The First International Workshop on Automation of Software Test

Hong Zhu
Department of Computing
Oxford Brookes University

Oxford OX33 1HX
United Kingdom
Email: hzhu@brookes.ac.uk

Joseph R. Horgan
Telcordia Technologies
One Telcordia Drive,
RRC-1M322, Piscataway,
NJ 08854, USA

Department of Computer Science
The Hong Kong University of

Clear Water Bay, Hong Kong
Email:jrh@research.telcordia.com

Tel: +44 1865 484580
Fax: +44 1865 484545

Tel: 732-699-2580
Fax: 732-336-7015

Categories and Subject Descriptors

D. [Software]; D.2.0 [Software Engineering]: General —
methodologies, techniques, tools;

D.2.5 [Testing and Debugging]: Testing tools.

General Terms
Design, Reliability, Security, Experimentation, Languages,
Management, Measurement.

Keywords

Software test, Software automation, Test case generation, Model-
based test, Test adequacy and coverage, Test cost and
effectiveness, Test tools and environments, Component
integration test.

1 MOTIVATION

Software testing is indispensable for all software development, but
labor intensive and expensive. In software development practice,
testing can account for over half of the total development efforts.
It is imperative to reduce the cost and improve the effectiveness of
software testing by automating the testing process, which contains
many testing related activities using various techniques and
methods.

Automation is the trend of software testing. In the past decades, a
great amount of research effort has been made on the automation
of test case generation, test oracles and so on. However, the
current practice of software test automation is mostly based on
recording manual testing activities and replaying recorded test
scripts for regression testing. Bridging the gap between theory and
practice will not only significantly improve the current-state of
software production, but also foster innovative research in the
area. As the theories of software testing become more mature, a
larger scale automation of the testing process becomes feasible.
Indeed, many software test tools have been made available on the
market in the past few years. However, few of them have taken
inter-operability into serious consideration. Software systems have
become more and more complicated with components developed
by different vendors and using different techniques in different
programming languages and even run on different platforms. Few
software testing tools can support all testing tasks within one tool.
Therefore, it is timely and important for the development of
software testing methodologies into a scientific discipline as a part

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

AST 06, May 23, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

S.C. Cheung J. Jenny Li

Avaya Labs
233 Mount Airy Road
Basking Ridge, NJ 07920, USA
Email:
jili@research.avayalabs.com
Tel: 908-696-5147
Fax: 908-696-5402

Science and Technology

Email: sccheung@cs.ust.hk
Tel: +852 2358-7016
Fax: +852 2358-1477

of software engineering. The workshop aims at providing
researchers and practitioners a forum for exchanging ideas,
experiences, understanding of the problems, visions for the future,
and promising solutions to the problems. The workshop also
serves as a platform for researchers and developers of testing tools
to work together to identify the problems in the theory and
practice of software test automation and to set an agenda and lay
the foundation for future development.

2 THEME AND TOPIC

The theme of the workshop focuses on bridging the gap between
the theories and practice of software test automation. Its related
topics can be characterised by the following five aspects.

1) Methodology. This aspect is concerned with the research and
practices of software test automation in the context of various
software development methodologies, such as traditional heavy
weight methodologies, rapid prototyping and evolutionary
development methodology, component-based software
development, object-oriented software development, agile and
test-driven methodology, software architecture and product lines,
and service-oriented software engineering, etc.

2) Technology. This aspect covers issues related to the automation
of various test techniques and their corresponding components
used in various test related activities, such as test case generation,
test oracle and test result checking, test driver, stubs, harness and
test script generation, software instrumentation, test adequacy and
coverage measurement, and in general the generation of any test
related software artifact, the management of testing activities and
recourses, etc. It also includes the underlying techniques that
support various software testing methods, such as structural
testing, functional testing, error based testing, fault-based testing,
partition testing and combinatorial testing, random testing,
program-based testing, specification-based testing, model-based
testing, risk-based testing, etc.; just to mention a few.

3) Applications. It is concerned with the development and
application of automation methodologies and techniques in the
testing of various specific types of software in various application
domains, such as Internet and Web-based applications, Web
Services, peer-to-peer applications and Grid systems, Semantic
Web, database applications and information systems, systems
software such as middleware, architecture and reference models,
XML schemes, compilers, OS, real-time systems, concurrent and
parallel systems, communication systems and protocols,
embedded systems, etc. Besides application domains, it will
consider issues related to application of testing automation, such
as cost, scalability, economical impact, etc.

4) Tools and environments. It is devoted to the issues in the
development, operation, maintenance and evolution of software

testing tools and environments, such as the functional,
architectural and interface designs of automated software testing
tools and environments, the construction and evaluation of
practical and prototype systems of automated testing and
implementation issues, and the survey and comparative study of
existing test automation tools.

5) Experiments, empirical studies, experiences and vision of the
future. This aspect is concerned with the experiments and
empirical studies of the impact of software test automation on
software development practice, and reports on real experiences
using automated testing techniques, methods and tools in
industrial settings, such as the effectiveness of automated testing
tools, methods and techniques, such as fault detecting abilities, the
cost of building and using the automation versus savings from the
automation, the usability of various techniques, methods and
tools. An important part of the issues is the identification of
problems that hamper the wider adaptation of automated test
techniques, methods and tools as well as the analysis and
specification of the requirements on automated software testing.

The workshop received a good number of submissions of papers
authored by a total of 90 academic researchers and industrial
practitioners from 15 different countries. The submitted papers
cover a wide range of topics in the area of software test
automation. Most papers are concerned with more than one of the
above five aspects. The following table shows the distribution of
the topics covered by the submitted papers according to the
keywords of the papers.

Table 1. Distribution of Concerned Aspects

Topic Percen.ta.ge of
Submissions
Methodology 26.7%
Technology 83.3%
Application 36.0%
Tool and Environment 40.0%
Experiment, Practice and Empirical study 20.0%

As shown in the above table, more than 83% of submitted papers
are concerned with the technological aspect of software test
automation. Table 2 below shows the distribution of these papers
over the specific issues of software test technologies, where many
papers addressed more than one technical issue.

Table 2. Distribution of the concerned technical issues

. Number of
Topic .
submissions
Test case generation 60%
Management of test activities and resources 32%
Test drive, harness and script 24%
Test adequacy and coverage measurement 16%
Test oracle 4%

The above statistical data show a high research interest on
automatic test case generation from both academic and industrial
authors. After reviews by the workshop program committee

members, 18 papers of high quality were selected for presentation
at the workshop and publication in the workshop proceedings.

3 PLANNED WORKSHOP PROGRAM

The workshop will include five sessions. Each session focuses on
one specific topic.

Session one includes four papers on model-based automatic
testing. Chen, Qiu, and Li present a method to generate tests from
UML activity diagrams to satisfy certain coverage criteria. Vieira
et al. describe an ongoing research on test case generation from
UML diagrams based on an idea of combining data and graph
coverage of UML models. Pfaller et al. present a method for
combining testing coverage and system requirements. They
discuss the issue of various levels of model abstractions in the
context of embedded systems. Lund and Stolen use sequence
diagrams with advance features such as negation and assertion not
only for automatic test case generation but also for automatic
checking of test results.

Session two has three papers of test generation based on program
input domains. Liu and Tan address the issues of statistical input
validation for input control. Ji et al. propose an approach to the
generation of test cases that enables monitoring program
execution time more precisely in test. Shan and Zhu propose a
data mutation method to the generation of a large number of
structurally complicated test data from a few seed test cases. The
method has been applied to a modeling tool and proven effective.

Session three includes three papers on component and integration
testing. Abdurazik and Offutt propose a solution to integration
testing based on class coupling for testing orders. The paper by
Gallagher and Offutt presents a tool for automated testing of inter-
operating OO classes. The tool operates directly on an object-
oriented software specification to produce a data flow graph and
executable test cases that adequately cover the graph according to
classical graph coverage criteria. Yuan and Xie describe a
framework for automatic generation of integration tests based on
call-sequence constraints inferred from dynamic executions.

Session four addresses economical issues of test automation with
four papers. Cai et al. propose and validate their solution to test
automation under cost constraints. Offutt et al. present the results
of an empirical study on the affordability of class level mutation
testing using MulJava tool. Ramler and Wolfmaier present their
study of economical issues in testing automation and discuss how
to balance between automated testing and manual testing to
achieve an optimal test cost. Artho et al. focus on the scalability
issue and extend unit testing framework for large scale tests.

The last session of the workshop, session five, is devoted to test
tools and environments. It includes four papers. Yang, Li and
Weiss survey and compare a set of coverage-based testing tools
aiming at providing guidelines to the selection of coverage tools.
Okika et al. describe a prototype TTCN-3 test harness for legacy
software systems. Sauve et al. present a tool to create and execute
client-readable acceptance tests in an acceptance-test driven
software development process. Delamaro et al. describe a strategy
for coverage-based testing of mobile devices on both emulators
and the real mobile devices and report a test environment that
supports the strategy.

