

An Observational Theory of Integration Testing
for Component-Based Software Development

 Hong Zhu Xudong He
School of Computing and Mathematical Sciences School of Computer Science
 Oxford Brookes University Florida International University
Gipsy Lane, Headington, Oxford OX3 0BP, UK University Park, Miami, FL 33199, U.S.A.
 Email: hzhu@brookes.ac.uk Email: hex@cs.fiu.edu

Abstract
Integration testing plays a crucial role in component-
based software development. In complementary to the
existing works on the selection of test cases and
measurement of test adequacy in integration testing, this
paper focuses on questions about how to observe the
behaviours of a large and complicated system during
dynamic testing. We first analyse the structure of white-
box integration testing and propose a family of integration
testing methods. We then discuss and formalise the
requirements of proper uses of test drivers and component
stubs in incremental integration. Finally, we propose a set
of axioms for integration testing of concurrent systems.

1. Introduction
In recent years, software component technology has

emerged as a key element of modularity in the develop-
ment of large and complicated systems [1~3]. Ensuring the
correct integration of system components is a critical
problem. Industrial practice of component-based develop-
ment has shown a clear shift of development focus from
design and code to requirements analysis, test and
integration, especially from unit testing to integration
testing [4~6].

Theoretically speaking, integration testing can be based
on either the requirements specification, the design or the
code of a system, or a combination of these. Most existing
methods are based on the functional requirement specifica-
tions, e.g. [7]. Their major weakness is that the structure
and design information is not utilised in the testing.
Design-based methods consider the interactions between
designed components of a system. Methods have been
proposed to utilise the design information contained in
UML [8], software architecture descriptions [9,10], and
structured design diagrams [11,12]. Among code-based
methods are inter-procedural data-flow testing methods
[13~16], their extension to coupling-based methods [17],
and more recently, interface mutation testing method [18].
A weakness of code-based methods is that they rely on the
availability of the source code of the components. This is
usually not the case when the component is a commercial

off-the-shelf (COTS) package. They do not benefit from
incremental integration strategies such as top-down or
bottom-up integration. When the software system is large,
analysing the complete set of code becomes impractical.

We regard software testing as a process in which a
system’s dynamic behaviours are observed and recorded
so that the system’s properties can be inferred. Integration
testing distinguishes from testing at other development
stages by observing the interaction between the compo-
nents of the system, while unit testing focuses on the
correctness of the components. In [19] we proposed a
behaviour observation theory of software testing. This
paper extends the above theory to integration testing.

The remainder of the paper is organised as follows.
Section 2 briefly reviews our theory of behaviour
observation. Section 3 discusses the uses of test drivers
and component stubs in integration testing. Section 4
presents a set of axioms for integration testing of
concurrent systems. Section 5 is the conclusion of the
paper. Further work is discussed.

2. The observation theory
The theory is concerned with the behaviour

observations in software testing [19~21]. In the testing of
large-scale software systems, testers can only observe
certain aspects of the system's dynamic behaviour. Such
observations must be made systematically and
consistently. In [19~21], we argued that the universe of
observable behaviours of a software system p by a well-
defined testing method constitutes an algebraic structure of
complete partially ordered (CPO) set [22]. This universe
has a least element p⊥ , which contains the minimum
information about the system. It is partially ordered by a
binary relation p≤ . Informally, pα β≤ means that the
information contained in phenomenon β subsumes that in
α. A consistent subset of phenomena α1, α2, ..., αn has a
least upper bound, denoted by 1 2 nα α α+ + +" or

equivalently
1

n

i
i
α

=
∑ . It is the summation of information

contained in the phenomena.
The notion of observation schemes is an abstraction of

systematic methods of behaviour observation.
Definition 1. (Observation schemes)

An observation scheme B is a mapping from software
systems p to an order pair <Bp, µp>, where Bp is a CPO set;
µp is the recording function that associates each test suite t
with a collection of phenomena in Bp.

Notice that, first, each element in the collection of
phenomena associated to a test suite represents one
observation that can be made on a number of possible non-
deterministic executions on the test suite. Second, a test
suite is assumed to be a multi-set of test cases. The
multiple appearances of a test case mean multiple
executions of the system on the test case. Third, a test
adequacy criterion as a stop rule is defined as a predicate
C on the CPO set Bp. C(σ) being true means that a testing
is adequate if the phenomenon σ is observed. An adequacy
measurement criterion is defined as a mapping M from Bp
to the unit interval of real numbers. M(σ) is the testing
adequacy of the observed phenomenon σ. A well-
established software testing method can be defined as a
triple <Bp, µp, Ap>, where Ap is a test adequacy criterion.

A well-defined observation scheme must satisfy some
desirable properties, i.e. axioms. Table 1 gives the formal
definitions of the axioms proposed in [19]. Their inter-
relationships are shown in Figure 1.

Table 1. Axioms of observation schemes
Axiom Formal definition
Well-
foundedness

 pt D∩ = ∅⇒ () { }p ptµ = ⊥

Observability pt D∩ ≠ ∅ ⇒ ()p pµ t⊥ ∉

Extendibility () ' ' (').('))p p pt t t tσ µ σ µ σ σ∈ ∧ ⊆ ⇒ ∃ ∈ ≤

Tractability () ' ' (').('))p p pt t t tσ µ σ µ σ σ∈ ∧ ⊇ ⇒ ∃ ∈ ≤

Repeatability () ' () ' (')p pt t t t t tσ µ σ µ∈ ∧ ∈ ∧ ⊇ ⇒ ∈bag
H

Consistency µp(t) ↑µp(t’)

Completeness i I∈
∀ σi∈µp(ti). (∃σ∈µp.(i

i I

t
∈
∪) (σi ≤pσ))

Composability i I∈
∀ σi∈µp (ti) .(i

i I
σ

∈
∑ ∈ µp(i

i I

t
∈
∪))

Decompos-
ability

σ∈µp(i
i I

T
∈
∪)⇒

i I∈
∃ σi∈µp(Ti) .(i

i I
σ σ

∈

= ∑)

These axioms have been validated against a large

variety of testing methods. They hold for statement,
branch, and path testing, mutation testing, data flow
testing, and so on. It was also proved that statistical testing
methods are neither composable nor decomposable,
although they are consistent and complete [19].

 Consistency

Completeness

Tractability
Extendibility

Composability Decomposability

Repeatability

&

Observability Well-
foundedness

Figure 1. Relationships between the axioms

Different observation schemes have different fault
detecting ability especially when one is an extraction of
another.
Definition 2. (Extraction Relation between Schemes)

Scheme A is an extraction of scheme B, written A�B,
if for all p∈P, there is a homomorphism ϕp from <Bp,
≤B,p> to <Ap, ≤A,p>, such that (1) ϕp(σ)=⊥Α,p if and only if
σ=⊥Β,p, and (2) for all test sets t, () (())A B

p p pt tµ ϕ µ= .
Informally, scheme A is an extraction of scheme B

means what scheme A observes can be derived from the
phenomena that B observes. For example, we can extract
the set of executed statements from the set of executed
paths. Let A=<A, µA> and B=<B, µB> be two schemes.

It is proved in [19] that extraction is a partial ordering.
It also preserves the axioms of schemes discussed in the
previous section. Formally, the extraction relation
preserves property P, if A � B and B has property P
implies that A also has property P.

The above theory is applied to the study of existing
testing methods and the development of new methods for
Petri nets [20]. We found that although there are a great
number of testing methods proposed in the literature, the
ways that these methods observe software behaviour have
certain common structures, which determines their main
properties. A number of constructions were defined and
their properties were analysed. Such a construction can be
applied to existing observation schemes to generate new
schemes. Therefore, they constitute a sort of calculus of
observation schemes [21].

3. Observation in integration testing
In this section, we further develop the theory by

studying the axioms of behaviour observation for
integration testing.

3.1. White-box integration testing
At a high level of abstraction, a component-based

software system can be regarded as a number of software
components plugged into an architecture. Such an
architecture can be considered as a program constructor. In
practice, it appears in the form of program code called
glueware, while components may be in a number of forms,
such as a module, a class, or a library, etc.

We are concerned with white-box integration testing
(WIT) methods, which means that the code of glueware is
available and used in testing. Using a WIT method, the
tester observes the internal dynamic behaviour of the
system rather than just the input/output. Moreover, the
tester should be able to identify which part of the
observation is about the components and to separate such
information from the rest.
Definition 3. (White-box integration testing methods)

A white-box integration testing (WIT) method contains
an observation scheme B: p →<Bp, µp>, and for each
component C in the system p under test, there exists a
mapping Cϕ from observable phenomena of the system in
Bp to a universe BC,p of observable phenomena of the
component C in the context of p. The mapping Cϕ is

called the filter for component C.
Notice that, the universe of observable phenomena of a

component determined by a WIT method should also be a
CPO set, which may not have the same structure as that of
the whole system. This is simply because that in
integration testing we usually focus on the interaction
between the components and their environment instead of
the details of the behaviour of the component. In addition,
we require that the partial ordering ,C p≤ on BC,p must
satisfy the following axioms.
Filter's Well-foundedness: if no observations on the whole
system, nothing is known for the component. Formally,

,()C p C pϕ ⊥ =⊥ , where p⊥ and ,C p⊥ are the least
elements of , ,,C p C pB< ≤ > and ,p pB< ≤ > , respectively.
Filter Monotonicity: the more one observed the behaviour
of the whole system, the more one knew about the
component based on the observation. Formally,

()1 2 1 2 1 , 2, . () ()p p C pBσ σ σ σ ϕ σ ϕ σ∀ ∈ ≤ ⇒ ≤
Filter Continuity: the information about a component
contained in the sum of a number of global observations is
equal to the sum of the information about the component
contained in each individual global observation. Formally,

. () ()pB
σ σ

ϕ σ ϕ σ
∈Θ ∈Θ

 
∀Θ ⊆ = 

 
∑ ∑

The following defines some observation schemes for
integration testing methods.
Method I. The first method records the set of statements
executed during integration testing. The invocation of a
component such as the invocation of a function or
procedure defined in a component is considered as a
statement. Initiating the execution of a component as a
process or thread, sending or receiving a message to such a
process or thread are all considered as a statement. As in
statement testing, details of the executed statement and
their sequences of executions are not recorded. The
method itself does not require observing and recording the

execution of the statements inside a component. Therefore,
the components are treated as black boxes.

This scheme has a set construction [21]. Its base set
consists of the statements in the glueware. The filter for a
component filter out the statements related to the
component.
Method II. The second method not only records the same
information for non-component-related statements as
method I, it also records the set of component-related
events with details about its parameters. For example, for a
call of a function/procedure defined in a component, it will
observe and record the name of the function/procedure
invoked, the values of the parameters and the return values
if any. For a message passing event, it will observe and
record the receiver (or sender) component of the message
and the contents in the message. The method itself does
not require the events happened inside a component to be
observed. It also treats components as black-box.

This scheme also has a set construction, but the base set
is slightly more complicated. The element in the base set
can be in one of two forms, a statement label indicating a
non-component-related statement, and a tuple in the form
of <event, parameter>, which indicates a component
related event and the details of the parameter. The filters in
this scheme are similar to those of method I.
Methods III. The third method observes even more
information than method II. It records the execution
sequences of the statements and component-related events.
Notice that, a component is still regarded as a black box.

This scheme has a poset construction [21]. The base set
is the set of paths in the glueware. Each path is a sequence
of elements in the base set of method II. The filters filter
out the component related events from each path.
Method VI. The fourth method records the same sequence
of statements and component-related events as in method
III. However, for each component-related event, it is
annotated with the location in the component where the
event is processed. This information enables testers to
identify whether two events of the same type but with
different parameters are handled differently inside a
component. With additional information about how many
different locations in the component where such an event
is handled, software testers can measure the adequacy of
integration testing.

In this method, components are not treated completely
as black-boxes. However, with appropriate instrumenta-
tion of the components, the testing method can be applied
without the source code of the components. The scheme is
also a poset construction. The filters are similar to those in
method III.

The above methods treat glueware as white-box and
components as black-boxes. We call them ground order
WIT methods. For each ground order method, we can
generalise it to treat the component as white-box and
observe the same aspect of behaviour inside the

component. We call such a generalised method a 1st order
WIT method. For example, the generalisation of method I
observes the statements at architectural level executed
during testing as well as the statements inside the
components. Notice that, a component may also be a
composition of other components. We call a component in
a component a 2nd order component. Similarly, we define
3rd order components, and so on. We will also use high
order components to denote all the components of any
order. A 1st order WIT method will not observe the same
detail of the behaviour of components of 2nd order or
higher. It can be further generalised to K'th order for any
given natural number K>1 by observing the same detail of
the K'th order components, but treating components of
K+1'th order as black-box. The most powerful method is
to treat all high order components equally as white-box.
Such a method is called an infinite order WIT method.
These observation schemes have the following extraction
relationship. Its proof is omitted for the sake of space.
Proposition.
(1) For each method Z∈{I, II, III, VI}, we have that for all
natural numbers k≥1,

(1) () (1)... ...k kZ Z Z Z Z+ ∞� � � � � � ;
(2) For all n = 0, 1, 2, ..., ∞, () () () ()n n n nI II III VI� � � ,
where Z(k) is the k'th order generalisation of Z.

3.2. Incremental integration
In practice, integration testing is often carried out

piece-by-piece as each component is integrated.
Integration strategies such as top-down, bottom-up and
combinations of them are employed. Applications of such
strategies involve writing and using test drivers and
component stubs. This section investigates the
requirements on test drivers and component stubs in the
light of behaviour observation theory.

For the sake of simplicity, subsequently, we assume
program constructors are binary, i.e. they take two
components as parameters. The results can be easily
generalised to constructors of any number of components.
Let ⊗ be a binary program constructor, p = p1⊗p2, where
p1 and p2 are components. A component itself may well be
a composition of some other components and formed by
applying a program constructor, say p1=p1,1⊕p1,2.

By a bottom-up strategy, we first put p1,1 and p1,2
together to form p1=p1,1⊕p1,2 and test p1 with a test driver
to replace the constructor ⊗. After successfully testing p1
and p2 in this way, they are then put together to form p =
p1⊗p2 and tested. A test driver is in fact a program
constructor ⊗' which when applied to p1 forms an
executable program p'. During this testing process, we
would like the test driver to act like the environment of p1
as it would be in the real program p. This means that if we
can observe the behaviour of component p1 in the context

of ⊗, we should be able to observe the same behaviour in
the context of the test driver ⊗'. Suppose that we use a
WIT method with observation scheme B: p → (Bp, µp).
Hence, there is a filter ϕ from p to p1 and a filter ϕ' from p'
to p1.
Representativeness of test drivers: For all test suites t and
all phenomena σ of the component that can be observed by
executing the system p on t, there exists a test suite t' for p'
such that the same phenomenon σ can be observed by
executing p' on test suite t'. Formally, pt T∀ ∈ ,

1' '(). ' . ' (').(() '('))p p p pt t T tσ µ σ µ ϕ σ ϕ σ∀ ∈ ∃ ∈ ∃ ∈ ≤ (1)
where

1p≤ is the partial ordering on
1pB .

Equation (1) can be equivalently expressed as
1 2 1 1'()() ()p p p pB Bϕ ϕ⊗ ⊗ , where ϕ(X)={ϕ(x)|x∈X}, X

1p Y
if and only if

1
. .()px X y Y x y∀ ∈ ∃ ∈ ≤ .

Test drivers may simply pass input data to the compo-
nent under test and then execute the component. Such test
drivers serve as an interface between the tester and the
component. For an observation scheme that only observes
the functional aspect of behaviour, such a test driver
satisfies the representativeness axiom if it can pass all
valid inputs to the component and pass the internal state of
the component as the result of one execution to the next.

Sometimes, test drivers are written to combine other
testing tasks, such as automatic generation of test cases.
Such a test driver usually does not have representa-
tiveness, because it only generates input data in a sub-
domain.
Representativeness on a sub-domain S: For all test suite t
in a sub-domain S of the valid input of a system p, and all
observable phenomena of the component by executing p
on t, there is a test suite t' for the test driver that the same
phenomena can be observed in the context of test driver.
Formally, for all S pt T T∈ ⊆ ,

1' '(). ' . ' (').(() '('))p p p pt t T tσ µ σ µ ϕ σ ϕ σ∀ ∈ ∃ ∈ ∃ ∈ ≤ (2)
A top-down strategy starts with testing the program

constructor ⊗ by replacing components pn with stubs p'n,
n=1, 2. The difference between a real component pn and a
stub p'n, is that we would not be able to observe the
internal behaviour of pn by executing p'n. In fact, the
internal behaviour of pn is not the focus of observation in
integration testing. However, we would like that the
interaction between the component pn and its environment
in p is faithfully represented by the stub p'n.
Faithfulness of component stubs: For all test suite t and all
phenomena σ observable by executing the system p on t,
the same observation can be obtained by executing the
system p' obtained by replacing the component with the
stub. Formally, ∀t∈Tp.(µp(t)=µp'(t)).

An implication of the faithfulness axiom is that a stub
can replace a component, if the observation scheme treats
the component as a black-box and if the observation

scheme only concerns with the functional aspect of a
system. In that case, the stub is required to produce
functionally correct outputs. Therefore, if a k'th order WIT
method is used, a component of k+1'th or higher order can
be replaced by a stub. However, in practice, stubs tend to
only provide partial functions of the component and they
faithfully represent the components' behaviour only on a
sub-domain of the component. This sub-domain is called
the designated sub-domain of the stub.
Faithfulness of stubs on designated sub-domain: For all
phenomena σ observable by executing the system p on a
test suite t, σ can also be observed by executing the system
p' obtained by replacing the component with a stub if the
component is only executed on the stub's designated sub-
domain. Formally, (,)pt T C S∀ ∈ ↵ .(() ()p pt tµ µ ′=), where

(,)pT C S↵ is the subset of Tp on which p only calls the
component C on the designated sub-domain of stub S.

4. Integration of concurrent systems
A key question about integration testing methods is the

relationships between the observations on the components
(Bp1, µp1), (Bp2, µp2) and the observations on the composite
(Bp1⊗p2, µp1⊗p2). A desirable relationship represents the
requirements on integration testing methods. Hence, we
call such a relationship a fitness condition, or a fitness
axiom of integration testing. The axioms discussed in the
previous subsections are fitness conditions. They are
independent of the program constructor. This section
further investigates fitness axioms by studying the
constructions of concurrent systems and proposes axioms
for each constructor.
Non-deterministic choice. Given two components p1 and
p2, the non-deterministic choice p1|p2 of p1 and p2 is a
system that either behaves like p1 or p2 each time the
composite system is called. For this construction, one of
the desirable properties is that if a phenomenon σ is
observable in testing p1, it should also be observable in
testing p1|p2. Let 1ϕ and 1ϕ be the filters for p1 and p2,
respectively. We require that for n=1, 2,

() () ()()1 2|. ' . (')
np p p nt t tσ µ σ µ ϕ σ σ∀ ∈ ⇒ ∃ ∈ = ; (1)

Another desirable property for non-deterministic choice
is that any observation on the whole system consists of
two disjoint parts: one for each component. Formally, for
all

1 2|p pBσ ∈ there are
1 21 2 |, p pBσ σ ∈ such that

1 2 1 2 2 1 2 1 2 1, , () , ()σ σ σ σ σ ϕ σ ϕ σ= + ∩ = ∅ =⊥ =⊥ (2)
Moreover, the execution of p1 | p2 on each test case

selects either p1 or p2 to execute, but not both. Formally,

1 2 1 2 1 2| | 1 2 |. (). , ,p p p p p pt T t t t Tσ µ∀ ∈ ∀ ∈ ∃ ∈

1 21 2 1 2 1 1 2 2, , () (), () ()p pt t t t t t tϕ σ µ ϕ σ µ= ∪ ∩ = ∅ ∈ ∈ (3)
Parallel composition. In a parallel composition of two
components, the components are executed in parallel.

Therefore, a desirable property is that if phenomena σ1 and
σ2 are observable in testing p1 and p2 independently, a
combination of σ1 and σ2 should be observable when
testing their parallel composition. Let 1ϕ and 1ϕ be the
filters for p1 and p2, respectively. We require that for all t,

() ()
1 21 2,p pt tσ µ σ µ∈ ∈ imply that

() ()
1 2|| 1 1 2 2. () ()p p tσ µ ϕ σ σ ϕ σ σ∃ ∈ = ∧ = . (4)

On the other hand, every observable phenomenon of the
parallel composition of p1 and p2 is a combination of the
behaviour of the components. Formally,

1 2||p pt T∀ ∈ ,

() ()()1 2 1 2|| 1 2. () () ()p p p pt t tσ µ ϕ σ µ ϕ σ µ∀ ∈ ∈ ∧ ∈ . (5)
Synchronised parallel composition. In a synchronised
parallel composition, components may engage in synchro-
nisation events. The composition of them may restrict the
behaviour of each component to obey synchronisation
rules. A phenomenon observable by testing the component
alone may not be observable by executing the component
in a given environment. Therefore, property (4) does not
hold for synchronised parallel composition, while (5) is
still true. We define a predicate Syn on the set

1 2p pB B× .
For all

11 ()p tσ µ∈ and
22 ()p tσ µ∈ , 1 2(,)Syn σ σ means

that the behaviours σ1 and σ2 of p1 and p2 respectively are
synchronised. ∀t, ()

11 ,p tσ µ∀ ∈ ()
22 p tσ µ∈ , 1 2(,)Syn σ σ

implies that () ()
1 2|| 1 1 2 2. () ()p p tσ µ ϕ σ σ ϕ σ σ∃ ∈ = ∧ = .

Guarded command. A guard command G→C is a program
that the command C is executed if the predicate G is true.
We would like an observation scheme to be able to tell if
the guard is satisfied or not. If the guard is not satisfied,
the command will not be executed and hence no behaviour
of the command part should be observed. Otherwise, a
dynamic behaviour of command part should be observable
if the guard is satisfied. Let ϕG and ϕC be the filters for the
guard and command, respectively. For all test suites t,

()() ()G G C Gt tϕ µ µ→ = , ()() ()C G C Ct t Gϕ µ µ→ = ↓ , and

()() ()C G C Ct t Gϕ µ µ→ − ↓ = ∅ , where t G↓ is the subset

of the test suite t that satisfies the guard G.
Sequential composition. For sequential composition p1;p2,
the scheme should be able to observe both behaviours of
p1 and p2. The part of p1 should be the same as testing p1
independently. The behaviours observable in testing p2 in
the context of executing p1 first should be the same as
using the output of p1 as the input to p2. Let ϕ1 and ϕ1 be
the filters for p1 and p2, respectively. We require that ∀t,

() ()()
1 1 21 ;p p pt tµ ϕ µ= , and ()() ()()

1 2 22 ; 1p p pt p tϕ µ µ= ,
where p1(t) is the set of output of p1 on the test set t.
Loops. For a loop structure, such as 'while p do q', the
loop control condition will be executed on all test cases in
t. When the condition is true, the loop body will be

executed and the condition will be evaluated again on the
output of the loop body. Such executions will continue
until the condition becomes false. Similarly, the loop body
will be executed not only on those test cases that the
control condition is true, but also on the output of the first
loop that the conditions are also true, and so on. Let ϕC
and ϕB be the filters for the loop condition p and the loop
body q, respectively. We require that for all test suites t,

()() () ()
() ()

1

()

(()) ()

C while p do q p p

n n
p p

t t q t p

q q t p q q t p q

ϕ µ µ µ

µ µ −

= ∪ ↓ ∪

↓ ∪ ∪ ↓ ∪D " D "

i.e. ()() () ()1

1

()n n
C while p do q p p

n

t t q t p qϕ µ µ µ
∞

−

=

= ∪ ↓ D∪ .

Similarly, ()() ()1

0

()n n
B while p do q q

n

t q t p qϕ µ µ
∞

−

=

= ↓ D∪ ,

where 0f is the identity function.

5. Concluding remarks
In this paper, we applied the theory of behaviour

observation to integration testing in component-based
software development. We formalised the notion of WIT
methods and analysed the requirements of test drivers and
component stubs. We also proposed a set of axioms of
observation schemes for integration testing of concurrent
systems. There are a few directions for further work.

First, there is a number of testing methods proposed in
the literature to support integration testing. We will
examine whether these testing methods satisfy the axioms
proposed in the paper.

Second, based on the understanding of the desirable
properties of behaviour observation in integration, we will
further investigate the algebraic structures of observable
phenomenon and their corresponding recording functions
that satisfy the properties. The constructions of observa-
tion schemes that we proposed and investigated in [21]
will also be further studied with regard to the axioms for
integration testing.

Acknowledgements
This work is jointly funded by the NSF of USA under

grant INT-9731620 and the NSF of China under grant
69811120643. X. He was also partially supported by the
Office of Naval Research of the USA under grant N00014-
98-1-0591.

Reference
[1] Hopkins, J., Component primer, C. ACM, Vol. 43, No. 10,

Oct. 2000, pp27~30.
[2] Szyperski, C., Component Software: Beyond Object-Oriented

Programming, Addison Wesley, 1998.
[3] D'Souza, D. and Wills, A. C., Objects, Components and

Frameworks with UML: The Catalysis Approach, Addison
Wesley, Reading, MA, 1999.

[4] Sparling, M., Lessons learned through six years of
component-based development, C.ACM, Vol. 43, No. 10,
Oct. 2000, pp47~53.

[5] Crnkovic, I., Larsson, M., A case study: demands on
component-based development, Proc. ICSE'2000, June 4~11,
2000, Limerick, Ireland, pp22~30.

[6] Morisio, M., Seaman, C. B., Parra, A. T., Basili, V. R., Kraft,
S. E. and Condon, S. E., Investigating and improving a
COTS-based software development, Proc. ICSE'2000, June
4~11, 2000, Limerick, Ireland, pp32~ 41.

[7] Chen, H. Y. Tse, T. H. and Chen, T. Y., TACCLE: a
methodology for object-oriented software testing at the class
and cluster levels, ACM Transactions on Software
Engineering and Methodology, Vol. 10, No. 1, 2001.

[8] Abdurazik, A. and Offutt, J., Using UML collaboration
diagrams for static checking and test generation, Proc.
UML'00, York, UK, Oct. 2000, pp383~395.

[9] Richardson, D. and Wolf, A., Software Testing at the
Architectural Level, Proc. of the 2nd International Software
Architecture Workshop, San Francisco, California, October
1996, ACM Press, pp68~71.

[10] Bertolino, A., Corradini, F., Inverardi, P. and Muccini, H.,
Deriving test plans from architectural descriptions, Proc.
ICSE'2000, June 4~11, 2000, Limerick, Ireland, pp220~229.

[11] Zhu, H., Jin, L., and Diaper, D., Application of Task
Analysis to the Validation of Software Requirements, Proc.
SEKE'99, Kaiserslautern, Germany, June, 1999, pp239~245.

[12] Zhu, H., Jin, L., Diaper, D. and Bai, G., Testing Software
Requirements via Task Analysis, Technical Report CMS-TR-
99-02, CMS, Oxford Brookes University, Jan. 1999. (to
appear in the Journal of Systems and Software)

[13] Harrold, M,J., and Soffa, M.L., Selecting and Using Data for
integration testing, IEEE Software, March 1991, pp58-65.

[14] Frankl, P.G. & Weyuker, J.E., An applicable family of data
flow testing criteria, IEEE TSE, Vol.SE_14, No.10, October
1988, pp1483-1498.

[15] Ural, H. and Yang , B., Modeling software for accurate data
flow representation, Proc. ICSE'93, May 1993, pp277~286.

[16] Pandi, H. D., Ryder, B. G., Landi, W., Interprocedural Def-
Use associations in C programs, Proc. TAV4, Oct. 1991,
pp139~153.

[17] Jin, Z. and Offutt, J., Integration testing based on software
couplings, Proc. COMPASS'95, Gaithersburg, Maryland,
June 1995, pp13~23.

[18] Delamaro, M. E., Maldonado, J. C., and Mathur, A. P.,
Interface Mutation: an approach to integration testing, IEEE
TSE, Vol. 27, No. 3, March 2001, pp228~247.

[19] Zhu, H. and He, X., A theory of behaviour observation in
software testing, Technical Report, CMS-TR-99-05, School
of Computing and Mathematical Sciences, Oxford Brookes
University, Sept. 1999.

[20] Zhu H. and He X., A Theory of Testing High-Level Petri
Nets, Proc. of the IFIP 16th World Computer Congress,
Beijing, China, August, 2000, pp443-450.

[21] Zhu H. and He X., Constructions of Behaviour Observation
Schemes in Software Testing, Proc. HASE'00, New Mexico,
Nov. 2000, pp2~12.

[22] Gunter, C. A., Scott, D. S., Semantic domains, In Handbook
of Theoretical Computer Science, Vol. B., Formal Models
and Semantics, Ed. J. van Leeuwen, The MIT Press/Elsevier,
1990, pp633~674.

	A
	Introduction
	The observation theory
	Observation in integration testing
	White-box integration testing
	Incremental integration

	Integration of concurrent systems
	Concluding remarks
	Acknowledgements
	Reference

