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Software verification and validation are software quality assurance activities that aim to
ensure that the software system is developed according to a development process and
meets the customer’s needs [1]. In other words, verification is about “are we building the
product right”, and validation is about “are we building the right product” [2]. Validation
is further divided into static validation and dynamic validation. Static validation checks
the correctness of the software product without executing the software system or a
prototype while dynamic validation executes the software system or a prototype.
Software testing is one form of dynamic validation.

To explain, verification is concerned about the process to produce the product. That is,
are we building the product in the right way? This includes two aspects: 1) the right
process and 2) correctly follows the right process. As a minimum condition, the “right
process” must require that a lower level artifact satisfy the requirements stated in the
higher level artifact. Unlike verification, which is concerned about the “correctness” of
the process, validation is concerned about the correctness of the product. That is, are we
building the correct product? We need both verification and validation because either of
them alone is not sufficient. For example, an implementation may satisfy the
specification but the specification itself may be incorrect. Moreover, the implementation
may satisfy the specification and the specification is also correct but the code may be
hard to understand, test and maintain. Customer review and/or expert review of
requirements specifications would detect the former while code review and code
inspection would detect the latter. Therefore, a “right” (which means “preferred”)
software development process should include these verification and validation activities.

Software verification and validation are important because software has been used in all
sectors of our society. Today’s software systems are extremely large, complex and
process billions of transactions a day in the financial, retailing, manufacturing,
transportation, telecommunications, and many other sectors. Many software systems are
embedded systems, real time systems, or mission-critical systems. Failures of today’s
software systems are financially very costly, and politically not acceptable because the
failures may incur recall of products, property damages, injury to human body, or even
lost of human life. Therefore, software verification, validation and testing have received
increasing attention from academic research and industry.

In the following sections, we first provide definitions of commonly encountered
verification and validation concepts, followed by verification and validation in the
software lifecycle, formal verification and software testing techniques.
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1. Definitions

This section presents the definitions of commonly used terminologies in software
verification and validation.

Bug a defect in the program code

Desk Checking examination of software artefact, typically the source code, by the
developer to detect bugs, anomalies, and other potential problems.

Error an unanticipated condition that puts the system into an incorrect state

Failure a result produced by the software under test does not satisfy the expected
outcome.

Fault a defect in the software system.

Inspection a step-by-step checking of the software artefact/product against a predefined
list of criteria, called check list.

Peer Review evaluating the software artefacts by peers who are required to answer a list
of questions to assess the artefact and provide improvement suggestions, if any.

Regression Test rerun some of the test cases to ensure that the modified software system
still delivers the functionality as required

Software Attribute property or characteristic of software
Software Metrics measurements of software (attributes)

Software Quality Assurance activities to ensure that the software under development or
modification will meet desired quality requirements

Test Driver code to invoke the component under test and check the outcome of the
component under test

Test Harness test driver and test stub
Test Script code to test functionality of software system

Test Stub code to replace the module or procedure that is invoked by the component
under test so that the component under test can be executed

Testing executing a program with the intent to uncover bugs



Verification and Validation according to Barry Boehm, verification is “are we building
the product right?” and validation is “are we building the right product?”

Walk-through manually reviews software artefact by following the described logic step
by step with certain scenario of operating the system and/or on certain input data as the
test case. The artifact reviewed could be requirements specifications, high level design,
detailed design and source code, etc. The walk-through of source code is often performed
as manually executing the software with test data to simulate machine execution of the
software.

2. Verification and Validation in the Lifecycle

This section presents verification and validation in the software lifecycle. That is, what is
checked in each of the lifecycle phases and who performs the checking. Moreover, what
are the techniques used to perform the checking.

2.1. Verification and Validation for the Requirements Phase

Verification and validation in the requirements phase aims at detecting errors in the
requirements specification and the analysis models. The techniques used include
requirements reviews, inspection, walkthrough, and prototyping. Requirements reviews
include customer/user reviews, technical reviews, and expert reviews.

Customer/user reviews are performed by involving the customer and/or users of the
system. Customer/user reviews should examine the requirements specification and look
for problems in the following areas:

1) The correspondence between requirements and the real world. That is, the
requirements specification correctly describes the functional requirements of the
application for which the system is to be built or extended.

2) The user interfaces. This includes the appearance, the look and feel, sequence of
interaction, input/output data and formats, and the GUI implementation
technologies.

3) Non-functional requirements. That is, whether the non-functional requirements,
including performance requirements, security requirements and user friendliness
requirements, are correctly stated.

4) Constraints. That is, whether application specific constraints are correctly stated.
Application specific constraints may include constraints on the operating
environment, political constraints, technological constraints, etc.

Technical review is an internal review performed by the technical team. Technical review
techniques include peer review, inspection, and walkthrough:

e In peer review, the requirements specification and the analysis models are
reviewed by peers, who are guided by a list of review questions designed to
qualitatively assess the quality of the product being reviewed. Answers to the



questions by the peers may vary drastically because the answers represent the
reviewers’ opinion about the product under review and depend heavily on the
reviewers’ knowledge, experience, background, and criticality. This is similar to
the product review reports published in consumer magazines. The review reports
by different writers may differ drastically. The review meeting usually runs about
2 hours and takes place one to two weeks after the review assignments, allows the
developer and the peers to discuss the feedback and identify action items to
address the issues.

e Inspection checks the requirements and the analysis models against a list of items
that are found to be error prone or problematic [3,4]. Unlike reviews, inspection
looks for more specific problems and the answers can be more objectively. This is
similar to car inspection in which the inspector checks the engine, brake, lights,
etc. to see if each of them is working properly. Since it is more well-defined, a
computer can perform car inspection nowadays.

e Walkthrough is carried out by explaining and examining the requirements [5]. In
particular, the analyst who wrote the requirements specification explains each
requirement to the peers who would raise questions and stimulate doubts. The
analyst would answer the questions and address the doubts. In addition, each of
the analysis models is examined carefully. That is, the analyst who drafted the
model leads the peers go through the model and provides necessary clarification
while the peers may ask questions and raise doubts. This is similar to the new car
salesperson at a car dealer who demonstrates a new car to potential buyers by
showing various kinds of operations of the car. The buyers usually would raise
questions and concerns during the demonstration and the salesperson would
address the questions and concerns.

The above verification and validation activities should aim to reveal following problems:

e Incompleteness, which includes

1. Definition incompleteness, for example, some application specific
concepts are not defined.

2. Internal incompleteness, for example, some requirement expression has an
“if part” but does not have the “else part”. Another example is that a
decision tree or decision table has not considered all possible
combinations of the conditions used to construct the decision tree or
decision table.

3. External incompleteness, that is, there are cases that exist in the real world
application but not included in the requirements specification. For
example, a decision table or decision tree does not include a condition that
should have been included.

e Inconsistency, which includes
1. Type inconsistency, that is, inconsistent specification of one or more data
types in the requirements or analysis model.
2. Logical inconsistency, that is, contradictory conclusions can be inferred from
the specification.



3. View inconsistency, that is, inconsistency exists between views of the system
by different user groups. For example, the perception of user group A is
contradictory to the perception of user group B.

e  Ambiguity, which includes

1. Ambiguity in the definition of application specific concepts, and

2. Ambiguity in the formulation of requirements

Redundancy, which includes

1. Duplicate definitions of the same concept

2. Duplicate formulations of the same requirement or constraint, and

3. Unnecessary concepts or constraints

e Intractability, which means the high level requirements do not correspond to the
lower level requirements. If the system is being developed using the object-
oriented paradigm, then the technical review must ensure that the use cases are
tractable to the requirements and vice versa. This is often facilitated by
constructing a requirements-use cases tractability matrix during the analysis
phase. The matrix shows which requirement is to be realized by which use cases.
The review should ensure at a minimum that each requirement is realized by
some use cases and each use case serves to realize some requirements.

e Infeasibility in terms of performance, security, and cost constraint. That is, can
the development team deliver the functional capabilities as stated in the
requirements specification with the expected performance and security within
the cost and schedule constraints?

e  Unwanted implementation details. Implementation details must not be
mentioned in the requirement specification because this limits the design space.
Examples include mentions of pointers, physical data structures, and use of
pseudo-code or programming language statements.

Expert review in the requirements phase means review of the requirements specification
by domain experts, looking for

1) Incorrect or inaccurate formulation of domain specific laws, rules, behaviors,
policies, standards, and regulations

2) Incorrect, inaccurate, inappropriate, or inconsistent use of jargons

3) Incorrect perception of the application domain, and

4) Other potential domain specific problems or concerns

In the requirements phase, prototyping or rapid prototyping can take many different
forms. The main purpose is to quickly construct a prototype of the system and use it to
acquire customer/users’ feedback. That is, prototyping is used as a validation technique in
the requirements phase to help ensure that the team understands well the customer/users’
requirements are correctly captured.

The simplest prototype could be a set of drawings that illustrate the user interfaces of the
future system. The most sophisticated prototype could be a partially implemented system
that the users can experiment with to gain hands-on experience. The most commonly seen
prototype is one that the team can demonstrate the functionality and user interfaces of the



system to the customer or end users. Which type of prototype to use is an application
dependent issue. For instance, applications that are mostly concerned with mission
critical operations would benefit from prototypes that demonstrate the functionality and
behavior. Applications that are end user oriented would benefit from prototypes that
demonstrate the user interfaces.

The requirement phase is ideal for preparing system test cases to be used to validate the
system before deployment. If use cases or scenarios have been used in requirements
analysis, then they can be used to prepare system test cases. First, for each use case or
scenario, the user input parameters are identified. Next, the possible input values of each
of the input parameters are determined. This can be done as follows. For each input
parameter, there are at least three possible cases to consider: 1) using a valid value, 2)
using an invalid value and 3) the input parameter is not applicable or not available. A
more refined approach will consider other partitions of the input parameter according to
the application at hand. In addition to equivalence partitioning, boundary values for each
input parameter can also be used. A table with the columns representing the input
parameters and the rows representing the test cases can then be constructed and used
during the system testing phase.

2.2. Verification and Validation for the Design Phase

Verification and validation in the design phase are aimed at assessing the correctness,
consistency, and adequacy of the design with respect to the requirements and analysis
models. Verification and validation activities in the design phase use review, inspection,
walkthrough, formal verification, and prototyping techniques. Depending on who
perform these activities, we have peer review, customer review, and expert review. Peer
review, inspection, walkthrough and formal verification are performed by the
development team. These are mostly verification activities although some of them may
concern with design validation.

Peer review, inspection, walkthrough and formal verification check the design
documentation to ensure that

1) Correct use of the design language. This includes:

0 The notions and notations of the design specification language are used
correctly.

0 The design specification expresses clearly and correctly the design of the
proposed system.

2) Adequacy. The design specification prescribes a solution that is implemented will
satisfy the requirements of the proposed system. This can be done as follows:

o0 The high level verification ensures that each requirement is realized by
some modules in the design and each module in the design is necessary for
satisfying some requirements.

0 The detail level verification aims at ensuring that the capability stated in
each requirement can actually be delivered when the system is
implemented according to the design specification. This can be



3)

4)

5)

6)

7)

accomplished by a design traversal to demonstrate how the requirement
can be satisfied.
Non-redundancy. This includes:

0 The design does not include items that are not necessary for satisfying the
requirements or significantly improving design quality. (For instance,
design patterns may introduce additional classes but proper use of design
patterns significantly improves design quality.)

0 The design does not contain items that are already covered by other part of
the design. For instance, a rule in a decision table may already be covered
by other rule(s).

Consistency. This includes:

0 Logical consistency. That is, the various portions of the design
specification do not contain contradictory design descriptions. For
example, decision table or decision tree are commonly used in the design
phase to describe process logic for modules. A decision table or decision
tree is inconsistent if two or more rules have the same condition
combination but different action sequences. When the design is
represented in a modeling language such as UML, it may contain a
number of diagrams to represent the system from different views and/or at
different levels of abstraction. These diagrams must also be checked for
consistency across the diagram.

o Definition-use consistency. That is, the use of a component, class, data
structure, data element, or function corresponds to the respective
definition and interaction sequence. For example, the invocation of a
function must correspond to the definition of the function signature and
return type. A commonly seen inconsistency in object interaction design
or sequence diagramming is an object calling another object but the called
function is not defined.

o Design/specification consistency. That is, the design specification is
consistent with the models constructed in the analysis phase.

Internal completeness. Checking internal completeness is to ensure that the design
has covered all possible combinations of a given set of conditions. For example, if
a decision table has three binary conditions then it must contain eight independent
rules to cover the eight possible combinations of the three binary conditions.
Design principle compliance. The design follows well-known design principles
such as separation of concerns, high cohesion, and low coupling. This can be
facilitated by computing and analyzing a set of design quality metrics such as
cohesion, coupling, scope of effect, scope of control, fan-in, fan-out, class size,
height of inheritance tree, and design complexity metrics. For example, the class
size metric is the number of methods in a class. If the class size less the number of
getters and setters is large, then the class may have been assigned too many
responsibilities. This in term may signify that the cohesion of the class will be low.
The reviewers can then focus their effort in examining such classes.

Module interface. That is, communication between modules is explicit and easy to
understand. Moreover, there should be no hidden assumptions for invoking a
module.



While peer review, inspection and walkthrough are mostly concerned with design
verification, customer review and prototyping are mainly concerned with design
validation. They are usually performed jointly by the development team and the customer
(or customer representative including the system analyst). As a design validation activity,
customer review and prototyping aim at detecting mismatches, omissions, or
inconsistencies between the design and the customer’s interpretation of the requirements,
including

1) Mismatch between designed functionality and/or behavior and the functionality
and/or behavior as expected by the customer/users.

2) Mismatch between system states, events and cases and the actual states, events
and cases in the business domain. Note this includes checking of external
completeness.

3) Mismatch between the system’s user interface design and what is expected by the
customer/users.

4) Mismatch between the system’s interfaces to other systems and the required
interfaces in the real world.

Another validation activity in the design phase is the preparation of functional test cases,
behavioral test cases, and integration test cases. The design phase is idea for the
preparation of these test cases because all needed information is contained in the design
documents. For example, if decision tables have been used in the design phase to express
process logic, then each rule of the decision table is a cause-effect test case. If state
machines have been used in the design phase to describe state dependent behaviors, then
the state machines can be used to derive transition sequences to test the implemented
state dependent behaviors.

Integration test cases can be derived from structured charts (also called routine diagrams)
using a pre-order traversal in top-down integration and post-order traversal in bottom-up
integration. If the system is being developed using an object-oriented approach, then the
integration test cases can be derived from sequence diagrams or collaboration diagrams.
That is, deriving test cases that will exercise message passing paths according to the
coverage criteria selected.

2.3. Verification and Validation for the Implementation Phase
Verification and validation for the implementation phase are aimed to ensure that the
source code complies with the organization’s coding standards, implements the required
functionality, satisfies performance, real time and security requirements, and properly
handles exceptional situations. Desk checking, code review, inspection, and walkthrough
are commonly referred to as verification and static validation methods while testing is
commonly referred to as the dynamic validation method. All these are commonly used in
the implementation phase.

In desk checking, the programmer checks the program written by him/her. The
programmer may use a pencil, a calculator and/or other devices. It is an informal process



and hence the effectiveness and efficiency depends on the individual programmer. In
code review, the program is reviewed by peers who are required to comment on the
quality of the code and answer a set of questions. Code inspection checks the code
against a list of problems or defects that are commonly found in programs. The most
famous code inspection method was proposed by Fagan and is called the Fagan
inspection method [3, 4]. In walkthrough, the reviewers use test data or a specific
scenario in the operation of the software and manually follow step by step the logic
described in the artifact under review to understand how the system operates and then to
detect errors [5]. For example, when the artifact under review is a piece of source code,
the reviewers manually execute the program by following the control flow between the
statements and expressions in the code. Finally, testing is actually executing the program
with test cases derived using ad hoc or systematic test case generation methods. Testing
is distinct and indispensable because testing can detect performance bottlenecks and
incorrect interface. These usually cannot be detected by the static validation methods.

Desk checking, code review, code inspection, and walkthrough are aimed to detect
problems such as the following:

1) Incorrect/inadequate implementation of functionality

2) Mismatch of implementation and design

3) Mismatch of module interfaces

4) Coding standards are not followed

5) Poor code quality as measured by various code quality metrics such as cyclomatic
complexity (e.g., some companies require this to be no more than 10), information
hiding, cohesion and coupling, and modularity

6) Improper use of the programming language

7) Incorrect/improper implementation of data structures or algorithms

8) Errors/anomalies in the definition and use of variables such as variables or objects
are defined but not used, not initialized or not correctly initialized

9) Infinite loop

10) Incorrect use of logical, arithmetic, or relational operators

11) Incorrect invocation of functions

12) Inconsistencies caused by concurrent updates to shared variables

13) Performance bottlenecks and/or inability to fulfill timing requirements/constraints

14) Incorrect interface to devices and/or handling of device interrupts

Desk checking, code review, code inspection and walkthrough are effective in detecting
errors and anomalies if applied properly. In particular, ordinary testing methods may not
detect problems as described by 4), 5), 7), 13)—14) in the above.

2.4. Verification and Validation for Integration Phase

In the integration phase the software modules are integrated to form a complete software
system. Dynamic validation or testing is the main activity of this phase. The purpose of
integration testing is to detect errors in the interfaces between the software modules.
These include



1) Incorrect assignment of actual parameters to formal parameters

2) Incorrect assignment of values to variables in one module and/or incorrect use of
the variables in another module

3) Incorrect interaction between modules. For example, incorrect sequence of
function calls or module invocations

4) Incorrect state behavior resulting from module interactions

Integration testing can be carried out by using one or more of the following strategies.
These strategies assume that the architectural design has a tree or lattice structure with a
top-level module that invokes second level modules which invoke third level modules,
etc.:

1) Top-down strategy. Integration testing begins with testing the interfaces between
the top-level module that corresponds to the overall system and modules that are
invoked by the top-level module. Lower level modules that are invoked by
modules being integrated are replaced by test stubs. A test stub is a module that is
specifically constructed to provide the output values as expected by the higher
level module. We need to use test stubs because we have not tested the interfaces
between the modules being integrated and the modules being replaced; if any of
these interfaces is incorrect, then the error may propagate up and affect the
integration testing result at the higher level.

2) Bottom-up strategy. Integration testing begins with testing the interfaces between
the lowest level modules and their parent module and progresses up the hierarchy.
A test driver is needed to invoke the parent module because the interface between
the parent module and its parent module has not been tested.

3) Hybrid strategy. As the name suggests, integration testing may proceed using both
of the above strategies in various combinations.

4) Criticality based strategy. Integration testing begins with integrating critical
modules of the system first as long as the modules are available. This strategy
allows the critical modules to be exercised more often and hopes to detect more
errors in these modules.

5) Availability based strategy. Integration testing is carried out incrementally by
adding modules that are ready to be integrated into the software system.

6) Monolithic strategy. Integration testing is performed by integrating all the
modules of the system at once.

2.5. Verification and Validation for System Testing

During the system testing phase, the software system is integrated with other systems and
tested against the software/system requirements. System testing is usually performed in
the development environment. The end product of system testing is a system that is ready
for deployment and acceptance test in the customer’s target environment.

As indicated in the above, system testing is performed against the software/system
requirements including functional and non-functional requirements. The objective is to



ensure that the system satisfies the functional and non-functional requirements. In
addition, the system must also satisfy the constraints stated in the requirements
specification. System testing with respect to functional requirements can be carried out
using one or more of the following approaches:

e Use case based testing. As described in the section titled “2.1. Verification and
Validation for the Requirements Phase”, if system use cases have been derived
from the requirements, then system testing can be performed by testing that the
system satisfies each of the use cases. Please see the section for more detail.

e Random testing. Test data are selected randomly to test the system against the
requirements. This may or may not use an input data distribution profile, which
can be obtained from existing or similar systems’ usage log.

In addition to functional testing, performance and stress testing are also performed during
the system testing phase. Performance testing includes testing the throughput and
response time according to the predefined workload and stress testing is concerned with
system throughput and response time under a workload that is multiple times or even ten
folds of the normal workload.

2.6. Verification and Validation for Acceptance Testing

During the acceptance testing phase, the analyst or a consultant hired by the customer
will conduct or direct the testing of the system in the customer’s target environment to
ensure that the system operate properly in that environment. Since the difference between
system testing and acceptance testing is the environment, acceptance testing can be
carried out by executing a subset of the test cases used during system testing. Clearly, test
cases selection should be guided by changes to environment parameters such as system
configuration, run conditions, network configurations, etc.

2.7. Verification and Validation for Maintenance

Once the system is installed and operational in the target environment, the maintenance
phase begins. Therefore, the operation and maintenance phases are in fact one combined,
indivisible phase. Due to system dynamics [6], continual changes are made to the system
once it is released to field operation. Changes or enhancements performed on the system
are collectively called maintenance activities. These include:

e Corrective maintenance to correct errors in the system

e Enhancements to add additional capabilities to the system

e Improvements to system including performance, response time, user friendliness,
and other quality aspects

e Migration to new hardware, new technologies, or new operating environment

e Preventive maintenance to prepare the system for possible problems such as virus
attack



The verification and validation techniques such as review, inspection, walkthrough, and
testing can still be used in the maintenance phase to verify and validate the changes.
However, there are several issues that must be considered during the maintenance phase:

e Change impact analysis. Changes can affect other parts of the system and the
impact must be identified and analyzed before the changes are made. This is
usually described in the Engineering Change Proposal along with change cost and
schedule and evaluated by a Change Control Board. This topic is beyond the
scope of this article and covered by Software Configuration Management.

e Review, inspection, walkthrough may be conducted for new, changed, and
affected modules.

e New test cases must be designed to test the newly introduced modules.

e The changed and affected modules must be retested using existing test cases to
ensure that no undesired side-effect has been introduced. This is commonly called
regression testing.

3. Formal Verification

Formal verification is a means to verify a specification or a design mathematically. There
are two main approaches to formal verification.

The first approach is based on theorem-proving methods [7, 8, 9]. We call this approach
the proof-theoretical approach. In this approach, a system specification consists of a set
of declarative statements or declarative sentences. These statements typically specify
properties of real world and/or system entities or objects, their behaviors and their
relationships. In mathematical terms, the set of statements is called a theory and assumed
to be true at all time because the statements state what are about the system. In computer
science and software engineering, the statements are called nonlogical axioms because
they are not logically true but assumed to be true according to laws of the real world
application. For example, “every customer has an account” and “every account is owned
by a customer” cannot be proved to be true logically but they could be true for some bank
application. Formal verification in the proof-theoretical approach is to prove that desired
system properties or constraints are logical consequences of the nonlogical axioms. That
is, desired properties or constraints can be logically derived from the nonlogical axioms.

Consider for example, an overly simplified formal specification of a stack:

1) Maximal size of stack.
MAX=2

2) Initial size of stack.
size(S0)=0
where SO denotes the initial state.

3) Operation “push” (we focus only on the size but nothing else).
size(S)=s & s < MAX — size(push(S))=s+1



(If stack size in state S is s and s is less than MAX then stack size in the state resulting
from pushing a element onto the stack is s+1.)

4) Operation “pop”.
size(S)=s & s > 0 — size(pop(S))=s-1

Now suppose we want to prove the desired property stating that “there is some state in
which the stack size will be MAX, formally

5) (3S)size(S)=MAX
That is, there exists a state S in which the size of the stack is MAX.

We will illustrate the proof using the resolution proof technique proposed by Robinson
[10]. To prove that Q is a logical consequence of P1, P2, ..., Pn, we prove that ~Q, P1,
P2, ..., Pn cannot be true at the same time, where Q, P1, P2, ..., Pn are statements.
Resolution proof begins with the set of statements {Q, P1, P2, ..., Pn} and each resolution
tries to deduct a statement called resolvent from two statements using the logical
inference rule “A & (A — B) = B” or equivalently “A & (~A v B) = B”. That is, from
statement “A” and statement “~A v B” we can deduct “B”. Clearly, each resolution step
takes two statements and produces one new statement. If the set of statements can be
deduced to produce the nil statement, denoted by “[1” and representing a contradiction,
then the theorem is proved. The proof of our stack example is shown in Figure 1.

size(S0)=0 ~(size(S)=s) v ~s<MAXV size(push(S))=s+1
S¢S0, s«0
~0<MAX v size(push(S0))=0+1
< size(push(S0))=1
~(size(S)=s) v ~s<MAXV size(push(S))=s+1
S<«—push(S0), s«1

size(push(push(S0)))=2 (negation of theorem)
& size(push(push(S0)))=MAX ~(size(S)==MAX)
<« push(push(S0))
0

Figure 1. Resolution proof of the simplified stack specification

The above simple example is a special case because it does not use the so-called “frame
axiom” originally proposed by McCarthy and Green [11]. In their effort to construct the
first question answering system using logical inference, McCarthy and Green discovered
that the specification of the effect of an operation like 3) and 4) in the above stack
specification example is not enough. The specification must also state that everything that



is not changed by the operation remains true in the new state resulting from the operation.
This is commonly referred to as the “frame axiom”. Fortunately, there is nothing not
changed by the operations push and pop, therefore, our simple example does not have to
use the frame axiom.

Now suppose we want to prove another desired property that states “the size of the stack
is always greater than or equal to zero”, formally

6) (VS) size(S) >=0

The reader will soon discover that applying resolution to prove this property is extremely
difficult (almost impossible). A proof technique that is commonly used to proving
theorems that state properties true for all cases like this is the proof by induction
technique. Using induction proof, the property is proved for the basis case, and then it is
assumed to be true for all cases up to a number k, finally, the property is proved for the
k+1 case. We illustrate this in the following. We use op(S) to denote either push(S) or
pop(S) and opX(S) a sequence of k push or pop operations applied in S.

The basis step. Since size(S0)=0 is given in 2) in the specification, this implies
size(S0)>=0. Therefore, property is true in SO.

The hypothesis step. Now assume that size(op*(50))>=0 for all sequences of k push or
pop operations applied in the initial state.

The induction step. We need to prove size(op*"(S0))>=0. Since there are only two
operations, therefore, size(op***(S0)) can only be size(push(op“(S0))) or
size(poE(op"(SO))). Since size(push(op*(S0))) = size(op*(S0))+1 according to 3) and
size(0p*(S0))>=0 due to hypothesis, size(push(op*(S0))) > 0 and hence
size(push(op¥(S0))) >=0. Moreover, since size(op*(S0))>=0 and pop can only be applied
in state op*(S0) if size(op*(S0))>0. Thus, size(push(op*(S0))) >=0. Therefore,
size(op*™(S0))>=0.

A property about a software system that is true in all states, like the above example, is
called invariants.

The second approach is called model checking [12,13, 14,15]. This approach can also be
called the model-theoretical approach. In this approach, the system is represented by an
operational model, which typically depicts the system behavior. The commonly used
operational model for model checking is a state machine consisting of vertices
representing system states and directed edges representing system behaviors that cause
state transitions. Each system state is specified by a logical or conditional statement. That
is, the system is in that state if and only if the condition is evaluated to true using system
attributes. Formal verification in the model checking approach begins with the initial
system state and generates the states by applying the operations. The desired properties or
constraints are checked against each of the states generated and violations are reported.



Consider a simplified thermostat example consisting of only a season switch, an AC relay
and a furnace relay as shown in Figure 2. The desired properties for the thermostat could
be the following:

C1. Not (SeasonSwitchOff and (FurnaceOn or ACOn))
C2. Not (FurnaceOn and ACOn)

C3. Not (SeasonSwitchCool and FurnaceOn)

C4. Not (SeasonSwitchHeat and ACOn)

Applying the operations of the thermostat results in the tree as shown in Figure 3. A
system state is represented by a triple (S1, S2, S3), where S1 denotes the state of the
season switch, S2 denotes the state of the furnace relay, and S3 the state of the AC relay.
The figure shows that starting in the initial state, the thermostat can enter into a state in
which the season switch is at cool, and the furnace and AC are both on. This violates
constraint C2 and constraint C3. In practice, model checking can be used to check not
only static constraints like C1-C4 in the above but also temporal constraints that involve
sequences of states rather than a single state. This is also true for theorem proving
approach. Furthermore, the model checker would explore millions of state rather than
only a few states as shown in Figure 3.

In practice, the state machine models are converted into the specification language of the
model checker. Using SPIN [14] this would be the Promela language, which is a subset
of the C programming language. The property to be verified is expressed as a temporal
logic expression. The checker will explore the state space and verify the property.

SeasonSwitch: heat /;\ off
off ~ \_/ ~

FurnaceRelay:

[temp < target temp and SeasonSwitch == Heat]
turnon_furnace()

Furnace > Furnace
off < _ on
[temp > target temp + d or SeasonSwitch != Heat]
turnoff_furnace()

ACRelay:

[temp > target temp and SeasonSwitch == Cool]

NG turnon_AC() s AC
off < on
[temp < target temp - d or SeasonSwitch != Cool]
turnoff_AC()

Figure 2. Thermostat specification
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SS. he SS.cool
heat,off,off cool,off,off
SS.off
FR.turnOn
Cottoton >
SS.off
SS.heat w FR.turnOff
SS.cool
oo >
SS.off AR.turnOn

@ cool, on, on

Figure 3. Partial state space of the thermostat example

In recent year, model checking has been applied to checking code or implementation
rather than the specification [16,17,18]. This has been termed “software model
checking”. In software model checking, the model is constructed from code or
implementation rather than from the specification. The construction can be manual or
semi-automatic.

4. Software Testing Techniques

This section gives a brief introduction to well-known software testing techniques and
methods.

4.1. Software Testing Processes

Generally speaking, software testing is an iterative process that involves a number of
technical and managerial activities. In this section, we will focus on the technical aspects.



As shown in Figure 3, the main technical activities in software testing process include
planning, generating and selecting test cases, preparing test environment, testing the
program under test and observing its dynamic behavior, analyzing the observed behavior

——>| Planning |
»| Generating Preparing test |
test cases environment

N/

Test execution and
behavior observation

A\ 4
Analyzing test results
(Adequacy and Correctness)

v
| Reporting test results |

[ Bug Report ] [QualityReport]

Figure 4. lllustration of activities in software testing process

on each test case, reporting test results, and assessing and measuring test adequacy.

In software testing practice, testers are confronted with questions like: Which test cases
should be used? How to determine whether a testing is adequate? Or when can a testing
process stop? These questions are known as the test adequacy problem [19]. They are the
central issues in software testing and the most costly and difficult issues to address. A
large number of test criteria have been proposed and investigated in the literature to
provide guidelines to answer these questions. Some of them have been used in software
testing practice and required by software development standards. A great amount of
research has been reported to assess and compare their effectiveness and efficiency.

The observation of dynamic behavior of a program under test is essential for all testing.
Such observations are the basis of validating software’s correctness. The most often
observed software behaviors are the input-output of the program during testing. However,
in many cases, observation of the internal states, the sequences of code executed as well
as other internal execution histories are necessary to determine the correctness of the
software under test. Such internal observations are often achieved by inserting additional
code into the program under test, which is known as software instrumentation.
Automated tools are available for the instrumentation of programs in various
programming languages. Behavior observation can also be a very difficult task, for



example, in the testing of concurrent systems due to non-deterministic behavior , in
testing component-based systems because of the unavailability of source code, in testing
real-time systems due to their sensitiveness to timing and load, in testing systems that are
history sensitive such as machine learning algorithms where the reproduction of a
behavior is not always possible, in testing of service-oriented systems due to the lack of
control of third-party services, and so on.

Checking the correctness of a program’s output as well as other aspects of dynamic
behavior s is known as the test oracle problem. A test oracle is a piece of program that
simulates the behavior of the program under test. It could be as simple as a person or a
program that judges the output of the program under test according to the given input. If a
formal specification of the system is available, then the output can be judged
automatically, e.g., by using algebraic specifications [20,21,22]. A recent development
in the research on metamorphic software testing method enables testers to specify
relationships between outputs of a program on a number of test cases and to check if the
relationships held during testing [23].

4.2. Testing methods

Testing activities, especially test case selection and generation and test adequacy
assessment, can be based on various types of information available during the testing
process. For example, at requirements stage, test cases can be selected and generated
according to the requirements specification. At design stage, test cases can be generated
and selected according to the architectural design and detailed design of the system. At
the implementation stage, test cases are often generated according to the source code of
the program. At the maintenance stage, test cases for regression testing should take into
consideration the part of the system that has been modified, either the functions added or
changed or the parts of the code that are modified. In general, software testing methods
can be classified as follows?.

e Specification-based testing methods

In a specification-based testing method, test results can be checked against the
specification, and test cases can be generated and selected based on the specification of
the system. For example, test cases can be generated from algebraic specifications [24],
derived from specifications in Z [25,26], or using model checkers to automatically
generate test cases from state machine specifications [27,28].

e Model-based testing methods

2 Traditionally, testing methods were classified into white-box and black-box testing.
White-box testing was defined as testing according to the details of the program code,
while black-box testing does not use the internal knowledge of the software. Many
modern testing methods have difficulty to be classified either as black-box or white-box.
Thus, many researchers now prefer a more sophisticated classification system to better
characterize testing methods.



A model-based testing method selects and generates test cases based on diagrammatic
models of the system, which could be a requirements model or design model of the
system. For example, in traditional structured software development, test cases can be
derived from data flow, state transition, and entity-relationship diagrams [29]. For testing
object-oriented software systems, techniques and tools have been developed to generate
test cases from various UML diagrams [30, 31].

e Program-based testing methods

A program-based testing method selects and generates test cases based on the source
code of the program under test. Tools and methods have been developed to generate test
cases to achieve statement, branch, and basis path coverage. Another program-based
testing method is the so-called decision condition testing method, such as modified
condition/decision coverage (MC/DC) criterion [32] and its variants [33], which focus
on exercising the conditions in the program that determine the directions of control
transfers.

e Usage-based testing methods

A usage-based testing method derives test cases according to the knowledge about the
usage of the system. For example, a random testing method uses the knowledge about the
probability distribution over the input space of the software, such as the operation profile.
Another commonly used form of usage-based testing is to select test cases according to
the risks associated to the functions of the software.

It is worth noting that it has been recognized for a long time that testing should use all
types of information available rather than just rely on one type of information [34]. In
fact, many testing methods discussed above can be used together to improve test
effectiveness.

4.3. Testing Techniques

A number of software testing techniques have been developed to perform various testing
methods. These testing techniques can be classified as follows.

e Functional testing techniques

Functional testing techniques aim at thoroughly testing the functions of the software
system. It starts with the identification of the functions of the system under test. The
identification of functions can be based on the requirements specification, the design
and/or the implementation of the system under test. For each identified function, its input
and output spaces and the function in terms of the relation between the input and output
are also identified. Test cases are generated in the function’s input/output spaces
according to the details of the function. The number of test cases selected for each
function can also be based on the importance of the function, which often requires a



careful risk analysis of the software application. Usually, functions are classified into
high risk, medium risk or low risk according to the following criteria.
— The cost and the consequences that a failure of the function may cause
— The frequency that the function will be used
— The extent to which the whole software systems’ functionality and performance
depends on the function’s correctness and performance
— The likelihood that the implementation of the function contains faults, say
because of high complexity, the capability and maturity of the developers, or any
priori knowledge of the system

A heuristic rule of functional testing is the so-called 80-20 rule, which states that 80% of
test efforts and recourses should be spent on 20% of the functions of the highest risks.

An advantage of functional testing techniques is that various testing methods can be
combined. For example, functions can be identified according to the requirements
specification. If additional functions are added during design, they can also be identified
and added into the list of functions to be tested. An alternative approach is to identify
functions according to the implementation, such as deriving from the source code. When
assigning risks to the identified functions, many factors mentioned in the above criteria
can be taken into consideration at the same time. Since some of the factors are concerned
with users’ requirements and some are related to the design and implementation, it
naturally combines requirements-based with design and implementation-based methods.
The main disadvantage is that functional testing techniques are largely manual operations,
although they are applicable to almost all software applications.

e Structural testing techniques

Structural testing techniques regard a software system as a structure that consists of a set
of elements of various types interrelated to each other through various relationships. They
intend to cover the elements and their interrelationships in the structure according to
certain criteria. Typical structural testing techniques include control flow testing and data
flow testing techniques and various techniques developed based on them.

Control flow testing techniques represent the structure of the program under test as a flow
graph that is a directed graph where nodes represent statements and arcs represent control
flows between the statements. Each flow graph must have a unique entry node where
computation starts and a unique exit node where computation finishes. Every node in the
flow graph must on at least one path from the entry node to the exit node. For instance,
the following program that computes the greatest common divisor of two natural numbers
using Euclid’s algorithm can be represented as a flow diagram shown in Figure 5.

Procedure Greatest-Common-Divisor;
Var x, y: integer;
Begin
input (X,y);
while (x>0 and y>0) do
it (xy)



then x:= x-y
else y:= y-x
endif
endwhile;
output (X+y);
end
’
b — x<0 or y<0
input (x,y)
x>0, y>0, x>y x>0,y>0, x<y
c ) x>0,y>0,x>y d
4»[ X:=X-y ] J y:=y-X
x>0, y>0, x>y x>0, y>0, X<y x>0,y>0, X<y
xﬁOor;;BE? x<0 or y<0

output(x+y)

Figure 5. Flow graph of the Greatest Common Divisor program

As a control flow testing method, statement testing requires the test executions of the
program on test cases exercise all the statements, i.e. nodes, in the flow graph. For
example, paths p=(a, b, c, d, e, f) in Figure 5 covers all nodes in the flow graph, thus the
test case t;= (x=2, y=1) that causes the path p to be executed is adequate for statement
testing. Obviously, an adequate statement testing may not execute all the control transfers
in the program. Branch testing requires the test cases to exercise all the arcs in the flow
graph, i.e. all the control flows, thus the branches, of the program. The test case t; is
therefore inadequate for branch testing. Various path testing techniques require test
executions cover various types of paths in the flow graph, such as all paths of length-N
for certain fixed natural number N, all simple paths (i.e. the paths that contain no multiple
occurrences of any arcs), all elementary paths (i.e. paths that contain no multiple
occurrences of nodes), etc.

Data flow testing techniques focus on how values of variables are assigned and used in a
program. Each variable occurrence is therefore classified to be either a definition
occurrence or a use occurrence:

— definition occurrence: where a value is assigned to the variable.

— use occurrence (also called reference occurrence): where the value of the
variable is referred to. Use occurrences are further classified into computation
uses (c-use) and predicate uses (p-use).

o predicate use: where the value of a variable is used to decide whether
a predicate is true for selecting an execution path;
0 computation use: where the value of a variable is used to compute a
value for defining other variables, or as an output value.
For example, in the assignment statement y:= x;— X variables x; and x, have a
computation use occurrence while variable y has a definition occurrence. In the if-
statement if x=0 then goto L endif, variable x has a predicate use occurrence. Figure 6
shows the flow graph with data flow information of the program given in Figure 5.
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Figure 6. Flow graph with dataflow information

Using such data flow information, the data flow in a program can be expressed by the
paths from a node where a variable x is defined to a node where the variable is used, but
no other definition occurrence of the same variable x on the path (which is called
definition-clear paths of x). Such a path is called a definition-use association. The
principle underlying all data flow testing is that the best way to test if an assignment to a
variable is correct is to check it when its assigned value is used. Therefore, data flow test
criteria are defined in the form of exercising definition-use associations or various
compositions of the relation. For example, a data flow test criterion in Weyuker-Rapps-
Frankl’s data flowing testing techniques require testing all definition-use associations [35,
36]. Other data flow testing techniques include Laski and Korel’s definition context
coverage criteria [37], and Ntafos’ interaction chain coverage criteria [38].

e [Fault-based testing techniques

Fault-based testing techniques aim at detecting all faults of certain kinds in the software.
For example, mutation testing aims at detecting all the faults that are equivalent to
mutants generated by a set of mutation operators [39, 40]. In general, a mutation operator
is a transformation that modifies the software with a single small change and preserves
the software’s syntax to be well-formed. For example, a typical mutation operator
changes a greater than symbol > in an expression to be the less than symbol <. When this
mutation operator is applied to the condition of the if-statement in the program given in
Figure 5, the following mutant will be generated.

Procedure Greatest-Common-Divisor;
Var x, y: integer;
Begin
input (X,y);
while (x>0 and y>0) do
if (x<y) /*Mutation operator applied */
then x:= x-y



else y:= y-x
endif
endwhile;
output (X+y);
end

Figure 7. A mutant of the Greatest Common Divisor program

Each mutation operator represents a kind of errors that could be made by software
developers. If a test case enables the original software under test and the mutant to
produce different outputs, we say that the mutant is killed by the test case or simply the
mutant is dead. This means that the modified part of the program has been executed and
that the part actually affects the behavior of the system. Therefore, if the original program
contains a fault at the location where the mutation operator is applied, the test case should
be able to detect it. Otherwise, solely based on the test executions on the test cases, we
would have no evidence to claim that the test cases are capable of differentiate the
mutants from the original. In other words, if there is a fault, the test cases would not be
able to detect it. Of course, there are two reasons that a mutant remains alive after testing
on all test cases. First, the mutant is equivalent to the original. Thus, it cannot be killed.
Second, the test cases were unable to kill it due to its inadequacy. The proportion of non-
equivalent mutants that remain alive after testing, which is called mutation score in
software testing literature, gives a clear indication of the adequacy of the test set, and
serves as a test adequacy criterion.

Measuring the mutation score of a test set is, therefore, an analysis of the test adequacy.
Different levels of mutation analysis can be done by applying mutation operators to the
corresponding syntactical structures in the program [41, 42, 43, 44]. Table 1 below
summarizes the levels of mutation analysis and the methods to achieve the goals of the
analysis.

Table 1. Levels of Mutation Analysis

Level Goal Method (Mutation operators)

(1) Mutation operators are designed to model
integration errors,

(2) Tests only the connections between two
modules, a pair at a time, and

(3) Applies integration mutation operators
only to module interfaces such as function
calls, parameters or global variables.

Ensure interfaces
between software
Interface components are
Analysis | correct and
adequately tested in
integration testing.

Language For example, for test Java specific features:
- Ensure language . : _

Specific - Delete and insert This keyword;

specific features were . : _
Feature used proner| Delete and insert Static keyword,;

Analysis PrOpETTy. Delete member variable initialization; etc.
Exercise all possible | Change the instantiation type of an object
dynamic type reference to a child or parent class;

Polymorphis |bindings to ensure the | Delete, insert or change type cast operator;
m Analysis | correctness of Delete overloading method declarations;

polymorphic behavior | Change the parameters of overloading
of object references. | method calls.




Ensure the inheritance | Delete or insert overriding methods and
relationships hiding variables;
. including variable Change the calling position of overriding
Inheritance .
. .~ | hiding, method methods,
relationship o - .
Analysis overriding, usgs_o_f Rename ovgrrldlng methods;
super, and definition | Delete and insert keyword ‘Super’;
of constructors) are | Delete and insert parent constructor calls;
correctly defined. etc.
Ensure class
Class declarations correctly | Change the access modifiers (i.e. private,
Encapsulation | use encapsulation protected, public, and unspecified) of the
Analysis | facilities for various | attributes and methods in class declarations.
accessibility levels.
Replace statement with CONTINUE;
Replace logical and relational with true or
Ensure that every )
Statement | branch is taken and false; . .
. . Check labels on arithmetic IF statements for
Analysis every statement is usage:
necessary. Replace DO statements with FOR
statements.
Alter predicate and DO loop limit sub-
Predicate | Exercise predicate expressions by small amounts; . .
. . Insert absolute value operators into predicate
Analysis | boundaries S
sub-expressions;
Alter relational operators.
Domain Exercise different Change constants and sub-expressions by
Analysis | data domains small amounts;
Coincidental Ggarq against Change data references and operators to
Correctness | coincidental . .
. other syntactically correct alternatives.
Analysis | correctness

Mutation testing tool such as Mothra for Fortran [42] and MuJava for Java [45] have
been developed to automatically generate a large number of mutants from a program
under test and to execute the program under test and the mutants and to collect the data
about dead and alive mutants. Test cases can also be generated to kill a mutant [46]. The
equivalence of a mutant to the original is not decidable, but can be automatically
determined for a large proportion of mutants.

The idea of program mutation testing can also be extended to specification-based testing
in which mutants of specifications are generated [47]. A specification mutant is killed if
the correctness of the output of the program under test is judged differently by the
original specification.

More recently, the idea of mutation has also been applied to generate test data. A set of
mutation operators designed so that when applied to a test case, they generate a set of test
data that are of subtle differences from the original test case [48]. This technique can be



applied to test software systems whose test cases are of complicated structure, such as
modeling tools and other test case generation techniques would have difficulties.

e Error-based testing techniques

Error-based testing techniques aims at checking all error-prone aspects of the system,
where errors are mistakes made software developers. For example, test cases are often
selected to test if division by zero error were processed properly by the program.

Among the was well established error-based testing techniques is the boundary analysis
testing techniques, which select test cases on the boundary and nearby the boundary of an
input space in order to make sure that the programmer has correctly computed the
boundary, which has been recognized for a long time as error-prone. As illustrated in
Figure 8, two types of boundary errors have long been recognized as the most common
programming errors. They are shift errors, in which the border of an input domain is
shifted parallel to the correct border either towards the outside of the input domain or
towards the outside of the domain, and rotation errors in which the border is rotated with
respect to the correct border.

5/—Rotation error
:xOn test

Domain of Input Space

Shift error _/

Figure 8. lllustration of boundary shift and rotation errors.

To detect shift errors of a border in N-dimensional input space, N test cases must be
selected on the border and an additional test case must be selected nearby the border. If
the input on the border belongs to the input domain, which are called on tests, the test
case nearby the border must be selected outside the input domain, which is called off test.
Otherwise, if the inputs on the border do not belong to the valid input of the domain, the
test case nearby the border should be selected inside the input domain. In this case, the
test cases on the border are off tests while the test case nearby the border is on test. As
illustrated in Figure 9 for 2-dimensional input spaces, by selecting data according to this
Nx1 criterion, all shift errors can be detected provided that the computed functions in the
input domain and outside the domain are different and the border is linear; e.g. a straight
line in 2 dimensional space [49].
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Figure 9. Selection of test cases using Nx1 criterion.

However, Nx1 criterion cannot guarantee the detection of rotation errors. To detect
rotation errors, in addition to the selection of N test cases on the border, N test cases must
also be selected nearby the border in the same way as the Nx1 criterion. It is the so called
NxN criterion [50].
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