Formalising Design Patterns in Predicate Logic

lan Bayley and Hong Zhu
Department of Computing, Oxford Brookes University,
Oxford OX33 1HX, UK

E-mail: {ibayley,hzhu }@brookes.ac.uk

Abstract patterns in the Java API. However, the analysis is done on
the level of source code rather than design. The latter alter-
Design patterns are traditionally outlined in an informal native is preferable as it could help software developers at
manner. If they could be formalised, we could derive tools an earlier development stage to avoid costly structural errors
that automatically recognise design patterns and refactor during design. Moreover, it would be better still to develop
designs and code. Our approach is to deploy predicate logic tools like PINOT in such a manner that they can be proven
to specify conditions on the class diagrams that describe correct.
design patterns. The structure of class diagrams is itself ~ Also focussing at the code level, Lano et al. [7] consider
described with a novel meta-notation that can be used for DPs to be transformations from flawed solutions consist-
defining any graphical modelling language. As a result, the ing of classes organised in a particular manner to improved
constraints, while based on UML, are highly readable and solutions, and they prove the two equivalent by applying
have much expressive power. This enables us not only tabject calculus to their VDM++ specifications. Lauder and
recognise design patterns in legacy code, but also to reasonKent [8] propose a three layer modelling approach consist-
about them at the design stage, such as showing one pattering of role models (the essence of the pattern), which refine
to be a special case of another. The paper discusses outto type models, which then refine to concrete class models.
specification of the original 23 design patterns and presents Another approach is to define a whole new language just
a representative sample of some of them. for DPs like the Design Pattern Modelling Language of
Mapelsden [10] and others. Similarly, Eden devised from
scratch a new graphical language LePUS for the purpose
1 Introduction of modelling DPs [3, 4]. Its bqsic constructs corre;ponq to
the concepts used when Design Patterns are defined infor-
o)) . mally but they are formalised in predicate logic. He can
The original purpose of Design Patterns (DPs) given in o assert instantiations of and special cases of the Design
[5]is to “capture design experience in a form that people paiterns he has represented. Taibi [14, 15] formalises class
can use effectively”. Accordingly, DPs are defined by ex- giagrams as relations between program elements, specifies
plaining general principles in informal English and clarified post-conditions with predicate logic and describes the de-
with formal semi-general class diagrams and specific codegjreq phehaviour with temporal logic. Mikkonen [11] also
examples. This combination is informative enough for soft- ¢omalises temporal behaviours in a temporal logic of ac-
ware developers to guess by induction how to apply DPS t04ions that can be used by theorem provers.
solve their own problems. However, an opportunity is being apother approach, taken by Le Guennec et al [6] is
missed. If the general principles were formalised, Fhen Soft- 15 extend the UML meta-model to incorporate collabora-
ware tools could refactordesgns in accordance Wl'th chosenion occurrences and use the Object Constraint Language
DPs and demarcate the DPs in legacy code and inform fu-i constrain the collaborations. Mak et al [9], on the other

ture modification. Both of these could then be automated. ,5nd define the notion of collaborations by extending UML
to action semantics. Finally, Zdun et al [16] make use-
1.1 Related work ful progress by identifying architectural primitives that oc-
cur in the design patterns, though this is strictly for the
The Pattern Inference and Recovery Tool (PINOT) de- component-and-connector view of the system.
scribed in [12] has been used successfully to identify design While each of these approaches are demonstrated with

e | deficiencies in the original descriptions, as happens when
software systems are formalised.

1.3 Advantage of the approach

We believe that our approach produces constraints that
are much clearer than would be obtained by using OCL on
the meta-model of UML class diagrams. Our modelling lan-
Figure 1. Facade DP Class Diagram guage can also be adapted to diagrams other than class di-
agrams, to provide auxiliary constraints that would help in

_)) defining the pattern more exactly. We will see in Section 4
examples, it remains an open question whether they can bgnat these constraints are amenable to analysis.
used to specify all design patterns.

1.4 Use in Software Engineering
1.2 Proposed approach
The characterisation of DPs presented here can be used

In this paper, we propose a method for the formal speci- at the design stage to assist practitioners who need help in
fication of DPs using predicate logic and report our attempt applying them correctly. For example, if for a particular DP,
to formalise all the DPs described in [5]. only four out of five necessary conditions have been ful-

The generic class diagrams for each DP in that bookfilled, a tool can instruct the user as to what must be done to
identify each class according to its role, which is expounded satisfy the fifth. Also, DPs can be recognised in legacy code
in the accompanying text. However, it is often difficult to and highlighted to help ensure they are kept after modifica-
discern which features of such class diagrams are charactertion.
istic, as we see for the Facade DP below.

It is not the generalisations and dependencies betweernl.5 Overview
classes in the subsystem that are important; they are only
marked to signify that the classesuld be related. The In the remainder of this paper, we shall show with exam-
number of classes is also arbitrary, though there shouldples how the 23 original DPs in [5] can, to different degrees
clearly be more than one. The most important feature of of success, be characterised by first-order logical predicates.
the diagram is not even the dependencies from the Facade technical report by us formalises all 23 [1]. We will also
class to some (but not all) subsystem classes but rather thelemonstrate how the predicate logic helps with reasoning
lack of dependencies from classes outside the subsystem t@bout DPs. Eden’s work is the closest to our own approach.
classes inside; recall that this ensures subsystem details ar@/e shall compare Eden’s formalisations with ours through-
hidden behind a single interface. So these generic diagramsut this text; they can be found on his website [2] and all
are not suitable for highlighting non-dependencies, nor for future references to Eden relate to this source.
patterns in which the number of classes is arbitrary.

Predicate logic, in contrast, is ideal for writing the con- 1.6 Organisation of the paper
straint we wish to express: for some subsystem of classes

ys, if a classC’ depends on a clags in ys then eitherC’ In Section 2, we describe our meta-notation for the spec-
is the facade clasB'acade or C' is in ys. Suppose that in ification of DPs. In Section 3, we show with a few examples
a class diagramlasses denotes the set of classésfers how DPs can be specified with our framework. In Section

denotes the set of interfaces, afgps, a binary relation on 4, we present examples of how the power of predicate logic
classes U inters, denotes the set of dependency arrows. can be applied to reasoning about DPs. Finally, in Section
Then our condition can be written as follows: 5, we discuss the power of our work, distinguish it from

Eden’s and conclude.
Jys C classes ANVC € ys -VC' € classes-

(O C) € deps = C' € ys\ C' = Facade 2 Specifying Constraints on Class Diagrams
whereC’ — C represents an ordered pé&it’, C'). The fur- We consider the formal specification of DPs as a problem
ther conditionys # {} would seem appropriate because of meta-modelling as each DP can be characterized as a set
a universal quantification is always true over the empty of design models that have certain structure and behaviour
set. This illustrates how unspoken constraints become cleafeatures. The framework below was introduced in [17] but
when one starts to formalise patterns. The same is true ofrevised in this paper as a notation for meta-modelling.

by removing the attributes not required to describe patterns,

Table 1. Meanings of the GEBNF Notation and by flattening the hierarchy in [13] to eliminate some

Notation |Meaning Example and explanation meta_classes for S|m pIICIty
Xi|Xa|... |Choice of X, X3, ..., X, ActorNode | UseCaseNode means that the entity is - . . .
U v cither an actor node or a use case node. A class diagram consists of classes and interfaces, linked
Ly: X, |Order sequence consists of k |ClassName: Text Attributes: Attribute* Methods: Wlth relatlons, Wh |Ch |nC|ude aSSOC'athnS and general 1ISa-
Ly:X, ... |[fields of type X, Xo, ..., X; Method* means that the entity consists of three parts - s H
Lt |iat can be access by the feld [called Classname, Atrbues and Methods tions between classifiers and calls between operations.
names Ly, Ly, ..., L;. respectively.
X* Repetition of X (include null) |Diagram* means that the entity consists of a number . e
N of diagrams, where N > 0. Clas SD'Lag'r'am e
X+ Repetition of X (exclude null) |Diagram+ means that the entity' consists of a ClaSS@S : CZCLSSJF
number N of diagrams, where N > 1. ?
[X] X is optional [Actor]: element of actor is optional. int@rs : Inteq"face* R
X Reference to an exiting ClassNode is a reference to an existing class node. . .
element of type X in the assocs : (Classifier,Classifier)*,
model
‘abc’ |Terminal element, the literal |*extends’: the literal value of the string ‘extends’. geners : (ClaSSZf’LeT, Classlfle'r) 5

value of a string

calls : (Operation, Operation)*

2.1 The GEBNF Notation Here, a classifier is either a class or an interface.
Just as Extended Backus Normal Form (EBNF) is used Classifier »:=
to define the syntax of programming languages, so Graph- Class | Inter face

ical Extended Backus Normal Form (GEBNF) is used to

define the syntax of graphical modelling languages. TheA class has a name, attributes, operations and a flag to
well-formedness constraints thus described can then be augrecord whether it is abstract (missing from [13]).

mented with consistency and completeness constraints, all

stated in the form of predicate logic. The constraints are Class ==
specified with extractor functions that are both declared and name : String,
defined by the GEBNF definitions. attrs : Property”,

An abstract syntax definition of a modelling language in
GEBNF is a tuple(R, N, T, S), whereN is a finite set of
non-terminal symbols[is a finite set of terminal symbols, isAbstract : Boolean
each of which represents a set of values. Furthernfre,
N is the root symbol and is a finite set of production rules
of the formY ::= Exp, whereY € N andEzp can be in
one of the following forms.

opers : Operation™,

Here of courseString is a terminal that denote the type
of strings of characters anBoolean denotes the type of
boolean values. An interface has no need for the flag.

Li:X1Ly:X9---L,: X, Inter face ::=
X1|Xo| - | Xn name : String,
attrs : Property™,

whereL, L, , - --, L,, are field namesX;, X5, ---, X,, are opers : Operation*

the fields, which can be in one of the following forms;

Vi, Y+,[Y], Y, whereY € NUT (i.e.Yisanon-terminal Qperations have a name, parameters and three flags.
or a terminal symbol). The meaning of the meta-notation is

give in the following table. Operation ::=

For clarity we add line breaks to separate fields. Note
that where an element is underlined, it is a reference to an
existing element on the diagram as opposed to the introduc-

name : String,

isQuery : Boolean,

tion of a new element. params : Parameter™,
isStatic : Boolean,
2.2 GEBNTF Definition of Class Diagrams isLeaf : Boolean

There is a semi-formal definition of UML class diagrams Parameters have a name, type, optional multiplicity in-
in [13]. The definition is a semantic network of has-a and formation and direction. Since return values play much the
is-a relationships using the UML notation itself as the meta- same role as out parameters, it is convenient to treat them
notation. The GEBNF definition below has been obtained as parameters with a different direction.

e red(op, C) is the redefinition obp in classC and is

defined only if—isLeaf(op) and for someC’, C' €

Parameter ::= subs(C") andop € opers(C"). More formally, let
direction : Parameter DirectionKind, op € opers(D),

name : String,
type : Type,
[multiplicity : Multiplicity Element]

op’ = red(op,C) =
op€ DANop' € CAC € subs(D) A
name(op) = name(op’) A ~isLeaf(op)

Parameter DirectionKind ::= e returns(op, C) states thabp has a return value and it
“in” | “inout” | “out” | “return” is of typeC'. More formally,

returns(op, C') = dp € params(op)-
Multiplicity Element ::= (op,) p' P) (op) "
type(p) = C A direction(p) = “return
upperValue : Natural | “ 7,

lowerV alue : Natural Note of course that an out parameter can be used in-
stead. For the sake of simplicity, we need not discuss
Here, Natural denotes the type of natural numbers. this further.
Properties have a name, type, multiplicity information and
a static flag. e access(xs,ys) indicates that all access to the classes
in ys is through the classes irs. Formally,
Property ::=
name : String, Vo € classes-Vy € ys-x — y € deps = = € xsUys
type : Type, Many of the class diagrams in [5] have a distinguished
isStatic : Boolean, class calledClient, with a dependency to some of
[multiplicity : Multiplicity Element] the remaining classes,s. This would be expressed
as access(xs,ys) where ys denotes the remaining
In practice, an attribute with a class type is often drawn classes.

on a diagram as an association instead. In the paper, for the
sake of simplicity, we assume that associations are alway
used in this case. In the sequel, when there is no risk of
confusion, we will also use the name field of a classifier as
its identifier.

Specification of Design Patterns

In this section, we give some examples to show how the
framework above can be used to specify DPs. A complete
list of the specifications of all 23 original DPs can be found
in[1].

Our approach is to identify the classes, operations and
associations involved from the diagram in [5] and then state
rlhe conditions that must apply to them, both in English and
in predicate logic. These declarations are effectively exis-
tential quantifications with a scope equal to the conditions
themselves.

This format mirrors the declarations-plus-predicates for-
mat of Z schemas, except for the interleaving of logic and
English. However, the exact syntax of Z has been re-
jected because the interleaving is necessary for readabil-
ity. Default field values, such aswultiplicity = 1 and
isStatic = false, are left unstated.

2.3 Predicates on models

The definitions of a diagram'’s abstract syntax in GEBNF
enable us to specify constraints as first-order predicates o
diagrams since every field : X of a termT introduces
a functionf : T — X. Function application is written
f(z) for function f and argument. For example, given
the above definition of’lass in GEBNF, we have a func-
tion opers that maps each class to the set of its operations.
Therefore, for a clasg, the expressiompers(c) is the set
of operations irt.

In the sequel, the arguments of functions on
ClassDiagram will be omitted as there is no possi-
bility of confusion. Thus, for example, we will write
classes to abbreviatelasses(cd) for a class diagramd.

The following derived predicates will be useful: 3.1 Template Method Pattern

e subs(C) is the set ofC’s subclasses:C’ such that The Template Method Pattern is a good starting example
C' — C € geners. as it has only one condition.

AbstractClass

Tl

F;rimsti\mOpe rationi ()

TermplateMathod() ©--
PrimitiveOperation)
PrimitiveOperationz()

:

ConcreteClass

'F';rlrnsti\.'eOpe ration2()

PrimitiveOQperation1()
PrimitiveOCperation2()

Figure 2. The Template Method DP

Target Adaptee

Request(}

A_‘

Adapter

SpecificRlequest()

\

{implementation)

Request() O-|

SpecificRequest()

Figure 3. The Object Adapter DP

The template method is an algorithm with some steps,
each of which is an operation call. The intent of this DP is
to make the implementations of the steps easy to change.

Classes: AbstractClass € classes
Operations: templateMethod € opers(AbstractClass)

Conditions:
1 templateMethod calls an abstract operation of
AbstractClass.
Jo € opers(AbstractClass)-
(templateMethod — o) € calls A
isAbstract(o)

In [5], there are many issues left open in the description

| operatonimgg | [operatonime |

Figure 4. The Bridge DP

Associations: Adapter — Adaptee € assocs

Operations: requests C opers(Target),
speci ficRequests C opers(Adaptee)

Conditions:

1 the Client class depends only on therget:
access({Target},{ Adapter, Adaptee})

2 Target is an interface:
Target € inters

3 Adapter implementslarget:
Adapter € subs(Target)

4 for at least one operation imequests, its re-
definition in Adapter calls an operation in
speci ficRequests.

Jo € requests, 3o’ € speci ficRequests-
(red(o, Adapter) — o') € calls

Presumably, theldapter class can have further
operations not in th&arget class.

The conditions given here are for the Object Adapter
variant. The Class Adapter variant linkédapter and
Adaptee by inheritance instead of composition so we need
the conditionAdapter € subs(Adaptee).

3.3 Bridge Pattern

of the DPs. For example, it is suggested that the abstract op-

erations above may instead be hook operations ie they are

given default behaviour, often to do nothing, in Abstract-

Class and may or may not be overridden. So the require-

ments ofis Abstract(o) in the above specification could be
relaxed. It is the process of formalisation itself that forced

Here is another example of structural DP. The intent of
this DP is to decouple an abstraction from its implementa-
tion so that the two can vary independently.

Classes: Abstraction, Implementor € classes

us to confront such issues. Once we have made it, eitheragsociations: Abstraction — Implementor € assocs

decision can be faithfully represented.
3.2 Adapter Pattern

The Template Method DP is a behavioural pattern, but it
is just as easy to specify structural patterns.

Classes: Target, Adapter, Adaptee € classes

Conditions:

1 Implementor is an interface:
Implementor € inters

2 client dependencies are atbstraction alone:
access({ Abstraction}, { Implementor}
subs(Abstraction) U subs(Implementor))

U

P poe 3 every subclass of'tate has an operation that calls an
— FeEerT operation ofContext with a subclass obtate
g as an in parameter.

[smerne™ L

state-=Handle()
C S C
st i VS € subs(State) - Jo € opers(S)-
Handle() Handle(}

Jo’ € opers(Context) - 0+ o' € calls A

Figure 5. The State DP dp € params(o) - type(p) € subs(State) A

direction(p) = “in”

3 every operation in the subclasses Abstraction This condition is not required by the Strategy pattern.
calls an operation idbstraction:

_ 4 Reasoning about DPs
VA € subs(Abstraction) - Vo € opers(A)-
Jo € opers(Abstraction) - 0+ o' € calls In this section, we use examples to demonstrate how

predicate logic can be used to reason about DPs.
4 every operation inAbstraction calls an operation

in I'mplementor: 4.1 Inference of the properties of DPs

Vo € opers(Abstraction)- Given a formal specification of a DP in predicate logic,
Jo’ € opers(Implementor) - o +— o' € calls we can infer the properties of the DP in first order logic.
For example, with a little thought, we can infer from

The final condition may be too restrictive since some oper- the conditions for Template Method and some further

ations inAbstraction may modify its internal state. consistency constraints on class diagrams that the abstract
operations called byemplate Method are redefined in the
3.4 State Pattern concrete subclasses. Formally,

Now for a second behavioural DP, slightly more complex Vop € opers(AbstractClass)-
than Template Method, and more interesting because of its
close similarity to Strategy. The intent of this DP is to allow
an object’s behaviour to vary according to state.

(templateMethod — op) € calls N isAbstract(op) =
dConcreteClass € subs(AbstractClass) -
Jop’ € opers(ConcreteClass) -

Classes: Context, State € classes (op” = red(op, ConcreteClass))
Operations: request € opers(Context), The consistency constraint used to produce this state-
handle € opers(State) ment is that every abstract operation must be redefined in
o a subclass:
Associations: Context — State € assocs
Conditions: VC € classes - Yop € opers(C)-
1 handle is abstract: (isAbstract(op) = 3C" € subs(C) -
isAbstract(handle) Jop’ € opers(C") - (op’ = red(op,C"))
2 therequest operation ofContext calls thehandle
operation ofState: 4.2 Match between designs and DPs

request — handle € calls
Because we are using predicate logic, it is now easy to

Note there may be several operations with the role of see if a design model, such as that for Abstract Factory, sat-
handle. This DP can only be distinguished from the Strat- isfies the formal specification of a DP.
egy pattern by looking at the information flow from the The conditions for this pattern are quite complex, as one
wrapped object to the wrapping object. So we need thewould expect, since the diagram indicates a precise bijec-
following extra condition to define how th&tate object tion relationship between classes that must be generalised
changes its own subclass. to family sizes and variety numbers other than two.

CreateScroliBar()
CreateWindow()

1
=

¥
CreateProcctAl)
CresteProductB])

20

Figure 7. The Abstract Factory DP

The following specification is inspired by Eden’s formal
specification [3, 4].

Classes: AbstractFactory € classes,
AbstractProducts C classes

Operations: creators C opers(Abstract Factory)

Conditions:

1 AbstractFactory is an interface:
AbstractFactory € inters

2 every factory method is abstract:
Yo € creators - isAbstract(o)

3 every class iMbstract Products is abstract:
VC' € AbstractProducts - isAbstract(C)

4 For each abstract product, there is a unique fac-
tory methodcreator of AbstractFactory that
returns the product:

VAP € AbstractProducts-

Alereator € creators - returns(creator, AP)

5 The different creation operations and the concrete

Above, the functionso is defined as follows.

xs — ys € iso(R) =

Veexs-Jyecys-c—yeRA
Vyecys-dx caxs-z—yeR

The match of the design given in Fig. 6 to the Abstract
Factory pattern can be easily seen as we can bind the set
Abstract Products to { Button, Scroll Bar}.

The two sets that are linked by the correspondence are

{{PMWindow, Moti fWindow},

{PMSecrollBar, MotifScrollBar}}

and

{{CreateWindowpns, CreateWindowrotis},
{CreateScrollBarpys, CreateScrollBarpotif }}-

4.3 Alternative specifications

The original descriptions of DPs in [5] are informal. This
gives rise to ambiguity. Thus, different formal specifica-
tions are possible due to different understanding of the in-
formal descriptions. Formalisation not only forces us to be
rigorous in the specification of the DPs, but also offers a
way to understand the differences between alternative spec-
ifications.

For example, condition 5 of the Abstract Factory pattern
requires a one-one correspondence between abstract prod-
ucts and concrete products. This is actually too restrictive
because in the context of component-based software devel-
opment, the abstract products represent the requirement and
the concrete products represent the corresponding imple-
mentations, so there could easily be more products than are
actually needed. In English, we'd write: each family of
products has a concrete factory that creates a corresponding
concrete product for each abstract product.

Classes: ConProdFams C P(classes)
Conditions: 5’

VCPF € ConProdFams,dcf € ConProdFact,
Vap € AbstractProducts,dcp € CPF -
returns(redef(create(ap), cf), op) A
ap — cp € geners A —isAbstract(cp)

Here, create (ap) denotes the creation method for ab-

respondence.

{o € opers(AbstractFactory)-
{s € subs(AbstractFactory) - red(o,s)}} —
{p € AbstractProducts - subs(p)} €

iso(iso(returns))

the set of abstract productBpn ProdFams is a set of sets
where products from the same family are grouped together
andConProdFact is the set of concrete factories.

A similar condition to this one is as follows: for every
abstract product there is a unique set of creators such that
for every concrete product of the abstract product there is a
unique operation imreators that creates it.

Clent| 1 Component is an interface:
Operation) Component € inters
AddfComponant)
Remove{Component)
GetChifdfint)
A 2 Composite and Leaf inherits fromComponent:
— pe—Y shren {Composite, Leaf} C subs(Component)
Operation() Operation{) ©------ =
Aﬂn[Com;:onem)
Sttty 3 theClient class depends aflomponent alone:

access(Component, subs(Component))

Figure 8. The Composite DP 4 the association is frof@omposite to Component

with multiplicity *:

Conditions: 5” type(parent) = Composite/
type(children) = Component/A
VAP € AbstractProducts,3les C creators: multiplicity(children) = “x”
VCP € subs(AP) - 3lc € cs - creates(c, CP) 5 operation is overridden in theComposite class
and called by it.
This also allows families to have extra products not cor- —isLeaf(operation)A
responding to the abstract products, again in contrast to con- red(operation, Composite) —
dition 5. Finally, a further condition is as follows. operation € calls
Condition: 6 The relationships between elements of ab- 6 there is no association frotiea f to Composite:
stract products are preserved by the correspond- —dleaf — component - type(leaf) = Leaf
ing elements of a concrete product. Formally, let Atype(component) = Component
X' represent the corresponding concrete product
of a classX of abstract product for the family of Before we turn to Interpreter, here are a few points to
interest, and? € {geners, assoc, calls}. note about Composite. We must represent classes with vari-

ables to specify the multiplicities of “*”. We cannot express
using predicates the requirement that the operation must be
called several times, once on each component. Also there
may be several operations defined in this way, as in Eden’s
For example, if dVindow aggregatescroll Bar then constraints. Finally, note too that Eden misses out both

VX,Y € AbsProd-X —Y c R= X' —Y' € R,

whereR is eithergeners, or assocs, or calls.

Moti fWindow aggregated/otif Scroll Bar. the first and last conditions, and allows there to be several
classes likeLeaf but only one likeComposite. There is
4.4 Relationships between DPs no reason why we cannot do this as well, but the extra gen-

erality would not handled quite so elegantly.

A logical relationship between the predicates of two DPs ~ The conditions above are exactly the same for the In-
can be promoted to a relationship between the DPs them-erpreter DP except that the classes are callestraction
selves. So, for DPgl and B, the syntaxA = B denotes Expressior(=Component), Terminal Expressio(=Lea f),
that A is a special case of DB. Two DPs are in con- Nonterminal Expressio(FComposite) andClient should
flict with each other if their intersection is not satisfiable, aggregate&ontext. Furthermore, the operation must take
whereas they are composable if their intersection is satis-an instance o€ontext as its only argument.
fiable. In this way, relationships between DPs can be for- If # is the cardinality operator anghterpret is the op-

mally proved in first order logic. eration ofInterpreter then we can write this as follows:
For example, it is quite easy to see that the Interpreter

Pattern is an instance of the Composite Pattern. The de- #interpret.parameters = 1A

scription for Composite is as follows. Ip € interpret.parameters -

Classes: Component, Composite, Leaf € classes type(p) = Context

Operations: operation € opers(Component) Since the six conjoined conditions fénterpreter im-

ply, modulo renaming, the eight conjoined conditions for
Composite, it clearly follows thatinterpreter is a special
Conditions: case ofComposite.

Associations: parent — children € assocs

5 Conclusion construct can call operations on the subclasseBaflder
and each operation must build a different subclass. Other
In this paper we have demonstrated the expressivenes§perations whose purpose we cannot express well include
of first order logic for the formal description of design pat- the operations of th@riginator class in Memento, and
terns. We now discuss the advantages of the approach, theH1e clone operation ifrototype.
some open problems and finally, we compare it to existing ~Sometimes the subtleties not captured by the class di-

work. agram concern the state of the object, as with the State
pattern, the Flyweight pattern, where extrinsic and intrin-
5.1 Advantages sic state is distinguished, and the Decorator pattern where
both extra state and behaviour may be added.
The approach has the following main features. We saw with Composite that our descriptions must be

changed slightly for collections. In addition, the seman-

e The formal descriptions are readable and they help thetics of collection operations are not specified precisely,

novice to understand the design patterns. The formal-thereby affecting not only Composite but also Flyweight
isation of DPs also helps to clarify the concepts and and Builder too. There are also getters and setters for the
issues that were ambiguous or left open in the infor- Observer pattern but here the more general notions of query
mal description. and non-query operations are used instead, which is fortu-

. . . nate as these notions are recognised by UML.
* Itis easy to recognise if a system design presented as The role of the clas€'lient is often unclear in the orig-

aclass dlagram. Is an instance of a design p‘?‘“er.”- OnG‘inal informal description in [5]. Interpreter pattern has an
qnly needs to.S|mpIy prove that th? constraints in the association fronClient so its conditions must explicitly
first order logic are true, as we did for the Abstract mention the class, unlike all other DPs. In the Command
Factory DP. DP, the distinction betweefilient and Invoker classes is

e The formal descriptions facilitate the formal reason- Unclear, Prototype is also unusual in ti@ient is given
ing about design patterns using first order logic, which s_pecmc operations. In all ot.her cases, we can avoid men-
is well understood. For example, the Interpreter DP tion of theClient class by using the predicatecess.
is a sub-case of the Composite DP. This is inferred
from the formal descriptions using first order logic, as 5.3 Comparison with Eden’s Approach
the constraints of Interpreter imply the constraints of

Composite. Similarly, we can formally define otherre- Other related works have been discussed in section 1.2.
lationships between design patterns. For example, twowe focus on Eden’s work in particular as it is the one closest

design patterns are in conflict with each other if their g qur own.

intersection is not satisfiable. And, in contrast, tWo gden has invented a graphical language called LePUS
design patterns are composable if their intersection is o representing both class diagrams and the constraints on

satisfiable. them required by Design Patterns. The language has a for-
mal foundation in predicate logic. Eden captures all but five
5.2 Open problems of the DPs, missing out Protoype, Singleton, Interpreter,

Mediator and Memento, whereas we encounter our great-

There are however still some open problems that need toest problems discussed above with Iterator, Memento and
be solved. Not all DPs can be captured very well by the Singleton instead. The major differences between his for-
method, partly because class diagrams do not contain alimalisations reported in [2] and ours are as follows.
the information that characterises the DP. Where such infor-
mation is expressed in the form of notes containing sample e LePUS is a whole new language with a notation spe-
code, we can do nothing more than state which operations cific to DPs whereas our approach is more general
should be implemented by calls to which other operations. and we can specify constraints in languages other than
For example, for the Iterator pattern, such operations are UML. Our approach is also more flexible and easy to
too implementation-specific so only the type signatures of specify alternative descriptions of a design pattern as
the operations give a clue as to their purpose. shown in the Abstract Factory pattern.

Often sequence diagrams need to be used for clarifica-
tion as with Builder pattern, where it is suggested that op- e Some of Eden’s constraints concern sets of operations
erations are needed to create both fhécctor and the in the same class. Examples include the request han-
Builder classes and to return the result at the end. Fur- dlers of Adapter, Bridge, Proxy, State and Decorator in
thermore, it appears to be important that only the operation which the requests are delegated to other operations.

e Eden specifies more bijections between classes and [4] A. H. Eden. A theory of object-oriented designformation
methods than we do and this applies to many DPs such Systems Frontierg(4):379-391, 2002.
as Iterator and Visitor. [5] E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign
Patterns - Elements of Reusable Object-Oriented Software
e Eden distinguishes between invocation and forward- Addison-Wesley, 1995.
ing, a special case of invocation where the caller and [6] A. L. Guennec, G. Surg; and J.-M. 822quel. Precise mod-
callee have exactly the same arguments. We can in- __ ©ling of design patterns. ldML, pages 482-496, 2000.

C i g - - . [7] K. Lano, J. C. Bicarregui, and S. Goldsack. Formalising
troduce this distinction ourselves since we can identify design patterns. IBCS-FACS Northern Formal Methods
our own stereotypes.

Workshop, llkley, UKSeptember 1996.

[8] A.Lauder and S. Kent. Precise visual specification of design
patterns. InLecture Notes in Computer Science Vol. 1445
pages 114-134. ECOOP’98, Springer, 1998.

[9] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun. Precise

e The constraints for the Facade DP are rather different,
as Eden distinguishes creator and manipulator classes.

5.4 Further Work modeling of design patterns in uml. B6th International
Conference on Software Engineering (ICSE,(@Hges 252—
We now consider possible changes to our framework that 261, 2004. _ _
will allow some DPs to be captured more precisely. [10] D. Mapelsden, J. Hosking, and J. Grundy. Design pat-

tern modelling and instantiation using dpml. GRPIT
'02: Proceedings of the Fortieth International Conference
on Tools Pacificpages 3—11. Australian Computer Society,

Design By Contract (DBC) can be used to define the
pre/post-conditions of the operations for addition to and re-

moval from collections in the Composite and Observer DPs. Inc., 2002.

It can also be used to specify the post-conditions of getter [11] T. Mikkonen. Formalizing design patterns. Rroc. of
and setter operations. More precisely, an intra-diagram con- ICSE'98, Kyoto, Japanpages 115-124. IEEE CS, April
straint on class diagrams will require that all operations with 1998.

get or set prefixes have the post-conditions that one would[12] N. Nija Shiand R. Olsson. Reverse engineering of design
expect. In OCL 2.0, it is possible to specify which opera- patterns from java source code. Rmoc. of ASE'06, Tokyo,
tions call which others. This information is also given by Japan pages 123-134, September 2006.

[13] OMG. Unified modeling language: Superstructure, version
2.0, formal/05-07-04.
[14] T. Taibi. Formalising design patterns compositiSoftware,

the calls relationship but OCL 2.0 allows us to be more pre-
cise. We can for example, specify that an operation must be

called once on each member of a collection, as required for IEE Proceedings153(3):126-153, June 2006.

Composite and Vi_SitOT- _ _ _ [15] T. Taibi, D. Check, and L. Ngo. Formal specification of de-
As an alternative, this dynamic behaviour can also be sign patterns-a balanced approadburnal of Object Tech-

specified using communication diagrams. More impor- nology, 2(4), July-August 2003.

tantly, so too can the conditional behaviour found in the [16] U. Zdun and P. Avgeriou. Modelling architectural patterns
code samples for Flyweight and Singleton, and it seems this ~ using architectural primitives. 120th annual ACM SIG-

cannot be done in any other way. We shall investigate spec- PLAN conference on Object-Oriented Programming, Sys-
ifying the intent of a DP too tems, Languages and Applications (OOPLSA), San Diego,

At the same time as we make these improvements, we California, pages 133-146, 2005.
P ’ [17] H.Zhuand L. Shan. Well-formedness, consistency and com-

shall investigate using the framework to specify model pleteness of graphic models. Broc. of UKSIM'06, Oxford,
transformations such as refactoring and we shall develop UK, pages 47-53, April 2006.

tools to support both this and verification of DPs. We shall

also specify the semantics of UML diagrams more formally.

Finally, we shall consider other DPs such as those for con-

currency and distributed computing.

References

[1] I. Bayley and H. Zhu. Formal specification of design pat-
terns as structural properties. Technical Report DOC-TR-
07-01, Department of Computing, Oxford Brookes Univer-
sity, Oxford, UK, 2006.

[2] A. Eden. Website at www.eden-study.org/lepus.

[3] A. H. Eden. Formal specification of object-oriented design.
In International Conference on Multidisciplinary Design in
Engineering, Montreal, Canad&ovember 2001.

