
Formalising Design Patterns in Predicate Logic

Ian Bayley and Hong Zhu
Department of Computing, Oxford Brookes University,

Oxford OX33 1HX, UK

E-mail:{ibayley,hzhu }@brookes.ac.uk

Abstract

Design patterns are traditionally outlined in an informal
manner. If they could be formalised, we could derive tools
that automatically recognise design patterns and refactor
designs and code. Our approach is to deploy predicate logic
to specify conditions on the class diagrams that describe
design patterns. The structure of class diagrams is itself
described with a novel meta-notation that can be used for
defining any graphical modelling language. As a result, the
constraints, while based on UML, are highly readable and
have much expressive power. This enables us not only to
recognise design patterns in legacy code, but also to reason
about them at the design stage, such as showing one pattern
to be a special case of another. The paper discusses our
specification of the original 23 design patterns and presents
a representative sample of some of them.

1 Introduction

The original purpose of Design Patterns (DPs) given in
[5] is to “capture design experience in a form that people
can use effectively”. Accordingly, DPs are defined by ex-
plaining general principles in informal English and clarified
with formal semi-general class diagrams and specific code
examples. This combination is informative enough for soft-
ware developers to guess by induction how to apply DPs to
solve their own problems. However, an opportunity is being
missed. If the general principles were formalised, then soft-
ware tools could refactor designs in accordance with chosen
DPs and demarcate the DPs in legacy code and inform fu-
ture modification. Both of these could then be automated.

1.1 Related work

The Pattern Inference and Recovery Tool (PINOT) de-
scribed in [12] has been used successfully to identify design

patterns in the Java API. However, the analysis is done on
the level of source code rather than design. The latter alter-
native is preferable as it could help software developers at
an earlier development stage to avoid costly structural errors
during design. Moreover, it would be better still to develop
tools like PINOT in such a manner that they can be proven
correct.

Also focussing at the code level, Lano et al. [7] consider
DPs to be transformations from flawed solutions consist-
ing of classes organised in a particular manner to improved
solutions, and they prove the two equivalent by applying
object calculus to their VDM++ specifications. Lauder and
Kent [8] propose a three layer modelling approach consist-
ing of role models (the essence of the pattern), which refine
to type models, which then refine to concrete class models.

Another approach is to define a whole new language just
for DPs like the Design Pattern Modelling Language of
Mapelsden [10] and others. Similarly, Eden devised from
scratch a new graphical language LePUS for the purpose
of modelling DPs [3, 4]. Its basic constructs correspond to
the concepts used when Design Patterns are defined infor-
mally but they are formalised in predicate logic. He can
then assert instantiations of and special cases of the Design
Patterns he has represented. Taibi [14, 15] formalises class
diagrams as relations between program elements, specifies
post-conditions with predicate logic and describes the de-
sired behaviour with temporal logic. Mikkonen [11] also
formalises temporal behaviours in a temporal logic of ac-
tions that can be used by theorem provers.

Another approach, taken by Le Guennec et al [6] is
to extend the UML meta-model to incorporate collabora-
tion occurrences and use the Object Constraint Language
to constrain the collaborations. Mak et al [9], on the other
hand define the notion of collaborations by extending UML
to action semantics. Finally, Zdun et al [16] make use-
ful progress by identifying architectural primitives that oc-
cur in the design patterns, though this is strictly for the
component-and-connector view of the system.

While each of these approaches are demonstrated with

Figure 1. Facade DP Class Diagram

examples, it remains an open question whether they can be
used to specify all design patterns.

1.2 Proposed approach

In this paper, we propose a method for the formal speci-
fication of DPs using predicate logic and report our attempt
to formalise all the DPs described in [5].

The generic class diagrams for each DP in that book
identify each class according to its role, which is expounded
in the accompanying text. However, it is often difficult to
discern which features of such class diagrams are character-
istic, as we see for the Facade DP below.

It is not the generalisations and dependencies between
classes in the subsystem that are important; they are only
marked to signify that the classescould be related. The
number of classes is also arbitrary, though there should
clearly be more than one. The most important feature of
the diagram is not even the dependencies from the Facade
class to some (but not all) subsystem classes but rather the
lack of dependencies from classes outside the subsystem to
classes inside; recall that this ensures subsystem details are
hidden behind a single interface. So these generic diagrams
are not suitable for highlighting non-dependencies, nor for
patterns in which the number of classes is arbitrary.

Predicate logic, in contrast, is ideal for writing the con-
straint we wish to express: for some subsystem of classes
ys, if a classC ′ depends on a classC in ys then eitherC ′

is the facade classFacade or C ′ is in ys. Suppose that in
a class diagramclasses denotes the set of classes,inters
denotes the set of interfaces, anddeps, a binary relation on
classes ∪ inters, denotes the set of dependency arrows.
Then our condition can be written as follows:

∃ys ⊂ classes ∧ ∀C ∈ ys · ∀C ′ ∈ classes·

(C ′ 7→ C) ∈ deps ⇒ C ′ ∈ ys ∨ C ′ = Facade

whereC ′ 7→ C represents an ordered pair〈C ′, C〉. The fur-
ther conditionys 6= {} would seem appropriate because
a universal quantification is always true over the empty
set. This illustrates how unspoken constraints become clear
when one starts to formalise patterns. The same is true of

deficiencies in the original descriptions, as happens when
software systems are formalised.

1.3 Advantage of the approach

We believe that our approach produces constraints that
are much clearer than would be obtained by using OCL on
the meta-model of UML class diagrams. Our modelling lan-
guage can also be adapted to diagrams other than class di-
agrams, to provide auxiliary constraints that would help in
defining the pattern more exactly. We will see in Section 4
that these constraints are amenable to analysis.

1.4 Use in Software Engineering

The characterisation of DPs presented here can be used
at the design stage to assist practitioners who need help in
applying them correctly. For example, if for a particular DP,
only four out of five necessary conditions have been ful-
filled, a tool can instruct the user as to what must be done to
satisfy the fifth. Also, DPs can be recognised in legacy code
and highlighted to help ensure they are kept after modifica-
tion.

1.5 Overview

In the remainder of this paper, we shall show with exam-
ples how the 23 original DPs in [5] can, to different degrees
of success, be characterised by first-order logical predicates.
A technical report by us formalises all 23 [1]. We will also
demonstrate how the predicate logic helps with reasoning
about DPs. Eden’s work is the closest to our own approach.
We shall compare Eden’s formalisations with ours through-
out this text; they can be found on his website [2] and all
future references to Eden relate to this source.

1.6 Organisation of the paper

In Section 2, we describe our meta-notation for the spec-
ification of DPs. In Section 3, we show with a few examples
how DPs can be specified with our framework. In Section
4, we present examples of how the power of predicate logic
can be applied to reasoning about DPs. Finally, in Section
5, we discuss the power of our work, distinguish it from
Eden’s and conclude.

2 Specifying Constraints on Class Diagrams

We consider the formal specification of DPs as a problem
of meta-modelling as each DP can be characterized as a set
of design models that have certain structure and behaviour
features. The framework below was introduced in [17] but
revised in this paper as a notation for meta-modelling.

Table 1. Meanings of the GEBNF Notation
Notation Meaning Example and explanation

X1 | X2 | �

 | Xn

Choice of X1, X2, �, Xn ActorNode | UseCaseNode means that the entity is

either an actor node or a use case node.

L1: X1

L2:X2 �

Lk: Xk

Order sequence consists of k

fields of type X1, X2, �, Xk

that can be access by the field

names L1, L2, �, Lk.

ClassName: Text Attributes: Attribute* Methods:

Method* means that the entity consists of three parts

called Classname, Attributes and Methods

respectively.

X* Repetition of X (include null) Diagram* means that the entity consists of a number

N of diagrams, where N 0.

X+ Repetition of X (exclude null) Diagram+ means that the entity consists of a

number N of diagrams, where N 1.

[X] X is optional [Actor]: element of actor is optional.

X Reference to an exiting

element of type X in the

model

ClassNode is a reference to an existing class node.

�abc� Terminal element, the literal

value of a string

�extends�: the literal value of the string �extends�.

2.1 The GEBNF Notation

Just as Extended Backus Normal Form (EBNF) is used
to define the syntax of programming languages, so Graph-
ical Extended Backus Normal Form (GEBNF) is used to
define the syntax of graphical modelling languages. The
well-formedness constraints thus described can then be aug-
mented with consistency and completeness constraints, all
stated in the form of predicate logic. The constraints are
specified with extractor functions that are both declared and
defined by the GEBNF definitions.

An abstract syntax definition of a modelling language in
GEBNF is a tuple〈R, N, T, S〉, whereN is a finite set of
non-terminal symbols,T is a finite set of terminal symbols,
each of which represents a set of values. Furthermore,R ∈
N is the root symbol andS is a finite set of production rules
of the formY ::= Exp, whereY ∈ N andExp can be in
one of the following forms.

L1 : X1L2 : X2 · · ·Ln : Xn

X1|X2| · · · |Xn

whereL1, L2 , · · ·, Ln are field names,X1, X2 , · · ·, Xn are
the fields, which can be in one of the following forms:Y ,
Y ∗, Y +, [Y], Y , whereY ∈ N∪T (i.e. Y is a non-terminal
or a terminal symbol). The meaning of the meta-notation is
give in the following table.

For clarity we add line breaks to separate fields. Note
that where an element is underlined, it is a reference to an
existing element on the diagram as opposed to the introduc-
tion of a new element.

2.2 GEBNF Definition of Class Diagrams

There is a semi-formal definition of UML class diagrams
in [13]. The definition is a semantic network of has-a and
is-a relationships using the UML notation itself as the meta-
notation. The GEBNF definition below has been obtained

by removing the attributes not required to describe patterns,
and by flattening the hierarchy in [13] to eliminate some
meta-classes for simplicity.

A class diagram consists of classes and interfaces, linked
with relations, which include associations and generalisa-
tions between classifiers and calls between operations.

ClassDiagram ::=
classes : Class+,

inters : Interface∗,

assocs : (Classifier, Classifier)∗,
geners : (Classifier, Classifier)∗,
calls : (Operation,Operation)∗

Here, a classifier is either a class or an interface.

Classifier ::=
Class | Interface

A class has a name, attributes, operations and a flag to
record whether it is abstract (missing from [13]).

Class ::=
name : String,

attrs : Property∗,

opers : Operation∗,

isAbstract : Boolean

Here of course,String is a terminal that denote the type
of strings of characters andBoolean denotes the type of
boolean values. An interface has no need for the flag.

Interface ::=
name : String,

attrs : Property∗,

opers : Operation∗

Operations have a name, parameters and three flags.

Operation ::=
name : String,

isQuery : Boolean,

params : Parameter∗,

isStatic : Boolean,

isLeaf : Boolean

Parameters have a name, type, optional multiplicity in-
formation and direction. Since return values play much the
same role as out parameters, it is convenient to treat them
as parameters with a different direction.

Parameter ::=
direction : ParameterDirectionKind,

name : String,

type : Type,

[multiplicity : MultiplicityElement]

ParameterDirectionKind ::=
“in” | “inout” | “out” | “return”

MultiplicityElement ::=
upperV alue : Natural | “ ∗ ”,

lowerV alue : Natural

Here, Natural denotes the type of natural numbers.
Properties have a name, type, multiplicity information and
a static flag.

Property ::=
name : String,

type : Type,

isStatic : Boolean,

[multiplicity : MultiplicityElement]

In practice, an attribute with a class type is often drawn
on a diagram as an association instead. In the paper, for the
sake of simplicity, we assume that associations are always
used in this case. In the sequel, when there is no risk of
confusion, we will also use the name field of a classifier as
its identifier.

2.3 Predicates on models

The definitions of a diagram’s abstract syntax in GEBNF
enable us to specify constraints as first-order predicates on
diagrams since every fieldf : X of a termT introduces
a functionf : T → X. Function application is written
f(x) for function f and argumentx. For example, given
the above definition ofClass in GEBNF, we have a func-
tion opers that maps each class to the set of its operations.
Therefore, for a classc, the expressionopers(c) is the set
of operations inc.

In the sequel, the arguments of functions on
ClassDiagram will be omitted as there is no possi-
bility of confusion. Thus, for example, we will write
classes to abbreviateclasses(cd) for a class diagramcd.

The following derived predicates will be useful:

• subs(C) is the set ofC ’s subclasses:C ′ such that
C ′ 7→ C ∈ geners.

• red(op, C) is the redefinition ofop in classC and is
defined only if¬isLeaf(op) and for someC ′, C ∈
subs(C ′) and op ∈ opers(C ′). More formally, let
op ∈ opers(D),

op′ = red(op, C) ≡
op ∈ D ∧ op′ ∈ C ∧ C ∈ subs(D) ∧
name(op) = name(op′) ∧ ¬isLeaf(op)

• returns(op, C) states thatop has a return value and it
is of typeC. More formally,

returns(op, C) ≡ ∃p ∈ params(op)·
type(p) = C ∧ direction(p) = “return′′

Note of course that an out parameter can be used in-
stead. For the sake of simplicity, we need not discuss
this further.

• access(xs, ys) indicates that all access to the classes
in ys is through the classes inxs. Formally,

∀x ∈ classes·∀y ∈ ys·x 7→ y ∈ deps ⇒ x ∈ xs∪ys

Many of the class diagrams in [5] have a distinguished
class calledClient, with a dependency to some of
the remaining classes,xs. This would be expressed
as access(xs, ys) where ys denotes the remaining
classes.

3 Specification of Design Patterns

In this section, we give some examples to show how the
framework above can be used to specify DPs. A complete
list of the specifications of all 23 original DPs can be found
in [1].

Our approach is to identify the classes, operations and
associations involved from the diagram in [5] and then state
the conditions that must apply to them, both in English and
in predicate logic. These declarations are effectively exis-
tential quantifications with a scope equal to the conditions
themselves.

This format mirrors the declarations-plus-predicates for-
mat of Z schemas, except for the interleaving of logic and
English. However, the exact syntax of Z has been re-
jected because the interleaving is necessary for readabil-
ity. Default field values, such asmultiplicity = 1 and
isStatic = false, are left unstated.

3.1 Template Method Pattern

The Template Method Pattern is a good starting example
as it has only one condition.

Figure 2. The Template Method DP

Figure 3. The Object Adapter DP

The template method is an algorithm with some steps,
each of which is an operation call. The intent of this DP is
to make the implementations of the steps easy to change.

Classes:AbstractClass ∈ classes

Operations: templateMethod ∈ opers(AbstractClass)

Conditions:

1 templateMethod calls an abstract operation of
AbstractClass.

∃o ∈ opers(AbstractClass)·
(templateMethod 7→ o) ∈ calls ∧
isAbstract(o)

In [5], there are many issues left open in the description
of the DPs. For example, it is suggested that the abstract op-
erations above may instead be hook operations ie they are
given default behaviour, often to do nothing, in Abstract-
Class and may or may not be overridden. So the require-
ments ofisAbstract(o) in the above specification could be
relaxed. It is the process of formalisation itself that forced
us to confront such issues. Once we have made it, either
decision can be faithfully represented.

3.2 Adapter Pattern

The Template Method DP is a behavioural pattern, but it
is just as easy to specify structural patterns.

Classes:Target, Adapter,Adaptee ∈ classes

Figure 4. The Bridge DP

Associations: Adapter 7→ Adaptee ∈ assocs

Operations: requests ⊆ opers(Target),
specificRequests ⊆ opers(Adaptee)

Conditions:

1 the Client class depends only on theTarget:
access({Target}, {Adapter,Adaptee})

2 Target is an interface:
Target ∈ inters

3 Adapter implementsTarget:
Adapter ∈ subs(Target)

4 for at least one operation inrequests, its re-
definition in Adapter calls an operation in
specificRequests.

∃o ∈ requests, ∃o′ ∈ specificRequests·
(red(o,Adapter) 7→ o′) ∈ calls

Presumably, theAdapter class can have further
operations not in theTarget class.

The conditions given here are for the Object Adapter
variant. The Class Adapter variant linksAdapter and
Adaptee by inheritance instead of composition so we need
the conditionAdapter ∈ subs(Adaptee).

3.3 Bridge Pattern

Here is another example of structural DP. The intent of
this DP is to decouple an abstraction from its implementa-
tion so that the two can vary independently.

Classes:Abstraction, Implementor ∈ classes

Associations: Abstraction 7→ Implementor ∈ assocs

Conditions:

1 Implementor is an interface:
Implementor ∈ inters

2 client dependencies are onAbstraction alone:
access({Abstraction}, {Implementor} ∪
subs(Abstraction) ∪ subs(Implementor))

Figure 5. The State DP

3 every operation in the subclasses ofAbstraction
calls an operation inAbstraction:

∀A ∈ subs(Abstraction) · ∀o ∈ opers(A)·
∃o′ ∈ opers(Abstraction) · o 7→ o′ ∈ calls

4 every operation inAbstraction calls an operation
in Implementor:

∀o ∈ opers(Abstraction)·
∃o′ ∈ opers(Implementor) · o 7→ o′ ∈ calls

The final condition may be too restrictive since some oper-
ations inAbstraction may modify its internal state.

3.4 State Pattern

Now for a second behavioural DP, slightly more complex
than Template Method, and more interesting because of its
close similarity to Strategy. The intent of this DP is to allow
an object’s behaviour to vary according to state.

Classes:Context, State ∈ classes

Operations: request ∈ opers(Context),
handle ∈ opers(State)

Associations: Context 7→ State ∈ assocs

Conditions:

1 handle is abstract:
isAbstract(handle)

2 therequest operation ofContext calls thehandle
operation ofState:
request 7→ handle ∈ calls

Note there may be several operations with the role of
handle. This DP can only be distinguished from the Strat-
egy pattern by looking at the information flow from the
wrapped object to the wrapping object. So we need the
following extra condition to define how theState object
changes its own subclass.

3 every subclass ofState has an operation that calls an
operation ofContext with a subclass ofState
as an in parameter.

∀S ∈ subs(State) · ∃o ∈ opers(S)·
∃o′ ∈ opers(Context) · o 7→ o′ ∈ calls ∧
∃p ∈ params(o) · type(p) ∈ subs(State) ∧
direction(p) = “in′′

This condition is not required by the Strategy pattern.

4 Reasoning about DPs

In this section, we use examples to demonstrate how
predicate logic can be used to reason about DPs.

4.1 Inference of the properties of DPs

Given a formal specification of a DP in predicate logic,
we can infer the properties of the DP in first order logic.
For example, with a little thought, we can infer from
the conditions for Template Method and some further
consistency constraints on class diagrams that the abstract
operations called bytemplateMethod are redefined in the
concrete subclasses. Formally,

∀op ∈ opers(AbstractClass)·
(templateMethod 7→ op) ∈ calls ∧ isAbstract(op) ⇒
∃ConcreteClass ∈ subs(AbstractClass) ·
∃op′ ∈ opers(ConcreteClass) ·
(op′ = red(op, ConcreteClass))

The consistency constraint used to produce this state-
ment is that every abstract operation must be redefined in
a subclass:

∀C ∈ classes · ∀op ∈ opers(C)·
(isAbstract(op) ⇒ ∃C ′ ∈ subs(C) ·
∃op′ ∈ opers(C ′) · (op′ = red(op, C ′))

4.2 Match between designs and DPs

Because we are using predicate logic, it is now easy to
see if a design model, such as that for Abstract Factory, sat-
isfies the formal specification of a DP.

The conditions for this pattern are quite complex, as one
would expect, since the diagram indicates a precise bijec-
tion relationship between classes that must be generalised
to family sizes and variety numbers other than two.

Figure 6. An Instance of Abstract Factory

Figure 7. The Abstract Factory DP

The following specification is inspired by Eden’s formal
specification [3, 4].

Classes:AbstractFactory ∈ classes,
AbstractProducts ⊆ classes

Operations: creators ⊆ opers(AbstractFactory)

Conditions:

1 AbstractFactory is an interface:
AbstractFactory ∈ inters

2 every factory method is abstract:
∀o ∈ creators · isAbstract(o)

3 every class inAbstractProducts is abstract:
∀C ∈ AbstractProducts · isAbstract(C)

4 For each abstract product, there is a unique fac-
tory methodcreator of AbstractFactory that
returns the product:

∀AP ∈ AbstractProducts·
∃!creator ∈ creators · returns(creator,AP)

5 The different creation operations and the concrete
products are connected by a special one-one cor-
respondence.

{o ∈ opers(AbstractFactory)·
{s ∈ subs(AbstractFactory) · red(o, s)}} 7→
{p ∈ AbstractProducts · subs(p)} ∈
iso(iso(returns))

Above, the functioniso is defined as follows.

xs 7→ ys ∈ iso(R) ≡
∀x ∈ xs · ∃!y ∈ ys · x 7→ y ∈ R ∧
∀y ∈ ys · ∃!x ∈ xs · x 7→ y ∈ R

The match of the design given in Fig. 6 to the Abstract
Factory pattern can be easily seen as we can bind the set
AbstractProducts to {Button, ScrollBar}.

The two sets that are linked by the correspondence are
{{PMWindow, MotifWindow},

{PMScrollBar,MotifScrollBar}}
and
{{CreateWindowPM , CreateWindowMotif},

{CreateScrollBarPM , CreateScrollBarMotif}}.

4.3 Alternative specifications

The original descriptions of DPs in [5] are informal. This
gives rise to ambiguity. Thus, different formal specifica-
tions are possible due to different understanding of the in-
formal descriptions. Formalisation not only forces us to be
rigorous in the specification of the DPs, but also offers a
way to understand the differences between alternative spec-
ifications.

For example, condition 5 of the Abstract Factory pattern
requires a one-one correspondence between abstract prod-
ucts and concrete products. This is actually too restrictive
because in the context of component-based software devel-
opment, the abstract products represent the requirement and
the concrete products represent the corresponding imple-
mentations, so there could easily be more products than are
actually needed. In English, we’d write: each family of
products has a concrete factory that creates a corresponding
concrete product for each abstract product.

Classes:ConProdFams ⊆ P(classes)

Conditions: 5’

∀CPF ∈ ConProdFams,∃cf ∈ ConProdFact,

∀ap ∈ AbstractProducts,∃cp ∈ CPF ·
returns(redef(create(ap), cf), op) ∧
ap 7→ cp ∈ geners ∧ ¬isAbstract(cp)

Here,create (ap) denotes the creation method for ab-
stract productap, assuming the functioncreate is total on
the set of abstract products,ConProdFams is a set of sets
where products from the same family are grouped together
andConProdFact is the set of concrete factories.

A similar condition to this one is as follows: for every
abstract product there is a unique set of creators such that
for every concrete product of the abstract product there is a
unique operation increators that creates it.

Figure 8. The Composite DP

Conditions: 5”

∀AP ∈ AbstractProducts,∃!cs ⊆ creators·
∀CP ∈ subs(AP) · ∃!c ∈ cs · creates(c, CP)

This also allows families to have extra products not cor-
responding to the abstract products, again in contrast to con-
dition 5. Finally, a further condition is as follows.

Condition: 6 The relationships between elements of ab-
stract products are preserved by the correspond-
ing elements of a concrete product. Formally, let
X ′ represent the corresponding concrete product
of a classX of abstract product for the family of
interest, andR ∈ {geners, assoc, calls}.
∀X,Y ∈ AbsProd·X 7→ Y ∈ R ⇒ X ′ 7→ Y ′ ∈ R,

whereR is eithergeners, or assocs, or calls.

For example, if aWindow aggregatesScrollBar then
MotifWindow aggregatesMotifScrollBar.

4.4 Relationships between DPs

A logical relationship between the predicates of two DPs
can be promoted to a relationship between the DPs them-
selves. So, for DPsA andB, the syntaxA ⇒ B denotes
that A is a special case of DPB. Two DPs are in con-
flict with each other if their intersection is not satisfiable,
whereas they are composable if their intersection is satis-
fiable. In this way, relationships between DPs can be for-
mally proved in first order logic.

For example, it is quite easy to see that the Interpreter
Pattern is an instance of the Composite Pattern. The de-
scription for Composite is as follows.

Classes:Component, Composite, Leaf ∈ classes

Operations: operation ∈ opers(Component)

Associations: parent 7→ children ∈ assocs

Conditions:

1 Component is an interface:
Component ∈ inters

2 Composite andLeaf inherits fromComponent:
{Composite, Leaf} ⊆ subs(Component)

3 theClient class depends onComponent alone:
access(Component, subs(Component))

4 the association is fromComposite to Component
with multiplicity *:
type(parent) = Composite∧
type(children) = Component∧
multiplicity(children) = “∗′′

5 operation is overridden in theComposite class
and called by it.
¬isLeaf(operation)∧
red(operation,Composite) 7→
operation ∈ calls

6 there is no association fromLeaf to Composite:
¬∃leaf 7→ component · type(leaf) = Leaf
∧type(component) = Component

Before we turn to Interpreter, here are a few points to
note about Composite. We must represent classes with vari-
ables to specify the multiplicities of “*”. We cannot express
using predicates the requirement that the operation must be
called several times, once on each component. Also there
may be several operations defined in this way, as in Eden’s
constraints. Finally, note too that Eden misses out both
the first and last conditions, and allows there to be several
classes likeLeaf but only one likeComposite. There is
no reason why we cannot do this as well, but the extra gen-
erality would not handled quite so elegantly.

The conditions above are exactly the same for the In-
terpreter DP except that the classes are calledAbstraction
Expression(=Component), Terminal Expression(=Leaf),
Nonterminal Expression(=Composite) andClient should
aggregateContext. Furthermore, the operation must take
an instance ofContext as its only argument.

If # is the cardinality operator andinterpret is the op-
eration ofInterpreter then we can write this as follows:

#interpret.parameters = 1∧
∃p ∈ interpret.parameters ·
type(p) = Context

Since the six conjoined conditions forInterpreter im-
ply, modulo renaming, the eight conjoined conditions for
Composite, it clearly follows thatInterpreter is a special
case ofComposite.

5 Conclusion

In this paper we have demonstrated the expressiveness
of first order logic for the formal description of design pat-
terns. We now discuss the advantages of the approach, then
some open problems and finally, we compare it to existing
work.

5.1 Advantages

The approach has the following main features.

• The formal descriptions are readable and they help the
novice to understand the design patterns. The formal-
isation of DPs also helps to clarify the concepts and
issues that were ambiguous or left open in the infor-
mal description.

• It is easy to recognise if a system design presented as
a class diagram is an instance of a design pattern. One
only needs to simply prove that the constraints in the
first order logic are true, as we did for the Abstract
Factory DP.

• The formal descriptions facilitate the formal reason-
ing about design patterns using first order logic, which
is well understood. For example, the Interpreter DP
is a sub-case of the Composite DP. This is inferred
from the formal descriptions using first order logic, as
the constraints of Interpreter imply the constraints of
Composite. Similarly, we can formally define other re-
lationships between design patterns. For example, two
design patterns are in conflict with each other if their
intersection is not satisfiable. And, in contrast, two
design patterns are composable if their intersection is
satisfiable.

5.2 Open problems

There are however still some open problems that need to
be solved. Not all DPs can be captured very well by the
method, partly because class diagrams do not contain all
the information that characterises the DP. Where such infor-
mation is expressed in the form of notes containing sample
code, we can do nothing more than state which operations
should be implemented by calls to which other operations.
For example, for the Iterator pattern, such operations are
too implementation-specific so only the type signatures of
the operations give a clue as to their purpose.

Often sequence diagrams need to be used for clarifica-
tion as with Builder pattern, where it is suggested that op-
erations are needed to create both theDirector and the
Builder classes and to return the result at the end. Fur-
thermore, it appears to be important that only the operation

construct can call operations on the subclasses ofBuilder
and each operation must build a different subclass. Other
operations whose purpose we cannot express well include
the operations of theOriginator class in Memento, and
the clone operation inPrototype.

Sometimes the subtleties not captured by the class di-
agram concern the state of the object, as with the State
pattern, the Flyweight pattern, where extrinsic and intrin-
sic state is distinguished, and the Decorator pattern where
both extra state and behaviour may be added.

We saw with Composite that our descriptions must be
changed slightly for collections. In addition, the seman-
tics of collection operations are not specified precisely,
thereby affecting not only Composite but also Flyweight
and Builder too. There are also getters and setters for the
Observer pattern but here the more general notions of query
and non-query operations are used instead, which is fortu-
nate as these notions are recognised by UML.

The role of the classClient is often unclear in the orig-
inal informal description in [5]. Interpreter pattern has an
association fromClient so its conditions must explicitly
mention the class, unlike all other DPs. In the Command
DP, the distinction betweenClient andInvoker classes is
unclear, Prototype is also unusual in thatClient is given
specific operations. In all other cases, we can avoid men-
tion of theClient class by using the predicateaccess.

5.3 Comparison with Eden’s Approach

Other related works have been discussed in section 1.2.
We focus on Eden’s work in particular as it is the one closest
to our own.

Eden has invented a graphical language called LePUS
for representing both class diagrams and the constraints on
them required by Design Patterns. The language has a for-
mal foundation in predicate logic. Eden captures all but five
of the DPs, missing out Protoype, Singleton, Interpreter,
Mediator and Memento, whereas we encounter our great-
est problems discussed above with Iterator, Memento and
Singleton instead. The major differences between his for-
malisations reported in [2] and ours are as follows.

• LePUS is a whole new language with a notation spe-
cific to DPs whereas our approach is more general
and we can specify constraints in languages other than
UML. Our approach is also more flexible and easy to
specify alternative descriptions of a design pattern as
shown in the Abstract Factory pattern.

• Some of Eden’s constraints concern sets of operations
in the same class. Examples include the request han-
dlers of Adapter, Bridge, Proxy, State and Decorator in
which the requests are delegated to other operations.

• Eden specifies more bijections between classes and
methods than we do and this applies to many DPs such
as Iterator and Visitor.

• Eden distinguishes between invocation and forward-
ing, a special case of invocation where the caller and
callee have exactly the same arguments. We can in-
troduce this distinction ourselves since we can identify
our own stereotypes.

• The constraints for the Facade DP are rather different,
as Eden distinguishes creator and manipulator classes.

5.4 Further Work

We now consider possible changes to our framework that
will allow some DPs to be captured more precisely.

Design By Contract (DBC) can be used to define the
pre/post-conditions of the operations for addition to and re-
moval from collections in the Composite and Observer DPs.
It can also be used to specify the post-conditions of getter
and setter operations. More precisely, an intra-diagram con-
straint on class diagrams will require that all operations with
get or set prefixes have the post-conditions that one would
expect. In OCL 2.0, it is possible to specify which opera-
tions call which others. This information is also given by
the calls relationship but OCL 2.0 allows us to be more pre-
cise. We can for example, specify that an operation must be
called once on each member of a collection, as required for
Composite and Visitor.

As an alternative, this dynamic behaviour can also be
specified using communication diagrams. More impor-
tantly, so too can the conditional behaviour found in the
code samples for Flyweight and Singleton, and it seems this
cannot be done in any other way. We shall investigate spec-
ifying the intent of a DP too.

At the same time as we make these improvements, we
shall investigate using the framework to specify model
transformations such as refactoring and we shall develop
tools to support both this and verification of DPs. We shall
also specify the semantics of UML diagrams more formally.
Finally, we shall consider other DPs such as those for con-
currency and distributed computing.

References

[1] I. Bayley and H. Zhu. Formal specification of design pat-
terns as structural properties. Technical Report DOC-TR-
07-01, Department of Computing, Oxford Brookes Univer-
sity, Oxford, UK, 2006.

[2] A. Eden. Website at www.eden-study.org/lepus.
[3] A. H. Eden. Formal specification of object-oriented design.

In International Conference on Multidisciplinary Design in
Engineering, Montreal, Canada, November 2001.

[4] A. H. Eden. A theory of object-oriented design.Information
Systems Frontiers, 4(4):379–391, 2002.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[6] A. L. Guennec, G. Sunýe, and J.-M. J́eźequel. Precise mod-
eling of design patterns. InUML, pages 482–496, 2000.

[7] K. Lano, J. C. Bicarregui, and S. Goldsack. Formalising
design patterns. InBCS-FACS Northern Formal Methods
Workshop, Ilkley, UK, September 1996.

[8] A. Lauder and S. Kent. Precise visual specification of design
patterns. InLecture Notes in Computer Science Vol. 1445,
pages 114–134. ECOOP’98, Springer, 1998.

[9] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun. Precise
modeling of design patterns in uml. In26th International
Conference on Software Engineering (ICSE’04), pages 252–
261, 2004.

[10] D. Mapelsden, J. Hosking, and J. Grundy. Design pat-
tern modelling and instantiation using dpml. InCRPIT
’02: Proceedings of the Fortieth International Conference
on Tools Pacific, pages 3–11. Australian Computer Society,
Inc., 2002.

[11] T. Mikkonen. Formalizing design patterns. InProc. of
ICSE’98, Kyoto, Japan, pages 115–124. IEEE CS, April
1998.

[12] N. Nija Shi and R. Olsson. Reverse engineering of design
patterns from java source code. InProc. of ASE’06, Tokyo,
Japan, pages 123–134, September 2006.

[13] OMG. Unified modeling language: Superstructure, version
2.0, formal/05-07-04.

[14] T. Taibi. Formalising design patterns composition.Software,
IEE Proceedings, 153(3):126–153, June 2006.

[15] T. Taibi, D. Check, and L. Ngo. Formal specification of de-
sign patterns-a balanced approach.Journal of Object Tech-
nology, 2(4), July-August 2003.

[16] U. Zdun and P. Avgeriou. Modelling architectural patterns
using architectural primitives. In20th annual ACM SIG-
PLAN conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPLSA), San Diego,
California, pages 133–146, 2005.

[17] H. Zhu and L. Shan. Well-formedness, consistency and com-
pleteness of graphic models. InProc. of UKSIM’06, Oxford,
UK, pages 47–53, April 2006.

