non-terminal
symbol denotes a type of entities. Terminal symbols denote the basic atomic entities like S tring,
the set of strings. Non-terminal symbols denote the constructs of the modelling. And finally, the
elements in the set of entities denoted by the root symbol are the models of the language.

If a non-terminal symbol is defined as Y ::= L1 : X1, L2 : X2, · · · , Ln : Xn, then Y denotes a
set of entities that are n-tuples with elements in the sets denoted by X1, X2, · · · , Xn, respectively.
In other words, each entity of type Y is constructed from n elements of type X1, X2, · · · , Xn. The
k’th element in the tuple can be accessed through the field name Lk, for every 1 ≤ k ≤ n, and we
write a.Lk for the k’th element of a, if a is an entity of Y.

As an example, consider the following definition of directed graphs in GEBNF.

Graph ::= nodes : Node+, edges : Edge∗

Node ::= name : S tring,weight : [Real]
Edge ::= f rom : Node, to : Node,weight : Real

where Graph is the root symbol, Graph,Node and Edge are non-terminal symbols, and S tring
and Real are terminal symbols.

This definition consists of three syntax rules, one on each line. It states that a graph consists
of a non-empty set of nodes and a set of edges. Each node has a name, which is a string of
characters, and may have an optional weight, which is a real number. Each edge is from one
node to another, and has a weight, which is a real number.

If a symbol X ∈ T ∪N occurs on the right-hand side of the definition of non-terminal symbol
Y, we say that X is directly reachable from Y through a field name. For example, Node and Edge
are directly reachable from Graph. We define the reachable relation as the transitive closure of
the directly reachable relation. If there is a non-terminal symbol that is not reachable from the
root symbol R, then its entities do not play any role in the construction of any model. In this case,
we say that the syntax of the modelling language is not well-defined. We also say this when a
non-terminal symbol is used but not defined. More formally, we have:
Definition 2. (Well-defined syntax)

An abstract syntax definition 〈R,N, T, S 〉 in GEBNF is well-defined if it satisfies the following
two conditions.



1. Completeness. For each non-terminal symbol X ∈ N, there is one and only one syntax rule
s ∈ S that defines X, i.e. for which X is the left-hand-side.

2. Reachability. For each non-terminal symbol X ∈ N, X is reachable from the root R of the
syntax definition. �

Obviously, the syntax of directed graphs given above is well-defined.

3.1.2. Induced First-Order Language
Consider the syntax definition of directed graphs given above. The first syntax rule actually

introduces two functions nodes and edges, which maps from a graph to its non-empty set of
nodes and the set of edges, respectively. That is, if g is a graph, then g.nodes is the set of nodes
in g. In fact, every field f : X in the definition of a symbol Y introduces a function f : Y → X.
Function application is written a. f for function f and argument a of type Y.

In general, given a well-defined syntax, a set of function symbols and their types can be
derived as follows.
Definition 3. (Induced functions)

A syntax rule “A ::= · · · , f : B, · · ·” introduces a function symbol f whose domain is of type
A and range is of type [[B]], where

• [[B]] = C, when B = C for symbol C ∈ T ∪ N, so f is a total function from entities of type
A to entities of type C;

• [[B]] = C, when B = C for non-terminal symbol C ∈ N, so f is a total function from
entities of type A to entities of type C, as above;

• [[B]] = P([[C]]), when B = C∗, so f is a total function from entities of type A to the sets of
entities of type [[C]].

• [[B]] = P([[C]]) − ∅, when B = C+, so f is a total function from entities of type A to the
non-empty sets of entities of type [[C]];

• [[B]] = [[C]]∪{⊥}, when B = [C], where ⊥means undefined, so f is a partial function from
entities of type A to elements of [[C]].

• [[B]] =
⋃n

i=1([[Ci]]), when B = C1|C2| · · · |Cn, so f is a function from entities of type A to
the disjoint union of the sets C1,C2, · · · ,Cn; in other words, for all x ∈ A, x. f is in one of
the types [[C1]], [[C2]], · · · , [[Cn]]. �

For example, the function weight introduced by the second syntax rule of directed graphs
is a partial function from nodes to real numbers, because the clause weight : Real is optional.
Therefore, a node n may be associated with no weight. In such a case, n.weight is undefined and
we write n.weight = ⊥.

An occurrence of a non-terminal symbol X in the form of X on the right-hand-side of a syn-
tax rule is called a referential occurrence, where the underline is called the reference modifier;
otherwise, it is called a creative occurrence. It is worth noting that although a referential occur-
rence of a non-terminal symbol in a syntax rule introduces a function that is of the same range
type as the creative occurrence of the symbol, the function has different properties, and thus the
structure of the model is different. For example, if the syntax definition of Edge is replaced by
the following rule, i.e. when the reference modifier on Node is removed from the original rule,

Edge ::= f rom : Node, to : Node,weight : Real,



each edge will introduce two new nodes, i.e. for all edges e � e′ ∈ Edges, we have that
e. f rom � e′. f rom. Moreover, for all edges e, we have that the node e. f rom must be different
from the node e.to, i.e. e. f rom � e.to. In contrast, the original definition allows e. f rom = e.to,
e. f rom = e′. f rom and e.to = e′.to to be true for some edges e and e′.

In general, the function symbol induced from a field that contains a creative occurrences of a
non-terminal symbol represents an injective function. Moreover, any two such injective functions
of the same range type must have disjoint images.

Given a well-defined GEBNF syntax 〈R,N, T, S 〉 of modeling languageL, let F be the set of
function symbols f : X → Y derived from the syntax rules in S as defined in Definition 3.

From the set F of function symbols deduced from GEBNF syntax, a first-order language can
be defined as usual using variables, relations and operators on sets and relations and operators
on basic data types of terminal symbols and equality and logic connectives or ∨, and ∧, not ¬,
implication→ and equivalent ≡, and quantifiers for all ∀ and exists ∃.

Further functions and relations can be defined as usual in the first-order logic. For the sake
of readability, we will also use infix and prefix forms for defined functions and relations. Thus,
we may also write the application of function f to argument x with the more conventional prefix
notation f (x).

For example, the set of nodes in a graph g that have no weight associated with them can be
formally defined using the functions introduced in the syntax definition as follows.

UnweightedNodes(g) = {n|n ∈ g.nodes ∧ n.weight = ⊥}
3.1.3. Modeling and Meta-Modeling

Given an GEBNF definition of the abstract syntax of a modeling language, we now define
what is a syntactically valid model.

Definition 4. (Well-formed model)
A well-formed model m in the language L, written m ∈ L, is a mathematical structure

m = 〈E,F〉 that consists of a collection E of sets Ex (x ∈ T ∪ N), and a collection F of functions
ϕ f ( f ∈ F) such that for every f ∈ F, ϕ f has the corresponding domain and range on E as f on
T ∪N defined in Definition 3 and ϕ f also satisfies the corresponding restrictions on injectiveness
and disjointness on images. �

Let f (x1, x2, · · · , xn) be a formula in the first-order language that contains free variables
x1, x2, · · · , xn. Let m = 〈E,F〉 be a valid model, and α be an assignment of the free variables
in f to the elements of m. The formula f (x1, x2, · · · , xn) can be evaluated by interpreting function
symbols f in F by the corresponding functions ϕ f in the model m = 〈E,F〉. We write Evaα( f ,m)
to denote the value obtained when f is evaluated on m in the context of α. If this is true for a
ground predicate f , meaning a truth-valued formula without free variables, we say that the m
satisfies f and write m |= f . We write p � q if we can deduce formula q from formula p in the
first-order logic. By the semantic consistency of first order languages, we have the following
proposition.

Proposition 1.
Let p and q be ground predicates on models in a well-defined modeling language L defined

in GEBNF. If p � q, then for all models m ∈ L, m |= p implies m |= q. �

Meta-modeling defines a subset of models in a modeling language such that each model of
the subset has a specific property. So if the abstract syntax of a modeling language is defined in



GEBNF, meta-modeling can be performed by defining a predicate p such that {m | m |= p} is the
required subset of models.

For example, consider the directed graphs defined above. The set of strongly connected
graphs can be defined as the set of models that satisfy the following predicate.

∀x, y ∈ nodes · (x reaches y),

where predicate (x reaches y) is defined as follows.

(x reaches y)⇔
∃e ∈ edges · (x = e. f rom ∧ y = e.to) ∨ ∃z ∈ nodes · ((x reaches z) ∧ (z reaches y))

The set of acyclic graphs can be defined as the set of models that satisfy the following predi-
cate.

∀x, y ∈ nodes · ((x reaches y)⇒ x � y)

The set of connected graphs can be defined as follows.

∀x � y ∈ nodes · ((x reaches y) ∨ (y reaches x)).

Finally, a tree can be defined as satisfying the following condition.

∃x ∈ nodes · (∀y ∈ nodes · (x reaches y)) ∧ ∀e, e′ ∈ edges · (e.to = e′.to⇒ e = e′)
In the same way, we will define design patterns by first defining the abstract syntax of UML

class diagrams and sequence diagrams and then specifying the predicates that their instances, i.e.
models, must satisfy.

3.2. Abstract Syntax of UML

This subsection gives a definition of the abstract syntax of a simplified UML modeling lan-
guage.

3.2.1. Class Diagrams
The GEBNF definition of UML class diagrams is obtained from (OMG, 2004) by removing

those attributes not required to describe patterns, and by flattening the hierarchy to eliminate
some meta-classes for simplicity.

A class diagram consists of classes, linked with association, inheritance and whole-part
(compag for composite or aggregate) relations between them. A class has a name, attributes,
and operations.

ClassDiagram ::= classes : Class+, assocs : Rel∗, inherits : Rel∗, compag : Rel∗

Class ::= name : S tring, [attrs : Property∗], [opers : Operation∗]
Here, S tring denotes the type of strings of characters.

An operation has a name, parameters and five flags. Each parameter has a name, type, op-
tional multiplicity information and direction. Since return values play much the same role as out
parameters, they are treated as just another sort of parameter, as in UML 2.0 (OMG, 2004).

Operation ::= name : S tring, params : [Parameter∗], isAbstract : [Bool],
isQuery : [Bool], isLea f : [Bool], isNew : [Bool], isS tatic : [Bool]

Parameter ::= name : [S tring], type : [Type], direction : [ParaDirKind],
mult : [Multiplicity]

ParaDirKind ::= “in” | “inout” | “out” | “return”
Multiplicity ::= lower : [Natural], upper : [Natural|“ ∗ ”]



Here, Natural denotes the type of natural numbers and Bool denotes the type of boolean values.
A property has a name, type, multiplicity information and a flag isS tatic.

Property ::= name : S tring, type : Type, [isS tatic : Bool], [mult : Multiplicity]
Similarly, relationships between classes can be defined as follows.

Rel ::= name : [S tring], source : End, end : End
End ::= node : Class, name : [S tring],mult : [Multiplicity]

3.2.2. Sequence Diagrams
A sequence diagram is an ordered collection of messages sent between lifelines. Each life-

lines has a class and a collection of activations. It can be either an object lifeline (isS tatic =
f alse), in which case they may have a name, or a class lifeline (isS tatic = true), in which case
they don’t. Here, we need only consider synchronous messages for the sake of simplicity.

S equenceDiagram ::= li f elines : Li f eline∗,msgs : Message∗,
ordering : (Message,Message)∗

Li f eline ::= className : S tring, ob jectName : [S tring], isS tatic : Bool,
activations : Activation∗

The actions of sending, receiving and returning from (activations started by) messages are all
events, so both activations and messages must refer to events. Messages also refer to operations
in the class diagrams, which include parameters, and hence return values.

Activation ::= start, f inish : Event, others : Event∗

Message ::= send, receive : Event, sig : Operation
Event ::= actor : Activation

3.2.3. Predicates on UML Diagrams
When there is just one class diagram or one sequence diagram, functions on each of these are

written without their arguments, as classes, li f elines etc. Here now follows some functions and
relations used in many patterns.

Let bounds(x) = (x.mult.lower, x.mult.upper), for x : End. We write C1 �−→ C2 for the
relation r ∈ compag such that r.source.node = C1, r.end.node = C2, bounds(r.source) = (1, 1)
and bounds(r.end) = (1, 1). Let C �−→∗ C′ be similar but with bounds(r.end) = (1, ∗). Let −→
and −→∗ be the equivalent syntactic sugar for assocs.

Let C be a class. Then subs(C) denotes the set of concrete subclasses of C and C..op denotes
the redefinition of op for class C.

We define isAbstract(C) ≡ ∃op ∈ C.opers · (op.isAbstract) and we write allAbstract(ops)
when op.isAbstract is true for every op ∈ ops.

Let m and m′ be messages. We will write m < m′, if (m,m′) ∈ ordering. We define
f romAct(m) to be the unique activation a such that m.send ∈ a.others, f romLL(m) to be
the unique lifeline l such that f romAct(m) ∈ l.activations, and f romClass(m) to abbreviate
f romLL(m).class. Similarly, we define toAct(m), toLL(m) and toClass(m). Finally, trigs(m,m′)
means that message m starts (or “triggers”) an activation that sends message m′ or, more formally,
toAct(m) = f romAct(m′).

For operations op and op′ we define calls below, and promote it to classes. A much-used
predicate is callsHook, defined when an operation calls another at the root of an inheritance
hierarchy.

calls(op, op′) ≡ ∃m,m′ ∈ msgs · (m.sig = op ∧ m′.sig = op′ ∧ trigs(m,m′))
calls(C,C′) ≡ ∃m ∈ msgs · ( f romClass(m) = C ∧ toClass(m) = C′)

callsHook(op, op′) ≡ ∃C ∈ subs(C′) · calls(op,C.op′)
For all messages m and objects o, we define that hasReturnParam(m, o) is true if o is the

return parameter for m. If there is only one such o for a message m, then we write returns(m) = o.



3.3. Consistency Constraints

We define patterns only for design models that are well-formed and consistent with respect
to a set of constraints (Zhu and Shan, 2006). There are so-called intra-diagram constraints,
which affect the diagrams in isolation, and inter-diagram constraints, which concern the way
that two diagrams must work together. Inter-diagram constraints for class diagrams include
the constraints on operations already mentioned, the inheritance of attributes, operations and
associations, that all classes must have different names (and operations and attributes within the
same class must do too), that every abstract class is subclassed by a concrete class and that
inheritance is irreflexive, and so on. For sequence diagrams, we require that every message must
start an activation.

∀m ∈ msgs · ∃l ∈ li f elines, a ∈ activations(l) · (m.receive = a.start)

Note that this constraint would not be necessary for parallel machines where two versions of
the same operation can be executed simultaneously.

Inter-diagram constraints between the class and sequence diagrams include the following.

1. every message to an activation must be for an operation of a concrete class:

∀m ∈ msgs · (m.sig ∈ toClass(m).opers ∧ ¬isAbstract(toClass(m)))
2. if a message is for a static operation, then the lifeline must be a class lifeline; but if a

message is for a non-static operation, the lifeline must be an object lifeline:

∀m ∈ msgs · (m.sig.isS tatic⇒ toLL(m).isS tatic ∧
¬m.sig.isS tatic⇒ ¬toLL(m).isS tatic)

3. every class in the class diagram must appear in the sequence diagram:

∀C ∈ classes · ∃l ∈ li f elines · (l.class = C.name)

Descriptions of patterns in the literature sometimes violate such consistency constrains. For
example, in (Gamma et al., 1995), the Builder pattern breaks the final constraint with the Product
class.

4. Pattern Specification Scheme

In (Bayley and Zhu, 2007, 2008b), an informal scheme was advanced for presenting pattern
specifications in a readable manner. In this section, we further develop the scheme by introducing
new constructs to specify variants of patterns. This is illustrated by examples. All 23 patterns in
the GoF book (Gamma et al., 1995) have been specified in this scheme. The case study will be
reported in the next section.

4.1. Overall Structure

For each pattern, the formal specification consists of an identifier for the name of the pattern
and three parts. The first part, entitled Components, declares a set of variables, which are ex-
istentially quantified over the scope of all predicates in the pattern specification. In this way, it
sets the context for the formulae by asserting the existence of certain components in the system
design. The second part, entitled Static Conditions, consists of a number of predicates for the
structural relations between the components. Such predicates can be evaluated using the infor-
mation contained in the class diagram of a design. The third part, entitled Dynamic Conditions,
consists of a number of predicates for the dynamic behavior of the system, using information in



Figure 1: Class Diagram of Class Adapter Pattern

the sequence diagram of a design, and sometimes in the class diagram too. In the latter case,
consistency between the diagrams is ensured by the consistency constraints in subsection 3.3.
We omit the text descriptions, context and solutions to save space, but we include the diagrams
from the GoF book for the sake of readability.

We start with a simple example, the Class Adapter pattern, to illustrate the overall structure
of pattern specification. The class diagram is shown in Figure 1. There are four participants,
Target, Client, Adapter and Adaptee, so they are all declared as components, with the exception
of Client which may not necessarily be a specific class in the system, although it often is.
Components

1. Target, Adapter, Adaptee ∈ classes
2. requests ∈ Target.opers
3. specreqs ∈ Adaptee.opers

The most important property of Client is that it only accesses and depends on Target but not
any other components, such as Adaptee. This illustrates a common situation, in which there is a
relationship from a class Client to the root of a class hierarchy. It means that if a message is sent
from a class that is not explicitly mentioned in the pattern then the operation must be declared in
the root class. So, we write CDR(C), short for client depends on root, where C is the root class.
Formally,

CDR(C) ≡ ∀m ∈ msgs · (toClass(m) ∈ subs(C)
⇒ m.sig ∈ toClass(m).opers ∧ ∃o ∈ C.opers · (toClass(m).opers = m.sig))

So the structural features of the Adapter pattern can be specified as follows.
Static Conditions

1. Adapter −−� Target
2. Adapter −−� Adaptee
3. CDR(Target)
4. requests ⊆ Target.opers
5. specreqs ⊆ Adaptee.opers

The key dynamic feature of the Adapter pattern is that for every client call to the Adapter’s
operations, the Adapter calls the Adaptee’s operations to carry out the request. This can be
specified as follows.
Dynamic Conditions

1. a request is delegated to a specific object
∀o ∈ requests · ∃o′ ∈ specreqs · (calls(o, o′))



A complete specification of the Class Adapter pattern can be assembled from the three parts
by removing the comments in English, which were inserted for the sake of readability.

In general, the overall structure of a pattern specification is defined by the following BNF
syntax, where the terminal symbols are in bold font and non-terminal symbols are in italic font.

PatternS pec ::= Pattern Name : Identi f ier ;
ComponentDeclaration
S taticCondition
[
DynamicCondition

]

ComponentDeclaration ::= Components : CompDecls .
CompDecls ::= ([Number|Label] Variable : Type)

[
; CompDecls

]

S taticCondition ::= Static Condition : Conditions .
DynamicCondition ::= Dynamic Condition : Conditions .

Conditions ::=
[
Explanation

]
[Number|Label] : Condition [ ; Conditions]

Condition ::= Expression | AntecedentConsequent
| Alternatives | Options | Dependent

where Explanation is a string of characters, and Expression is a predicate on the domain of UML
class diagrams and sequence diagrams. The other forms of conditions will be discussed later.

Let a pattern P be specified in the above form as follows.

Pattern Name : P
Components:

var1 : Type1; var2 : Type2; · · · varn : Typen.
Static Condition:

LabelS 1 : Ps1; LabelS 2 : Ps2; · · · ; LabelS m : Psm.
Dynamic Condition:

LabelD1 : Pd1; LabelD2 : Pd2; · · · ; LabelDk : Pdk.

The semantics of this is the predicate

∃var1 : Type1∃var2 : Type2 · · · ∃varn : Typen · (Ps ∧ Pd),

where Ps = Ps1 ∧ Ps2 ∧ · · · ∧ Psm and Pd = Pd1 ∧ Pd2 ∧ · · · ∧ Pdk.
Note that Adapter is typical of the structural patterns in the GoF catalog, in that it has rich

structural features, but also some dynamic features. Note too that the structural features of the
pattern are specified more simply and clearly than in (Bayley and Zhu, 2007), where only the
class diagram is used. In fact, this is true for almost all patterns in the GoF catalog (Gamma
et al., 1995). See Section 5 for more details.

Note too that the specification given above is for Class Adapter, which is a variant of the
Adapter pattern. There is another variant called Object Adapter. The specification of both Class
Adapter and Object Adapter as variants of the more general Adapter Pattern will be given in
Subsection 4.3. Now, we first discuss how more complicated behavior can be specified in a more
readable format.

4.2. Specifying Complicated Behaviors
Command is typical of the behavioral patterns in the GoF catalog, in that it is rich in dy-

namic features. Figure 2 shows the structure of the pattern, as captured in the Component and
S taticCondition parts of the specification, below.



Figure 2: Command pattern class diagram

Figure 3: Command pattern seq diagram

Components

1. Command,ConcreteCommand, Invoker,Receiver ∈ classes,
2. execute ∈ Command.opers, action ∈ Receiver.opers

Static Conditions

1. Invoker �−→ Command
2. ConcreteCommand −→ Receiver
3. ConcreteCommand −−� Command
4. execute.isAbstract
5. ¬isAbstract(ConcreteCommand)

In the GoF catalog, the dynamic features of a pattern are described in the Collaborations sec-
tion, which is sometimes illustrated by a sequence diagram. The sequence diagram for Command
pattern is given in Figure 3.

To specify the dynamic features of a pattern, we often split the Dynamic Conditions into two
sub-parts: the Antecedent and the Consequent. The former specifies the condition or scenario in
which the behavior happens. The latter specifies the behavior itself. For the Command pattern,
the trigger is a call to the method execute.
Dynamic Conditions:

Antecedent:

1. when a command is executed



Figure 4: Factory method class diagram

∀me ∈ msgs · me.sig = ConcreteCommand.execute

Consequent:

1. the invoker is responsible,

f romLL(me).class = Invoker
2. the receiver will perform an action at once

∃ma ∈ msgs · (calls(me,ma) ∧ ma.sig = action)
3. the command to be executed is created

∃mn ∈ msgs · isNew(mn.sig) ∧ toLL(mn) = toLL(me)
4. the command is stored in the invoker

∃ms ∈ msgs · (ms.sig = storeCommand ∧ f romAct(ms) = f romAct(mn))
5. the command was created with the receiver before the command was stored before it was

executed
(mn < ms)∧(ms < me)∧hasParam(mn, toLL(ma).name)∧hasParam(ms, toLL(mn).name)

This captures the dynamic information that would have been missed had we restricted our atten-
tion to the static properties considered by (Bayley and Zhu, 2007). This is particularly important
for patterns where the static properties are trivial, such as the single-class Singleton pattern.

In general, an antecedent-consequent condition has the syntax defined by the following BNF
rules.

AntecedentConsequent ::= Antecedent : conditions ; Consequent : Conditions;
If a condition P is split into an antecedent PA and a consequent PC , the condition P is equiv-

alent to PA ⇒ PC .

4.3. Specifying Variants

As discussed in Section 1, patterns that are documented informally will inevitably contain
ambiguities or even inaccuracies so often, as with the Factory Method pattern, we must choose
between alternatives and cover a number of variants so that patterns can be specified as structured
knowledge.

Let us first introduce a predicate isMakerFor(op,C), which is true if op starts an activation
that creates and returns an object of class C. Formally,



isMakerFor(op,C) ≡ ∃m ∈ msgs · (m.sig = op
⇒ ∃m′ ∈ msgs · (isNew(m′.sig) ∧ calls(m,m′) ∧ toClass(m′) = C

∧ returns(m) = toLL(m′).name))

Then Factory Method can be specified as follows without covering variants.

Pattern Name : Factory Method (without variants)
Components

1. Creator, Product ∈ classes
2. f actoryMethod ∈ Creator.opers

Static Conditions

1. f actoryMethod.isAbstract
2. foreach creator subclass there is one product subclass

∀C ∈ subs(Creator) · ∃!P ∈ subs(Product)

3. furthermore, denoting witness P by f (C), then f is a total bijection.

Dynamic Conditions

1. for every creator subclass, the factory method creates that unique product sub-
class:

∀C ∈ subs(Creator) · isMakerFor(C.. f actoryMethod, f (C))

Now for the alternative formulations. First, Eden (2001) allows there to be several factory
methods rather than just one as above. Thus, an alternative to Component Declaration 2 is

f actoryMethods ⊆ Creator.opers.

Second, for Static Condition 1, one could argue for ¬ f actoryMethod.isLea f instead of
f actoryMethod.isAbstract.

Third, the operation AnOperation ∈ Creator.opers is not essential to the Factory pattern.
But, if it is added to the Components section, the condition calls(AnOperation, FactoryMethod)
should also be added to the Dynamic Conditions.

To enable alternatives and variations to be systematically specified, we introduce keywords
‘Optional’, ‘Alternatives’ and ‘Depends on’, and ‘In case of ’ in the structure. For example, the
specification of Factory Method pattern thus becomes the following.



Pattern Name : Factory Method
Components

1. Creator, Product ∈ classes
2. Alternatives:

(a) Single factory method: f actoryMethod ∈ Creator.opers
(b) Multiple factory methods: f actoryMethods ⊆ Creator.opers

3. Optional: AnOperation ∈ Creator.opers

Static Conditions

1. Depends on Alternatives of Components Declaration 2:
(a) In case of Single factory method, Alternatives:

i. Stronger condition: f actoryMethod.isAbstract
ii. Weaker condition: ¬ f actoryMethod.isLea f

(b) In case ofMultiple factory methods, Alternatives:
i. A: ∀ f m ∈ f actoryMethods · ( f m.isAbstract)

ii. B: ∀ f m ∈ f actoryMethods · (¬ f m.isLea f )
iii. C: ∀ f m ∈ f actoryMethods · (¬ f m.isLea f ∨ f m.isAbstract)

2. for each creator subclass there is one product subclass

∀C ∈ subs(Creator) · ∃!P ∈ subs(Product)

3. furthermore, denoting witness P by f (C), then f is a total bijection.

Dynamic Conditions

1. for every creator subclass, the factory method creates that unique product sub-
class:

∀C ∈ subs(Creator) · isMakerFor(C.. f actoryMethod, f (C))

2. Depends on the Option of Component 3:
(a) In case where the option is true:

i. Depends on Alternatives of Component 2 :
A. In case of Single factory method:

calls(AnOperation, FactoryMethod)

B. In case ofMultiple factory methods:

∃ f m ∈ FactoryMethods · calls(AnOperation, f m)

In general, the syntax of Alternatives, Optional and Dependent conditions is defined by the
following BNF formulas.

Alternatives ::= Alternatives : AlterConds
AlterConds ::= Label : Condition [ ; AlterConds]

Options ::= Optional : condition
Dependent ::= Depends on (alternatives | option) Label CaseConds

CaseConds ::= In case of Label : Condition [; CaseConds] |
In case where the option (is true | is false) : Condition

The semantics of these constructs are as follows. A condition that has the Alternative struc-



ture in the following form is equivalent to PA ∨ PB ∨ · · · ∨ PC .

LabelP : Alternatives :
LabelA : PA;
LabelB : PB;
· · ·
LabelC : PC .

A condition that has the Depends on alternatives structure in the following form is equivalent
to the condition (PA ⇒ QA) ∧ (PB ⇒ QB) ∧ · · · ∧ (PC ⇒ QC).

Depends on alternatives of LabelP :
In case of LabelA : QA;
In case of LabelB : QB;
· · ·

In case of LabelC : QC .

A condition R in the Optional structure in the following form can be omitted.

LabelR : Optional : PR;

However, it assigns a name R to the predicate PR so that the following condition S in the
Depends on option structure is equivalent to (PR ⇒ S true) ∧ (¬PR ⇒ S f alse).

LabelS : Depends on option LabelR :
In case of where the option is true : S true;
In case of where the option is false : S f alse.

By specifying the variants of a pattern, we can organise design knowledge in a much more
structured way. Let’s now back to the variants of Adapter pattern and see how both Class Adapter
and Object Adapter can be specified within one framework.

As shown in Figure 5, the Object Adapter pattern has the static condition Adapter −→
Adaptee instead of Adapter −−� Adaptee. And, we must also capture the condition that it is
only the Adapter class that can send a message to the Adaptee.

∀m ∈ msgs · (toClass(m) = Adaptee⇒ f romClass(m) = Adapter)

Figure 5: Class Diagram of Object Adapter Pattern

So an alternatives clause is introduced in the static condition, while the above dynamic con-
dition is added as a dependent condition only applicable to the Object Adapter. Thus, we have
the following.



Pattern Name : Adapter
Components

1. Target, Adapter, Adaptee ∈ classes
2. requests ⊆ Target.opers
3. specreqs ⊆ Adaptee.opers

Static Conditions

1. Adapter −−� Target
2. Alternatives:

(a) Object adapter: Adapter −→ Adaptee;
(b) Class adapter: Adapter −−� Adaptee;

3. CDR(Target)

Dynamic Conditions

1. A request is delegated to a specific object

∀o ∈ requests · ∃o′ ∈ specreqs · (calls(o, o′))
2. Depends on alternatives of Static Condition 2:

(a) In case of Object adapter, only the Adapter class can send a message to
the Adaptee,

∀m ∈ msgs · (toClass(m) = Adaptee⇒ f romClass(m) = Adapter)

5. Case Study of the GoF Patterns

We have formally specified all 23 design patterns in the GoF catalog (Gamma et al., 1995).
In this section we discuss the findings of the case study.

To begin with, let us first discuss the inevitable ambiguity surrounding the informal descrip-
tions in (Gamma et al., 1995) and how the formal specifications were formed out of them. The
generic class and sequence diagrams were the main source of ambiguity. As graphic notations
have limited expressiveness, the generic features of design patterns have to be conveyed through
illustrative uses of the notation. The most extreme example of this is the Facade pattern, whose
class diagram given in the GoF book is not even well-formed and cannot be taken at face-value
in terms of either the number of classes or their inter-connections as shown in Figure 6.

It was reasonably straightforward in this case to tell what was meant by the diagram. In many
other cases, more than one interpretation was possible, as noted in (Bayley and Zhu, 2007), and
the ability to specify these variants systematically is the main contribution of this paper. We now
consider the expressiveness of our notation for this.

5.1. Expressiveness

Sometimes there is ambiguity even in the best documented patterns and clarification is needed
to select between the alternatives. Sometimes, however, each alternative is a different valid
specialization of the pattern. These alternatives, each with their pros and cons, may form sub-
patterns if they are significant enough in practice. An advantage of the method proposed in this
paper is that we can now document the sub-patterns systematically, exploring the alternatives



Figure 6: Class Diagram of Facade Pattern

without having to commit to any of them. The reader can then make an informed choice. We now
discuss what sort of variants can exist. For a start, in general, we declare component variables
for the classes named on the class diagram, but there are exceptions.

First, the only classes declared are those that need to be referred to in the conditions. For
example, in the GoF book, the class diagram for State pattern contains two subclasses of the
State class named ConcreteStateA and ConcreteStateB, respectively. They are used to illustrate
the existence of an arbitrary number of concrete state classes. There are two possible ways
to specify such a set of concrete state classes. The first is to explicitly declare a component
ConcreteS tates ⊆ classes and to have a static condition that ∀x ∈ ConcreteS tates · (x−−�S tate).
The second is to call the set subs(S tate) in all the conditions as we did in (Bayley and Zhu,
2008b). There is a subtle difference between these two specifications in that ConcreteS tates
could be a proper subset of subs(S tate). It is unclear from the description in GoF whether the
pattern allows the State class to have a subclass that is not a concrete state. If it does not, we
need to have a static condition ∀x ∈ classes · (x −−� S tate⇒ x ∈ ConcreteS tates). We can now
use the optional condition facility to cover both cases and leave the choice to the reader.

Similarly, a class is often shown in a class diagram to have only one subclass, and as we saw
with Factory Method, this can be generalized to more than one class. There are some places
were this would complicate the conditions though, such as in Command and Proxy, and there
we leave the conditions specialized to one class. We make a similar generalization where only
one subclass is shown to meet a condition, as with the Leaf subclass of Composite pattern, since
the accompanying Motivation section shows several. We could have done this for the Composite
class too, but decided not to, for simplicity.

Some classes can be omitted. For example, the ObjectStructure class of Visitor pattern is
only there to communicate through untranslatable English that the elements are to be found in a
collection of some sort. Moreover, the ubiquitous class marked Client is omitted from nearly all
patterns, because its purpose is to indicate the class on which the rest of the program depends.
Usually, this is a class at the root of an inheritance and there the CDR predicate is used. Where
the relationship is not a simple dependency, the Client is included in the variables. This occurs
in both the Prototype pattern and the Interpreter pattern, where there is an extra dependency to
the class Context.

A component can also be introduced for unnamed class nodes in the class diagram. This is
seen in the Facade pattern where variable behind represents the set of classes behind the facade
class and rest represents the rest of the system. Each class diagram implies that each class must
be different, but since these conditions do not seem to be absolutely necessary, they are omitted in



our previous work (Bayley and Zhu, 2008b). These conditions can now be specified as optional
conditions too.

Even the properties of a class can be ambiguous. In general, where a class is indicated as
abstract, we read this as saying that the class could be abstract but does not need to be. Clearly,
if an operation is shown as abstract then the constraints on class diagrams imply that the class
must be abstract too. However, it also make sense to use the weaker alternative that the method
can be overridden in a subclass, as with the Factory Method pattern. Again, such a condition can
be specified explicitly using an optional condition or alternative conditions.

The operations listed for a class may or may not be the only operations in the class. If they
are all abstract then the class can be considered as an interface, as with the Strategy and Abstract-
Factory classes in the patterns of those names, but whether to include this in the conditions is an
arbitrary choice, and thus another appropriate use of the optional condition and alternative con-
ditions. In the case of Template Method, the abstract requirement could be replaced by non-leaf
for a subtly different requirement.

Where one operation is listed for a class, it can be taken as representative of several oper-
ations. For example, Composite could be defined to have several operations of the sort named
operation, and so too could Decorator. For the Decorator class, it is implied that subclasses have
more attributes or more operations or both, and this could be enforced but, for simplicity, it is
not. The implication is that the subclasses add behavior. This could also be true of the subclasses
of Abs in the Bridge pattern but there it is not implied.

For the Abstract Factory pattern, the diagram implies that the products and creation oper-
ations are in bijection, i.e. each product is created by one operation (where an operation is
identified both by its name and class) and vice versa, but this need not necessarily be true. A
similar bijection is placed in the conditions for the Visitor pattern. These conditions are, there-
fore, optional.

In conclusion, the case study has demonstrated that the extended scheme is expressive enough
for specifying variants of patterns.

5.2. Readability

In previous work (Bayley and Zhu, 2008b), we found that by specifying the behavioral fea-
tures we could make the structural features much simpler than before (Bayley and Zhu, 2007).
Our notations then match more closely the arrows of UML class diagrams. More importantly
though, when only a class diagram was available, the behavioral features were expressed as
static conditions. Now, they can be expressed more naturally using sequence diagrams. For
example, the calls relation between operations was previously defined as a dependency relation
between operations, but it is more naturally expressed as a feature of sequence diagrams. This
allows us to choose the simpler option when one notion can be expressed in two different ways.
The consistency assumption, itself specified with first-order predicates, also allows us to reduce
redundancy by removing equivalent expressions.

As one would expect, sequence diagrams enable us to characterize dynamic properties more
accurately and adequately. A class diagram can dictate that one method calls another, as dis-
cussed in Section 2, and this can be enough for some patterns but others require more informa-
tion, such as the temporal ordering of messages, which must come from sequence diagrams.

The introduction of facilities to specify variants inevitably increases the complexity of pattern
specifications. However, as demonstrated in Section 4, the specification remains readable, and
more so than the equivalent mathematical expression.



5.3. Adequacy

Finally, as UML diagrams contain only some information about the system and at a high
level of abstraction, one may find that a specification based on them does not fully express all the
properties required. Three examples of this now follow.

In the Builder pattern, the BuildPart operations in the Builder class must each build a different
part of the Product, and the first creates the object of class Product. This cannot be accurately
expressed. The rest of this pattern can be captured adequately, however, and better than without
in (Bayley and Zhu, 2007) because now the sequence diagram is constrained.

In the Composite pattern, the Composite class must propagate messages sent to it to each
of its children, but without an object diagram, we cannot tell which of the lifelines must be the
target of the messages. Naturally, this is also a problem with the Interpreter pattern, but we
can at least dictate that the recursive calls are parameterised by the same Context object. In the
Observer pattern, we have the same problem as we do with the Composite pattern. This problem
can be resolved by using frames in the sequence diagram. Frames are omitted from the case
study though for simplicity as only a few patterns need them.

In the Flyweight pattern, since the Flyweight class has two different subclasses, one holding
the intrinsic state and the other holding the extrinsic state, the missing parts of the state should
be passed to operations on the former. This cannot be fully expressed, either, because such
information cannot be included in design models of UML class and sequence diagrams.

In the Iterator pattern, the operations First, Next, IsDone and CurrentItem are mentioned but
their semantics cannot be captured in UML. Assignments cannot be captured in UML either
so we cannot specify in the case of the Singleton class, for example, that the instance is set
to null at creation time. A solution to this problem has been advanced in RBML by France
et al. (2004), which is to use OCL template to specify the semantics of operations. This can be
easily incorporated into our formal meta-modeling approach to the specification, but there is not
sufficient tool support for using OCL at meta-modeling level.

Finally, for the State class, the exact interaction within the implementation, whereby the
handler requests a State subclass instance to give back to the handler, is not specified but it could
be.

5.4. Tool Support

In (Zhu et al., 2009), we report a tool LAMBDES-DP for recognising design patterns in UML
models. We have conducted some experiments to see how accurately it does this. There are two
types of errors that could occur in pattern recognition. A false positive error means that a design
is incorrectly recognized as an instance of a pattern because the specification of the pattern is not
restrictive enough to rule out incorrect uses. In contrast, a false negative error means that a design
is incorrectly rejected as an instance of a pattern because the specification is too restrictive to take
into account some valid uses. We produced models based on the GoF diagrams for each design
pattern and used the tool to look for the pattern within the design. In each case, the tool found
the pattern so the false negative error rate was 0%. Similarly, we used the tool to look for every
other pattern in each design. When only the structural features of design patterns were used, the
rate of false positive errors was 22%. In contrast, when behavioral features were also used to
check against the sequence diagrams in the designs, the tool did not find the other patterns before
time out, so the false positive error rate was also 0%, if failure to find is interpreted as rejection.
This confirms the assertion in (Bayley and Zhu, 2008b) that structural features on their own are
not sufficient to identify patterns.



6. Conclusion

In this paper, we systematically presented and advanced a meta-modelling approach to the
formalisation of design patterns, one that captures both structural and behavioural features and
that specifies variants systematically in a readable formal notation. It enables formal reasoning
about patterns and their composition and transformation (Bayley and Zhu, 2008a), and facilitates
automatic tool support for applying patterns at the design stage (Zhu et al., 2009). The advan-
tages of the approach are demonstrated by examples and justified by case studies and experiment
results.

For future work, we will further develop our prototype tool LAMBDES-DP. Also, it will
be interesting to conduct further case studies, perhaps into the patterns for distributed systems,
where dynamic behavioral features play a dominant role.
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