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Abstract

The formal specification of design patterns is widely
recognised as being vital to their effective and correct use
in software development. It can clarify the concepts under-
lying patterns and thereby lay a solid foundation for tool
support. Building on our previous work that used first-order
predicate logic to capture static behaviour, this paper cap-
tures the dynamic behaviour represented in sequence dia-
grams too. A case study of all 23 patterns in the Gang of
Four catalogue demonstrates that the approach can not only
capture dynamic features but also simplify the specification
of structural properties.

1 Introduction

Software design patterns have been proposed as a tech-
nique for describing the static and dynamic structures that
occur in a variety of software systems. They document solu-
tions to recurring design problems and facilitate the sharing
of design expertise in an application-independent fashion
[4, 3, 8]. Due to their origin in Alexander’s work in the con-
text of building design [1], software patterns are commonly
presented in the Alexandrian form, which essentially con-
sists of a name, a context and problem statement, a solution
and a discussion on how the pattern relates to other patterns.
In the literature of software patterns such as [8], the ele-
ments in a pattern explain the principles of design in infor-
mal English that are clarified with illustrative semi-general
class diagrams and specific code examples. This combi-
nation is informative enough for human to understand the
design principle and to learn how to apply patterns to solve
their own problems. However, informal description leads
to the possibility of ambiguity, and an opportunity is being
missed too. If the general principles were formalised, then
software tools could re-factor designs in accordance with
chosen patterns and demarcate the patterns in legacy code
in order to inform future modification.

Moreover, it is not enough to understand individual pat-
terns in isolation. They need to be catalogued with pat-

tern languages [22] to show how the patterns are related
hierarchically. Only then can they be combined to solve
real-world problems. At present, these relationships rely on
intuition though, and are not subject to formal verification
since the patterns themselves are defined informally. Nor is
their development yet as easy or as flexible as it should be.
Furthermore, it is widely recognised that many models of
patterns do not capture the very qualities that are meant to
improve the system quality [18]. Ensuring these qualities is
an urgent challenge to researchers and practitioners alike.

Formal methods employ mathematical theories and nota-
tions to define rigorously computer languages and program-
ming concepts and to prove their properties. So they can be
adapted to formalise patterns and the relationships between
them. In fact, many research efforts have focussed on this
in the past few years. However, as discussed in Section 2,
existing work has not satisfactorily captured the dynamic
behavioural characteristics of patterns. This paper proposes
an approach for this, building on the work reported in [2],
by employing a first-order predicate logic defined on a do-
main containing both class and sequence diagrams. We also
report a successful case study of the approach to the formal
specification of patterns in the Gang of Four (GoF) book
[8].

The remainder of the paper is organised as follows. Sec-
tion 2 briefly reviews related work and discusses the dif-
ficulties of specifying behavioural features. Section 3 de-
scribes the proposed approach. Section 4 illustrates the pro-
posed method by a number of examples. Section 5 analyses
the results of the case study on the patterns of the GoF book
[8]. Section 6 concludes the paper with a discussion of the
advantages of the approach and directions for future work.

2 Related Work and Open Problems

Existing work on the formal or semi-formal specifica-
tion of patterns can be classified into two categories. The
first category proposes special-purpose formal languages or
semi-formal graphic modeling languages in order to define
patterns rigorously. The second category, to which our work
belongs, simply employs or adapts existing formal or semi-



formal languages.
Among the work in the first category is the Design Pat-

tern Modelling Language of Mapelsden [14] and others,
which defines a whole new language just for patterns. Sim-
ilarly, Eden devised from scratch a new graphical language
LePUS for the purpose of modelling patterns [5, 6]. Its ba-
sic constructs correspond to the concepts used when De-
sign Patterns are defined informally but they are formalised
in predicate logic. He can then assert instantiations of and
special cases of the patterns he has specified.

In the second category, Taibi [19, 20] formalises class
diagrams as relations between program elements, specifies
post-conditions with predicate logic and describes the de-
sired behavior with temporal logic. Mikkonen [15] also for-
malises temporal behaviours in a temporal logic of actions
that can be used by theorem provers. Another approach
taken by Le Guennec et al [9] is to extend the UML meta-
model to incorporate collaboration occurrences and use the
Object Constraint Language (OCL) to constrain the collab-
orations. Mak et al [13], on the other hand, define the no-
tion of collaborations by extending UML to action seman-
tics. France et al [7] also uses the UML meta-modelling
facility to describe both the structure of design patterns in
class diagrams and their dynamic properties in sequence
diagrams. Semantic information is encoded as templates
of OCL constraints. Finally, Zdun et al [23] make useful
progress by identifying architectural primitives that occur in
the patterns, though this is strictly for the component-and-
connector view of the system. In [10], Kodituwakku and
Bertok use category theory to formally define the relation-
ships between patterns and study the mathematical structure
of pattern organisations.

While each of these approaches are demonstrated with
examples, it remains an open question whether they can be
used to specify all design patterns, or if another approach
would be more widely applicable.

Recently, in [2], Bayley and Zhu have also advanced a
method for the formal specification of patterns using pred-
icate logic defined on the domain of UML class diagrams.
They adapt the GEBNF meta-notation proposed in [24] to
define the abstract syntax of UML class diagrams as the
domain of the predicates. GEBNF stands for Graphic Ex-
tension of BNF. It extends traditional BNF notation with a
‘reference’ facility in order to define the graphic structures
of diagrams. Given a GEBNF definition of abstract syntax,
a first-order predicate logic can be deduced on the domain
of the diagrams that satisfy the GEBNF syntax. In [2], a
formal definition of UML class diagram in GEBNF is pre-
sented. All 23 patterns in [8] are then formally specified as
constraints in the predicate logic on the domain of class dia-
grams. The paper also demonstrates how a concrete design
represented in a UML class diagram can be recognised as
an instance of a pattern by proving the satisfaction of the

predicate.
This approach has many advantages over its rivals. For a

start, the specifications are easy to understand and readable
by humans and computers alike. The notation is expressive
too as demonstrated by its successful application to all 23
patterns in the GoF book [8]. There is a similarity here
with the use of OCL but that language is not designed for
the meta-level and even when lifted, it cannot specify the
absence of a relationship between classes. Other problems
with OCL were noted by France et al in [7].

Furthermore, reasoning about the properties of patterns
and their relationships can be done using inferences in first-
order predicate logic, which is well-understood and sup-
ported by software tools. However, although the work in [2]
characterises well the structural properties of patterns, by
using the design information contained in class diagrams,
it shares with other most other approaches (an exception
being [9] and [?]) the major flaw that dynamic properties
cannot be captured. These are the properties we observe
at runtime. Examples include a message being sent to all
instances of a class and a specific message being sent to a
specific object only after a certain event happens at runtime.
The former is essential in the definition of the Observer pat-
tern [8], to give just one example, as it includes the condi-
tion:

”All observers are notified whenever the subject under-
goes a change in state.”

Without this property, many other designs with four
classes linked by association and inheritance relations as
shown in Figure 1 would be regarded as instance of the Ob-
server pattern, and may yet behave completely differently
from what a designer would expect.

Figure 1. Observer pattern Class Diagram

The dynamic properties of patterns are usually stated as
comments in the class diagram, as in Figure 1, and/or as
explanatory text in the Alexandrian form, or at best, illus-
trated using sequence diagrams. The reason why dynamic
properties are difficult to specify is not the lack of formal
notations but the ambiguities in the natural language and in
the illustrative sequence diagram, if any. As with structural
properties in [2], the formalisation of behavioural properties
is all about clarifying the underlying principles. Moreover,



any tool support for refactoring must use information from
readily available sources, such as the source code and de-
sign documentation.

Recently, software tools have been used to recognise pat-
terns by analysing source code alone. For example, the
Pattern Inference and Recovery Tool (PINOT) described in
[16] has been used successfully to identify patterns in Java
APIs. Also focusing at the code level, Lano et al. [11]
consider patterns to be transformations from flawed solu-
tions consisting of classes organised in a particular manner
to improved solutions, and they prove the two equivalent
by applying object calculus to their VDM++ specifications.
Finally, Lauder and Kent [12] propose a three layer model-
ing approach consisting of role models (the essence of the
pattern), which refine to type models, which then refine to
concrete class models.

The disadvantage of this focus at code level is that many
behavioural properties are hard to determine. For example,
a consequence of the Halting Problem [21] is that we cannot
tell if a method call is reached in all executions, nor if a
message will be sent before another, even if they are in the
same block of code. So, static analysis alone cannot decide
many dynamic properties of interest. And although tools
like PINOT are desirable, we believe that design-level tools
are preferable as they would help designers avoid errors at
the earlier design stage. Better still would be to develop
tools like PINOT in such a manner that they can be proven
correct with respect to a formal specification of the patterns
it recognises.

So we will use UML sequence diagrams to specify dy-
namic properties, as they are more widely used than other
diagrams of this sort, and contain most of the important in-
formation. Class diagrams can capture some dynamic be-
haviour such as one operation calling another, but to spec-
ify the actual objects to which messages are sent, as with
Observer, requires sequence diagrams.

3 Specification of patterns using Meta-
Modelling

Each pattern is a set of design models with certain struc-
tural and behavioural features so formal specification is a
meta-modelling problem on the domain of models.

3.1 The Domain of Models

In this subsection, we first review the meta-notation
GEBNF from [24] and then use it to define the domain of
models for class diagrams and sequence diagrams. Then,
for each pattern, we can define a first-order predicate to
constrain the models such that each model that satisfies
the predicate contains the design as an instance. So the

Table 1. Meanings of the GEBNF Notation

meta-modelling notation comprises the abstract syntax in
GEBNF plus a first-order predicate.

3.1.1 GEBNF Notation

In GEBNF, the abstract syntax of a modeling language is
defined as a tuple 〈R,N, T, S〉, where N is a finite set of
non-terminal symbols, and T is a finite set of terminal sym-
bols, each of which represents a set of values. Furthermore,
R ∈ N is the root symbol and S is a finite set of production
rules of the form Y ::= Exp, where Y ∈ N and Exp can
be in one of the following forms.

L1 : X1, L2 : X2, · · · , Ln : Xn

X1|X2| · · · |Xn

where L1, L2 , · · ·, Ln are field names, and X1, X2 , · · ·,
Xn are the fields. Each field can be in one of the following
forms: Y , Y ∗, Y +, [Y ], Y , where Y ∈ N ∪ T .

The meaning of the meta-notation is given in Table 1.
Note that where an element is underlined, it is a reference
to an existing element on the diagram as opposed to the in-
troduction of a new element.

3.1.2 Class Diagrams

There is a semi-formal definition of UML class diagrams in
[17]. The definition is a semantic network of has-a and is-a
relationships, using the UML notation itself as the meta-
notation. The GEBNF definition below has been obtained
by removing those attributes not required to describe pat-
terns, and by flattening the hierarchy in [17] to eliminate
some meta-classes for simplicity.

A class diagram consists of classes, linked with associa-
tion, inheritance and whole-part (ie composite or aggregate,
hence compag) relations between classifiers.

ClassDiagram ::=



classes : Class+,

assocs : Rel∗, inherits : Rel∗, compag : Rel∗

A class has a name, attributes, and operations.

Class ::=
name : String, [attrs : Property∗],
[opers : Operation∗],

Here of course, String denotes the type of strings of char-
acters and Boolean denotes the type of boolean values.

Operations have a name, parameters and four flags.

Operation ::=
name : String, [params : Parameter∗],
[isQuery : Boolean], [isLeaf : Boolean],
[isNew : Boolean], [isStatic : Boolean],
[isAbstract : Boolean]

These flags are true, respectively, when the operation
doesn’t change the object, when it is not redefined in a sub-
class, when it is constructor, when it is a class operation,
and when it is abstract, in which case isLeaf = false, if it
is defined.

Parameters have a name, type, optional multiplicity in-
formation and direction. Since return values play much the
same role as out parameters, they are treated as just another
sort of parameter, as they are in [17] too.

Parameter ::=
[direction : ParameterDirectionKind],
[name : String], [type : Type],
[mult : MultiplicityElement]

ParameterDirectionKind ::=
“in” | “inout” | “out” | “return”

MultiplicityElement ::=
[upperV alue : Natural | “ ∗ ”],
[lowerV alue : Natural]

Here, Natural denotes the type of natural numbers. Prop-
erties have a name, type, multiplicity information and a
static flag.

Property ::=
name : String, type : Type, [isStatic : Boolean],
[mult : MultiplicityElement]

Similarly, relationships between classes can be defined as
follows.

Rel ::=
[name : String], source : End, end : End

End ::=
node : Class, [name : String],
[mult : MultiplicityElement]

In the sequel, when there is no risk of confusion, we will
also use the name field of a classifier as its identifier.

3.1.3 Sequence Diagrams

A sequence diagram is an ordered collection of messages
sent between lifelines. We need only consider synchronous
messages.

SequenceDiagram ::=
lifelines : Lifeline∗,messages : Message∗,

ordering : (Message,Message)∗

Lifelines have a class and are collections of activations.
They can either be object lifelines (isStatic = false),
in which case they may have a name, or class lifelines
(isStatic = true), in which case they don’t.

Lifeline ::=
activations : Activation∗,

className : String, [objectName : String],
isStatic : Boolean

The act of sending, receiving and returning from (activa-
tions started by) messages are all events, so both activations
and messages must refer to events.

Activation ::=
start : Event, finish : Event, others : Event∗

Messages also have references to operations in the class di-
agrams, and parameters, which include return values.

Message ::=
send : Event, receive : Event, sig : Operation

3.2 Predicates on Diagrams

In the diagram definitions above, every field f : X of
a term T introduces a function f : T → X . Function
application is written x.f for function f and argument x.
So, because opers : Operation∗ is a field of Class, then
C.opers denotes the set of operations in class C. Further
functions can be defined in terms of these basic functions
and to distinguish them we write the application of function
f to argument x with the more conventional prefix notation
f(x).



Here follows some functions and relations used in many
patterns.

Let bounds(x) = (x.mult.lower, x.mult.upper), for
x : End. We write C1 ¦−→ C2 for the relation r ∈
compag such that r.source.node = C1, r.end.node = C2,
bounds(r.source) = (1, 1) and bounds(r.end) = (1, 1).
Let C ¦−→∗ C ′ be similar but with bounds(r.end) =
(1, ∗). Let −→ and −→∗ be the equivalent syntactic sugar
for assocs.

Let C be a class. Then subs(C) denotes the set of
concrete subclasses of C. C..op denote the redefinition
of op for class C. We define isAbstract(C) ≡ ∃op ∈
C.opers · (op.isAbstract) and we write allAbstract(ops)
when op.isAbstract is true for every op ∈ ops.

Let m and m′ be messages. We will write m < m′, if
(m,m′) ∈ ordering.

If C is a class, then subs(C) denotes the set of concrete
subclasses of C. Let C..op be the redefinition of op for
class C; formally, provided that for some class D, we have
op ∈ D.opers and ¬op.isLeaf and C ∈ subs(D), then
C..op is defined and is the unique operation op′ in C.opers
such that op′.name = op.name. For any operation o and
class C, let hasParam(o, C) denote that at least one of o’s
parameters is of type C. Similarly, let hasInParam(o, C)
and hasReturnParam(o, C) mean that o has at least one
in parameter or (respectively) return parameter of type C.

The following predicates on sequence diagrams will
be useful. Let fromAct(m) denote the unique activa-
tion a for which m.send ∈ a.others. Let toAct(m)
denote the unique activation a for which m.receive =
a.start. Furthermore, define fromLL(m) and toLL(m)
to be the unique activations for which fromAct(m) ∈
l.activations and toAct(m) ∈ l.activations, respectively.
Similarly, let toClass(m) and fromClass(m) abbreviate
toLL(m).class and fromLL(m).class, respectively. Let
trigs(m,m′) mean that message m starts (or “triggers”)
an activation that calls message m′ or, more formally, that
toAct(m) = fromAct(m′). For operations op and op′ we
define calls as follows:

calls(op, op′) ≡ ∃m,m′ ∈ messages .

m.sig = op ∧m′.sig = op′ ∧ trigs(m,m′)

We promote calls to classes as follows:

calls(C,C ′) ≡ ∃m ∈ messages .

fromClass(m) = C ∧ toClass(m) = C ′

A much-used predicate will be callsHook defined when
an operation calls another at the root of an inheritance hier-
archy.

callsHook(op, op′) ≡ ∃C ∈ subs(C ′) . calls(op, C.op′)

We overload the predicate hasReturnParam to mes-
sages and objects. For all messages m and objects o, we de-
fine that hasReturnParam(m, o) is true if o is the return
parameter for m. As there will only be one such o for a well-
formed class diagram,we write this as returns(m) = o.
For these m and o, we define returns(m) = o, turning
hasReturnParam into a function.

3.3 Consistency Constraints

We define patterns only for design models that are well-
formed (in the sense of GEBNF) and consistent with re-
spect to a set of constraints [24]. There are so-called intra-
diagram constraints, which affect the diagrams in isolation,
and inter-diagram constraints, which concern the way that
two diagrams must work together. Inter-diagram constraints
for class diagrams include the constraints on operations al-
ready mentioned, the inheritance of attributes, operations
and associations, that all classes must have different names
(and operations and attributes within the same class must
do too), that every abstract class is subclassed by a con-
crete class and that inheritance is irreflexive. For sequence
diagrams, we require that every message must start an acti-
vation.

∀m ∈ messages . ∃l ∈ lifelines .

a ∈ activations(l) . m.receive = a.start

Note that this constraint would not be necessary for parallel
machines where two versions of the same operation can be
executed at once.

Inter-diagram constraints, between the class and se-
quence diagrams, include the following:

• every message to an activation for a class must be for
an operation of that class and that class must be con-
crete:

∀m ∈ messages.m.sig ∈ toClass(m).opers∧
¬isAbstract(toClass(m)))

• if a message is for a static operation then the lifeline
is a class lifeline, but if a message is for a non-static
operation then the lifeline is a object lifeline:

∀m ∈ messages.

m.sig.isStatic ⇒ toLL(m).isStatic ∧
¬m.sig.isStatic ⇒ ¬toLL(m).isStatic

• every class in the class diagram must appear in the se-
quence diagram:

∀C ∈ classes . ∃l ∈ lifelines . (l.class = C.name)



Descriptions of patterns in the literature sometimes vio-
late such consistency constrains. For example, in [8], one
pattern that breaks this simple constraint is Builder, where
Product appears in the class diagram but not in the sequence
diagram.

4 Examples of formalisation

Both structural and behavioural features of patterns can
be formally specified as predicates on diagrams in the same
way as consistency constraints. We have successfully spec-
ified all 23 patterns in the GoF book [8]. Here, we only give
some examples to illustrate the style.

For each pattern, the formal specification consists of
three parts. The first part, entitled Components, declares a
set of variables, which are existentially quantified over the
scope of all predicates in the specification of the pattern.
It sets the background of the formulas by asserting the ex-
istence of certain components in the design of the system.
The second part, entitled Static Conditions, consists of a
number of predicates about the structural relations between
the components. Such predicates can be evaluated by only
using the information contained in the class diagram of a de-
sign. The third part, entitled Dynamic Conditions, consists
of a number of predicates about the dynamic behaviours of
the system. They can only be evaluated by using the infor-
mation contained in the sequence diagram of a design and
sometimes the class diagram as well. When it refers to the
elements in both diagrams, the consistency between the two
diagrams are ensured by their satisfaction of the consistency
constraints given in subsection 3.3. Note that, for the sake
of space, we omit the text description of the problems, the
context and the solution so that we can focus on the formal
specification. However, we include the diagrams in the GoF
book for the sake of readability; readers are referred to [8]
for the accompanying descriptions.

Let’s start with a simple example, the Adapter pattern.

4.1 Adapter

The structure of Adapter pattern is shown in Figure 2.
There are four participants, Target, Client, Adapter and
Adaptee, so they are all declared as components, with the
exception of Client which may not necessarily be a specific
class in the system, although it often is.

Components

• Target, Adapter,Adaptee ∈ classes

• requests ∈ Target.opers

• specreqs ∈ Adaptee.opers

The most important property of Client is that it only ac-
cesses, and has a dependency on, Target and not the other

Figure 2. Adapter pattern Class Diagram

components, such as Adaptee. This illustrates a com-
mon situation, in which there is a dependency from a class
Client to a class shown at the root of a class hierarchy. This
means that if a message is sent from a class other than those
explicitly mentioned in the pattern then the operation must
be declared in the root class. So here, we write CDR(C),
short for client depends on root, where C is the root class.
Formally,

CDR(C) ≡
∀m ∈ messages . toClass(m) ∈ subs(C) ⇒

m.sig ∈ opers.toClass(m) ∧
∃o ∈ opers.C . toClass(m).o = m.sig

So the structural features of the Adapter pattern can be
specified as follows.

Static Conditions

• Adapter −−¤ Target

• Adapter −→ Adaptee

• CDR(Target)

The key dynamic feature of the Adapter pattern is that for
every client call to the Adapter’s methods, the Adapter calls
the Adaptee’s operations to carry out the request. This can
be specified as follows.

Dynamic Conditions

• a request is delegated to a specific object

∀o ∈ reqs . ∃o′ ∈ specreqs . (calls(o, o′))

A complete specification of the Adapter pattern can be as-
sembled from the three parts by removing the comments in
English, which is inserted for the sake of readability.



Figure 3. Command pattern Class Diagram

Note that, the specification given above is for Object
Adapter. The Class Adapter pattern has the static condition
Adapter −−¤ Adaptee instead of Adapter −→ Adaptee.

For the Object Adapter, we must still capture the condi-
tion that it is only the Adapter class that can send a message
to the Adaptee.

∀m ∈ messages . toClass(m) = Adaptee ⇒
fromClass(m) = Adapter

It is also worth noting that Adapter is a typical struc-
tural pattern in the GoF catalogue. Such patterns usually
have rich structural features, but like Adapter pattern, they
do have dynamic features as well. It is also interesting to
observe that the specification of the structural features of
Adapter pattern is simpler and clearer than the specifica-
tion given in [2] where only class diagram is used. In fact,
we observed that for almost all patterns in GoF catalog,
the specification of structural features is simpler and clearer
than the corresponding one in [2]. A discussion on the rea-
sons for this is given in Section 5.

4.2 Command

Command is typical of the behavioural patterns in the
GoF catalog, in that it is rich in dynamic features. Fig-
ure 3 shows the structure of the pattern, as captured in the
Component and StaticCondition parts of the specifica-
tion, below.

Components

• Command,ConcreteCommand,
Invoker,Receiver ∈ classes,

• execute ∈ Command.opers,

• action ∈ Receiver.opers

Static Conditions

• Invoker ¦−→ Command

• ConcreteCommand −→ Receiver

• ConcreteCommand−−¤ Command

Figure 4. Command pattern Sequence Dia-
gram

• execute.isAbstract

• ¬isAbstract(ConcreteCommand)

In the GoF catalogue, the dynamic features of a pattern are
described in the Collaborations section, which is sometimes
illustrated by a sequence diagram. The sequence diagram
for Command pattern is given in Figure 4.

To specify the dynamic features of a pattern, we often
split the Dynamic Conditions into two sub-parts: the An-
tecedent and the Consequent. The former specifies the con-
dition or scenario in which the behavior happens. The latter
specifies the behavior itself. For the Command pattern, the
trigger is a call to the method execute.

Dynamic Conditions - Antecedent

• If a command is executed then

∀me ∈ messages.

me.sig = ConcreteCommand.execute ⇒

Dynamic Conditions - Consequent

• the invoker is responsible, and

fromLL(me).class = Invoker

• the receiver will perform an action at once and

∃ma ∈ messages.calls(me,ma)∧ma.sig = action

• the command that was executed is created and

∃mn ∈ messages.

isNew(mn.sig) ∧ toLL(mn) = toLL(me)

• the command is stored in the invoker and

∃ms ∈ messages.

ms.sig = storeCommand ∧
fromAct(ms) = fromAct(mn)∧



Figure 5. Singleton pattern Class Diagram

• the command was created with the receiver before the
command was stored before it was executed

mn < ms ∧ms < me ∧
hasParam(mn, toLL(ma).name) ∧
hasParam(ms, toLL(mn).name)

This captures the dynamic information that would have
been missed had we restricted our attention to the static
properties considered by [2]. This is particularly important
for patterns where the static properties are trivial, such as
the single-class Singleton pattern.

4.3 Singleton

The Singleton pattern is a creational pattern with a sim-
ple structure shown in Figure 5, but with dominant dy-
namic behaviour, although its GoF description contains no
sequence diagram.
Components

• Singleton ∈ classes

• getInstance ∈ Singleton.opers

Static Conditions

• getInstance.isStatic

Dynamic Conditions - Antecedent

• when a new Singleton object is created

∀m ∈ messages .

isNew(m.sig) ∧ toClass(m) = Singleton

Dynamic Conditions - Consequent

• this must have been triggered by a request for an in-
stance

∃m′ ∈ messages.

(m′.sig = getInstance ∧ calls(m′,m))

Figure 6. Factory Method pattern Class Dia-
gram

• there cannot be any earlier requests for an instance

∀m′′ ∈ messages.

(m′′ < m′ ⇒ m′′.sig 6= getInstance)

• any subsequent request for an instance will return the
same instance

∀m′′′ ∈ messages.

(m′ < m′′′ ∧m′′′.sig = Instance ⇒
returns(m′) = returns(m′′′))

Note that sequence diagrams do have a limitation here, in
that they cannot be used to state explicitly the intent that
only one instance is created, nor that the instance is re-
trieved from a field. Instead both of these must be inferred
from the dynamic conditions.

4.4 Factory Method

As discussed in Section 1, patterns are documented in-
formally so it is inevitable that these descriptions contains
ambiguities or even inaccuracies. Sometimes, like with the
Factory Method pattern, we must choose between alterna-
tives.

Let us first introduce a predicate isMakerFor. Infor-
mally, isMakerFor(op, C) is true if an op message starts
an activation which creates an object of class C and returns
that object. Formally,

isMakerFor(op, C) ≡
∃m ∈ messages . m.sig = op ⇒
∃m′ ∈ messages ∧ isNew(m′.sig) ∧
calls(m,m′) ∧ toClass(m′) = C ∧
returns(m) = toLL(m′).name

Then Factory Method can be specified as follows.
Components

• Creator, Product ∈ classes



Figure 7. Observer pattern Sequence Dia-
gram

• factoryMethod ∈ Creator.opers

Static Conditions

• factoryMethod.isAbstract

• for every creator subclass, there is a product subclass

∀C ∈ subs(Creator) . ∃!P ∈ subs(Product)

• furthermore, denoting witness P by f(C), then f is a
total bijection.

Dynamic Conditions

• for every creator subclass, the factory method creates
a unique product subclass:

∀C ∈ subs(Creator).
isMakerFor(C..factoryMethod, f(C))

Now for the alternative formulations. In [5], Eden
allows there to be several factory methods rather
than just one as in the above. Secondly, one
could argue for ¬factoryMethod.isLeaf instead of
factoryMethod.isAbstract. Thirdly, the operation
AnOperation ∈ Creator.opers, is not essential to the
Factory pattern but if we add it to the Components section,
we can add to the Dynamic Conditions, we can add the con-
dition calls(AnOperation, FactoryMethod).

4.5 Observer

Observer, (see Figure 1 for the class diagram), is a
widely used pattern and, with the exception of Iterator. It
is the only one for which there is Java API support, in the
form of a class java.util.Observable and interface
java.util.Observer.

Components

• Subject, Observer ∈ classes

• update ∈ opers(Observer)

Static Conditions

• Subject −→∗ Observer

• ¬update.isLeaf

• every observer associates with some subject:

∀O ∈ subs(Observer) .

∃S ∈ subs(Subject) . O −→ S

Dynamic Conditions - Antecedent

• If any object changes the state of the subject then

∃ms ∈ messages . ¬ms.sig.isQuery∧
toClass(ms) ∈ subs(Subject) ⇒

Dynamic Conditions - Consequent

• the subject notifies itself and

∃mn ∈ messages . mn.sig = notify∧
fromLL(mn) = toLL(mn) = toLL(ms)∧

• the subject then updates all the observers and each
query the state

∃mu,mg . mu.sig = update∧
isQuery(mg.sig) ∧
toLL(mu) = l ∧ calls(mn,mu) ∧
calls(mu,mg) ∧ toLL(mg) = toLL(ms)

For the push model, where the observers receive infor-
mation about the change before they ask for it, just re-
move variable mg and replace its associated conditions with
#update.params ≥ 1. If pre and post conditions were
added to the attributes of Operation then the semantics of
add and remove could be specified.

5 Analysis of Case Study

We now report the findings of our where we formally
specified all 23 patterns in the GoF book [8].

Firstly, every specification is simpler in its structural fea-
tures than, for example, those in [2]. Our notations match
more closely the arrows of UML class diagrams, for a
start. More importantly though, some structural features
can be expressed with sequence diagrams instead of class
diagrams, allowing us to choose the simpler option in each
case. (An example is the calls relation, previously defined



Table 2. Findings of the Case Study

as a relation between class diagram operations.) The con-
sistency assumption, itself specified with first-order predi-
cates, allows us to reduce redundancy by removing equiv-
alent expressions. In Table 2 the column entitled Simpler
Structural Properties shows where we have been able to
make simplifications.

Secondly, as we would expect, sequence diagrams en-
able us to characterise dynamic properties more exactly. A
class diagram can dictate that one method calls another, as
discussed in Section 2, and this can be enough for some
patterns but others require more information, such as the
temporal ordering of messages, which must come from se-
quence diagrams. In Table 2 the column entitled Improved
Behavioural Properties indicates that 5 patterns are speci-
fied without an obvious improvement, and 11 patterns show
a slight improvement when the additional information con-
tained in sequence diagrams is used, but for 7 patterns, the
improvement is significant.

Thirdly, some patterns have alternative non-equivalent
specifications, as noted in [2]. Sometimes there is ambigu-
ity even in the best documented patterns and clarification is
needed to select between the alternatives. Sometimes, how-
ever, each alternative is a different specialisation of the pat-
tern. These alternatives, each with their pros and cons, may
form sub-patterns if they are significant enough in practice.

An advantage of the method is that we can now document
each of the subpatterns separately, exploring the alternatives
without having to commit to any of them. The reader can
make an informed choice. In Table 2, the column entitled
Many alternatives shows there are 11 patterns for which
there were many equally valid alternatives.

Finally, as UML diagrams contain only some informa-
tion about the system and at a high level of abstraction, one
may find a specification based on these does not fully ex-
press all the properties required. Examples of patterns for
which this is a problem include the following:

• In the Builder pattern, the BuildPart operations in the
must each build a different part of the Product, and
the first creates the class Product too. (The rest of this
pattern can be captured adequately, and better than in
[2] as the sequence diagram is constrained.)

• In the Composite pattern, the Composite class must
propagate messages sent to it to each of its children,
but without an object diagram, we cannot tell which
lifelines must be the target of the messages. Naturally,
this is also a problem with the Interpreter pattern, but
we can at least dictate that the recursive calls are pa-
rameterised by the same Context object.

• In the Flyweight pattern, since the Flyweight class has
two different subclasses, one holding the intrinsic state
and the other holding the extrinsic state as well, the
missing parts of the state should be passed to opera-
tions on the former. This important information cannot
be represented on class or sequence diagrams.

In Table 2, the column entitled Specified Adequately in-
dicates whether the structural and behavioural features have
been fully specified; in 6 out of 23 patterns it has not.

6 Conclusion

In this paper, we proposed the use of design information
from class and sequence diagrams to formally specify pat-
terns. The GEBNF meta-notation and the first-order pred-
icate logic on the domain of diagrams defined in GEBNF
are adapted to specify patterns as constraints on the models.
The advantages of the approach as pointed out in [2] include
the following:

• The pattern can be identified easily by proving that the
constraints on the UML diagram are satisfiable.

• Relationships between patterns can be formally de-
fined as logic relationship between first-order logic
statements. For example, if pattern A is a sub-pattern
of B, then the predicate for A implies the predicate for
B, and this can be proven in formal logic.



• The formal specifications of patterns are easy to under-
stand and readable, as demonstrated in the paper.

• It is possible that a generic tool could be developed for
specifying, reasoning and applying patterns. The tool
would contain a repository of well-known patterns and
their inter-relationships but it should enable users to
add further specifications. It would then support proofs
of arbitrary relationships between patterns and auto-
matically identify patterns in UML models.

These advantages apply here too but we omit the demon-
strative examples to save space.

The main contribution of this paper is an investigation
into the behavioural features of patterns. The case study
shows that the method is applicable to almost all patterns in
the GoF book, with the exception of the Flyweight pattern,
improving on existing work on formal specification. As ex-
plained in Section 1, behavioural features are difficult to
extract, even when the source code is available for analysis.

For future work, we believe that the generic pattern-
based software design tool proposed above could make a
significant impact on the practical use of patterns in soft-
ware development and to ensure the quality of software pat-
terns and pattern languages. It will also be interesting to
conduct further case studies of the method with more com-
plicated patterns, such as patterns in distributed systems
where dynamic behavioral features play a dominant role.
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A Creational Patterns

Note, as a general point that where a class is indicated as
abstract, we read this as saying the class could be abstract
but does not need to be. Clearly, if an operation is shown
as abstract then the constraints on class diagrams mean that
the operation must be abstract.

A.1 Abstract Factory

Components

• AbstractFactory ∈ classes

• AbstractProducts ⊆ classes

• creators ⊆ AbstractFactory.opers

Static Conditions

• isAbstract(AbstractFactory)

• ∀C ∈ AbstractProducts . isAbstract(C)

• CDR(AbstractFactory)

• ∀P ∈ AbstractProducts . CDR(P )

• for every abstract product, there’s a unique cre-
ation operation such that for each subclass of
AbstractFactory, there’s a unique product made by
that operation.

∀AP ∈ AbstractProducts .

∃!op ∈ AbstractFactory.opers .

∀cf ∈ subs(AbstractFactory) .

∃!p ∈ subs(AP )

• furthermore, denoting the witness op by f(AP ) and
the witness p by g(AP, cf), the functions f and g are
both total bijections.

Dynamic Conditions

• for every abstract product and every abstract factory,
the unique product is indeed made by the operation
identified above as its creation operation.

∀AP ∈ AbstractProducts .

∀cf ∈ subs(AbstractFactory) .

isMakerFor(f(AP ), g(AP, cf))

Discussion

• Eden phrases these similar conditions with a set com-
prehension instead. [6]

A.2 Builder



Components

• Director,Builder ∈ classes

• Construct ∈ Director.opers,
GetResult ∈ Builder.opers

• buildparts ⊆ Builder.opers

Static Conditions

• Director ¦−→ Builder

• GetResult /∈ buildparts

Dynamic Conditions - Antecedent

• If an activation asks the builder for the product then

∃mg ∈ messages . mg.signature = GetResult ⇒

Dynamic Conditions - Consequent

• it must first have asked the director to construct it,
resulting in calls to all the BuildPart operations, and

∃mc ∈ messages . mc < mg∧
fromAct(mc) = fromAct(mg) ∧
mc.sig = Construct∧

∀o ∈ buildparts . ∃mb ∈ messages .

calls(mc,mb) ∧mb.sig = o

• it must before that have created a director and

∃mnd ∈ messages . mnd < mg∧
fromAct(mnd) = fromAct(mg) ∧
isNew(mnd.sig) ∧ toClass(mnd) = Director∧

• it must even before that have created a builder and

∃mnb ∈ messages . mnb < mnd∧
fromAct(mnb) = fromAct(mnd) ∧
isNew(mnb.sig) ∧ toClass(mnb) = Builder∧

• when it created the director it did so with that builder:

hasParam(mnd, toLL(mnb).name)

Discussion

• there is no mention of Product in these conditions, but
it does not appear on the sequence diagram either.

A.3 Factory Method

See main text.

A.4 Prototype

Components

• Client, Prototype ∈ classes

• operation ∈ Client.opers

• clone ∈ Prototype.opers

Static Conditions

• isAbstract(clone)

• Client −→ Prototype

Dynamic Conditions

• ∀P ∈ subs(Prototype) . makerFor(P..operation, P )

A.5 Singleton

See main text.

B Behavioural Patterns

B.1 Chain of Responsibility



Components

• Handler ∈ classes

• handleRequest ∈ Handle.opers

Static Conditions

• Handler −→ Handler

• CDR(Handler)

Dynamic Conditions

• At least one type of concrete handler handles a request
by passing it onto another.

∃H,H ′ ∈ subs(Handler) .

calls(H.handleRequest, H ′.handleRequest)

B.2 Command Pattern

See main text.

B.3 Iterator

Components

• Aggregate, Iterator ∈ classes

• creatorIterator ∈ Aggregate.opers

Static Conditions

• none

Dynamic Conditions

• for every aggregate, there’s an iterator that aggregates
it and the aggregate creates the iterator using itself as a
parameter.

∀A ∈ subs(Aggregate) . ∃I ∈ subs(Iterator) .

I −→ A ∧makerForIter(A..createIterator, I)

Discussion

• the meanings of Iterator operations cannot be written
in UML.

B.4 Mediator

Components

• Mediator, Colleague ∈ classes

Static Conditions

• Colleague −→ Mediator

• each mediator associates with one object

∀M ∈ subs(Mediator) .

∃C ∈ subs(Colleague) . M −→ C

Dynamic Conditions - Antecedent

• a colleague sends a message:

∃m ∈ messages .

fromClass(m) ∈ subs(Colleague) ⇒

Dynamic Conditions - Consequent

• the message is sent to the mediator and as a result, an-
other message is sent to a colleague:

toClass(m) ∈ subs(Mediator)∧
∃m′ ∈ messages . calls(m,m′)
∧toClass(m′) ∈ subs(Colleague)

B.5 Memento



Components

• Originator,Memento, Caretaker ∈ classes

• createMemento, setMemento ∈ Caretaker.opers

Static Conditions

• Caretaker ¦−→ Memento

Dynamic Conditions - Antecedent

• If the memento is set then

∃ms ∈ messages . ms.sig = SetMemento ⇒

Dynamic Conditions - Consequent

• this is done by the caretaker and

fromClass(ms) = Caretaker∧

• the originator queries the state of the memento at once
and

∃mg ∈ messages . isQuery(mg)∧
calls(ms,mg) ∧ toClass(mg) = Memento∧

• the caretaker tells the originator to create the memento
before it tells it to set it and

∃mc ∈ messages . mc < ms∧
mc.sig = createMemento ∧ sameLLs(mc,ms)∧

• the originator creates the memento at once and sets the
state

isMakerSetterFor(createMemento, Memento)

Here, isMakerSetterFor is defined as follows:

isMakerSetterFor(op, C) ≡
∃m ∈ messages . op = m.sig ⇒
∃mg,ms ∈ messages . mg < ms

∧calls(m,mg) ∧ calls(m,ms) ∧
mg.sig.isNew ∧ toClass(mg) = C

toLL(mg) = toLL(ms)∧

B.6 Observer

See main text.

B.7 State

Components

• Context, State ∈ classes

• requests ∈ Context.opers,
handlers ∈ State.opers

Static Conditions

• Context ¦−→ State

• allAbstract(handlers)

Dynamic Conditions

• every request is handled by calling a handler.

∀o ∈ requests . ∃o′ ∈ handlers . callsHook(o, o′)

• every handler either returns or sends a message param-
eterised with the new state.

∀S ∈ subs(State) . ∀h ∈ subs(handlers) .

∃S′ ∈ subs(State) . (hasReturnParameter(h, S′) ∨
∃o ∈ Context.opers . hasInParameter(o, S′)
∧calls(h, o))

Discussion

• aside from the number of handlers (and variable re-
naming), the second condition is the only difference
between the State and Strategy patterns

• the exact interaction of the implementation, whereby
the handler requests a State subclass instance to give
back to the handler, is not specified here but it could
be.

B.8 Strategy



Components

• Context, Strategy ∈ classes

• conInt ∈ Context.opers, algInt ∈ Strategy.opers

Static Conditions

• Context ¦−→ Strategy

• isAbstract(algInt)

Dynamic Conditions

• every call to conInt results in a call to algInt

callsHook(conInt, algInt)

B.9 Template Method

Components

• AbstractClass ∈ classes

• templateMethod ∈ AbstractClass.opers

• others ⊆ AbstractClass.opers

Static Conditions

• templateMethod.isLeaf

• templateMethod 6∈ others

• ∀o ∈ others . ¬o.isLeaf

Dynamic Conditions

• The template method calls the non-leaf operations.

∀o ∈ others . callsHook(templateMethod, o)

B.10 Visitor

Components

• ObjectStructure, V isitor, Element ∈ classes

• visitops ⊆ V isitor.opers

Static Conditions

• allAbstract(visitops)

• For every kind of element, there’s a unique visit oper-
ation for that element and a unique operation defined
only for that element subclass.

∀E ∈ subs(Element) . ∃!opv ∈ V isitors.opers .

∃!op ∈ E.opers . ¬∃op′ ∈ Element.opers .

op = E.op′

• furthermore, denoting the witnesses op and opv by
f(E) and g(E), the functions f and g are total bijec-
tions

Dynamic Conditions - Antecedent

• For every kind of element, if that element is told to
accept a visitor then

∀E ∈ subs(Element) . ∃ma ∈ messages .

ma.sig = accept ∧ toClass(ma) = E ∧
∃l ∈ lifelines . hasParam(ma, l.name) ∧
l.class ∈ subs(V isitor) ⇒

Dynamic Conditions - Consequent

• the message came from the object structure and

fromClass(ma) = ObjectStructure∧

• the message will call the visit operation and

∃mv,mo ∈ messages .

mv.sig = g(E) ∧mo.sig = f(E)∧

• that operation will then call the unique operation for
the element

toLL(mv) = l ∧ calls(ma,mv)
∧calls(mv, mo) ∧ toLL(mo) = fromLL(mv)



C Structural Patterns

C.1 Adapter

See main text.

C.2 Composite

Components

• Component, Composite ∈ classes

• Leafs ⊆ classes

• ops ∈ Component.opers

Static Conditions

• allAbstract(ops)

• every leaf does not aggregate any components

∀l ∈ Leafs . l−−¤Component∧¬(l ¦−→ Component)

• isInterface(Component)

• Leaf −−¤ Component

• Composite−−¤ Component

• Composite ¦−→∗ Component

• CDR(Component)

Dynamic Conditions

• any call to Composite causes follow-up calls

∃m ∈ messages .

toClass(m) = Composite ∧m.sig ∈ ops ⇒
∃m′ ∈ messages . calls(m,m′) ∧m′.sig = m.sig

• any call to a leaf does not

∃m ∈ messages .

toClass(m) ∈ Leafs ∧m.sig ∈ ops ⇒
¬∃m′ ∈ messages . calls(m,m′) ∧m′.sig = m.sig

Discussion

• Eden suggests that there might be several operations
defined this way

• The follow-up calls should go to every subtree

C.3 Bridge

Components

• Abstraction, Implementor ∈ classes

Static Conditions

• Abstraction −→ Implementor

• isInterface(Implementor)

Dynamic Conditions

• every operation in an Abstraction subclass calls an
operation in Abstraction

∀A ∈ subs(Abstraction) . ∀o ∈ A.opers .

∃o′ ∈ Abstraction.opers . calls(o, o′)

• every operation in Abstraction calls an operation in
Implementor

∀o ∈ Abstraction.opers .

∃o′ ∈ Implementor.opers . calls(o, o′)

Discussion

• dependency condition can’t be translated right now

• second condition may be too restrictive since some op-
erations in Abstraction will modify the state instead

C.4 Decorator



Components

• Component,Decorator ∈ classes

• operation ∈ Component.opers

Static Conditions

• Decorator ¦−→ Component

• Decorator −−¤ Component

Dynamic Conditions

• the concrete Decorator version of the operation calls
that of the Decorator which calls that of the Compo-
nent, all three of which are available as inherited oper-
ations.

∀D ∈ subs(Decorator) .

calls(D..operation,Decorator..operation) ∧
callsHook(Decorator.operation,

Component.operation)

Discussion

• The added state and behaviour is there by implication.

• Eden [6] suggests that there could be several opera-
tions but there are no examples in the GoF book that
suggest this.

C.5 Facade

Components

• Facade ∈ classes

• behind ⊆ classes

• rest ⊆ classes

Static Conditions

• Facade /∈ behind

• Facade /∈ rest

• behind ∩ rest = ∅
Dynamic Conditions

• any message sent behind the facade cannot be from a
class in front

∀m ∈ messages .

toClass(m) ∈ behind ⇒ fromClass(m) /∈ rest,

¬∃C, C ′.(C ∈ rest ∧ C ′ ∈ behind ∧ calls(C,C ′))

C.6 Flyweight

Components

• Flyweight, FF,CF,UCF ∈ classes

• getF lyweight ∈ FF.opers

Static Conditions

• FF ¦−→ Factory

• CF −−¤ Flyweight ∧ ¬isAbstract(CF )

• UCF −−¤ Flyweight ∧ ¬isAbstract(UCF )

• CF.attrs ⊂ UCF.attrs

Dynamic Conditions - Antecedent

• when a new flyweight is created

∀m ∈ messages . isNew(m)∧
toClass(m) ∈ subs(Flyweight)

Dynamic Conditions - Consequent

• it must have been done by getF lyweight,

∃mg ∈ messages .

mg.sig = getF lyweight ∧ calls(m,mg)

• there can’t be any earlier requests for that key, and

∀m′ ∈ messages . m′ > m∧
m′.sig = getF lyweight ⇒
m′.sig.params 6= m.sig.params



• any subsequent requests return the same flyweight

∀m′′ ∈ messages . m′′ > m

m′′.sig = getF lyweight ∧
m′′.sig.params = m′.sig.params

C.7 Interpreter

Components

• AbsExp, TermExp, NontermExp,
Context ∈ classes

• interpret ∈ Component.opers

Static Conditions

• TermExp−−¤ AbsExp

• NontermExp−−¤ AbsExp

• NontermExp ¦−→∗ AbsExp

• ¬(TermExp ¦−→ AbsExp)

• CDR(AbsExp)

• hasParam(interpret, Context)

Dynamic Conditions

• any call to NontermExp causes follow-up calls, with
the same parameter.

∃m ∈ messages .

toClass(m) = NontermExp ∧
m.sig = interpret ⇒
∃m′ ∈ messages . calls(m,m′) ∧
m′.sig = interpret ∧
m′.sig.params = m.sig.params

• any call to TermExp does not.

∃m ∈ messages .

toClass(m) = TermExp ∧
m.sig = interpret ⇒
¬∃m′ ∈ messages . calls(m,m′)
∧m′.sig = interpret

Discussion

• these conditions are exactly those of Composite with
variable renaming and four further conditions, that
Context is the only argument, that recursive calls are
with same Context object, and there is only one leaf
class.

• the follow-up calls must be with the same Context
object as the original calls

C.8 Proxy

Components

• Subject, RealSubject, Proxy ∈ classes

• reqops ⊆ Subject.opers

Static Conditions

• allAbstract(reqops)

• Proxy −−¤ Subject

• RealSubject−−¤ Subject

• Proxy −→ RealSubject

• ¬request.isLeaf

• CDR(Subject)

Dynamic Conditions

• calls(Proxy..request,RealSubject..request)


