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Abstract 
Integration testing plays a crucial role in component-
based software development. In complementary to the 
existing works on the selection of test cases and 
measurement of test adequacy in integration testing, this 
paper focuses on questions about how to observe the 
behaviours of a large and complicated system during 
dynamic testing. We first analyse the structure of white-
box integration testing and propose a family of integration 
testing methods. We then discuss and formalise the 
requirements of proper uses of test drivers and component 
stubs in incremental integration. Finally, we propose a set 
of axioms for integration testing of concurrent systems.  

1. Introduction  
In recent years, software component technology has 

emerged as a key element of modularity in the develop-
ment of large and complicated systems [1~3]. Ensuring the 
correct integration of system components is a critical 
problem. Industrial practice of component-based develop-
ment has shown a clear shift of development focus from 
design and code to requirements analysis, test and 
integration, especially from unit testing to integration 
testing [4~6].  

Theoretically speaking, integration testing can be based 
on either the requirements specification, the design or the 
code of a system, or a combination of these. Most existing 
methods are based on the functional requirement specifica-
tions, e.g. [7]. Their major weakness is that the structure 
and design information is not utilised in the testing. 
Design-based methods consider the interactions between 
designed components of a system. Methods have been 
proposed to utilise the design information contained in 
UML [8], software architecture descriptions [9,10], and 
structured design diagrams [11,12]. Among code-based 
methods are inter-procedural data-flow testing methods 
[13~16], their extension to coupling-based methods [17], 
and more recently, interface mutation testing method [18]. 
A weakness of code-based methods is that they rely on the 
availability of the source code of the components. This is 
usually not the case when the component is a commercial 

off-the-shelf (COTS) package. They do not benefit from 
incremental integration strategies such as top-down or 
bottom-up integration. When the software system is large, 
analysing the complete set of code becomes impractical.   

We regard software testing as a process in which a 
system’s dynamic behaviours are observed and recorded 
so that the system’s properties can be inferred. Integration 
testing distinguishes from testing at other development 
stages by observing the interaction between the compo-
nents of the system, while unit testing focuses on the 
correctness of the components. In [19] we proposed a 
behaviour observation theory of software testing. This 
paper extends the above theory to integration testing.  

The remainder of the paper is organised as follows. 
Section 2 briefly reviews our theory of behaviour 
observation. Section 3 discusses the uses of test drivers 
and component stubs in integration testing. Section 4 
presents a set of axioms for integration testing of 
concurrent systems. Section 5 is the conclusion of the 
paper. Further work is discussed.  

2. The observation theory  
The theory is concerned with the behaviour 

observations in software testing [19~21]. In the testing of 
large-scale software systems, testers can only observe 
certain aspects of the system's dynamic behaviour. Such 
observations must be made systematically and 
consistently. In [19~21], we argued that the universe of 
observable behaviours of a software system p by a well-
defined testing method constitutes an algebraic structure of 
complete partially ordered (CPO) set [22]. This universe 
has a least element p⊥ , which contains the minimum 
information about the system. It is partially ordered by a 
binary relation p≤ . Informally, pα β≤  means that the 
information contained in phenomenon β subsumes that in 
α. A consistent subset of phenomena α1, α2, ..., αn has a 
least upper bound, denoted by 1 2 nα α α+ + +" or 
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contained in the phenomena.  
The notion of observation schemes is an abstraction of 

systematic methods of behaviour observation.  
Definition 1. (Observation schemes) 

An observation scheme B is a mapping from software 
systems p to an order pair <Bp, µp>, where Bp is a CPO set; 
µp is the recording function that associates each test suite t 
with a collection of phenomena in Bp.  

Notice that, first, each element in the collection of 
phenomena associated to a test suite represents one 
observation that can be made on a number of possible non-
deterministic executions on the test suite. Second, a test 
suite is assumed to be a multi-set of test cases. The 
multiple appearances of a test case mean multiple 
executions of the system on the test case. Third, a test 
adequacy criterion as a stop rule is defined as a predicate 
C on the CPO set Bp. C(σ) being true means that a testing 
is adequate if the phenomenon σ is observed. An adequacy 
measurement criterion is defined as a mapping M from Bp 
to the unit interval of real numbers. M(σ) is the testing 
adequacy of  the observed phenomenon σ. A well-
established software testing method can be defined as a 
triple <Bp, µp, Ap>, where Ap is a test adequacy criterion.  

A well-defined observation scheme must satisfy some 
desirable properties, i.e. axioms. Table 1 gives the formal 
definitions of the axioms proposed in [19]. Their inter-
relationships are shown in Figure 1.  

Table 1. Axioms of observation schemes 
Axiom Formal definition 
Well-
foundedness 
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These axioms have been validated against a large 

variety of testing methods. They hold for statement, 
branch, and path testing, mutation testing, data flow 
testing, and so on. It was also proved that statistical testing 
methods are neither composable nor decomposable, 
although they are consistent and complete [19].  
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Figure 1. Relationships between the axioms 

Different observation schemes have different fault 
detecting ability especially when one is an extraction of 
another. 
Definition 2. (Extraction Relation between Schemes) 

Scheme A is an extraction of scheme B, written A�B, 
if for all p∈P, there is a homomorphism ϕp from <Bp, 
≤B,p> to <Ap, ≤A,p>, such that (1) ϕp(σ)=⊥Α,p if and only if 
σ=⊥Β,p, and (2) for all test sets t, ( ) ( ( ))A B

p p pt tµ ϕ µ= .   
Informally, scheme A is an extraction of scheme B 

means what scheme A observes can be derived from the 
phenomena that B observes. For example, we can extract 
the set of executed statements from the set of executed 
paths. Let A=<A, µA> and B=<B, µB> be two schemes.  

It is proved in [19] that extraction is a partial ordering. 
It also preserves the axioms of schemes discussed in the 
previous section. Formally, the extraction relation 
preserves property P, if A � B and B has property P 
implies that A also has property P.  

The above theory is applied to the study of existing 
testing methods and the development of new methods for 
Petri nets [20]. We found that although there are a great 
number of testing methods proposed in the literature, the 
ways that these methods observe software behaviour have 
certain common structures, which determines their main 
properties. A number of constructions were defined and 
their properties were analysed. Such a construction can be 
applied to existing observation schemes to generate new 
schemes. Therefore, they constitute a sort of calculus of 
observation schemes [21].  

3. Observation in integration testing 
In this section, we further develop the theory by 

studying the axioms of behaviour observation for 
integration testing.  

3.1. White-box integration testing 
At a high level of abstraction, a component-based 

software system can be regarded as a number of software 
components plugged into an architecture. Such an 
architecture can be considered as a program constructor. In 
practice, it appears in the form of program code called 
glueware, while components may be in a number of forms, 
such as a module, a class, or a library, etc.  



 

 

We are concerned with white-box integration testing 
(WIT) methods, which means that the code of glueware is 
available and used in testing. Using a WIT method, the 
tester observes the internal dynamic behaviour of the 
system rather than just the input/output. Moreover, the 
tester should be able to identify which part of the 
observation is about the components and to separate such 
information from the rest.  
Definition 3. (White-box integration testing methods) 

A white-box integration testing (WIT) method contains 
an observation scheme B: p →<Bp, µp>, and for each 
component C in the system p under test, there exists a 
mapping Cϕ  from observable phenomena of the system in 
Bp to a universe BC,p of observable phenomena of the 
component C in the context of p. The mapping Cϕ  is 

called the filter for component C.  
Notice that, the universe of observable phenomena of a 

component determined by a WIT method should also be a 
CPO set, which may not have the same structure as that of 
the whole system. This is simply because that in 
integration testing we usually focus on the interaction 
between the components and their environment instead of 
the details of the behaviour of the component. In addition, 
we require that the partial ordering ,C p≤ on BC,p must 
satisfy the following axioms.   
Filter's Well-foundedness: if no observations on the whole 
system, nothing is known for the component. Formally, 

,( )C p C pϕ ⊥ =⊥ ,  where p⊥  and ,C p⊥  are the least 
elements of , ,,C p C pB< ≤ >  and ,p pB< ≤ > , respectively.  
Filter Monotonicity: the more one observed the behaviour 
of the whole system, the more one knew about the 
component based on the observation. Formally,  

( )1 2 1 2 1 , 2, . ( ) ( )p p C pBσ σ σ σ ϕ σ ϕ σ∀ ∈ ≤ ⇒ ≤  
Filter Continuity: the information about a component 
contained in the sum of a number of global observations is 
equal to the sum of the information about the component 
contained in each individual global observation. Formally,  

. ( ) ( )pB
σ σ

ϕ σ ϕ σ
∈Θ ∈Θ

 
∀Θ ⊆ = 

 
∑ ∑  

The following defines some observation schemes for 
integration testing methods.  
Method I. The first method records the set of statements 
executed during integration testing. The invocation of a 
component such as the invocation of a function or 
procedure defined in a component is considered as a 
statement. Initiating the execution of a component as a 
process or thread, sending or receiving a message to such a 
process or thread are all considered as a statement. As in 
statement testing, details of the executed statement and 
their sequences of executions are not recorded. The 
method itself does not require observing and recording the 

execution of the statements inside a component. Therefore, 
the components are treated as black boxes.  

This scheme has a set construction [21]. Its base set 
consists of the statements in the glueware. The filter for a 
component filter out the statements related to the 
component.  
Method II. The second method not only records the same 
information for non-component-related statements as 
method I, it also records the set of component-related 
events with details about its parameters. For example, for a 
call of a function/procedure defined in a component, it will 
observe and record the name of the function/procedure 
invoked, the values of the parameters and the return values 
if any. For a message passing event, it will observe and 
record the receiver (or sender) component of the message 
and the contents in the message. The method itself does 
not require the events happened inside a component to be 
observed. It also treats components as black-box.  

This scheme also has a set construction, but the base set 
is slightly more complicated. The element in the base set 
can be in one of two forms, a statement label indicating a 
non-component-related statement, and a tuple in the form 
of <event, parameter>, which indicates a component 
related event and the details of the parameter. The filters in 
this scheme are similar to those of method I.  
Methods III. The third method observes even more 
information than method II. It records the execution 
sequences of the statements and component-related events. 
Notice that, a component is still regarded as a black box.  

This scheme has a poset construction [21]. The base set 
is the set of paths in the glueware. Each path is a sequence 
of elements in the base set of method II. The filters filter 
out the component related events from each path.  
Method VI. The fourth method records the same sequence 
of statements and component-related events as in method 
III. However, for each component-related event, it is 
annotated with the location in the component where the 
event is processed. This information enables testers to 
identify whether two events of the same type but with 
different parameters are handled differently inside a 
component. With additional information about how many 
different locations in the component where such an event 
is handled, software testers can measure the adequacy of 
integration testing.  

In this method, components are not treated completely 
as black-boxes. However, with appropriate instrumenta-
tion of the components, the testing method can be applied 
without the source code of the components. The scheme is 
also a poset construction. The filters are similar to those in 
method III.  

The above methods treat glueware as white-box and 
components as black-boxes. We call them ground order 
WIT methods. For each ground order method, we can 
generalise it to treat the component as white-box and 
observe the same aspect of behaviour inside the 



 

 

component. We call such a generalised method a 1st order 
WIT method. For example, the generalisation of method I 
observes the statements at architectural level executed 
during testing as well as the statements inside the 
components. Notice that, a component may also be a 
composition of other components. We call a component in 
a component a 2nd order component. Similarly, we define 
3rd order components, and so on. We will also use high 
order components to denote all the components of any 
order. A 1st order WIT method will not observe the same 
detail of the behaviour of components of 2nd order or 
higher. It can be further generalised to K'th order for any 
given natural number K>1 by observing the same detail of 
the K'th order components, but treating components of 
K+1'th order as black-box. The most powerful method is 
to treat all high order components equally as white-box. 
Such a method is called an infinite order WIT method. 
These observation schemes have the following extraction 
relationship. Its proof is omitted for the sake of space.  
Proposition.  
(1) For each method Z∈{I, II, III, VI}, we have that for all 
natural numbers k≥1,  

(1) ( ) ( 1)... ...k kZ Z Z Z Z+ ∞� � � � � � ;  
(2) For all n = 0, 1, 2, ..., ∞, ( ) ( ) ( ) ( )n n n nI II III VI� � � ,  
where Z(k) is the k'th order generalisation of Z.   

3.2. Incremental integration 
In practice, integration testing is often carried out 

piece-by-piece as each component is integrated. 
Integration strategies such as top-down, bottom-up and 
combinations of them are employed. Applications of such 
strategies involve writing and using test drivers and 
component stubs. This section investigates the 
requirements on test drivers and component stubs in the 
light of behaviour observation theory.  

For the sake of simplicity, subsequently, we assume 
program constructors are binary, i.e. they take two 
components as parameters. The results can be easily 
generalised to constructors of any number of components. 
Let ⊗ be a binary program constructor, p = p1⊗p2, where 
p1 and p2 are components. A component itself may well be 
a composition of some other components and formed by 
applying a program constructor, say p1=p1,1⊕p1,2.  

By a bottom-up strategy, we first put p1,1 and p1,2 
together to form p1=p1,1⊕p1,2 and test  p1 with a test driver 
to replace the constructor ⊗. After successfully testing p1 
and p2 in this way, they are then put together to form p = 
p1⊗p2 and tested. A test driver is in fact a program 
constructor ⊗' which when applied to p1 forms an 
executable program p'. During this testing process, we 
would like the test driver to act like the environment of p1 
as it would be in the real program p.  This means that if we 
can observe the behaviour of component p1 in the context 

of ⊗, we should be able to observe the same behaviour in 
the context of the test driver ⊗'. Suppose that we use a 
WIT method with observation scheme B: p → (Bp, µp). 
Hence, there is a filter ϕ from p to p1 and a filter ϕ' from p' 
to p1.     
Representativeness of test drivers: For all test suites t and 
all phenomena σ of the component that can be observed by 
executing the system p on t, there exists a test suite t' for p' 
such that the same phenomenon σ can be observed by 
executing p' on test suite t'. Formally, pt T∀ ∈ ,  

1' '( ). ' . ' ( ').( ( ) '( '))p p p pt t T tσ µ σ µ ϕ σ ϕ σ∀ ∈ ∃ ∈ ∃ ∈ ≤  (1) 
where 

1p≤  is the partial ordering on 
1pB .  

Equation (1) can be equivalently expressed as 
1 2 1 1'( )( ) ( )p p p pB Bϕ ϕ⊗ ⊗ , where ϕ(X)={ϕ(x)|x∈X}, X

1p Y 
if and only if 

1
. .( )px X y Y x y∀ ∈ ∃ ∈ ≤ .  

Test drivers may simply pass input data to the compo-
nent under test and then execute the component. Such test 
drivers serve as an interface between the tester and the 
component. For an observation scheme that only observes 
the functional aspect of behaviour, such a test driver 
satisfies the representativeness axiom if it can pass all 
valid inputs to the component and pass the internal state of 
the component as the result of one execution to the next.  

Sometimes, test drivers are written to combine other 
testing tasks, such as automatic generation of test cases. 
Such a test driver usually does not have representa-
tiveness, because it only generates input data in a sub-
domain.  
Representativeness on a sub-domain S: For all test suite t 
in a sub-domain S of the valid input of a system p, and all 
observable phenomena of the component by executing p 
on t, there is a test suite t' for the test driver that the same 
phenomena can be observed in the context of test driver. 
Formally, for all  S pt T T∈ ⊆ ,  

1' '( ). ' . ' ( ').( ( ) '( '))p p p pt t T tσ µ σ µ ϕ σ ϕ σ∀ ∈ ∃ ∈ ∃ ∈ ≤  (2) 
A top-down strategy starts with testing the program 

constructor ⊗ by replacing components pn with stubs p'n, 
n=1, 2. The difference between a real component pn and a 
stub p'n, is that we would not be able to observe the 
internal behaviour of pn by executing p'n. In fact, the 
internal behaviour of pn is not the focus of observation in 
integration testing. However, we would like that the 
interaction between the component pn and its environment 
in p is faithfully represented by the stub p'n.   
Faithfulness of component stubs: For all test suite t and all 
phenomena σ observable by executing the system p on t, 
the same observation can be obtained by executing the 
system p' obtained by replacing the component with the 
stub.  Formally, ∀t∈Tp.(µp(t)=µp'(t)). 

An implication of the faithfulness axiom is that a stub 
can replace a component, if the observation scheme treats 
the component as a black-box and if the observation 



 

 

scheme only concerns with the functional aspect of a 
system. In that case, the stub is required to produce 
functionally correct outputs. Therefore, if a k'th order WIT 
method is used, a component of k+1'th or higher order can 
be replaced by a stub. However, in practice, stubs tend to 
only provide partial functions of the component and they 
faithfully represent the components' behaviour only on a 
sub-domain of the component. This sub-domain is called 
the designated sub-domain of the stub.  
Faithfulness of stubs on designated sub-domain: For all 
phenomena σ observable by executing the system p on a 
test suite t, σ can also be observed by executing the system 
p' obtained by replacing the component with a stub if the 
component is only executed on the stub's designated sub-
domain. Formally, ( , )pt T C S∀ ∈ ↵ .( ( ) ( )p pt tµ µ ′= ), where 

( , )pT C S↵  is the subset of Tp on which p only calls the 
component C on the designated sub-domain of stub S.  

4. Integration of concurrent systems 
A key question about integration testing methods is the 

relationships between the observations on the components 
(Bp1, µp1), (Bp2, µp2) and the observations on the composite 
(Bp1⊗p2, µp1⊗p2). A desirable relationship represents the 
requirements on integration testing methods. Hence, we 
call such a relationship a fitness condition, or a fitness 
axiom of integration testing. The axioms discussed in the 
previous subsections are fitness conditions. They are 
independent of the program constructor. This section 
further investigates fitness axioms by studying the 
constructions of concurrent systems and proposes axioms 
for each constructor.  
Non-deterministic choice. Given two components p1 and 
p2, the non-deterministic choice p1|p2 of p1 and p2 is a 
system that either behaves like p1 or p2 each time the 
composite system is called. For this construction, one of 
the desirable properties is that if a phenomenon σ is 
observable in testing p1, it should also be observable in 
testing p1|p2. Let 1ϕ  and 1ϕ be the filters for p1 and p2, 
respectively. We require that for n=1, 2,  

( ) ( ) ( )( )1 2|. ' . ( ')
np p p nt t tσ µ σ µ ϕ σ σ∀ ∈ ⇒ ∃ ∈ = ; (1) 

Another desirable property for non-deterministic choice 
is that any observation on the whole system consists of 
two disjoint parts: one for each component. Formally, for 
all 

1 2|p pBσ ∈  there are 
1 21 2 |, p pBσ σ ∈  such that  

1 2 1 2 2 1 2 1 2 1, , ( ) , ( )σ σ σ σ σ ϕ σ ϕ σ= + ∩ = ∅ =⊥ =⊥   (2) 
Moreover, the execution of p1 | p2 on each test case 

selects either p1 or p2 to execute, but not both. Formally,  

1 2 1 2 1 2| | 1 2 |. ( ). , ,p p p p p pt T t t t Tσ µ∀ ∈ ∀ ∈ ∃ ∈  

1 21 2 1 2 1 1 2 2, , ( ) ( ), ( ) ( )p pt t t t t t tϕ σ µ ϕ σ µ= ∪ ∩ = ∅ ∈ ∈  (3) 
Parallel composition. In a parallel composition of two 
components, the components are executed in parallel. 

Therefore, a desirable property is that if phenomena σ1 and 
σ2 are observable in testing p1 and p2 independently, a 
combination of σ1 and σ2 should be observable when 
testing their parallel composition. Let 1ϕ  and 1ϕ be the 
filters for p1 and p2, respectively. We require that for all t, 

( ) ( )
1 21 2,p pt tσ µ σ µ∈ ∈  imply that 

( ) ( )
1 2|| 1 1 2 2. ( ) ( )p p tσ µ ϕ σ σ ϕ σ σ∃ ∈ = ∧ = . (4) 

On the other hand, every observable phenomenon of the 
parallel composition of p1 and p2 is a combination of the 
behaviour of the components. Formally, 

1 2||p pt T∀ ∈ , 

( ) ( )( )1 2 1 2|| 1 2. ( ) ( ) ( )p p p pt t tσ µ ϕ σ µ ϕ σ µ∀ ∈ ∈ ∧ ∈ . (5) 
Synchronised parallel composition. In a synchronised 
parallel composition, components may engage in synchro-
nisation events. The composition of them may restrict the 
behaviour of each component to obey synchronisation 
rules. A phenomenon observable by testing the component 
alone may not be observable by executing the component 
in a given environment. Therefore, property (4) does not 
hold for synchronised parallel composition, while (5) is 
still true. We define a predicate Syn on the set 

1 2p pB B× . 
For all 

11 ( )p tσ µ∈  and 
22 ( )p tσ µ∈ , 1 2( , )Syn σ σ  means 

that the behaviours σ1 and σ2 of p1 and p2 respectively are 
synchronised. ∀t, ( )

11 ,p tσ µ∀ ∈ ( )
22 p tσ µ∈ , 1 2( , )Syn σ σ  

implies that  ( ) ( )
1 2|| 1 1 2 2. ( ) ( )p p tσ µ ϕ σ σ ϕ σ σ∃ ∈ = ∧ = . 

Guarded command. A guard command G→C is a program 
that the command C is executed if the predicate G is true. 
We would like an observation scheme to be able to tell if 
the guard is satisfied or not. If the guard is not satisfied, 
the command will not be executed and hence no behaviour 
of the command part should be observed. Otherwise, a 
dynamic behaviour of command part should be observable 
if the guard is satisfied. Let ϕG and ϕC be the filters for the 
guard and command, respectively. For all test suites t,  

( )( ) ( )G G C Gt tϕ µ µ→ = , ( )( ) ( )C G C Ct t Gϕ µ µ→ = ↓ , and 

( )( ) ( )C G C Ct t Gϕ µ µ→ − ↓ = ∅ , where t G↓  is the subset 

of the test suite t that satisfies the guard G.  
Sequential composition. For sequential composition p1;p2, 
the scheme should be able to observe both behaviours of 
p1 and p2. The part of p1 should be the same as testing p1 
independently. The behaviours observable in testing p2 in 
the context of executing p1 first should be the same as 
using the output of p1 as the input to p2. Let ϕ1 and ϕ1 be 
the filters for p1 and p2, respectively. We require that ∀t, 

( ) ( )( )
1 1 21 ;p p pt tµ ϕ µ= , and ( )( ) ( )( )

1 2 22 ; 1p p pt p tϕ µ µ= , 
where p1(t) is the set of output of p1 on the test set t.  
Loops. For a loop structure, such as 'while p do q', the 
loop control condition will be executed on all test cases in 
t. When the condition is true, the loop body will be 



 

 

executed and the condition will be evaluated again on the 
output of the loop body. Such executions will continue 
until the condition becomes false. Similarly, the loop body 
will be executed not only on those test cases that the 
control condition is true, but also on the output of the first 
loop that the conditions are also true, and so on. Let ϕC 
and ϕB be the filters for the loop condition p and the loop 
body q, respectively. We require that for all test suites t,  

( )( ) ( ) ( )
( ) ( )

   

1

( )

( ( )) ( )

C while p do q p p

n n
p p

t t q t p

q q t p q q t p q

ϕ µ µ µ

µ µ −

= ∪ ↓ ∪

↓ ∪ ∪ ↓ ∪D " D "
 

i.e. ( )( ) ( ) ( )1
   

1

( )n n
C while p do q p p

n

t t q t p qϕ µ µ µ
∞

−

=

= ∪ ↓ D∪ . 

Similarly, ( )( ) ( )1
   

0

( )n n
B while p do q q

n

t q t p qϕ µ µ
∞

−

=

= ↓ D∪ , 

where 0f  is the identity function.  

5. Concluding remarks 
In this paper, we applied the theory of behaviour 

observation to integration testing in component-based 
software development. We formalised the notion of WIT 
methods and analysed the requirements of test drivers and 
component stubs. We also proposed a set of axioms of 
observation schemes for integration testing of concurrent 
systems. There are a few directions for further work.  

First, there is a number of testing methods proposed in 
the literature to support integration testing. We will 
examine whether these testing methods satisfy the axioms 
proposed in the paper.  

Second, based on the understanding of the desirable 
properties of behaviour observation in integration, we will 
further investigate the algebraic structures of observable 
phenomenon and their corresponding recording functions 
that satisfy the properties. The constructions of observa-
tion schemes that we proposed and investigated in [21] 
will also be further studied with regard to the axioms for 
integration testing.  
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